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Abstract: This paper is dedicated to proving the complete integrability of theBenjamin–
Ono (BO) equation on the line when restricted to every N -soliton manifold, denoted by
UN . We construct generalized action–angle coordinates which establish a real analytic
symplectomorphism from UN onto some open convex subset of R

2N and allow to solve
the equation by quadrature for any such initial datum. As a consequence, UN is the
universal covering of the manifold of N -gap potentials for the BO equation on the torus
as described by Gérard–Kappeler (Commun Pure Appl Math, 2020. https://doi.org/10.
1002/cpa.21896. arXiv:1905.01849). The global well-posedness of the BO equation
on UN is given by a polynomial characterization and a spectral characterization of the
manifold UN . Besides the spectral analysis of the Lax operator of the BO equation and
the shift semigroup acting on some Hardy spaces, the construction of such coordinates
also relies on the use of a generating functional, which encodes the entire BO hierarchy.
The inverse spectral formula of an N -soliton provides a spectral connection between the
Lax operator and the infinitesimal generator of the very shift semigroup.
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1. Introduction

The Benjamin–Ono (BO) equation on the line reads as

∂t u = H∂2x u − ∂x (u
2), (t, x) ∈ R× R, (1.1)

where u is real-valued and H = −isign(D) : L2(R) → L2(R) denotes the Hilbert
transform, D = −i∂x ,

̂H f (ξ) = −isign(ξ) f̂ (ξ), ∀ f ∈ L2(R). (1.2)

sign(±ξ) = ±1, for all ξ > 0 and sign(0) = 0, f̂ ∈ L2(R) denotes the Fourier–
Plancherel transform of f ∈ L2(R).We adopt the convention L p(R) = L p(R,C). ItsR-
subspace consisting of all real-valued L p-functions is specially emphasized as L p(R,R)

throughout this paper. Equipped with the inner product ( f, g) ∈ L2(R) × L2(R) �→
〈 f, g〉L2 = ∫

R
f (x)g(x)dx ∈ C, L2(R) is a C-Hilbert space. Derived by Benjamin [3]

and Ono [17], the BO equation (1.1) describes the evolution of weakly nonlinear internal
long waves in a two-layer fluid. Equation (1.1) is globally well-posed in every Sobolev
space Hs(R,R), see Tao [23] for s ≥ 1, see Ionescu–Kenig [10] for s ≥ 0, etc. On
appropriate Sobolev spaces, equation (1.1) can be written in Hamiltonian form

∂t u = ∂x∇u E(u), E(u) = 1

2
〈|D|u, u〉

H− 1
2 ,H

1
2
− 1

3

∫

R

u3, (1.3)

where ∇u E(u) denotes the L2(R)-gradient of E , ∂x is the Gardner–Faddeev–Zakharov
Poisson structure and XE (u) = ∂x∇u E(u) is the Hamiltonian vector field of E with
respect to the Poisson structure ∂x . Since ∂x = −∂∗x is an unbounded operator on
L2(R,R) with domain H1(R,R) and range given by

W := ∂x

(

H1(R,R)
)

= {u ∈ L2(R,R) :
∫

R

|û(ξ)|2
|ξ |2 dξ < +∞}, (1.4)

its inverse ∂−1x : W → H1(R,R) is a symplectic structure on W . A 2-covector ω ∈
�2(W∗) is defined by ω(h1, h2) = 〈h1, ∂−1x h2〉L2 , ∀h1, h2 ∈ W . Under appropriate
conditions on the functionals F and G, ω is the symplectic form corresponding to the
Gardner bracket, which is defined by

{F,G}(u) := 〈∂x∇u F(u),∇uG(u)〉L2 . (1.5)
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The goal of this paper is to show the complete integrability of equation (1.1) when
restricted to every multi-soliton manifold. Recall the scaling and translation invariances
of equation (1.1): if u = u(t, x) is a solution, so is the function uc,y : (t, x) �→
cu(c2t, c(x − y)). A smooth solution u = u(t, x) is called a solitary wave of (1.1) if
there exists R ∈ C∞(R) solving the following non local elliptic equation

HR′ +R−R2 = 0, R(x) > 0 (1.6)

such that u(t, x) = Rc(x− y−ct), whereRc(x) = cR(cx), for some c > 0 and y ∈ R.
In [2], Amick and Toland have shown that the unique (up to translation) solution of (1.6)
is given by

R(x) = 2
1+x2

, ∀x ∈ R. (1.7)

