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In our result about dynamical thermalization, the proof of the upper bound on the time
average of the distance between the local evolved state ρ(n)(t) and the time-averaged
state ρ

(n)
avg is wrong. While it is correct that this distance tends to zero for block size

|�n| → ∞ (see corrected proof below), it is unclear whether it can be shown that this
happens exponentially fast in |�n|. This affects Theorem 31, and hence also Theorem 3
(the summary of Theorem 31) and Theorem 33 (a small modification of Theorem 31).

This mistake is due to an error in Ref. [3] which we have used in our proof of Lemma
30. Ref. [3] claims that the Rényi entropy Hq is convex in its parameter q, which
is incorrect. This claim has been corrected in an erratum published on the author’s
homepage [4], but we became aware of this only recently.

We give a corrected version of Theorem 31 of our paper [1] in Theorem 4 below. Its
summary (and hence the correction of Theorem 3 of our paper) reads as follows.

Theorem 1 (Correction of [1, Theorem 3]). If there is a unique equilibrium state around
inverse temperature β := limn→∞ βn, if the (possibly pure) initial state has close to
maximal population entropy, in the sense that

S̄(ρ
(n)
0 ) ≥ S(γ

p
�n

(βn)) − o(|�n|),

The original article can be found online at https://doi.org/10.1007/s00220-015-2473-y.
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and if each H p
�n

is non-degenerate with uniformly bounded gap degeneracy supn DG

(H p
�n

) < ∞, then unitary time evolution thermalizes the subsystem � for most times t:

〈∥∥∥∥∥Tr�n\�ρ(n)(t) − Tr�n\�
exp(−βnH

p
�n

)

Zn

∥∥∥∥∥
1

〉
n→∞−→ 0.

The gap degeneracy [5] is defined as DG(H p
�n

) := maxE |{(i, j) | i �= j, Ei − E j =
E}|, with Ei the eigenvalues of H

p
�n

.

This formulation differs from the old one in the following two ways. First, it does
not give concrete bounds on the time-averaged distance between ρ(n)(t) and its time
average (it only says that this distance tends to zero for n → ∞); second, it presumes
that the gap degeneracy is uniformly bounded.

To prove its formal version (Theorem 4 below), we need two elementary lemmas.

Lemma 2. Let � be a translation-invariant finite-range interaction which is not phys-
ically equivalent to zero, and let ū be some energy density for which there is a unique
Gibbs state at inverse temperature β(ū). Then the real function u �→ s(u) defined in [1,
Lemma 9] is strictly concave at ū in the following sense: If ū = λu0 + (1 − λ)u1 for
some u0 < u1 and λ ∈ (0, 1) then s(ū) > λs(u0) + (1 − λ)s(u1).

Proof. Let u0 < u1 and u = λu0 + (1 − λ)u1 for some λ ∈ (0, 1). Let ωβ(u0) be an
arbitrary Gibbs state with energy density u0 at inverse temperature β(u0), and similarly
ωβ(u1). Set ω := λωβ(u0) + (1−λ)ωβ(u1), a translation-invariant state. Since the entropy
density is affine on the translation-invariant states ([2, Thm. IV.2.4]), we have

s(ω) = λ s(ωβ(u0)) + (1 − λ)s(ωβ(u1)) = λs(u0) + (1 − λ)s(u1).

By construction, u(ω) = u. Thus, due to [1, Lemma 9], we have s(ω) ≤ s(u), hence
u �→ s(u) is concave.

Let us now apply the previous argumentation to the special case u := ū, an energy
density with a unique Gibbs state. Suppose that s(ū) = s(ω). Then the variational
principle ([1, Definition 6]) implies that ω is a Gibbs state at inverse temperature β(ū).
But the set ofGibbs states at inverse temperatureβ(ū) is a face of the set of all translation-
invariant states [2, p. 348], hence ωβ(u0) and ωβ(u1) must both be Gibbs states at inverse
temperature β(ū), too. But these are distinct states, since they have different energy
densities, contradicting the uniqueness of theGibbs state atβ(ū). Therefore s(ū) > s(ω),
and we get the statement of strict concavity as claimed. 	

Lemma 3. Let � be a translation-invariant finite-range interaction which is not physi-
cally equivalent to zero. Suppose that the maximal energy degeneracy of H p

�n
grows at

most subexponentially in |�n|, i.e. logmax{tr(π(n)
i )} = o(|�n|), where (π

(n)
i )i denotes

the eigenprojectors of H p
�n

. Let (ρ(n))n∈N be any sequence of �n-translation-invariant
states with

[ρ(n), H p
�n

] = 0, S(ρ(n)) ≥ s · |�n| + o(|�n|), tr(ρ(n)H p
�n

) = u · |�n| + o(|�n|),
where u ∈ (umin(�), umax(�)) is an energy density such that there is a unique Gibbs

state at inverse temperature β(u), and s = s(u). Then maxi tr(ρ(n)π
(n)
i )

n→∞−→ 0.
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Proof. We can write u as some convex combination of two distinct energy densities in
a small neighborhood of u, and then Lemma 2 implies that s = s(u) > 0. Let us now
argue by contradiction. Suppose that λ(n) := maxi tr(ρ(n)π

(n)
i ) does not converge to

zero. Decompose the state ρ(n) as follows:

ρ(n) = λ(n)τ (n) + (1 − λ(n))σ (n), (1)

where τ (n) = π
(n)
i ρ(n)π

(n)
i /λ(n) (note thatλ(n) > 0),withπ

(n)
i themaximizing projector.

