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Abstract: We consider a stochastic perturbation of the classical Lorenz system in the
range of parameters for which the origin is the global attractor. We show that adding
noise in the last component causes a transition from a unique to exactly two ergodic
invariant measures. The bifurcation threshold depends on the strength of the noise: if the
noise is weak, the only invariant measure is Gaussian, while strong enough noise causes
the appearance of a second ergodic invariant measure.
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1. Introduction

The classical Lorenz system [Lor63] is a very popular prototypical toy model for chaos
/ turbulence [Rue76]. The traditional way of writing this system is given by

Ẋ = σ(Y − X), Ẏ = X (� − Z) − Y, Ż = −βZ + XY, (1.1)

with parameter values σ = 10 and β = 8/3. Changing the value � allows to explore a
variety of different behaviours [Spa82,BPV86]. In particular, for � < 1, (1.1) admits a
unique fixed point at the origin which eventually attracts every single solution, while for
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� > 1 it admits two further ‘non-trivial’ fixed points. These fixed points become unstable
at � = σ

3+β+σ
σ−β−1 ≈ 24.74, after which the system exhibits either a chaotic attractor or

stable limit cycles, see for example [Tuc99]. For very large values of � (� � 313),
the system admits a stable limit cycle which undergoes a cascade of period-doubling
bifurcations as one decreases �.

The vertical axis H = {(X,Y, Z) : X = Y = 0} is invariant for all parameter values
and, for β > 0, it is contained in the stable manifold of the origin. The aim of this article
is to explore how (1.1) behaves in the stable regime � < 1 under the addition of noise
to the Z -component. More precisely, we consider the modified system

Ẋ = σ(Y − X), Ẏ = X (� − Z) − Y, Ż = −βZ + XY + α̂ ξ, (1.2)

where α̂ > 0 and ξ denotes white noise. For all values of α̂, this system admits as
invariant measure the measure ν0 with ν0(H) = 1 under which Z ∼ N (0, α̂2/2β). The
question we consider is whether it admits other invariant measures supported in R3\H .
Our main result then states that while ν0 is the unique invariant measure for (1.2) for
small values of α̂, it necessarily admits a second invariant measure for large values.

Theorem 1.1. For any σ, β > 0 and any � < 1, there exist values 0 < α� ≤ α� < ∞
such that

1. For 0 ≤ α̂ < α�, (1.2) admits ν0 as its unique invariant measure.
2. For α̂ > α�, (1.2) admits exactly two ergodic invariant measures: ν0 and another

measure ν�. Furthermore, ν� has a smooth density with respect to Lebesgue measure
on R3\H and there exists κ > 0 such that

∫
(x2 + y2)−κν�(dx, dy, dz) < ∞.

For � ≥ 1, there exists α� ≥ 0 such that the second statement still holds.

Proof. The fact that for α̂ > 0 (1.2) admits atmost one ergodic invariantmeasure besides
ν0 is the content of Theorem 3.1. Theorem 4.1 links the existence of the additional
invariant measure ν� to the sign of the quantity λα whose asymptotic behaviour for both
small and large values of α̂ is obtained in Theorem 5.2. It remains to note that one always
has λα > 0 (and therefore existence of ν�) for α̂ large enough, while its sign as α̂ → 0
is negative when � < 1 and positive when � > 1. �	

Remark 1.2. One would naturally expect to have α� = α�, but we cannot guarantee this
at the moment. It does however follow from our analysis that, for all values of α̂, (1.2)
admits at most one ergodic invariant measure besides ν0 and that the set of values α̂ for
which ν0 is the unique invariant measure consists of finitely many intervals. One would
also expect to have α� = 0 when � > 1 since then H is already linearly unstable for
the deterministic system, but although our results do indeed guarantee that in this case
the system admits a unique additional invariant measure ν� for all α̂ ∈ (0, δ) for some
δ > 0, we cannot rule out the existence of an intermediate range of values for which ν0
would be the unique invariant measure.

Remark 1.3. One motivation for the study of (1.2) is that this provides a toy model
for the following situation. Consider the 2D Navier–Stokes equations on a torus with
additive translation-invariant Gaussian forcing. It was shown in [HM06,HM08] (see
also the earlier works [EMS01,BKL01,KS02] showing similar results under stronger
non-degeneracy assumptions) that this system admits a unique invariant measure under
a very weak non-degeneracy assumption on the noise. This result however fails to apply
to the situation where the noise is itself periodic with a period strictly smaller (say half)
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than that of the torus on which the system is posed. In this case, we know by [HM06] that
it admits a unique invariant measure concentrated on functions with the same period as
the noise and, by [Mat99], that this measure is unique at small enough Reynolds number.
A natural question then is whether a bifurcation appears at high Reynolds number, as
one would expect from heuristic considerations. Our result can be viewed as a first
mathematically rigorous result pointing in the direction of a positive answer.

Remark 1.4. Thebehaviour observedhere canbe contrastedwith that observed in [HM15a,
HM15b], where the authors exhibit a system with a quadratic nonlinearity which can
explode in finite time in the absence of noise but admits global solutions (and a unique
invariant measure) in the presence of noise.

Figure 1 shows a simulation of (1.2) for � = 1/2 and two different values of α̂. For
α̂ > α�, a typical trajectory consists of relatively long stretches of time spent in the
vicinity of H , interspersed with excursions away from H . These excursions all escape
in roughly the same direction and the Z -coordinate (not depicted in the figure) is always
quite negative when this happens. When Z becomes positive, they then spiral back in
towards H . This can be understood by a linear analysis of the two-component system for
a fixed value of Z : for Z < � − 1 this system has one stable and one unstable direction,
while it is stable for all other values, exhibiting oscillations when Z > �+(1−σ)2/(4�).
A good approximation of this behaviour can be understood in terms of averaging of the
eigenvalues of the first two equations of (1.2) with respect to the Gaussian measure ν0,
although this is not completely correct (see Remark 2.1).

Remark 1.5. The recent work [BKP20] analyses a toy model very similar to ours and
with the same underlying motivation. In our notations, their toy model reads

Ẋ = − X (1 − Z), Ẏ = −Y (� − Z), Ż = −βZ − (X2 + Y 2) + κ + α̂ ξ. (1.3)

−10 0 10 20

−20

0

20

Fig. 1. The blue trajectory shows a simulation of (1.2) in the (x, y) plane with σ = 10, β = 8/3, � = 1/2,
and α̂ = 30. The red trajectory is obtained by using the same parameters, initial condition, and realisation of
the noise, except that α̂ = 10
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Although this appears on the face of it to be a three-dimensional model, it is effectively
two-dimensional: if � = 1, then the ratio X/Y remains constant in time. Otherwise, one
has

Y (t) = Y0
X0

X (t) e(1−�)t ,

so that one can reduce oneself to Y = 0 when � > 1 and X = 0 when � < 1. We deduce
from this simple observation a slight strengthening of [BKP20, Thm 3.6], namely that
if κ > β(1 ∧ �), then (1.3) admits exactly 3 ergodic invariant measures when � �= 1
and uncountably many ergodic invariant measures when � = 1. Note that this does not
depend on α̂, it is in particular also true for α̂ = 0 in which case the invariant measures
are concentrated on fixed points.

A version of the Lorenz system in which the parameter � randomly switches between
two “unstable” values (28 and close to 28)was analysed in [BH12,Str20]. In theseworks,
the existence of exactly two invariant measures was proved by combining an extension
of Hörmander condition to piecewise deterministic systems and the precise knowledge
of the Lyapunov exponents of the system.

Remark 1.6. A general framework for verifying the stability / instability for an invari-
ant subset of a Markov process was given in [Ben18] in terms of existence of suitable
Lyapunov-type functions. From this point of view, our approach is much less sophisti-
cated, as we simply look for a function V : R3\H → R+ with compact sublevel sets
and such that LV ≤ K − cV . The main difficulty in our case is to be able to actually
build a Lyapunov function when α is large and to show that this construction must break
down at some sufficiently low value of α.

The structure of the remainder of this article is as follows. First, in Sect. 2 we perform
a simple change of variables that brings (1.2) in a slightly more canonical form and we
introduce somenotation. InSect. 3,we thenprovide apreliminary analysis of the equation
which shows that it is irreducible and strong Feller on R3\H , so that in particular it can
have at most one additional ergodic invariant measure ν� besides ν0. The core of our
analysis is contained in the last two sections. First, in Sect. 4, we construct a Lyapunov
functionwhich allows to reduce the existence / non-existence of ν� to the behaviour of the
invariant measureμα for an auxiliary problem describing the behaviour of a “linearised”
version of (1.2) around H . The construction of the Lyapunov function uses a philosophy
similar to that used in [HM09,Hai09], namely to exhibit a “fast” dynamic in the regime
of interest and to use this to build a “corrector” which then allows to turn a “naïve”
Lyapunov function for the effective “slow” dynamic into a proper Lyapunov function
for the full system. Finally, Sect. 5 analyses the behaviour of μα as α → ∞, which
allows us to conclude that (1.2) is indeed destabilised for any value of its parameters
provided that α is sufficiently large. Since μα describes a non-equilibrium system, it is
not explicit and moreover has a quite complicated structure. The study of its asymptotic
behaviour as α → ∞ is therefore highly non-trivial and constitutes one of the main
points of this article.

2. Notations

It will be convenient to write (1.2) in such a way that all of the arbitrary constants appear
in the equation for Z . This will be convenient since we will be mostly interested in the
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regime where x2 + y2  1, so that Z is close to a simple Ornstein–Uhlenbeck process.
To this end, we define the constants

χ = 2

1 + σ
, η = 1 + σ

2σ
, γ = χβ, ν2 = χ5σ, α = ν

√
σ α̂.

as well as

z� = 2 + χ2σ(� − 1).