Definition 1.1. For any positive integer N ∈ N+ := Z
⋂

(0,+∞), the set UN is defined
as follows,

UN := {u ∈ L2(R,R) : u(x) =
N
∑

j=1
c jR(c j (x − x j )), c j > 0, x j ∈ R,

∀1 ≤ j ≤ N }. (1.8)

A function u ∈ UN is called an N -soliton of theBOequation (1.1). The set of translation–
scaling parameters of u is given by P(u) := {x1 − c−11 i, x2 − c−12 i, . . . , xN − c−1N i}
and m(z) denotes the multiplicity of z ∈ P(u) in the expression of u in (1.8). As
a consequence, u(x) = ∑

z∈P(u)
−2m(z)Imz

(x−Rez)2+(Imz)2
and a polynomial characterization of

each N -soliton is given as follows,

u(x) =
∑

z∈P(u)

Im 2m(z)
z−x = −2Im Q′

u(x)
Qu(x)

, Qu(X) :=
∏

z∈P(u)

(X − z)m(z), (1.9)

where Qu ∈ C[X ] is called the characteristic polynomial of u,∀u ∈ UN .

The setUN is in one to one correspondancewith the setVN that consists of all polynomials
of degree N with leading coefficient 1, whose roots are contained in the lower half plane
C− = {z ∈ C : Imz < 0}. Moreover, the bijection u ∈ UN �→ Qu ∈ VN provides the
real analytic structure on UN .

Proposition 1.2. Equippedwith the subspace topology of theR-Hilbert space L2(R,R),
the subset UN is a simply connected, real analytic, embedded submanifold of L2(R,R)

and dimR UN = 2N. For every u ∈ UN , the tangent space to UN at u is given by
Tu(UN ) = ⊕

z∈P(u)(R
m(z)(Reφz)

⊕

R
m(z)(Imφz)), where φz(x) := (x − z)−2, ∀z ∈

P(u) ⊂ C−.
Given u ∈ UN , we have

∫

R
u = 2πN , so the tangent space Tu(UN ) is included in an

auxiliary space

T := {h ∈ L2(R, (1 + x2)dx) : h(R) ⊂ R, ĥ(0) = 0}. (1.10)

TheHardy’s inequality yields that T is contained in the auxiliary spaceW given by (1.4).
SoW

⋂

L2(x2dx) = T . We define a real analytic 2-formω : u ∈ UN �→ ω ∈ �2(W∗),
i.e.

ωu(h1, h2) = i

2π

∫

R

ĥ1(ξ)ĥ2(ξ)

ξ
dξ = −Im

∫ +∞

0

ĥ1(ξ)ĥ2(ξ)

πξ
dξ,
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∀h1, h2 ∈ Tu(UN ). (1.11)

Then we show that ω establishes the symplectic structure, which corresponds to the
Gardner bracket (1.5), on the N -soliton manifold UN defined by (1.8).

Proposition 1.3. Endowed with ω in (1.11), the real analytic manifold (UN , ω) is a
symplectic manifold. For any smooth function f : UN → R, let X f ∈ X(UN ) denote its
Hamiltonian vector field, then

X f (u) = ∂x∇u f (u) ∈ Tu(UN ), ∀u ∈ UN . (1.12)

The Gardner bracket in (1.5) coincides with the Poisson bracket associated to the
symplectic form ω, i.e. for another smooth function g : UN → R, we have
ωu(X f (u), Xg(u)) = { f, g}(u), ∀u ∈ UN .

The following result indicates the global well-posedness of the BO equation (1.1) on the
manifold UN .

Proposition 1.4. For every N ∈ N+, the manifold UN is invariant under the BO flow.

Remark 1.5. Since UN ⊂ H∞(R,R)
⋂

L2(R, x2dx) with H∞(R,R) := ⋂

s≥0
Hs(R,R), the energy functional E in (1.3) is well defined on UN . So equations (1.1)
and (1.3) are equivalent on UN .

Inspired from the construction ofBirkhoff coordinates of the space-periodicBOequation
in Gérard–Kappeler [8], we want to establish the generalized action–angle coordinates
of (1.1) on UN . Let

�N := {(r1, r2, . . . , rN ) ∈ R
N : r1 < r2 < · · · < rN < 0} (1.13)

denote the subset of actions. For any j, k = 1, 2, . . . , N , the Kronecker symbol is
denoted by δk j , i.e. δk j = 1 if j = k; δk j = 0, if j �= k. The main result of this paper is
stated as follows.

