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Abstract: The Rarita–Schwinger operator is the twisted Dirac operator restricted to
3/2-spinors. Rarita–Schwinger fields are solutions of this operator which are in addition
divergence-free. This is an overdetermined problem and solutions are rare; it is even
more unexpected for there to be large dimensional spaces of solutions. In this paper
we prove the existence of a sequence of compact manifolds in any given dimension
greater than or equal to 4 for which the dimension of the space of Rarita–Schwinger
fields tends to infinity. These manifolds are either simply connected Kähler–Einstein
spin with negative Einstein constant, or products of such spaces with flat tori. Moreover,
we construct Calabi–Yau manifolds of even complex dimension with more linearly
independent Rarita–Schwinger fields than flat tori of the same dimension.

1. Introduction

The goal of this note is to establish the existence of a sequence of compact Riemannian
spin manifolds in any fixed dimension n ≥ 4 for which the number of Rarita–Schwinger
fields tends to infinity.When n is divisible by 4, thesemanifolds areKähler–Einsteinwith
negative Einstein constant, and arise as complete intersections in some higher dimen-
sional complex projective space. For other values of n we take products of such Kähler–
Einstein spaces with flat tori. The Rarita–Schwinger operator Q is the twisted Dirac
operator acting on 3/2-spinors, and perhaps somewhat confusingly, Rarita–Schwinger
fields are solutions of this twisted Dirac operator which are also divergence free. This is
an overdetermined right-elliptic operator and so the existence of nontrivial solutions is
nongeneric.

This operator Q appeared initially in the 1941 paper of Rarita and Schwinger [8]
to describe the wave functions of particles of spin 3/2, and has been used extensively
in the physics literature since then. In mathematics it is relatively unstudied, and has
appeared mostly as one example amongst many in the family of all twisted Dirac oper-
ators. Notably, Semmelmann computed its spectrum on spheres and complex projective
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spaces [9]. Bureš [3] introduced it from the point of representation theory, studied some
basic examples of solutions and computed its index in general. Branson and Hijazi
[2] proved its conformal covariance and determined the Weitzenböck formula for Q2.
Unlike the simplerDirac operator, thisWeitzenböck formula has lower order termswhich
do not have a sign under standard geometric hypotheses, so the existence of solutions
(divergence-free or not) does not have any immediate connection to geometry. Wang
[11] studied the role of Rarita–Schwinger fields in the deformation theory of Einstein
metrics with parallel spinors, see also his earlier paper [10]. The problem of counting
Rarita–Schwinger fields was considered only quite recently by Homma and Semmel-
mann [5], with related work more recently still in Homma–Tomihisa [6]. The goal of [5]
was to find manifolds admitting any nontrivial Rarita–Schwinger fields; as part of this
they obtain a complete classification of positive quaternion-Kähler manifolds and spin
symmetric spaces admitting such fields, but their mention of the negative Einstein case
is rather brief. We refer to all of these papers for a more extended discussion and some
description of the use of Rarita–Schwinger fields in physics.

Ourmain observation is that the negativeKähler–Einstein case provides a particularly
rich set of examples. To set the stage, suppose that (M, g) is a Riemannian manifold
carrying a spin structure. Denote by�M its spin bundle, with its chirality decomposition
�+M ⊕ �−M when dim M is even. The standard Dirac operator acts on sections of
�M ; coupling to the Levi-Civita connection on T M we may then define the twisted
Dirac operator D acting on sections of �M ⊗ T M . As we explain in the next section,
this bundle splits as the direct sum of an isometric copy of�M and another bundle ̂�M ,
which is the bundle of 3/2-spinors. The Rarita–Schwinger operator Q is the restriction of
D to ̂�M , i.e., the projection of Dψ to ̂�M , where ψ ∈ �(̂�M). The complementary
projection of Dψ onto the copy of �M in �M ⊗ T M is essentially the divergence of
ψ . The space of Rarita–Schwinger fields is the set of such sections ψ for which both
components of Dψ vanish, and we define

RS(M) = dim{ψ ∈ �(̂�M) : Dψ = 0}.

For even dimensional manifolds we can also define RS±(M), the dimension of the space
of even or odd chirality Rarita–Schwinger fields. Our main result is

Theorem 1.1. Let n be any positive integer greater than or equal to 4 and C any pos-
itive constant. Then there exists a compact Riemannian spin manifold Mn such that
RS(M)>C. If n is divisible by 4, then we can take M to be a simply connected com-
pact Kähler–Einstein manifold of complex dimension m = n/2 which is spin and has
negative Einstein constant.

This is a corollary of a more precise theorem which, in the case where M is Kähler–
Einstein and spin with negative Einstein constant, estimates from below RS(M) (and
RS±(M)) as the difference of a certain characteristic number of M and a number which
is essentially the dimension of the space of parallel spinors, see Theorem 2.9.