If we then perform the change of variables

x(t) = ν

χ
X (χ t), y(t) = νσ

(
Y (χ t) − X (χ t)

)
, z(t) = z� − χ2σ Z(χ t),

(2.1)

the system (1.2) can be rewritten as

ẋ = y, ẏ = x(z − 2) − 2y, ż = − γ (z − z�) + α ξ − x(x + ηy). (2.2)

We also introduce “polar coordinates”

x = er sin θ, y = er (cos θ − sin θ) ,

so that one can alternatively write the equations of motion as

θ̇ = 1 − z sin2(θ), ṙ = − 1 +
z

2
sin(2θ). (2.3)

(These coordinates are chosen in such a way that (2.3) is as simple as possible when
z = 0 and can be “guessed” by looking at the explicit solution of the damped harmonic
oscillator describing the (x, y) system with z = 0.) An important role will be played
by the “linearisation” obtained by replacing the last equation in (2.2) by the Ornstein–
Uhlenbeck process

ż = − γ (z − z�) + α ξ. (2.4)

We will use the notation L for the generator of (2.2) and L1 for the generator of the
“linearised” system, namely

L = y∂x +
(
x(z − 2) − 2y

)
∂y − (

x(x + ηy) + γ (z − z�)
)
∂z +

α2

2
∂2z , (2.5a)

L1 = y∂x +
(
x(z − 2) − 2y

)
∂y − γ (z − z�)∂z +

α2

2
∂2z . (2.5b)

We will also use L0 for the generator of the (θ, z)-component of the linearised system,
namely

L0 = (
1 − z sin2(θ)

)
∂θ − γ (z − z�)∂z +

α2

2
∂2z . (2.5c)

We henceforth fix the values of the constants η, γ and z� appearing in our dynamic, but
we will keep track on the dependence on α.

In particular, we write μα for the invariant measure on S1 × R for the diffusion
with generator L0. Such an invariant measure clearly exists by Krylov–Bogoliubov. It
is also quite easy to see that it is unique as a consequence of the controllability result
shown in Proposition 3.3 below and the regularity result given by Proposition 3.2. (See
Theorem 3.1 for a reference.)
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Remark 2.1. A “naïve” heuristic for the stability of H goes as follows. Writing λ+(z)
for the largest real part of the eigenvalues of the system (x, y) given in (2.2) (with z
frozen), one can verify that λ+(z) = − 1+

√
z − 11z>1. This then suggests that α� is the

smallest value such that

Eα

(√
z − 11z>1

) ≥ 1,

where the expectation is taken over the invariant measure N (z�, α2/(2γ )) for (2.4).
While this heuristic is incorrect, it is quite accurate in practice. For example, for the
parameters used in Fig. 1, it suggests α� ≈ 27.04 while numerical simulations suggest
α� ≈ 27.7.

3. Hypoellipticity and Control

The goal of this section is to analyse irreducibility and regularity properties on R3\H
of our stochastic Lorenz system. We will prove the following result.

Theorem 3.1. For every value of its parameters, (2.2) admits at least one and at most
two ergodic invariant probability measures.

Proof of Theorem 3.1. Since the restriction of our system to H is simply an Ornstein–
Uhlenbeck process, the Gaussian with variance α2/(2γ ) centred at z� is the unique
ergodic invariant measure there. On R3\H , one has at most one invariant probability
measure since Proposition 3.2 implies that the transition probabilities are strong Feller,
while Proposition 3.3, combined with the support theorem [SV72] implies that every
point of R3\H is accessible. We conclude by for example [Hai08, Cor. 7.8]. �	

The fact that the transition probabilities are strong Feller is contained in the following
proposition.

Proposition 3.2. The system (2.2) satisfies Hörmander’s condition on R3\H.

Proof. We want to show that the C∞-moduleM generated by the iterated Lie brackets
of the two vector fields

X0 = y∂x + (x(z − 2) − 2y)∂y − (
γ (z − z�) − x(x + ηy)

)
∂z, X1 = α∂z,

so that L = X0 + 1
2 X

2
1, is of maximal rank at every point ofR3\H . A simple calculation

shows that their Lie bracket is given by

X2 = [X0, X1] = αx∂y − αγ ∂z,

and that furthermore,

X3 = [X0, X2] = αx∂x − αx(2 + γ )∂y − α(ηx2 − γ 2)∂z . (3.1)

Note that span{X1, X2, X3} = R3 whenever x �= 0, while span{X0, X1, X2} = R3

when x = 0 and y �= 0, and therefore Hörmander’s condition is satisfied everywhere on
R3\H . �	

The next result concerns controllability properties of the Lorenz system, and, in
particular, accessibility to any point in R3\H .
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Proposition 3.3. Given any initial condition (x0, y0, z0) ∈ R3\H, any target point
(x̄, ȳ, z̄) ∈ R3\H, and any arbitrary ε > 0, there exists T = T (|x |, |y|, |z|, ε) ≥ 0 and
a function h ∈ C1([0, T ],R) such that the unique solution to

ẋ = y, ẏ = x(z − 2) − 2y, ż = − γ (z − z�) − x(x + ηy) + h, (3.2)

with initial condition (x0, y0, z0) satisfies |(x(T ), y(T ), z(T )) − (x̄, ȳ, z̄)| < ε.

Proof. Since z in (3.2) can be completely controlled by h, the proof relies on finding a
smooth curve z so that x0 = (x0, y0) and x̄ = (x̄, ȳ) can be connected by a solution of
the first two equations in (3.2). The proof is divided in three steps.
Step 1. We first identify a non-smooth trajectory that connects x0 with x̄, as depicted
in Fig. 2. Notice that for ζ ∈ R given, the first two equations of (3.2) constitute a
two-dimensional linear system, that can be written as

(
ẋ
ẏ

)

= A

(
x
y

)

, A =
(

0 1
ζ − 2 −2

)

.

The eigenvalues of A are

λ1(A) = − 1 − √
ζ − 1, λ2(A) = − 1 +

√
ζ − 1. (3.3)

The idea is now to alternate between the globally stable dynamics (when ζ < 1) for
which (0, 0) is attractive, and the case inwhich there are a stable and an unstablemanifold
(when ζ > 2). We therefore choose ζ = 0, with corresponding matrix A0, to implement
the first scenario, and ζ = 5, with corresponding matrix A1, to implement the second
scenario. Notice that A1 has eigenvalues

λ1(A1) = − 3, λ2(A1) = 1. (3.4)

with corresponding eigenvectors

e1 = (−1, 3) , e2 = (1, 1) , (3.5)

so that the diagonal �u = {(x, y) : x = y} is the unstable manifold of the system.
Setting x̄ := (x̄, ȳ) �= 0, define

t̄ := inf
{
t ≥ 0 : e−A0t x̄ ∈ �u

}
< ∞. (3.6)

Now, given x0 = (x0, y0), consider the forward solution to ẋ = A0x with initial
condition x(0) = x0. It is clear from (3.3) that eA0t x0 → 0 as t → ∞ and that eA0t x0
intersects �u infinitely many times. We define

t0 := inf
{
t ≥ 0 : eA0t x0 ∈ �u, eA0t x0 · e−A0 t̄ x̄ > 0,

∣
∣eA0t x0

∣
∣ ≤ ∣

∣e−A0 t̄ x̄
∣
∣
}

< ∞.

The definition of the time t0 makes sure that not only eA0t0x0 ∈ �u , but also that it is on
the same ray as e−A0 t̄ x̄ and that enough time as passed so that eA0t0x0 is closer to the
origin than e−A0 t̄ x̄. Finally, we define t1 ≥ 0 to be the time such that

eA1t1eA0t0x0 = e−A0 t̄ x̄. (3.7)
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(x̄, ȳ)

(x0, y0)

x

y

Fig. 2. The non-smooth trajectory xs constructed in (3.8). A few orbits of the dynamic with ζ = 0 are drawn
in light blue and a few orbits with ζ = 5 are drawn in light red

Therefore, defining T := t0 + t1 + t̄ , we find that the piecewise continuous curve

xs(t) =

⎧
⎪⎨

⎪⎩

eA0t x0, t ∈ [0, t0],
eA1(t−t0)eA0t0x0, t ∈ [t0, t0 + t1],
eA0(t−t0−t1)eA1t1eA0t0x0, t ∈ [t0 + t1, T ],

(3.8)

is such that xs(0) = x0 and xs(T ) = x̄.
Step 2.We proceed with a suitable smoothing of the trajectory constructed in step 1. For
a small δ ∈ (0, 1), define a smooth function ζδ such that ζδ(0) = z0, ζδ(T ) = z̄ and

ζδ(t) =

⎧
⎪⎨

⎪⎩

0, t ∈ [δ, t0],
5, t ∈ [t0 + δ, t0 + t1 − δ],
0, t ∈ [t0 + t1, T − δ].

(3.9)

We now compare the dynamics of the ODEs generated by the matrices

A(t) =
(

0 1
ζδ(t) − 2 −2

)

(3.10)

and

B(t) =

⎧
⎪⎨

⎪⎩

A0, t ∈ [0, t0],
A1, t ∈ [t0, t0 + t1],
A0, t ∈ [t0 + t1, T ].

(3.11)

For t ≥ τ ≥ 0, we denote by �A
t,τ , �

B
t,τ : R2 → R2 the respective solution operators.