Theorem 1. There exists a real analytic diffeomorphism

�N : u ∈ UN �→ (I1(u), I2(u), . . . , IN (u); γ1(u), γ2(u), . . . , γN (u)) ∈ �N × R
N

(1.14)

such that the following statements hold:
(i) The Poisson brackets (1.5) between the coordinate functions are well defined and

{I j , Ik} = 0, {I j , γk} = δk j , {γ j , γk} = 0 on UN , ∀ j, k = 1, 2, . . . , N .

(1.15)

(ii) The energy functional E defined in (1.3), when expressed in the coordinate func-
tions, is given by

E(u) = − 1

2π

N
∑

j=1
I j (u)

2, ∀u ∈ UN .

The coordinates {I j }1≤ j≤N are referred to as actions and {γ j }1≤ j≤N as (generalized)
angles.
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Corollary 1.6. When expressed in the generalized action–angle coordinates I j , γ j , 1 ≤
j ≤ N, the restriction of the BO equation (1.1) to UN reads as

∂t
(

I j ◦ u
)

(t) = {E, I j }(u(t)) = 0, ∂t
(

γ j ◦ u
)

(t) = {E, γ j }(u(t)) = k j (u(t)), ∀t ∈ R, (1.16)

where k j := − I j
π
is referred to as the j th frequency and u : t ∈ R �→ u(t) ∈ UN solves

equation (1.1). As a consequence, I j ◦u(t) = I j ◦u(0) and γ j ◦u(t) = γ j ◦u(0)+ (k j ◦
u(0))t . For any r ∈ �N , �

−1
N ({r} ×R

N ) is a Lagrangian submanifold that is invariant
under the flow of (1.1).

Remark 1.7. For any j = 1, 2, . . . , N , the frequency k j : UN → (0,+∞) is a linear
function of the action I j . Hence the motions of the angles are completely decoupled.

Remark 1.8. The image of actions �N is a noncompact convex polytope. As a conse-
quence, the manifold UN can be interpreted as the universal covering of the manifold of
N -gap potentials UT

N for the Benjamin–Ono equation on the torus T := R/2πZ, which
is introduced in theorem 7.1 of Gérard–Kappeler [8],

UT

N := {v = 2Reh ∈ L2(T,R) : h(y) = −eiy Q′(eiy)
Q(eiy)

, Q ∈ C
+
N [X ]}, (1.17)

whereC
+
N [X ] consists of all polynomialsQ ∈ C[X ] of degree N with leading coefficient

1, whose roots are contained in the annulus A := {z ∈ C : |z| > 1}. Since the
fundamental group ofUT

N is (Z,+), the manifoldUT

N is mapped real bi-analytically onto
UN/Z. We refer to remark 1.13 to see the comparison between the main theorem 1 and
theorem 7.1 of [8].

A precise description of�N is given in Definition 5.1 and Theorem 5.2. In order to estab-
lish the link between the action–angle coordinates and the translation–scaling parameters
of an N -soliton, we introduce the inverse spectral matrix associated to �N , denoted by
M : u ∈ UN �→ (Mkj (u))1≤k, j≤N ∈ C

N×N , where

Mj j (u) := γ j (u) + π i
I j (u)

, ∀1 ≤ j ≤ N ; Mkj (u) := 2π i
Ik (u)−I j (u)

√

Ik (u)
I j (u)

,

∀1 ≤ j �= k ≤ N . (1.18)

Proposition 1.9. Given u ∈ UN , the polynomial Qu in (1.9) is the characteristic poly-
nomial of the inverse spectral matrix M(u) ∈ C

N×N defined by (1.18). As a conse-
quence, an N-soliton is expressed by u(x) = ∑N

j=1 c jR(c j (x − x j )) if and only if its

translation–scaling parameters {x j − c−1j i}1≤ j≤N ⊂ C− are eigenvalues with corre-
sponding multiplicities of the matrix M(u), whose coefficients are expressed in terms of
the action–angle coordinates (I j (u), γ j (u))1≤ j≤N ∈ �N × R

N .