Moreover, for each even m ≥ 2 we find a complex m-dimensional simply connected
compact Calabi–Yau manifold with many Rarita–Schwinger fields. This means that the
dimension of the space of these fields is much larger than that of flat tori of the same
dimension, see Corollary 5.2 for a precise formulation.

The key tool in the proof is a certain elliptic complex involving the Rarita–Schwinger
operator which is only well-defined on Einstein manifolds. The index of this complex
leads to the aforementioned estimate of RS(M).
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The existence of arbitrarily many linearly independent Rarita–Schwinger fields in
a given dimension provides a stark contrast with the behavior of other better-known
overdetermined elliptic operators which appear in geometry. For example, the Killing
operator is said to be overdetermined of finite type, which corresponds to the fact that
there is a sharp bound for the dimension of the space of solutions of the Killing operator
which depends only on the dimension of the manifold. The dimension of the space of
twistor spinors can be bounded similarly. Our results show that the Rarita–Schwinger
operator is not of this type. This finite type phenomenon was studied exhaustively in the
work of Kodaira and Spencer.

2. Rarita–Schwinger Fields

We start by describing the geometric setup for the study of Rarita–Schwinger fields. For
an introduction to general aspects of spin geometry see e.g. [7].

2.1. The algebra of vector-spinors. We equip R
n with its standard Euclidean metric

〈·, ·〉 and standard orientation. Let �n be the complex spinor module of the spin group
Spin(n). Then there is a linear map γ : Rn ⊗�n → �n satisfying the Clifford relations

Y · (X · φ) + X · (Y · φ) + 2〈X, Y 〉φ = 0

where we have used the notation X · φ = γ (X ⊗ φ). We denote the kernel of γ by
̂�n ⊂ R

n ⊗ �n . The Euclidean metric on Rn and the Hermitean metric on �n induce a
Hermitean metric on R

n ⊗ �n and hence on ̂�n .
Let e1, . . . , en be the standard basis of Rn . We define

ι : �n → R
n ⊗ �n, ι(φ) = −1

n

n
∑

j=1

e j ⊗ e j · φ.

The factor − 1
n is chosen such that γ ◦ ι = id, hence ι ◦ γ is a projection. The comple-

mentary projection π̂ = id−ι ◦ γ has image ̂�n . The maps γ , ι, and π̂ are Spin(n)-
equivariant. One easily checks that

|ι(φ)|2 = 1

n
|φ|2,

in particular, ι is injective, and that
γ ∗ = nι.

In particular, ι ◦ γ and hence π̂ are self-adjoint projections. We obtain the orthogonal
decomposition of Spin(n)-modules Rn ⊗ �n = ι(�n) ⊕ ̂�n .

The metric on Rn yields a contraction Rn ⊗ (ι(�n) ⊕ ̂�n) = R
n ⊗R

n ⊗ �n → �n
which we denote by X ⊗ 	 
→ 	(X), i.e. (

∑n
j=1 e j ⊗ φ j )(X) = ∑n

j=1〈e j , X〉φ j .
If n is even,�n decomposes as aSpin(n)-module into spinors of positive and negative

chirality,�n = �+
n ⊕�−

n . Clifford multiplication interchanges chirality, γ (Rn ⊗�±
n ) =

�∓
n . We get a corresponding splitting

R
n ⊗ �±

n = ι(�∓
n ) ⊕ ̂�±

n .
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Now let M be an n-dimensional Riemannian spin manifold. Associating the Spin(n)-
modules Rn , �n , and ̂�n to the spin structure of M , we obtain the tangent bundle T M ,
the spinor bundle �M and the bundle of 3/2-spinors ̂�M , respectively. If n is even, we
furthermore have the bundles�±M and ̂�±M of spinors and 3/2-spinors of positive and
negative chirality.

Since γ , ι, and π̂ are Spin(n)-equivariant, they induce vector bundle morphisms
which we again denote by γ , ι, and π̂ .

2.2. Dirac, twistor, and Rarita–Schwinger operator. The Levi-Civita connection on
T M induces one on �M and hence on ̂�M . We will denote all these connections by ∇.
Note that the connection on the spinor bundle is a differential operator ∇ : �(�M) →
�(T M ⊗ �M). The Dirac operator is defined as

D = γ ◦ ∇ : �(�M) → �(�M)

and the twistor or Penrose operator as

P = π̂ ◦ ∇ : �(�M) → �(̂�M).

The Dirac operator is formally self-adjoint, D = D∗, while the adjoint of P is given on
3/2-spinors 	 by

P∗	 = (∇∗ ◦ π̂)(	) = ∇∗	 = −
n

∑

j=1

(∇e j 	)(e j ).

Now let D : �(T M ⊗ �M) → �(T M ⊗ �M) be the twisted Dirac operator acting
on vector-spinor fields. We write it as a 2 × 2-matrix with respect to the decomposition
T M ⊗ �M = ι(�M) ⊕ ̂�M :

D =
( 2−n

n ι ◦ D ◦ ι−1 2ι ◦ P∗
2
n P ◦ ι−1 Q

)

.