From the definition above, it is clear that �B
t,0(x0) = xs(t). Moreover, the underlying
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dynamics is the same for the two systems, up to a time-interval of size 4δ. Since

sup
t∈[0,T ]

[‖A(t)‖ + ‖B(t)‖ + |xs(t)|] ≤ C, (3.12)

where C is independent of δ, we deduce that

sup
t∈[0,T ]

∣
∣
∣�A

t,0(x0) − xs(t)
∣
∣
∣ ≤ Cδ, (3.13)

for possibly a different C , independent of δ.
Step 3. To conclude the proof, fix ε > 0 and choose δ in (3.13) so that Cδ < ε. By
writing (xc(t), yc(t), zc(t)) = (�A

t,0(x0), ζδ(t)) as in the previous step, we define

h = żc + γ (zc − z�) + xc(xc + ηyc). (3.14)

It is then clear that (xc(t), yc(t), zc(t)) is the unique solution to (3.2) with initial datum
(x0, y0, z0). Moreover, zc(T ) = z̄ and by (3.13) and our choice of δ, the proof is over.

�	
Remark 3.4. A suitable modification of the above proof implies that the time T can
be made arbitrarily small thanks to the fact that the eigenvalues of the 2 × 2 system
can be completely controlled through the z variable. However, we will not need this
enhancement for our purposes.

4. Construction of a Lyapunov Function

We now proceed with the analysis of the “linearised” model

θ̇ = 1 − z sin2(θ), ż = − γ (z − z�) + α ξ, (4.1)

obtained from (2.3)–(2.4).Here,we are taking advantage of the fact that r does not appear
in the right-hand side of (2.3)–(2.4), and it is therefore completely determined once
(θ, z) are. Note that by Propositions 3.2 and 3.3, (4.1) is strong Feller and topologically
irreducible. Since the state space of θ is compact and z is a simple Ornstein–Uhlenbeck
process, it admits Lyapunov functions with compact sublevel sets (themap (θ, z) �→ |z|2
will do) and therefore has a unique invariant measure μα .

The averaged behaviour of the right-hand side of the r equation in (2.3) turns out
to characterise the invariant measure of the full Lorenz system (2.2), as the following
theorem shows.

Theorem 4.1. Let μα be the invariant measure for (4.1), and set

λα
def= −1 +

1

2

∫

S1×R
z sin(2θ) μα(dθ, dz).

Then, the Lorenz system (2.2) admits a nontrivial invariant measure if λα > 0 and
admits no such measure if λα < 0.

The proof of this theorem, which is given in Sect. 4.2 below, is based on the construc-
tion of a Lyapunov functional for the Lorenz system (2.2) that blows up as |x |2+|y|2 → 0
(in the unstable case λα > 0) and at infinity. This follows by a perturbative analysis from
a similar analysis of the linearised system, which we carry out in the next section.



2252 M. Coti Zelati, M. Hairer

4.1. Lyapunov functional for the linearised system. To show the existence of a Lyapunov
functional for the linearised system (4.1) we need to analyse the regularity properties of
the solution gα to the problem

L0gα = λα + 1 − z

2
sin(2θ), μα(gα) = 0. (4.2)

Notice that gα does not depend on the r variable. The following result contains all the
properties needed later.

Lemma 4.2. For every ε > 0, there exists a unique solution gα to (4.2) in L2(S1 ×
R, e−εz2dθ dz). Furthermore, gα is smooth and there exists cα > 0 (depending on ε)
such that

|gα| + |∂zgα| ≤ cαe
εz2/2, (4.3)

holds uniformly over (θ, z).

Proof. Smoothness of gα (once we know that it exists) follows from Hörmander’s the-
orem [Hör67], noting that Proposition 3.2 guarantees that its assumptions are verified
(Hörmander’s condition for L is equivalent to that of L1, which in turn implies it for
L0). Note first that we can assume without loss of generality that ε is small enough since
(4.3) then holds automatically for larger values of ε. Setting

G(θ, z) := λα + 1 − z

2
sin(2θ), ϕ(θ, z) := gα(θ, z)e−εz2/2,

we see that (4.2) is equivalent to the equation

Kϕ = �, where �(θ, z) = e−εz2/2G(θ, z) (4.4)

and

K = L0 + α2εz∂z − 1

2

[
ε
(
2γ − α2ε

)
z2 − 2γ εz�z − α2ε

]
.

This operator belongs to the class K0 as defined in [EH03, Def. 2.2], on the space
L2(S1 × R). Setting

b(θ, z) = 1 − z sin2(θ),

integration by parts shows that, for any ψ ∈ C∞
0 ,

−
∫

ψ Kψ = 1

2

∫
∂θb|ψ |2 + α2

2
‖∂zψ‖2 − γ

2
‖ψ‖2 + ε

2

(
2γ − α2ε

)
‖zψ‖2

− γ εz�

∫
z|ψ |2.

In particular, for any positive ε such that ε ≤ γ /α2, and using the bound |∂θb| � |z|,
we infer by Cauchy–Schwarz that

‖∂zψ‖2 + ‖zψ‖2 � ‖Kψ‖2 + ‖ψ‖2, (4.5)

which can be extended to allψ ∈ D(K ) by a simple approximation argument. By [EH03,
Cor 4.2], it follows that K has compact resolvent.
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Let now λ > 0 be in the resolvent set for K (such a λ exists since the spectrum is
discrete) and write Rλ for the resolvent so that, since Rλ is a bijection between L2 and
D(K ), (4.4) is equivalent to

(id + λRλ)ϕ = Rλ�.

Note now that if f ∈ ker K ∗, then f̂ := e−εz2/2 f satisfies L∗
0 f̂ = 0. Since f̂ ∈

L1, we conclude as in the proof of [EPRB99, Prop. 3.6] that | f̂ | is the density of an
invariant measure for (4.1). Since the latter is unique and since e−εz2/2 ∈ ker K (so
that dim ker K = dim ker K ∗ ≥ 1), we conclude that ker K ∗ is one-dimensional and
spanned by the element f ∈ L2 such that

μα(du) = e−εz2/2 f (u) du.

Since μα(G) = 0 by definition of λα and therefore 〈 f,�〉 = 0 so that � ∈ (ker K ∗)⊥,
we deduce from Fredholm’s alternative [Rud91, Thm 4.25] that (4.4) admits a unique
solution ϕ with the additional property that the corresponding function gα is centred
with respect to μα .

Note that it immediately follows from (4.5) that

‖∂zϕ‖2 + ‖(1 + z)ϕ‖2 < ∞. (4.6)

To derive similar bounds on higher derivatives, we simply take derivatives of (4.4),
making sure that the corresponding commutators are well-behaved. We have

[∂θ , K ] = ∂θb ∂θ ,

[∂2θ , K ] = [∂θ , [∂θ , K ]] + 2[∂θ , K ]∂θ = ∂2θ b ∂θ + 2∂θb ∂2θ ,

[∂3θ , K ] = [∂θ , [∂θ , [∂θ , K ]]] + 3 [∂θ , [∂θ , K ]] ∂θ + 3[∂θ , K ]∂2θ
= ∂3θ b ∂θ + 3∂2θ b ∂2θ + 3∂θb ∂3θ ,

and, noting that ∂zb is constant in z, also

[∂z, K ] = ∂zb ∂θ −
(
γ − α2ε

)
∂z − ε

(
2γ − α2ε

)
z + γ εz�,

[∂2z , K ] = − ε
(
2γ − α2ε

)
+ 2[∂z, K ]∂z .

In light of (4.6), we have that [∂θ , K ]ϕ is in L2, hence (4.6) holds also for ∂θϕ. Thus
[∂z, K ]ϕ ∈ L2 as well and the same conclusion for ∂zϕ follows. Proceeding iteratively,
we deduce that ϕ ∈ H3(S1 × R), and the conclusion follows from the embedding
H3 ⊂ W 1,∞. �	

The construction and properties of the Lyapunov functional for the full linearised
system (2.3)–(2.4) is contained in the following proposition.

Proposition 4.3. Let

εα = γ

2�
∧ βν2σ 3χ4

16α2 , � = α2 + 2γ z2�, (4.7)

and let V0 be given by

V0(r, θ, z) = e−κr
(
1 − κgα(θ, z) + δeεαz2

)
, (4.8)
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for some constants κ ∈ R and δ > 0. Then, for every α ∈ R such that λα �= 0 there
exists a choice of δ, κ with sgn κ = sgn λα such that

e−κr
(
1 + δeεαz2

)
≤ 2V0 ≤ 3e−κr

(
1 + δeεαz2

)
, (4.9)

and such that furthermore L1V0 ≤ −d
(
1 + z2

)
V0 for some constant d > 0.

Proof. From (4.2) and the definition of the generators (2.5b)–(2.5c), it follows that

L0gα = λα − L1r.

A simple calculation then shows that

L1V0 = e−κr
[
(−κL1r)

(
1 − κgα + δeεαz2

)
− κL0gα

+ δ
(
α2εα + 2γ εαz�z + 2εα

(
α2εα − γ

)
z2

)
eεαz2

]

= e−κr
[
κ (L1r)

(
κgα − δeεαz2

)
− κλα

+ δ
(
α2εα + 2γ εαz�z + 2εα

(
α2εα − γ

)
z2

)
eεαz2

]

≤ e−κr
[

κ (L1r)
(
κgα − δeεαz2

)
− κλα + δεα

(

� − γ z2

2

)

eεαz2
]

,

where we used the fact that εα ≤ γ

2α2 in order to obtain the last inequality. Note now

that since the function u �→ eu
2
(3 − u2) is bounded from above by 8, we deduce that

� − γ z2

2
≤ 4�e− γ z2

2� − 2� + γ z2

4
≤ 4�e−εα z2 − 2� + γ z2

4
, (4.10)

so that

L1V0 ≤ e−κr
[
κ (L1r)

(
κgα − δeεαz2

)
+ 4δεα� − κλα − δεα

4

(
2� + γ z2

)
eεαz2

]
.