If λ(n) �= 1, define σ (n) := π̄
(n)
i ρ(n)π̄

(n)
i /(1−λ(n)), where π̄

(n)
i := 1−π

(n)
i ; if λ(n) = 1,

set σ (n) = π̄
(n)
i /tr(π̄ (n)

i ) (if n is large enough, then π
(n)
i �= 1, hence this is well-defined).

It follows that τ (n) and σ (n) are mutually orthogonal �n-translation-invariant states that
commute with H p

�n
.

The sequences of real numbers S(σ (n))/|�n|, tr(σ (n)H p
�n

)/|�n|, tr(τ (n)H p
�n

)/|�n|
and λ(n) are all bounded (the latter sequence bounded away from zero by assumption).
Thus, we can find a subsequence (nk)k∈N such that

λ(nk) k→∞−→ δ > 0,
1

|�nk |
S(σ (nk ))

k→∞−→ s1,
1

|�nk |
tr(τ (nk )H p

�nk
)
k→∞−→ u0,

1

|�nk |
tr(σ (nk)H p

�nk
)
k→∞−→ u1,

where s1, u0, u1 are real numbers, and 0 < δ ≤ 1. Due to (1), computing the von
Neumann entropy, we have S(ρ(nk )) = λ(nk)S(τ (nk ))+ (1−λ(nk ))S(σ (nk ))+O(1). Since
S(τ (nk )) ≤ log tr(π(nk)

i ) = o(|�nk |), this implies s ≤ (1 − δ)s1. Thus, s > 0 yields
δ < 1. Similarly, computing the energy expectation value, we obtain u = δu0+(1−δ)u1.

Suppose that s1 ≥ s(u1), then s1−βu1 ≥ p(β,�) for β := β(u1), hence [1, Lemma
8] implies that we must have equality, i.e. s1 = s(u1). In summary, we conclude that
s1 ≤ s(u1). Therefore

s(u) = s ≤ (1 − δ)s1 ≤ δ s(u0) + (1 − δ)s(u1).

Since s is strictly concave atu due toLemma2above, this is only possible ifu0 = u1 = u.
Hence

0 < s(u) ≤ (1 − δ)s1 ≤ (1 − δ)s(u1) = (1 − δ)s(u)

which is a contradiction. 	

This allows us to obtain a corrected version of [1, Theorem 31].

Theorem 4 (Correction of [1, Theorem 31]: Thermalization, periodic boundary condi-
tions). Let � be a translation-invariant finite-range interaction which is not physically
equivalent to zero. Suppose that the maximal energy degeneracy of H p

�n
grows at most

subexponentially in |�n|, i.e. logmax{tr(π(n)
i )} = o(|�n|), where (π

(n)
i )i denotes the

eigenprojectors of H p
�n

, and supn DG(H p
�n

) < ∞. Let (ρ
(n)
0 )n∈N be some sequence of

initial states on�n which have energy expectation valueUn := tr(ρ(n)
0 H p

�n
)with density

Un/|�n| converging to some value u ∈ (umin(�), umax(�)) as n → ∞, such that there
is a unique Gibbs state around inverse temperature β(u).
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Define the ‘population entropy” S̄(ρ
(n)
0 ) := S(λ1, . . . , λN ), where S is Shannon

entropy, and λi := tr(ρ(n)
0 π

(n)
i ) is the probability that the i-th level is populated. Suppose

that for every n large enough, either H p
�n

is non-degenerate or every π
(n)
i ρ

(n)
0 π

(n)
i is

�n-translation-invariant. Then, determine the inverse temperature βn for which

tr(H p
�n

γ
p
�n

(βn)) = Un, where γ
p
�n

(βn) := exp(−βnH
p
�n

)

Zn
.

If the initial states have close to maximal population entropy in the sense that

S̄(ρ
(n)
0 ) ≥ S(γ

p
�n

(βn)) − o(|�n|),
then unitary time evolution ρ(n)(t) := exp(−i t H p

�n
)ρ

(n)
0 exp(i t H p

�n
) thermalizes the

subsystem �m for most times t:

lim
n→∞

〈∥∥∥∥∥Tr�n\�mρ(n)(t) − Tr�n\�m

exp(−βnH
p
�n

)

Zn

∥∥∥∥∥
1

〉
= 0,

where Zn = tr(exp(−βnH
p
�n

)), and 〈·〉 denotes the average over all times t ≥ 0.
Furthermore, in this statement, βn can be replaced by β := β(u).

Proof. The only ingredient in the proof of [1, Theorem 31] that has to be corrected is the
argument that lower-bounds the “effective dimension” deff . The old proof erroneously
claimed that deff grows exponentially in |�n|, but this relied on a wrong claim about the
Rényi entropy of Ref. [3]. We now give a simple alternative argument which makes use
of the Rényi entropy S∞(λ1, . . . , λN ) = − logmaxi λi and the inequality S2 ≥ S∞ [4].
Namely,

deff = exp(S2(λ1, . . . , λN )) ≥ exp(S∞(λ1, . . . , λN )) =
(
max
i

λi

)−1
n→∞−→ ∞

according to Lemma 3 above, applied to the sequence of states ρ̄
(n)
0 = ∑

i π
(n)
i ρ

(n)
0 π

(n)
i .

Since we have assumed that the gap degeneracy is uniformly bounded, this is enough to
show that ρ(n)(t) is close to its time average for most times t if n is large. The rest of
the proof works without modification (note that ρ(βn) should read γ

p
�n

(βn)). 	

Finally, [1, Theorem 33] has to be corrected analogously. We omit the obvious details.
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