This follows from straight-forward computation, see also [11, Prop. 2.7(b)]. The part
Q : �(̂�M) → �(̂�M) is called the Rarita–Schwinger operator. It is a formally
self-adjoint first order elliptic differential operator.

If n is even, theDirac operators D andD interchange chirality, hencewe get operators
D± : �(�±M) → �(�∓M) and D± : �(T M ⊗ �±M) → �(T M ⊗ �∓M). The
splitting T M ⊗ �±M = ι(�∓M) ⊕ ̂�±M leads to

D± =
( 2−n

n ι ◦ D∓ ◦ ι−1 2ι ◦ (P±)∗
2
n P∓ ◦ ι−1 Q±

)

.

(The reader should beware here: by our conventions, the formula for D± contains D∓
in its upper left entry, which is perhaps awkward, but is coherent with other notation.)
Thus the Rarita–Schwinger operator also interchanges chirality, Q± : �(̂�±M) →
�(̂�∓M), while the twistor operator P± : �(�±M) → �(̂�±M) and its adjoint
(P±)∗ : �(̂�±M) → �(�±M) preserve it.
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2.3. An exact sequence on Einstein manifolds. As it turns out, the Rarita–Schwinger
operator has some especially nice features on Einstein manifolds.

Proposition 2.1. Let M be an Einstein spin manifold of dimension n ≥ 3. Then for every
α ∈ R

0 → �(�M)

(

ιD
αP

)

−−−→ �(T M ⊗ �M)
(α 2−n

n Pι−1, Q)−−−−−−−−−→ �(̂�M) → 0 (1)

is an elliptic complex.
If n is even, then (1) restricts to elliptic complexes

0 → �(�±M)

(

ιD±
αP±

)

−−−−→ �(T M ⊗ �M±)
(α 2−n

n P∓ι−1, Q±)−−−−−−−−−−→ �(̂�∓M) → 0 (2)

If, in addition, M is compact without boundary, then the Euler number of (2) is given
by

χ±(M) = ∓〈Â(M) ch(TCM), [M]〉. (3)

Here Â(M) is the Â-class of M , ch(TCM) is the Chern character of the complexified
tangent bundle, and [M] is the fundamental cycle in homology.

Remark 2.2. It seems reasonable to expect that (1) and (2) might be the initial parts of a
BGG complex that exists in certain situations. To our knowledge, this does not seem to
be the case.

Proof. Using the Weitzenböck formula for D2 one computes

2−n
n P D + Q P = 1

2 Ric
0, (4)

where Ric0 is the traceless part of Ricci curvature, see [11, Prop. 2.9(b)]. Since M being
Einstein means Ric0 = 0, we see that (1) is a complex. Then, for any covector ξ ∈ T ∗

x M ,
the corresponding sequence of principal symbols

0 → �x M
σ
((

ιD
αP

)

;ξ
)

−−−−−−−→ Tx M ⊗ �x M
σ
(

α 2−n
n Pι−1,Q;ξ

)

−−−−−−−−−−−→ ̂�x M → 0

is a complex too. Let ξ �= 0. To show ellipticity of (1) it suffices, for dimensional
reasons, to show that the two principal symbols have maximal rank. But this is clear:
since D is elliptic the first principal symbol is injective and since Q is elliptic the second
is surjective.

It remains to compute the Euler numbers of (2). Since Euler numbers are invariant
under continuous deformations of elliptic complexes, it suffices to do this for α = 0.
Then (2) becomes

0 → �(�±M)

(

D±
0

)

−−−−→ �(�M∓ ⊕ ̂�±M)
(0,Q±)−−−−→ �(̂�∓M) → 0

so that the Euler number is given by

χ±(M) = index(D±) − index(Q±). (5)

For α ∈ R consider the operator

Dα =
(

2−n
n ι ◦ D ◦ ι−1 2αι ◦ P∗
2α
n P ◦ ι−1 Q

)

.
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Again using (4), we see that the off-diagonal terms ofD2
α vanish for Einstein manifolds

and we get that

D2
α =

(
( 2−n

n

)2
ι ◦ D2 ◦ ι−1 + 4α2

n ιP∗ Pι−1 0

0 4α2

n P P∗ + Q2

)

is elliptic for every choice of α. Thus all Dα are elliptic. Therefore

index(D±) = index(D±
1 ) = index(D±

0 )

= index(D∓) + index(Q±)

= index(Q±) − index(D±).

Inserting this into (5) we get, using the Atiyah-Singer index theorem for twisted Dirac
operators,

χ±(M) = − index(D±) = ∓〈Â(M) ch(TCM), [M]〉.
��

Remark 2.3. The proof above shows that the index of the Rarita–Schwinger operator
Q± is given by

index(Q±) = index(D±) + index(D±) = ±〈Â(M)(ch(TCM) + 1), [M]〉.
See [5, Sec. 3] for a different derivation of this fact.