We now use the fact that, by Lemma 4.2, there exists a constant cα such that

|gα| ≤ cαe
εαz2 ,

so that, since furthermore

|L1r | ≤ 2 + z2,

we have

L1V0 ≤ e−κr
[
|κ|

(
2 + z2

)
(|κ|cα + δ) eεαz2 + 4δεα� − κλα

− δεα

4

(
2� + γ z2

)
eεαz2

]
.

We now make the choices

δ = |κ|3/2, |κ| ≤ λ2α

64�2 ∧ εα(γ ∧ �)

16
∧

(
εα(γ ∧ �)

16cα

)2

,
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(as well as sgn κ = sgn λα as in the statement) so that we obtain the bound

L1V0 ≤ e−κr
(

−κλα

2
− δεα

8

(
2� + γ z2

)
eεαz2

)

≤ e−κr
(

−κλα

2
− δεα

8

(
2α2 + γ z2

)
eεαz2

)

≤ −
(

κλα

2
∧ γ

8

)

e−κr
(
1 + δ

(
1 + εαz

2
)
eεαz2

)
.

If we furthermore impose |κ| ≤ 1/c4α , then it follows from (4.3) that

|κ||gα| ≤ |κ|cαe
εαz2/2 ≤ 1

2

(
1 + δeεα z2

)
,

so that we do indeed have the bound (4.9). In particular, since δ ≤ 1 this implies

2
(
1 + δεαz

2
)
V0 ≤ 3e−κr

(
1 + δ

(
1 + 2εαz

2
)
eεαz2

)
.

This finally leads to the bound

L1V0 ≤ −1

6

(
κλα ∧ γ

4

) (
1 + δεαz

2
)
V0,

as required. �	

4.2. Lyapunov functional for the stochastic Lorenz system. We also need the following
standard result which immediately follows from theDambis–Dubins–Schwarz represen-
tation of continuousmartingales as a time-changedBrownianmotion [RY94,ThmV.1.6].

Lemma 4.4. Let Xt = X0 + At + Mt be a continuous semimartingale with A0 = M0 =
0 such that there exists a constant κ for which At ≤ −κ〈M〉t . Then, provided that
limt→∞〈M〉t = ∞ almost surely, one has limt→∞ Xt = −∞ almost surely. �	

We are now ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1. We treat the cases λα > 0 and λα < 0 separately. In the case
λα > 0, it suffices to find a function V : (

R2\{(0, 0)}) × R → R+ with compact level
sets and such that LV ≤ K − cV for some positive constants c and K .

For this, we first go back to the original formulation (1.2), write U = (X,Y, Z) and
define the norm

|U |2 = X2 + Y 2 + (Z − σ − �)2.

For any c̄ > 0 to be fixed, we define the functional

Ṽ1(X,Y, Z) = exp
(
c̄|U |2

)
. (4.11)

Applying the generator L̃ of (1.2), we see that Ṽ1 satisfies the identity

L̃Ṽ1 = 2c̄Ṽ1

(
α̂2

2
− σ X2 − Y 2 −

(
β − c̄α̂2

)
(Z − σ − �)2 − β(σ + �)(Z − σ − �)

)

.
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Setting c̄ = β

2α̂2 , we get

L̃Ṽ1 = 2c̄Ṽ1

(
α̂2

2
− σ X2 − Y 2 − β

2
(Z − σ − �)2 − β(σ + �)(Z − σ − �)

)

≤ 2c̄Ṽ1

(
α̂2

2
+ β(σ + �)2 − σ X2 − Y 2 − β

4
(Z − σ − �)2

)

,

which implies that

L̃Ṽ1 ≤ K̃ − dα̂

(
1 + |U |2

)
Ṽ1, (4.12)

where dα̂ ∼ α̂−2 and K̃ > 0 is independent of α̂. In the variables (x, y, z) of system
(2.2), it then follows from (4.12) that the functional

V1(x, y, z) = Ṽ1(X,Y, Z) (4.13)

satisfies

LV1 ≤ K − dα

(
1 + x2 + y2 + z2

)
V1, (4.14)

for different constants K and dα , explicitly computable from (2.1). The bound (4.14)
suggests the natural choice

V = V0 + V1,

leading to the identity

LV = L1V0 − x(x + ηy)∂zV0 + LV1. (4.15)

Combining (4.15) with Proposition 4.3 and the bound (4.14) yields the estimate

LV ≤ K − dα

(
1 + z2

)
V − x(x + ηy)∂zV0,

for possibly different constants dα and K .
We then note that, as a consequence of Lemma 4.2, there exists a constant c such

that

|∂zV0| ≤ c (1 + |z|) V0. (4.16)

It is then immediate that in the region 3x2 + η2y2 ≤ dα/(2c), we have the bound

|x(x + ηy)∂zV0| ≤ dα

2

(
1 + z2

)
V .

On the other hand, in the region 3x2 + η2y2 ≥ dα/(2c), since λα > 0 we have that

V0 � eεαz2 � e2εα(z−z�)2 .

Now, comparing the above upper bound with the definitions of V1 in (4.13) and of Ṽ1 in
(4.11) via the change of variables (2.1), it is not hard to see that if (compare with (4.7))

εα ≤ c̄χ4σ 2

4
= βχ4σ 2

8α̂2 ,
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then there holds

V0 �
√
V1.

In particular, we can find K > 0 such that

|x(x + ηy)∂zV0| ≤ K +
dα

2
V .

Combining these bounds does indeed yield

LV ≤ K − dα

2
V,

as required.
Regarding the case λα < 0, it suffices to show that, for any realisation of the pro-

cess, limt→∞ |x2t + y2t | = 0 almost surely, which follows in particular if we can show
that limt→∞ V0(t) = 0. (Note that in this case κ < 0 in the definition of V0!) By
Proposition 4.3, we have the bound

L log V0 = LV0
V0

− α2

2

(
∂zV0
V0

)2

≤ −d
(
1 + z2

)
+ x(x + ηy)

∂zV0
V0

.

Note furthermore that since κ < 0, it follows by (4.9) that V0 is bounded below by 1.
Hence, (4.16) entails

|∂z log V0|2 ≤ c̃(1 + z2).

It follows that there exists a constant δ such that, as long as x2t + y2t ≤ δ, one has

d log V0 ≤ −d
(
1 + z2

)
dt +

√
c̃
(
1 + z2

)
dWt ,

for some Wiener process Wt . It then follows from Lemma 4.4 that there exists some
ε0 > 0 such that, uniformly over all initial conditions with x20 + y20 = δ/2, one has
limt→∞ log V0(t) = −∞ and supt>0

(
x2t + y2t

) ≤ δ with probability at least ε0.
It furthermore follows from Proposition 3.3 and the fact that V1 is a global Lyapunov

function for our system that, for any fixed initial condition with x2 + y2 > δ/2, the
stopping time τ = inf{t > 0 : x2 + y2 = δ/2} is almost surely finite and admits
exponentialmoments. Ifwe now split the trajectory into excursions between the cylinders
{x2 + y2 = δ} and {x2 + y2 = δ/2}, a simple renewal argument shows that one has indeed
limt→∞ log V0(t) = −∞ almost surely, as required. �	

5. Behaviour of the Angular Motion for Small and Large α

Recall that the system under consideration is given by

θ̇ = 1 − z sin2(θ), ż = − γ (z − z�) + α ξ, (5.1)

and write as before μα for its invariant measure (we consider γ and z� as fixed). Then,
one can write λα as

λα = − 1 +
1

2

∫
z sin(2θ) μα(dθ, dz). (5.2)
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Remark 5.1. Since both (5.1) and (5.2) are invariant under θ �→ θ + π , we can view θ

as an element of the real projective line RP1 ≡ [−π
2 , π

2 ]/{π
2 ,−π

2 }. For fixed z > 1, the
equation for θ in (5.1) then admits exactly two fixed points θ± with

sin θ± = ± 1√
z
,

∣
∣
∣θ± − ±1√

z

∣
∣
∣ ≤ 1

z3/2
. (5.3)

The fixed point θ+ is stable, while θ− is unstable with a saddle-node bifurcation at z = 1
when θ± = π

2 .

In this section, we exhibit the precise asymptotic behaviour of λα for small and for
large values of α. Since themap α �→ λα is smooth, this immediately yields Theorem 1.1
when combined with Theorems 3.1 and 4.1.

Theorem 5.2. One has

lim
α→∞ α−1/2λα = �( 34 )

2γ
1
4 π

1
2

, lim
α→0

λα =
{√

z� − 1 − 1 if z� > 1,
− 1 otherwise.

. (5.4)

Remark 5.3. Our proof actually shows that

∣
∣
∣
∣λα − α

1
2 �( 34 )

2γ
1
4 π

1
2

∣
∣
∣
∣ � α

1
3 +κ , as α → ∞, (5.5)

(for any κ > 0) while we have

|λα − λ0| �
{

α1/4 if z� = 1,
α3/4 otherwise.

(5.6)

Heuristics suggest that (5.6) should hold with exponents 1 and 2 respectively, which we
expect to be optimal. It is however not clear to us what the optimal exponent in (5.5)
should be.