Remark 2.4. Wehavepresented this computationphrasedusing the elliptic complexes (1)
and (2). It would be straightforward to wrap each of these complexes into a single elliptic
operator (depending on the parameter α) and compute its index. Neither approach seems
shorter than the other and the end results are the same. The complex has the advantage
that its index can be refined by its cohomology which might turn out to be useful in some
other context.

Definition 2.5. A section ψ ∈ �(̂�M) is called a Rarita–Schwinger field if Dψ = 0.

Note that this is equivalent to Qψ = 0 and P∗ψ = 0. Since Q is elliptic, the Rarita–
Schwinger equation is overdetermined. By elliptic regularity theory, (distributional)
Rarita–Schwinger fields are smooth.

We use the following notation for the dimension of the space of Rarita–Schwinger
fields:

RS(M) := dim{ψ ∈ �(̂�M) | Dψ = 0}
and similarly, in even dimensions,

RS±(M) := dim{ψ ∈ �(̂�±M) | D±ψ = 0}
for Rarita–Schwinger fields of positive and negative chirality, respectively.We then have
RS(M) = RS+(M) + RS−(M).
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Table 1. Maximal number of linearly independent parallel spinors on manifolds without flat factor

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
N (n) 0 0 0 2 0 0 1 4 0 0 2 8 0 2
n 15 16 17 18 19 20 21 22 23 24 25 26 27 28
N (n) 4 16 0 4 8 32 2 8 16 64 4 16 32 128

Table 2. Holonomy groups of irreducible manifolds with parallel spinors

n Hol(M) dim{parallel spinors}
2m SU(m) 2
4m Sp(m) m + 1
7 G2 1
8 Spin(7) 1

Definition 2.6. For n ∈ N put

N (n) :=

⎧

⎪

⎨

⎪

⎩

2m if n = 4m or n = 4m + 7,
2m+1 if n = 4m + 2 · 7 or n = 4m + 3 · 7,
0 else.

For low values of n the number N (n) is given by

Lemma 2.7. Let M be a complete simply connected Riemannian spin manifold of dimen-
sion n. If the dimension of the space of parallel spinors is larger than N (n) then M has
a flat factor, i.e. M is isometric to a Riemannian product N × R

k with k ≥ 1.

Proof. If M is irreducible, i.e. does not split as an isometric product, and carries parallel
spinors then M must have one of the holonomy groups from the following table (see
[10]):

If M is reducible and admits parallel spinors but does not contain a flat factor then
M must be isometric to a product of manifolds of the type listed in the table. For a
Riemannian product M = M1 × M2 the spinor bundle of M can be naturally identified
with the tensor product of the spinor bundles of M1 and M2 unless both M1 and M2
are odd-dimensional. In that case the spinor bundle of M is the sum of two copies of
the tensor product. The connection on the spinor bundle of M coincides with the tensor
product connection. Hence the space of parallel spinors on M is isomorphic to the tensor
product of those on M1 and on M2 or the sum of two copies of it if both M1 and M2 are
odd-dimensional.

Let ˜N (n) be the maximal dimension of the space of parallel spinors on an n-
dimensional product ofmanifolds as in the table. Factorswith holonomySU(m) (m ≥ 3),
Sp(m) (m ≥ 2) or Spin(7) will not occur in such a maximal product because products
of K3-surfaces (holonomy SU(2)) yield a higher-dimensional space of parallel spinors.
More than threeG2-factorswill not occur either because four such factors can be replaced
by seven SU(2)-factors, again yielding a higher-dimensional space of parallel spinors.

Thus ˜N (n) is realized by products of K3-surfaces and up to three G2-manifolds.
This shows that ˜N (n) = N (n) as given in Definition 2.6. The additional factor of 2 in
the case of two or three G2-factors is due to the space of parallel spinors on the product
of two (odd-dimensional!) G2-manifolds being 2-dimensional. ��
Remark 2.8. The proof shows that the bound in Lemma2.7 is sharp. There exist complete
simply connected Riemannian spin manifolds X and Y with holonomy SU(2) and G2,
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respectively. Then

M = X × · · · × X
︸ ︷︷ ︸

m

× Y × · · · × Y
︸ ︷︷ ︸

0,1,2, or 3

does not have a flat factor and the space of parallel spinors on M has precisely dimension
N (dim(M)).

Theorem 2.9. Let M be compact Einstein spin manifold without boundary and of even
dimension n ≥ 4. Then

RS±(M) ≥
{

±〈Â(M) ch(TCM), [M]〉 − N (n) if M is Ricci-flat,
±〈Â(M) ch(TCM), [M]〉 otherwise,

and

RS(M) ≥
{

|〈Â(M) ch(TCM), [M]〉| − N (n) if M is Ricci-flat,
|〈Â(M) ch(TCM), [M]〉| otherwise.

Proof. The elliptic complex (2) with α = 1 reads as

0 → �(�±M)
∇−→ �(T M ⊗ �M±)

( 2−n
n P∓ι−1

Q±

)

−−−−−−−−→ �(̂�∓M) → 0.

By Hodge theory,

χ±(M) ≤ dim ker(∇) + dim coker
( 2−n

n P∓ι−1

Q±
)

= dim ker(∇) + dim ker
( 2−n

n P∓ι−1

Q±

)∗

= dim ker(∇) + dim ker((2 − n)ι(P∓)∗, Q∓)

= dim ker(∇) + RS∓(M).

Thus

RS±(M) ≥ χ∓(M) − dim ker(∇) = ±〈Â(M) ch(TCM), [M]〉 − dim ker(∇).

If M has nontrivial parallel spinors, M must be Ricci flat. In this case, either
dim ker(∇) ≤ N (n) which yields the claim or else dim ker(∇) > N (n) and then
the universal covering of M must contain a flat factor by Lemma 2.7. Then all charac-
teristic numbers of M (including 〈Â(M) ch(TCM), [M]〉) vanish and the claim holds
trivially.

If M is not Ricci-flat then dim ker(∇) = 0. This concludes the proof. ��
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3. Complete Intersections

Let M ⊂ CPm+r be a complete intersection, defined by r homogeneous polynomials of
degrees a1, . . . , ar ∈ N. Then M is a complex submanifold of complex dimension m.
Let h0 ∈ H2(CPm+r ,Z) be the generator of the cohomology ring ofCPm+r represented
by (2π i)−1 times the Kähler form. Let i : M ↪→ CPm+r be the inclusion map and put
h := i∗h0 ∈ H2(M,Z).

We regard T M as a complex vector bundle and denote by TCM the complexification
of the realification of T M , i.e. TCM = T M ⊕ T M . The Chern class of T M is given by

c(T M) = (1 + h)m+r+1(1 + a1h)−1 · · · (1 + ar h)−1, (6)

see e.g. [4, p. 159, eq. (1)]. In particular,

c(T M) = (1 + (m + r + 1)h + O(h2))(1 − a1h + O(h2)) · · · (1 − ar h + O(h2))

= 1 + (m + r + 1 − (a1 + · · · + ar ))h + O(h2),

hence the first Chern class is

c1(T M) = (m + r + 1 − (a1 + · · · + ar ))h. (7)

Since the second Stiefel–Whitney class is the mod-2 reduction of c1, the manifold M is
spin if m + r + 1 − (a1 + · · · + ar ) is even.

Since h > 0 we see that c1(T M) ≤ 0 if and only if a1 + · · · + ar ≥ m + r + 1. In
this case, M carries a Kähler–Einstein metric with nonpositive scalar curvature by the
Calabi–Yau theorem.

Next, we observe

c(TCM) = c(T M)c(T M)

= (1 + h)m+r+1(1 + a1h)−1 · · · (1 + ar h)−1

· (1 − h)m+r+1(1 − a1h)−1 · · · (1 − ar h)−1

= (1 − h2)m+r+1(1 − a2
1h2)−1 · · · (1 − a2

r h2)−1

and thus the Pontryagin class of M is given by

p(T M) = (1 + h2)m+r+1(1 + a2
1h2)−1 · · · (1 + a2

r h2)−1. (8)

Let H be the complex line bundle over M whose first Chern class is given by h. By (6),

c(T M ⊕ Ha1 ⊕ · · · ⊕ Har ) = c(H ⊕ · · · ⊕ H
︸ ︷︷ ︸

m+r+1

).

The Chern character of a vector bundle is determined by its Chern class, except for the
0-degree term which is given by the rank of the bundle. Thus, modulo H0(M,Z) we get

ch(T M ⊕ Ha1 ⊕ · · · ⊕ Har ) = ch(T M) + ch(Ha1) + · · · + ch(Har )

= ch(T M) + ea1h + · · · + ear h,

ch(H ⊕ · · · ⊕ H
︸ ︷︷ ︸

m+r+1

) = (m + r + 1)eh .
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Hence

ch(T M) = −1 + (m + r + 1)eh − ea1h − · · · − ear h

where the (−1)-term fixes the 0-degree part. We conclude

ch(TCM) = ch(T M) + ch(T M)

= − 1 + (m + r + 1)eh − ea1h − · · · − ear h

− 1 + (m + r + 1)e−h − e−a1h − · · · − e−ar h

= 2
( − 1 + (m + r + 1) cosh(h) − cosh(a1h) − · · · − cosh(ar h)

)

.