Proof. We start with the case α → ∞ since this is the harder one. Setting

F(θ, z) = − 1 +
z

2
sin(2θ), F∞(θ, z) = √

z1z>0, (5.7)

the claim follows if we can show that

lim
α→∞ α−1/2

∫
|F − F∞| dμα = 0, (5.8)

where μα denotes the invariant measure for the system (5.1). This is because z ∼
N (z�, α2/(2γ )) under μα and, for X ∼ N (0, 1), one has

E
(
1X>0

√
X

) = 1√
2π

∫ ∞

0
e− X2

2
√
X dX = 1

2
3
4 π

1
2

∫ ∞

0
e−t t−

1
4 dt.

In order to show that (5.8) holds, we consider the process given by (5.1) and we define
the following increasing sequence of stopping times.We set τ0 = 0 and then inductively

τn+1 = inf{t > τn : z(t) �∈ Z(z(τn))}, (5.9)
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where the regions Z(z) ⊂ R are defined by

Z(z) =
{ [ − 1, 1] if |z| ≤ 1/2,

{cz : c ∈ [1/2, 2]} otherwise. (5.10)

Our definitions guarantee that |z(τn+1) − z(τn)| ≥ 1/4, so that since z is a simple
Ornstein-Uhlenbeck process (and therefore has continuous sample paths), the stopping
times τn necessarily increase to +∞. Using the explicit representation of the Ornstein–
Uhlenbeck process z(t), it is furthermore straightforward to see that for every p ≥ 1
there exists a constant C such that the bound

E
(
(τn+1 − τn)

p |Fτn

) ≤ C, (5.11)

holds almost surely, uniformly over n (see Lemma 5.5 below for a much more precise
upper and lower bound).

Writing X = RP1 × R for the state space of the Markov process (5.1), we define a
space of excursions X̂ = R × C(R+,X )/ ∼, where we set

(τ, u) ∼ (τ̄ , ū) iff τ̄ = τ and u(t) = ū(t) ∀t ≤ τ,

and we define a sequence of excursions En ∈ X̂ by

En = (τn+1 − τn, u(τn + ·)), (5.12)

where this time u(·) = (θ(·), z(·)) is the Markov process defined by (5.1).
Given any continuous function F : X → R, we can lift it to a function F̂ : X̂ → R

by

F̂(τ, u) =
∫ τ

0
F(u(s)) ds. (5.13)

Given an excursion E , we also write τ(E) for the time τ such that E = (τ, u). Note
that the sequence En given by (5.12) is Markovian as a consequence of the Markov
property of u. Writing μ̂α for its invariant measure on X̂ (whose existence is shown in
LemmaB.1 belowandwhose uniquenesswill not be used), it is then shown inLemmaB.2
that, for every F : X → R with at most polynomial growth in the z direction, one has
F̂ ∈ L1(μ̂α) and

∫
F(u) μα(du) = T̄−1

α

∫

X
F̂(E) μ̂α(dE),

where T̄α = ∫
τ(E) μ̂α(dE). Write now P̂ for the transition probabilities of the Markov

chain En on X̂ and assume that we can find a functionGα : X → R such that, uniformly
over E and over α ≥ 1,

∫
|F̂∞(E ′) − F̂(E ′)| P̂(E, dE ′) ≤

∫
Ĝα(E ′) P̂(E, dE ′), (5.14)



2260 M. Coti Zelati, M. Hairer

with F and F∞ as in (5.7). This then immediately implies that
∫

|F∞ − F | dμα = T̄−1
α

∫

X
|F̂∞(E) − F̂(E)| μ̂α(dE)

= T̄−1
α

∫

X

∫

X
|F̂∞(E ′) − F̂(E ′)| P̂(E, dE ′) μ̂α(dE)

≤ T̄−1
α

∫

X

∫

X
Ĝα(E ′) P̂(E, dE ′) μ̂α(dE) =

∫
Gα dμα.

If we can choose Gα in such a way that furthermore

lim
α→∞

1√
α

∫
Gα dμα = 0, (5.15)

then our claim follows.
We claim that for every κ > 0 one can find a constant C > 0 such that, setting

Gα(z) = Cακ
(
Hα(z) + α−2/3|z|),

Hα(z) =
⎧
⎨

⎩

(1 ∨ |z|) if |z| ≤ α2/3,

α|z|−3/4 + α1/3 + z1/3(z/α)16 if |z| ≥ α4/5,

α8/15 + α2|z|−2 otherwise,

the bounds (5.14) and (5.15) are satisfied. Since a simple calculation shows that
∫
Gα dμα �

ακ+1/3, it only remains to show (5.14).
Note that (5.14) holds provided we can show that, setting τ = inf{t > 0 : z(t) �∈

Z(z0)}, one has the bound

E
∫ τ

0
|F∞(u(t)) − F(u(t))| dt ≤ Gα(z0)Eτ, (5.16)

where we write u = (θ, z) and set

Gα(z)
def= inf

z′∈Z(z)
Gα(z′). (5.17)

In fact, since Gα has the property that Gα(z) � Gα(z) uniformly over all z, (5.16)
is implied by the same bound with Gα replaced by Gα . It remains to show that such
a bound is indeed satisfied for all initial conditions (θ0, z0). In order to show this, we
consider a number of different regimes separately.

The case |z0| ≤ α2/3. This case is trivial since, provided that C is large enough, one
has |F∞| + |F | ≤ Gα in this region.

The case z0 ≤ −α4/5. We first note that by Fernique’s theorem, combined with the
upper bound in Lemma 5.5 and Corollary 5.6, we can restrict ourselves to the event

τ ≤ αδ(z0/α)2, ‖W‖ 1
2−δ ≤ αδ, (5.18)

where δ > 0 is any (fixed, small) exponent and ‖ · ‖α denotes the α-Hölder seminorm.
This is because the event on which (5.18) fails has probability bounded by Cα−p for
any p (and a fortiori by α−2/3).
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Let N > 0 be such that
√|z0|2−N ∈ (1/2, 1] and, for n ∈ {0, . . . , N − 1}, write

Dn ⊂ RP1 for the region defined by

Dn = {θ : | sin(θ)| ∈ [2−n−1, 2−n]}.
We also set

DN = {θ : | sin(θ)| ≤ 2−N }.
Note that one has |Dn| ≈ 2−n in the sense that the ratio between these quantities
is bounded from above and below by strictly positive constants. Note that for n ∈
{1, . . . , N − 1}, Dn = D+

n ∪ D−
n consists of a pair of intervals placed symmetrically

around θ = 0, while D0 is a single interval centred around π
2 and DN is a single interval

centred around 0.
In this regime, the system spins around RP1 many times: on each full spin, we

exploit cancellations on every pair {D+
n , D−

n }, via Lemma A.1; however, depending on
the starting point and the point at which the system lies at the stopping time τ , some
intervals cannot be paired and contribute of a remainder bounded by at most two full
spins. This contribution will be taken care of at the end of the proof, in (5.20).

Using Lemma A.1, we now have everything in place to bound the contribution in this
regime (here, ‘of order’means bounded above and below by a fixedmultiple independent
of z0, α, n). Before time τ , the right hand side

Fn(θ, t) = 1 − z(t) sin2(θ)

for (5.1) in Dn is of order 2−2n|z0| while the integrand

Gn(θ, t) = − 1 +
z(t)

2
sin(2θ)

is at most of order 2−n|z0|. (Recall that F∞ = 0 in this regime and that 2−n|z0| ≥ 1/4 by
our choice of N .) As a consequence, the time tn it takes to cross one of the intervals is of
order tn ∼ 2−n/Fn ∼ 2n/|z0|. (This also includes the intervals D0 and DN .) Summing
up these bounds shows that the time it takes to go around RP1 once is of order |z0|−1/2.

We now apply Lemma A.1 for each of the pairs of intervals {D+
n , D−

n }, except that
that on D−

n we replace θ by −θ and run time backwards. We then have right hand sides
Fn , F ′

n and integrands Gn , G ′
n with, as a consequence of (5.18),

d(Fn, F
′
n) � 2−2nα1+δ|z0|− 1

2 ( 12−δ), d(Gn,G
′
n) � 2−nα1+δ|z0|− 1

2 ( 12−δ).

The total contribution over the two intervals is therefore bounded by

2−n
(Gnd(Fn, F ′

n)

F2
n

+
d(Gn,G ′

n)

Fn

)
� α1+δ|z0|−1− 1

2 ( 12−δ).

Summing this and using the fact that N ∼ log |z0|, we get a total contribution per round
of

α1+δ|z0|−1− 1
2 ( 12−δ) log |z0| � α1+δ|z0|δ− 5

4 .

By (5.18), the total number of rounds in this regime is bounded by
√|z0|(|z0|/α)2αδ ,

so that the from the above bound we obtain a total contribution of

(|z0|/α)2α1+2δ|z0|δ− 3
4 . (5.19)
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We now distinguish two cases: if |z0| ≤ α, then from Lemma 5.5 the total contribution
is at most of order

(|z0|/α)2α1+2δ|z0|δ− 3
4 � α2δ+1|z0|δ− 3

4Eτ � α3δα|z0|− 3
4Eτ,

which is consistent with (5.16) provided we choose 3δ < κ . Otherwise, if |z0| > α,
Lemma 5.5 implies that 1 � Eτ . As a consequence, from (5.19) the total contribution is

(|z0|/α)2α1+2δ|z0|δ− 3
4 � |z0|1/3(|z0|/α)δ+11/12αδ−1/12Eτ

� |z0|1/3(|z0|/α)Eτ,

which implies (5.16) provided δ ≤ 1/12. The additional contribution coming from the
fact that some intervals may not be paired up is, for each of the Dn’s, of order at most
Gntn � 1, so the total contribution coming from this is at most

log |z0| �
{

|z0|κ−2α2 Eτ � |z0|− 3
4 α1+κ Eτ, |z0| ≤ α,

|z0|1/3 Eτ, |z0| > α,
(5.20)

which is again of the desired order.