For a ∈ N let Ha := Ha ⊕ H−a , considered as a real bundle of rank 4. Its Pontryagin
class is given by p(Ha) = 1 + a2h2. By (8),

p(T M ⊕ Ha1 ⊕ · · · ⊕ Har ) = p(H1 ⊕ · · · ⊕ H1
︸ ︷︷ ︸

m+r+1

),

hence

Â(T M) = Â(H1)
m+r+1 · Â(Ha1)

−1 · · · Â(Har )
−1

=
(

h/2

sinh(h/2)

)m+r+1

· sinh(a1h/2)

a1h/2
· · · sinh(ar h/2)

ar h/2
.

Since 〈hm, [M]〉 = a1 · · · ar (see e.g. [4, p. 160]) we find that

〈Â(T M) ch(TCM), [M]〉 =

coeff

(

hm,
2( h

2 )m+1

sinh( h
2 )m+r+1

r
∏

j=1

sinh
(a j h

2

)

(

(m + r + 1) cosh(h) − 1 −
r

∑

j=1

cosh(a j h)
)

)

.

(9)

Here coeff(hm, f (h)) denotes the coefficient of hm in the power series f (h). (This
notation may seem extraneous, but will be useful below in §5.)

We analyze this coefficient in the case of hypersurfaces (r = 1).

Lemma 3.1. Let m ∈ N be even. Then

coeff

(

hm,
2( h

2 )m+1

sinh( h
2 )m+2

sinh
(ah

2

)(

(m + 2) cosh(h) − 1 − cosh(ah)
)

)

(10)

is a polynomial in a of degree m + 1.

Proof. The power series under consideration is of the form

a · ( f1(h)g1(ah) − f2(h)g2(ah))
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where f1(x), g1(x), f2(x), g2(x) ∈ Q�x� are even power series. Indeed, this holds with
the choice

f1(x) = 2(x/2)m+2

sinh(x/2)m+2 ((m + 2) cosh(x) − 1),

g1(x) = sinh(x/2)

x/2
,

f2(x) = 2(x/2)m+2

sinh(x/2)m+2 ,

g2(x) = sinh(x/2)

x/2
cosh(x).

Clearly, the coefficient of hm in the power series f j (h)g j (ah) is a polynomial in a of
degree at most m. To see that the degree equals m, we determine the coefficient of amhm

in f j (h)g j (ah) when considered as a power series in the two variables h and a. It is
given by f j (0) times the coefficient of xm in g j (x).

For j = 1 we get

2(m + 1) · 1

2m(m + 1)! = 21−m

m! .

For j = 2 we find, using g2(x) = sinh(3x/2)−sinh(x/2)
x ,

2 ·
(

(3/2)m+1

(m + 1)! − (1/2)m+1

(m + 1)!
)

= 2−m 3m+1 − 1

(m + 1)! .

Thus the coefficient of am+1 in the coefficient of hm in (10) is given by

21−m

m! − 2−m 3m+1 − 1

(m + 1)! = 2−m 2m + 3 − 3m+1

(m + 1)!
and hence does not vanish. ��
Corollary 3.2. Let m ∈ N be even and C > 0. Then there exists a simply connected
compact Kähler–Einstein spin manifold M with negative scalar curvature and complex
dimension m such that RS(M) > C.

Proof. Let Mm
a be a smooth complex hypersurface in CPm+1 of degree a. Then Mm

a is
compact and simply connected by the Lefschetz hyperplane theorem. By Lemma 3.1,
〈Â(T Mm

a ) ch(TCMm
a ), [Mm

a ]〉 is a polynomial in a of degreem+1. Thus wemay choose
a such that

• a is even, hence Mm
a is spin;

• a > m + 2, hence c1(T Mm
a ) < 0;

• a is so large that |〈Â(T Mm
a ) ch(TCMm

a ), [Mm
a ]〉| > C .

Since c1(T Mm
a ) < 0 the Calabi–Yau theorem implies that Mm

a carries a Kähler–Einstein
metric with negative scalar curvature. Applying Theorem 2.9 to Mm

a with this metric
yields the claim. ��

The manifolds we used in the proof of Corollary 3.2 are all hypersurfaces ofCPm+1.
One finds more examples using complete intersections of higher codimension.
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Lemma 3.3. If r ≥ 1 is arbitrary and m is even, then the coefficient of hm in (9) is
a nontrivial symmetric polynomial of degree m + 1 in �a = (a1, . . . , am). Its value on
(a1, 1, 1, . . . , 1) is equal to the coefficient in (10) evaluated at a1. When m is odd, the
coefficient of hm equals 0.

Proof. Expand all the terms in (9) in Taylor series to obtain a quotient of two formal
series in h. Inverting in C[a1, . . . , ar ][[h]] (the field of formal power series in h with
coefficients polynomials in the vector �a) shows that the coefficient of hm is a polynomial
in the entries of �a. This polynomial is obviously symmetric. An examination of the
degrees of each of the series involved shows that the series contains only even powers
of h. In other words, we only need consider the case where m is even. It is also not hard
to see that the highest power of �a in the coefficient of hm is m + 1. Finally, writing the
expression in (9) by Fr (a1, . . . , ar ), then we also see that Fr (a1, . . . , as, 1, . . . , 1) =
Fs(a1, . . . , as). In particular, evaluating Fr on (a1, 1, . . . , 1), we reduce to the case
considered in Lemma 3.1, and we have in fact calculated the coefficient of the highest
term am+1

1 explicitly. This proves the result. ��

4. Products

Using suitable complex submanifolds in complex projective spaces, we found com-
pact Riemannian spin manifolds of any real dimension divisible by 4 with arbitrarily
large space of Rarita–Schwinger fields. To treat the remaining dimensions we consider
products of these hypersurfaces with flat tori.

We start with some general considerations about spinor fields on product manifolds,
see [1, Sec. 1] for details. Let X and Y be Riemannian spin manifolds of dimension n
and m, respectively. We will only need the case when n is even which we assume from
now on. If M := X × Y , then T M is naturally identified with π∗

1 T X ⊕ π∗
2 T Y and the

spinor bundle �M with π∗
1�X ⊗ π∗

2�Y . Here π1 : M → X and π2 : M → Y are the
obvious projections. If m is also even, then

�±M = (π∗
1�+X ⊗ π∗

2�±Y ) ⊕ (π∗
1�− X ⊗ π∗

2�∓Y )

Clifford multiplication is given by

γM ((v ⊕ w) ⊗ ϕ ⊗ ψ) = γX (v ⊗ ϕ) ⊗ ψ + εϕ ⊗ γY (w ⊗ ψ) (11)

where ε = 1 if ϕ ∈ π∗
1�+X and ε = −1 if ϕ ∈ π∗

1�− X . If 	 = v ⊗ ϕ ∈ ̂�x X
and ψ ∈ �yY , then 	 ⊗ ψ ∈ π∗

1 Tx X ⊗ π∗
1�x X ⊗ π∗

2�yY . By (11), γM (	 ⊗ ψ) =
γX (	) ⊗ ψ = 0, and hence 	 ⊗ ψ ∈ ̂�(x,y)M . This proves that

π∗
1
̂�X ⊗ π∗

2�Y ⊂ ̂�M.

Now let 	 be a Rarita–Schwinger field on X and ψ a parallel spinor on Y . Using a
local orthonormal frame e1, . . . , en, en+1, . . . , en+m of M where the ei are tangent to X
(i ≤ n) and the en+i to Y , we compute

DM (π∗
1	 ⊗ π∗

2ψ) =
n

∑

i=1

γM
(

ei ⊗ (π∗
1∇X

ei
	 ⊗ π∗

2ψ)
)

+
n+m
∑

i=n+1

γM
(

ei ⊗ (π∗
1	 ⊗ π∗

2∇Y
ei
ψ)

)

= π∗
1DX (	) ⊗ π∗

2ψ = 0.
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Thus π∗
1	 ⊗ π∗

2ψ is a Rarita–Schwinger field on M . Writing

PS(Y ) := dim{ψ ∈ �(�Y ) | ∇ψ = 0},
and when m is even,

PS±(Y ) := dim{ψ ∈ �(�±Y ) | ∇ψ = 0},
then we have shown:

Proposition 4.1. Let X and Y be Riemannian spin manifolds, with X even-dimensional.
Then

RS(X × Y ) ≥ RS(X) · PS(Y ).

Moreover, if Y is also even-dimensional, then

RS±(X × Y ) ≥ RS+(X) · PS±(Y ) + RS−(X) · PS∓(Y ).

��
As an immediate consequence, we can now produce manifolds of any dimension

n ≥ 4 with an arbitrarily large dimensional space of Rarita–Schwinger fields:

Corollary 4.2. For any n ≥ 4 and C > 0, there exists a compact Riemannian spin
manifold M of dimension n such that RS(M) > C.

Proof. Write n = 2m+k wherem is even and k ∈ {0, 1, 2, 3}. Let X be aKähler-Einstein
manifold of complex dimension m as in Corollary 3.2 such that RS(X) > C . If k = 0
then we simply take M := X , while in the other cases, we take M := X × T k where
T k is a flat torus. Endow T k with the (unique) spin structure for which it has nontrivial
parallel spinors. Then by Proposition 4.1, RS(M) ≥ RS(X) > C . ��

5. Calabi–Yau Manifolds

The simplest examples of Ricci flat manifolds with Rarita–Schwinger fields are provided
by flat tori, again equipped with the spin structure which admits parallel spinors. For flat
metrics, a section of ̂�M is a Rarita–Schwinger field if and only if it is parallel. Thus
for M = T n a flat torus, RS(T n) equals the rank of ̂�T n , i.e. RS(T n) = (n − 1) · 2[n/2].