The case −α4/5 ≤ z0 ≤ −α2/3. In this case, we only have a contribution of log |z0|
for each round, and the expected number of rounds is bounded by

√|z0| Eτ + 1. Hence,
the total contribution in this case is

log |z0|
(√|z0| Eτ + 1

)
� |z0|κ

(
α

z0

)2

Eτ � ακ

(
α

z0

)2

Eτ,

as desired.

The case α2/3 ≤ z0 ≤ α4/5+κ . This is similar to the previous case with the difference
that FN is no longer bounded from below, so it is more difficult to control the time spent
in DN . However, the integrand is bounded by

√
z0 there, so the additional contribution

coming from the time spent in DN is at most
√
z0 Eτ � α2/5+κ/2Eτ ≤ α8/15+κ/2Eτ as

required. Finally, we have a contribution from F∞ in this regime, but since F∞ � √
z0

we can treat this as an error term which is of the same order as the previous contribution.

The case z0 ≥ α24/23. This case is trivial since one has |F∞| + |F | ≤ Gα .

The case α4/5+κ ≤ z0 ≤ α24/23. In this regime, we aim to show that most of the time
the dynamic is very close to tracking the stable fixed point θ+. Write now τ� ≤ τ for the
minimum between τ and the first time when one has |θ(t) − θ+(z0)| ≤ 1/(2

√
z0). It is

then straightforward to show that 4
√
z0θ(t) ∈ [1, 7] holds for all t ∈ [τ�, τ ]. This is a

consequence of the fact that 4
√
z0θ+(z(t)) ∈ [2, 6] (for example) for all t ≤ τ so that

the interval [1, 7] acts as a ‘trap’ for 4√z0θ(t).
We then rewrite (5.1) as

θ̇ = 1 − z sin2(θ) = 1 − a2(t)θ2, a2(t) = z(t)
sin2(θ)

θ2
.

Setting f (t) = 1+a(t)θ(t), we are precisely in the situation of Corollary A.4 below. By
choosing α sufficiently large, we can guarantee that, for t ∈ [τ�, τ ], |θ | is sufficiently
small so that sin2(θ)

θ2
> 1

2 , so that the assumptions of the corollary are satisfied with
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f0 = 1 and a0 = √
z0/2. Since |θ̇ | � 1 and, provided that (5.18) holds which we can

assume without loss of generality, z satisfies

|z(t) − z(s)| � α1+δ|t − s| 12−δ + |t − s|z0.
A straightforward calculation shows that one can take the constant K appearing in
Proposition A.3 to be some constant that is independent of both α and z0. Since, by
(5.3), one furthermore has the bound

|z sin(2θ+(z)) − 2
√
z| � 1√

z

in the region under consideration, we conclude that

|z(t) sin(2θ(t)) − 2
√
z(t)| � 1√

z0
+ 1 +

√
z0e

−√
z0t/2.

This yields the bound
∫ τ

0
|F∞(u(t)) − F(u(t))| dt �

∫ τ�

0
|F∞(u(t)) − F(u(t))| dt + 1 + τ.

Since

E(1 + τ) �
(
1 +

α2

z20

)
Eτ ≤

(
1 +

α

z3/40

)
Eτ ≤ Gα(z0)Eτ,

as required, it remains to bound the first term.
For this, write

τ1 = inf
{
t > 0 : |θ(t) − θ−(z(t))| ≥ 1

2
√
z0

}
.

The contribution of
∫ τ�

τ1
|F∞(u(t))−F(u(t))| dt is then bounded byO(log z0) in exactly

the same way as the contribution (5.20) considered in the regime z0 ≤ −α4/5. Writing
similarly τ0 for the first time such that |θ(t) − θ−(z(t))| ≥ z−2/3

0 , we can bound the
contribution from τ0 to τ1 by writing similarly to before

θ̇ = 1 − a2(t)θ2 = f (t)
(
1 + a(t)θ

)
, f (t) = 1 − a(t)θ(t),

and making use of the lower bound in Corollary A.4. Since K ≈ 1 and a0 ≈ √
z0 as

before, one has z−2/3
0 � K/a20 so that the assumptions of the corollary are satisfied,

which shows that |τ1−τ0| � log z0√
z0

. The contribution of this regime is therefore bounded
by log z0 as before.

To bound the contribution up to time τ0, we make use of Lemma A.2. Our aim is to
use it in order to show that

P
(
τ0 > ακ z−1/2

0

)
� α−2/3, (5.21)

so that, as a consequence of Corollary 5.6, we obtain

E
∫ τ0

0
|F∞(u(t)) − F(u(t))| dt � ακ + |z0|ακ−2/3Eτ ≤ Gα(z0)Eτ,
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as desired. As before, we can furthermore assume that we are on the event (5.18). In
particular, as long as t < ακ z−1/2

0 , we have the bound

|z(t) − z0| � α1+δt
1
2−δ + |z0|t � αz−1/5

0 , (5.22)

provided that both κ and δ are sufficiently small. In order to place ourselves in the
framework of Lemma A.2, we set θ̃ = θ + 1/

√
z, so that

dθ̃ = 2
√
z0θ̃ dt +

(
1 − z sin2(θ̃ − 1/

√
z) − 2

√
zθ̃

)
dt + 2(

√
z − √

z0)θ̃ dt

+
γ

2
√
z
dt − γ z�

2z3/2
dt +

3α2

8z5/2
dt − α

2z3/2
dW.

Note that there exists ε̄ sufficiently small such that ifwe consider times such that |z−z0| ≤
ε̄|z0|, we are in the setting of Lemma A.2 with a = 2

√
z0 and b = α/(2z3/20 ), so that

b
√
a ≈ αz−5/4

0 .
Indeed, we note that since θ̃ � z−2/3, we have the bound

∣
∣ sin2(θ̃ − 1/

√
z) − (θ̃ − 1/

√
z)2

∣
∣ � 1/z2,

so that, at least for t < ακ z−1/2
0 , one has

∣
∣1 − z sin2(θ̃ − 1/

√
z) − 2

√
zθ̃

∣
∣ � |zθ̃2| + 1

z
� z−1/3 � α22/23z−5/4

0  b
√
a,

|√z − √
z0||θ̃ | � αz−41/30

0  b
√
a,

γ z�
2z3/2

� γ

2
√
z

� α18/23z−5/4
0  b

√
a,

3α2

8z5/2
� α1−κ z−5/4

0  b
√
a.

Applying Lemma A.2 with K ≈ z13/120 /α, we conclude that there exists a constant C
such that

P
(
τ0 >

C log z0√
z0

)
≤ α−2/3,

which indeed implies the required bound (5.21).

The case α small and z� < 1. We now proceed to the proof of the second limit in in our
statement. The methodology is the same as above, but with F∞ = − 1, different choices
of Gα and τn , and the different terms are less delicate to estimate. This time, we set

Z(z) =
{ [ − 2α3/4, 2α3/4] if |z − z�| ≤ α3/4,

{z� + c(z − z�) : c ∈ [1/2, 2]} otherwise,

and we write

τn+1 = (τn + α−2) ∧ inf{t > τn : z(t) �∈ Z(z(τn))}.
Finally, we set

Gα(z) =
{
Cα3/4 if |z − z�| < α3/4/2,
1 + |z| otherwise.

(5.23)
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It is immediate that, if we define Gα as in (5.17), then
∫
Gα dμα � α3/4, so that the

required bound follows if we can show (5.16). Furthermore, (5.16) (with F∞ = − 1)
clearly holds for |z0 − z�| ≥ α3/4 since in that regime one has |F(θ, z) + 1| ≤ |z| ≤
Gα(z0) for all z ∈ Z(z0).

For |z0 − z�| ≤ α3/4, we note first that P(τ < α−2) decays like exp(−c/
√

α) as a
consequence of standard Gaussian estimates, so we can assume that τ = α−2. We also
write t� for the period of the ODE

˙̂
θ = 1 − z� sin

2(θ̂), (5.24)

which is finite since z� < 1. By symmetry, we have

∫ t�

0

(
F(θ̂(t), z�) + 1

)
dt = 0,

independently of the initial condition θ̂ (0). We then break the interval [0, τ ] into chunks
[tk, tk+1] of length t� and note that, by setting θ̂n to be the solution to (5.24) with θ̂n(tn) =
θ(tn), one has

∣
∣
∣

∫ tk+1

tk

(
F(θ(t), z(t)) + 1

)
dt

∣
∣
∣ ≤

∫ tk+1

tk

∣
∣F(θ(t), z(t)) − F(θ̂(t), z�)

∣
∣ dt � α3/4,

except possibly for the last chunk which yields at most a contribution of order 1. It
follows that we have

∣
∣
∣

∫ τ

0

(
F(θ(t), z(t)) + 1

)
dt

∣
∣
∣ � 1 + α

3
4−2 � α3/4Eτ � Gα(z0)Eτ,

as required.

The case α small and z� > 1. We use the same definitions as in the previous case and
note again that we only need to consider the case |z0 − z�| ≤ α3/4 and τ = α−2. This
time we note that as before the reference dynamic (5.24) admits two fixed points θ�±
such that sin θ�± = ±1/

√
z�, so that

√
z� − 1 − 1 = F(θ�

+, z�).

The claim therefore follows if we can show that, for τ = α−2,

∫ τ

0

∣
∣F(θ(s), z(s)) − F(θ�

+, z�)| ds � α
3
4−2. (5.25)

Remark 5.4. To understand the behaviour of λα in this case, one could heuristically think
as follows: in the limit α → 0, one expects the sequence of invariant measures {μα}α
to accumulate more and more on the stable fixed point represented by the point-mass
δ(θ�

+,z�). From (5.2), we see that λ0 can then be computed explicitly, leading to (5.4).
Estimate (5.25) makes this heuristic precise by asserting that the system indeed spends
most of the time near the stable fixed point.
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The proof of this bound follows the same lines as the proof of the case α4/5+κ ≤
z0 ≤ α24/23 given above, except that the various regimes are much easier to treat. Since
|θ+(z(t))−θ�

+| � α3/4 and since this is a stable fixed point (at least forα sufficiently small
depending on z�), it follows immediately that once |θ(t)−θ�

+| ≤ Cα3/4 for a suitableC ,
this bounds holds for all subsequent times. Set τ1 = inf{t > 0 : |θ(t) − θ�

+| ≤ Cα3/4}
and break the integral in (5.25) into a contribution up to τ1 and a remainder. Since the
integrand in the remainder is bounded by Cα3/4 and since we are restricted to the event

τ ≤ α−2, this term is indeed bounded by O(α
3
4−2) as required.

Since on the other hand the integrand is always bounded byO(1), it remains to show
that

P(τ1 > α3/4−2) � α3/4. (5.26)

Setting as before τ0 = inf{t > 0 : |θ(t) − θ�−| ≥ Cα3/4}, a very brutal bound shows
that τ1 − τ0 � α−3/4. This is simply because the right hand side of the equation for θ is
of size at least α3/4 during that time so that it takes time at most O(α−3/4) to move by
an order 1 distance. It therefore remains to show that a bound of the form (5.26) holds
for τ0, for which we would like to apply Lemma A.2 again.

If we set similarly to before θ̃ (t) = θ(t) − θ−(z(t)), then we see that it satisfies an
equation of the form

dθ̃ = aθ̃ dt − γ (z − z�)

2z�
√
z� − 1

dt + G1(θ̃ , z) dt + b G2(z) dW,

where

a = − 2z� sin θ�− cos θ�− = 2
√
z� − 1, b = α

2z�
√
z� − 1

,

and where the nonlinearities G1,2 satisfy the bounds

|G1(θ̃ , z)| � α3/2 + α3/4|θ̃ |, |G2(z) − 1| � α3/4. (5.27)

Unfortunately, the second term appearing in the right hand side is of order α3/4, which
is much larger than b

√
a = α/z� so it appears that Lemma A.2 doesn’t apply. The trick

is to look for a constant c such that if we set

θ̂ (t) = θ̃ (t) − c(z − z�),

this term cancels out. A simple calculation shows that this is the case if we choose

c = γ

2z�
√
z� − 1(γ + a)

.

With this choice, θ̂ then satisfies

dθ̂ = âθ̂ dt + Ĝ1(θ̂ , z) dt + b̂ Ĝ2(z) dW,

with â = a,

b̂ = α

z�(2
√
z� − 1 + γ )

,
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and Ĝ1,2 satisfying the same bounds (5.27) as G1,2. We are now in the setting of
LemmaA.2. Since there exists a constant Ĉ such that |θ̃ | > Ĉα3/4 implies that |θ−θ�−| >

Cα3/4, the required bound on τ0 follows at once.

The case α small and z� D 1. This is the case where the two fixed points θ�± are merged
into one. We proceed again in the same way as above with Gα as in (5.23), but this time
equal to Cα1/4 for |z − z�| ≤ α3/4/2. Again, it suffices to consider the case τ = α−2

and |z0 − z�| ≤ α3/4. Define the two intervals

D0 = {θ : |θ − θ�±| ≤ Cα3/8}, D1 = {θ : |θ − θ�±| ≤ α1/8},
and write Dc

1 for the complement of D1. The trajectory t �→ θ(t) can then be partitioned
into intervals according towhether θ(t) ∈ D1 (called ‘slow intervals’) or θ(t) ∈ Dc

1 (‘fast
intervals’). A simple comparison with scaled translates of the ODE u̇ = u2 shows that

it takes at most a time of order α− 1
8 to traverse a fast interval and at least a time of order

α− 3
8 to go from the boundary of D1 to that of D0 (and therefore a fortiori also to traverse

a slow interval). Since one has |F(θ, z)| � 1 in Dc
1 and |F(θ, z)| � |θ − θ�±|2 � α

1
4

in D1, we conclude that the average of F over any time interval of size at least α− 3
8 is

bounded by Cα
1
4 + Cα

3
8− 1

8 � α
1
4 as claimed. �	

We complete this section with a bound on the stopping time τ given as in (5.9) by

τ = inf{t > 0 : z(t) �∈ Z(z0)},
where z denotes the solution to (2.4) with initial condition z0.

Lemma 5.5. For every k ≥ 1 there exists a constant c such that, for all |z0| ≥ 1 and all
α ≥ 1, one has Eτ ≥ c

(
1 ∧ (z0/α)2

)
and (Eτ k)1/k ≤ c−1

(
1 ∧ (z0/α)2

)
.

Proof. We first show the lower bound. One has

|z0|
2

≤ |z(τ ) − z0| =
∣
∣
∣

∫ τ

0
z(s) ds + αW (τ )

∣
∣
∣ ≤ 2|z0|τ + α|W (τ )|.

It follows that either τ > 1
8 or |W (τ )| ≥ |z0|/(4α), so that τ ≥ 1

8 ∧ (z0/α)2σ , where
the random variable σ is equal in law to

σ = inf{s ≥ 0 : |W (s)| = 1/4}.
If |z0| ≥ α, we then have

Eτ ≥ 1

8
P

(

sup
s≤1/8

|W (s)| < 1/4

)

≥ c,

for some c > 0 as required. In the regime α ≥ |z0|, we have

Eτ ≥ 1

8
(z0/α)2E

(
σ ∧ (α/z0)

2) ≥ 1

8
(z0/α)2E

(
σ ∧ 1

) ≥ c(z0/α)2,

for some (possibly different) strictly positive constant c as required.
To show the upper bound, note first that we can assume without loss of generality

that z0 > 0. For every stopping time t ≤ τ we then have, similarly to before,

z0 ≥ |z(t) − z0| =
∣
∣
∣

∫ t

0
z(s) ds + αW (t)

∣
∣
∣ ≥ α|W (t)| − 2|z0|t,
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so that, setting ε = |z0|/α, one has
|W (t)| ≤ ε(1 + 2t). (5.28)

It follows from the standard small ball estimates for Brownian motion [Chu48,LS01]
that, for all t ≤ 1, one has the bound

P(τ ≥ t) ≤ C exp
(
−c

t

ε2

)
,

for some constants c,C > 0. On the other hand, for every t ≤ τ , we also have

z0
2

≤ z(t) ≤ z0
(
1 − t

2

)
+ αW (t),

which, by [Hal97, Eq. 3], implies that

P(τ ≥ t) ≤ P
(
W (t) ≥ ε

2
(t − 1)

)
− eε2/2P

(
W (t) ≥ ε

2
(t + 1)

)
,

so that in particular, for all t ≥ 2,

P(τ ≥ t) � (1 ∧ ε2) exp(−ε2t/8).

For ε ≤ 1/2 it follows that, for a suitable c > 0,

Eτ k = k
∫ ∞

0
tk−1P(τ ≥ t) dt

�
∫ 1

0
tk−1e−ct/ε2 dt + e−c/ε2

∫ ε−4

1
tk−1 dt + ε2

∫ ∞

ε−4
tk−1e−cε2t dt

� ε2k + ε−4ke−c/ε2 + ε2−2ke−c/ε2 � ε2k,

as claimed. For ε ≥ 1/2, we have

Eτ k ≤ 2 + k
∫ ∞

2
tk−1P(τ ≥ t) dt � 1 +

∫ ∞

2
tk−1e−cε2t dt

� 1 + ε−ke−2cε2 � 1,

as claimed. �	
Corollary 5.6. Let Aα be a collection of events such that P(Aα) ≤ α−2/3. Then, for
every κ > 0 there exists a constant C such that

E
(
1Aα

∫ τ

0
|F∞ − F | dt

)
≤ C |z0|ακ−2/3 Eτ.

Proof. We have

E
(
1Aα

∫ τ

0
|F∞ − F | dt

)
� |z0|E

(
1Aα τ

) ≤ |z0|P(Aα)(k−1)/k(Eτ k)1/k

� |z0|P(Aα)(k−1)/kEτ,

where we used Lemma 5.5 to get the last bound. The claim now follows at once by
choosing k sufficiently large. �	
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Appendix A Useful Bounds

The following can be verified without encountering any surprises.

Lemma A.1. Let θ1, θ2 be solutions to

θ̇i = Fi (θi , t), θi (0) = a.

for Lipschitz functions Fi such that Fi (θ, t) > 0. Write τi = inf{t > 0 : θi (t) = b}.
Then, for any two bounded continuous functions Gi one has the bound

∣
∣
∣

∫ τ1

0
G1(θ1, t) dt −

∫ τ2

0
G2(θ2, t) dt

∣
∣
∣ ≤ |b − a|d(G1,G2)F2 + G2d(F1, F2)

F1F2
,

where F (resp. F) denote the minimum (resp. maximum) of F and d(H1, H2) =
supt1≤τ1,t2≤τ2,θ

|H1(θ, t1) − H2(θ, t2)|. �	
Lemma A.2. There exists a universal constant ε > 0 such that the following holds. Let
W be a standard Wiener process, let E and C be continuous processes adapted to the
filtration generated by W, and let x solve

dx = ax dt + E(t) dt + b C(t) dW (t),

for some constants a, b > 0. Assume that, almost surely, one has |C(t) − 1| ≤ ε and
|E(t)| ≤ εb

√
a for all t > 0 and write τK for the first time when |x | ≥ Kb/

√
a. Then,

the bound

P
(
τK >

N

a
log

K ∨ 1

ε

)
� 2−N

holds uniformly over x0 ∈ R, K > 0 and every integer N > 0.