Complete intersections yield more interesting examples. For the sake of simplicity,
we focus on hypersurfaces. Thus, using the previous notation, set r = 1 and a = m + 2;
a hypersurface Mm ⊂ CPm+1 of degree a has vanishing first Chern class by (7). Thus
Mm is spin and by the Calabi–Yau theorem carries a Ricci flat Kähler metric.

According to (9) we have

〈Â(T Mm) ch(TCMm), [Mm]〉 =

coeff

(

hm,
2( h

2 )m+1

sinh( h
2 )m+2

sinh
( (m + 2)h

2

)(

(m + 2) cosh(h) − 1 − cosh((m + 2)h)
)

)

.

Since the power series is even, we restrict ourselves to the case of even m, i.e., the real
dimension of Mm is divisible by 4.
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Lemma 5.1. If m ∈ N is even, then the coefficient on the right in the preceding equation
equals

−2

[ (

2m + 3
m + 1

)

+ 1 − (m + 2)2
]

.

Proof. We compute the coefficient in this power series using two applications of the
residue theorem. Let � be a loop encircling the origin once counterclockwise in the
complex plane. Using the substitution z = exp(h) − 1 we find

coeff

(

hm,
2( h

2 )m+1

sinh( h
2 )m+2

sinh
( (m + 2)h

2

)(

(m + 2) cosh(h) − 1 − cosh((m + 2)h)
)

)

= 2−m 1

2π i

∫

�

sinh
(

(m+2)h
2

)

sinh( h
2 )m+2

(

(m + 2) cosh(h) − 1 − cosh((m + 2)h)
)

dh

= 2−m 1

2π i

∫

�

1
2 [(1 + z)

m+2
2 − (1 + z)− m+2

2 ]
( 12 [(1 + z)

1
2 − (1 + z)− 1

2 ])m+2
×

×
(

m+2
2 (1 + z + (1 + z)−1) − 1 − 1

2 ((1 + z)m+2 + (1 + z)−(m+2))
) dz

1 + z

= 1

2π i

∫

�

(1 + z)m+2 − 1

[(1 + z) − 1]m+2×

×
(

(m + 2)(1 + z + (1 + z)−1) − 2 − ((1 + z)m+2 + (1 + z)−(m+2))
) dz

1 + z

= coeff

(

zm+1, ((1 + z)m+2 − 1)×

×
(

(m + 2)(1 + z + (1 + z)−1) − 2 − ((1 + z)m+2 + (1 + z)−(m+2))
)

(1 + z)−1
)

= coeff

(

zm+1,−(1 + z)2m+3 + (m + 2)(1 + z)m+2 − (1 + z)m+1+

+ (m + 2)(1 + z)m − (m + 2) + (1 + z)−1 − (m + 2)(1 + z)−2 + (1 + z)−(m+3)
)

= −
(

2m + 3
m + 1

)

+ (m + 2)

(

m + 2
m + 1

)

− 1 + 0 − 0 +

( −1
m + 1

)

− (m + 2)

( −2
m + 1

)

+

+

(−(m + 3)
m + 1

)

= −2

[ (

2m + 3
m + 1

)

+ 1 − (m + 2)2
]

.

��
This lemma and Theorem 2.9 combine to give

Corollary 5.2. Let m ∈ N be even. Then there exists a simply connected compact
Calabi–Yau manifold of complex dimension m such that

RS(Mm) ≥ 2

[ (

2m + 3
m + 1

)

+ 1 − (m + 2)2
]

− 2m/2.
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Table 3. Linearly independent Rarita–Schwinger fields on Calabi–Yau manifolds

m RS(Mm ) ≥ RS(T 2m ) =
2 38 12
4 850 112
6 12,736 704
8 184,542 3,840
10 2,703,838 19,456
12 40,116,146 94,208
14 601,079,752 442,368
16 9,075,134,398 2,031,616
18 137,846,527,510 9,175,040
20 2,104,098,961,730 40,894,464
22 32,247,603,679,902 180,355,072
24 495,918,532,942,658 788,529,152
26 7,648,690,600,750,682 3,422,552,064
28 118,264,581,564,843,242 14,763,950,080
30 1,832,624,140,942,555,720 63,350,767,616

��
Remark 5.3. For m = 2, Mm is the K3-surface. In this case Corollary 5.2 yields the
lower bound RS(M2) ≥ 38. This is sharp; indeed RS(K3) = 38, see Example (1)
to Proposition 4.6 in [5]. We do not know whether the bound is also sharp in higher
dimensions.

Remark 5.4. It is easy to see that

2

[ (

2m + 3
m + 1

)

+ 1 − (m + 2)2
]

− 2m/2 > (2m − 1) · 2m .

Thus our simply connected compact Calabi–Yau manifolds have more linearly indepen-
dent Rarita–Schwinger fields than flat tori of the same dimension. This is illustrated by
the following table for low dimensions:
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