Proof. By considering x̂(t) =
√
a
b x(t/a)we can reduce ourselves to the case a = b = 1,

which we assume from now on. We write

x(t) = x0e
t + Z(t) + Ê(t),

where

Z(t) =
∫ t

0
et−sdW (s), Ê(t) =

∫ t

0
et−s(E(s) ds + (C(s) − 1) dW (s)

)
.

http://creativecommons.org/licenses/by/4.0/
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It follows that for any deterministic time t > (log 2)/2 we can write

x(t) = et (x0 + η + εζ ), (A.1)

where η is a Gaussian random variable with variance in [ 14 , 1
2 ] and, by Bernstein’s

inequality [RY94, Ex. IV.3.16], ζ is a random variable (correlated with η in general)
with the property that P(|ζ | > 1 + M) ≤ 2 exp(−M2).

Set now t = log(K ∨ 1) − log ε so that et ≥ K/ε. Provided that ε < 1/
√
2, this

yields the bound

P
(
τK > log

K ∨ 1

ε

)
≤ P(|x(t)| < K ) ≤ P(|x0 + η + εζ | < ε)

≤ P(|x0 + η| < Mε) + P(|ζ | > M − 1)

≤ 4Mε√
2π

+ P(|ζ | > M − 1).

It immediately follows that, by first choosing M large enough so that P(|ζ | > M −1) <

1/4 and then choosing ε small enough so that 4Mε√
2π

< 1/4, we can guarantee that

P
(
τK > log

(
(1 ∨ K )/ε

))
< 1/2.

Using the same argument, combinedwith the fact that E andC are adapted, we obtain
the almost sure bound

P
(
τK > t + log

(
(1 ∨ K )/ε

) ∣
∣Ft

)
< 1/2.

Iterating this bound then yields the claim. �	
Proposition A.3. Let x and y be solutions to

ẋ = 1 − a(t) x, ẏ = 1 + a(t) y,

for a function a such that a(t) ≥ a0 > 0 for all t > 0 and such that |a(t) − a(s)| ≤ K
whenever |t − s| ≤ 1/a0. There exists a universal constant C such that, setting x�(t) =
1/a(t), one has

|x(t) − x�(t)| ≤ |x(0) − x�(0)|e−a0t +
CK

a20
, (A.2)

for all t ≥ 0. Setting y�(t) = − 1/a(t), there exists a constant C such that, provided
that |y(0) − y�(0)| ≥ CK/a20 and that a(t) ∈ [a0, 2a0] for all t > 0, one has

|y(t) − y�(t)| ≥ |y(0) − y�(0)|ea0t/2/2. (A.3)

Proof. Writing x̃(t) = x(t) − x�(0), we have

˙̃x = − a(t)x̃ + (a(0) − a(t)) x�(0),

so that, for t ≤ 1/a0,

|x̃(t)| ≤ e−a0t |x̃(0)| + K |x�(0)|/a0.
On the other hand, one has

|x�(t) − x�(0)| = |a(t) − a(0)|
a(0)a(t)

≤ K

a20
.
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Since |x�(0)| ≤ 1/a0, we conclude that (A.2) holds for t ≤ a0 with C = 2. It then
suffices to iterate this bound.

Regarding the lower bound on y, a similar calculation shows that, for t ≤ 1/a0,

|ỹ(t)| ≥ ea0t |ỹ(0)| − K |y�(0)|
∫ t

0
e2a0s ds ≥ ea0t |ỹ(0)| − (e2 − 1)

K

a20
.

Choosing C sufficiently large and iterating this bound proves the claim. �	
Corollary A.4. Let x and y be the solutions to

ẋ = f (t)
(
1 − a(t) x

)
, ẏ = f (t)

(
1 + a(t) y

)
,

with a as in Proposition A.3 and f ≥ f0. Then, the conclusions still holds, but with
e−a0t and ea0t/2 replaced by e−a0 f0t and ea0 f0t/2 respectively.

Proof. It suffices to perform a time change to eliminate f . �	

Appendix B Path Decomposition

In this appendix, we justify the relation between the Markov process determined by the
diffusion (5.1) and the Markov chain En on path segments defined in (5.12). The natural
topology on X̂ (which turns it into a Polish space) is the one given by the metric

d(τ, u; τ̄ , ū) = |τ − τ̄ | + sup
t≥0

|u(t ∧ τ) − ū(t ∧ τ̄ )|.

In view of (5.10), we can define for n ≥ −1 the closed subset X̂n ⊂ X̂ given for n ≥ 0
by those trajectories (τ, u) such that |z(0)| = 2n and z(τ ) ∈ {2z(0), z(0)/2}. Similarly,
X̂−1 is defined by imposing |z(0)| = 1/2 and |z(τ )| = 1.

Writing P̂ for the transition probabilities of En , we then have P̂(E, X̂n−1∪X̂n+1) = 1
for all E ∈ X̂n for n ≥ 0 and P̂(E, X̂0) = 1 when E ∈ X̂−1. As a consequence, we can
restrict our state space and assume henceforth that X̂ = ⋃

n≥−1 X̂n . We also introduce

the observable N : X̂ → R such that N (E) = n for all E ∈ X̂n . One then has the
following straightforward result.

Lemma B.1. The Markov transition kernel P̂ has the following properties.

1. It has the Feller property on X̂ .
2. For every α > 0, the function V (E) = exp(αN (E)) is a Lyapunov function for P̂ in

the sense that there exists c < 1 and C > 0 such that
∫

V (E ′)P̂(E, dE ′) ≤ cV (E) + C.

3. For every ε ≥ 0 and every n ≥ −1 there exists a compact set K ⊂ X̂ such that
P̂(E, K ) ≥ 1 − ε, uniformly over all E ∈ X̂n.

In particular, it admits an invariant measure μ̂α such that V ∈ L1(μ̂α).
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Proof. The first property follows immediately from the fact that solutions to (5.1) depend
continuously on their initial condition, combined with [Bog07, Cor. 8.4.2] and the fact
that their law does not charge the points of discontinuity of the map u �→ inf{t > 0 :
|z(t)| = a} for any a �= z(0).

For the second property, a simple comparison with Brownianmotion with drift shows
that, for any fixed ε > 0 and any n large enough, one has P̂(E, {N = n − 1}) ≥ 1 − ε

for all E ∈ X̂n , whence the claim follows.
The last property follows from the upper bound of Lemma 5.5 and Arzelà–Ascoli,

using the fact that the 1/3-Hölder norm (say) of a Wiener process admits exponential
moments over any fixed time interval.

Combining the second and third part, we conclude that the sequence {P̂k(E, · )}k≥1 is
tight for every E ∈ X̂ , so that the existence of an invariantmeasure μ̂α for P̂ follows from
the Krylov–Bogolyubov theorem. The integrability of V is an immediate consequence
of part 2. �	

Note that the invariant measure exhibited in this lemma is actually unique, but we
will not use this and therefore do not give a proof. We then have the following result.

Lemma B.2. Let F : X → R be such that |F(θ, z)| � (1 + |z|)p for some p > 0 and
let F̂ : X̂ → R be given by (5.13). Then, one has F̂ ∈ L1(μ̂α) and

∫
F(u) μα(du) = T̄−1

α

∫

X
F̂(E) μ̂α(dE),

where T̄α = ∫
τ(E) μ̂α(dE).

Proof. The fact that F̂ ∈ L1(μ̂α) follows by combining point 2. of Lemma B.1 with
Lemma 5.5. The latter also shows that T̄α < ∞.

Note now that it follows from Birkhoff’s ergodic theorem that

∫

X
F̂(E) μ̂α(dE) = lim

n→∞
1

n

n∑

k=1

F̂(Ek), (B.1)

where Ek is the stationary Markov chain with transition probability P̂ and fixed time
marginal μ̂α . However, the natural coupling (5.12) between the chain Ek and the solution
to (5.1) yields

n∑

k=1

F̂(Ek) =
∫ τn

0
F(u(s)) ds,

where u(0) is distributed according to π∗
0 μ̂α , with π0(τ, u) = u(0). On the other hand,

Propositions 3.2 and 3.3 imply that the time-1 map of (5.1) yields a Harris chain, so that,
arguing as in [MT09, Prop. 17.1.6], the identity

lim
t→∞

1

t

∫ t

0
F(u(s)) ds =

∫
F(u) μα(du). (B.2)

holds almost surely. (The reason why we need to invoke the Harris chain property is that
the initial condition u(0) in (B.2) is distributed according to π∗

0 μ̂α , which is singular
with respect to μα .)
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In particular, since limn→∞ τn = ∞ almost surely (take F(τ, u) = τ in (B.1)), one
has

∫
F(u) μα(du) = lim

n→∞
1

τn

∫ τn

0
F(u(s)) ds = lim

n→∞

1
n

∫ τn
0 F(u(s)) ds

τn
n

= lim
n→∞

1
n

∑n
k=1 F̂(Ek)

1
n

∑n
k=1 τ(Ek)

= T̄−1
α

∫

X
F̂(E) μ̂α(dE),

as claimed, where we used (B.1) in the last step. �	
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