Proposition 1.9 is restated with more details in Theorem 4.8, Proposition 5.4 and Corol-
lary 5.5, which both give a spectral characterization of the N -soliton manifold UN and
establish a spectral connection between the inverse spectral matrix M(u) ∈ C

N×N and
the Lax operator Lu , which is given in Definition 2.2, of the BO equation (1.1), for any
u ∈ UN . Then an explicit expression of solutions of equation (1.1) on the multi-soliton
manifolds can be deduced by using Corollary 1.6 and Proposition 1.9.
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Corollary 1.10. If u : t ∈ R �→ u(t) ∈ UN solves equation (1.1) such that u(0) = u0,
then for any (t, x) ∈ R× R, we have

u(t, x) = u(t, x; u0) = 2Im〈(M(u0)− (x + t
π
V(u0))

)−1
X (u0),Y (u0)〉CN , (1.19)

where the inner product of C
N is 〈X,Y 〉CN = XT Y ; and ∀u ∈ UN , the matrix M(u) is

given by (1.18), the matrixV(u) ∈ C
N×N and the vectors X (u),Y (u) ∈ C

N are defined
by

√
2πX (u)T = (

√|I1(u)|,
√|I2(u)|, . . . ,

√|IN (u)|),
√
2π

−1
Y (u)T = (

√

|I1(u)|−1,
√

|I2(u)|−1, . . . ,
√

|IN (u)|−1),
V(u) =

⎛

⎜

⎜

⎝

I1(u)
I2(u)

. . .
IN (u)

⎞

⎟

⎟

⎠

.

One application of the explicit formula (1.19) is to describe the asymptotic behavior of
the multi-soliton solutions of the BO equation (1.1).

Corollary 1.11. Given u0 ∈ UN , we set u∞(t, x) = u∞(t, x; u0) :=∑N
j=1Rk j (u0)(x−

γ j (u0) − k j (u0)t), where Rc(x) = 2c
1+c2x2

and k j = − I j
π
. If u : t ∈ R �→ u(t) ∈ UN

solves (1.1) with u(0) = u0, then
(i) for any R > 0, we have limt→±∞ ‖u(t)− u∞(t)‖L2(−R,R) = 0;

(ii) for any x ∈ R, we have limt→±∞ u(t,x)
u∞(t,x) = 1.

When t →±∞, the N -soliton solutions of equation (1.1) can be approximated asymp-
totically by the superposition of N solitons such that the j th soliton which starts from
the point γ j (u0), moves with constant velocity k j (u0) and constant scaling parameter
k j (u0). We refer to Matsuno [14] and the references therein to see another expression
of multi-soliton solutions, the soliton interactions, the non linear superposition principle
and other asymptotic behaviors of solutions of equation (1.1), which are studied by using
Hirota’s bilinear transformation, the pole expansion and the Bäcklund transformation.
However, it still remains to solve an algebraic equation (see for instance Proposition 1.9
or formula (3.266) in section 3.3 of Matsuno [14]) by radicals in order to express the
velocity & scaling parameter k j (u0) and the starting point γ j (u0) of the asymptotic
approximation u∞(u0) in terms of the translation–scaling parameters with correspond-
ing multiplicities of the initial datum u0 ∈ UN . Compared with Matsuno [14], we give

a precise and explicit expression of the velocity & scaling parameter k j (u0) = − I j (u0)
π

of u∞(u0), thanks to the min-max formula (4.8) and definition 5.1.

Remark 1.12. When N = 1, formula (1.19) has been established in Benjamin [3], Ono
[17] andAmick–Toland [2].Moreover, let u : t ∈ R �→ u(t) ∈ U1 solve the BO equation
(1.1), if u(0, x) = 2c1

c21(x−x1)2+1
for some x1 ∈ R and c1 > 0, then u∞(t, x) = u(t, x) =

2c1
c21(x−(x1+c1t))2+1

, ∀(t, x) ∈ R
2.

1.1. Notation. Before outlining the construction of action–angle coordinates, we intro-
duce some notations used in this paper. The indicator function of a subset A ⊂ X is
denoted by 1A, i.e. 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x ∈ X\A. Recall that
H : L2(R) → L2(R) denotes the Hilbert transform given by (1.2). Set IdL2(R)( f ) = f ,
for every f ∈ L2(R). Let 
 : L2(R) → L2(R) denote the Szegő projector, defined by


 := IdL2(R)
+iH

2 ⇔̂
 f (ξ) = 1[0,+∞)(ξ) f̂ (ξ), ∀ξ ∈ R, ∀ f ∈ L2(R). (1.20)
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IfO is an open subset of C, we denote by Hol(O) all holomorphic functions onO. Let
the upper half-plane and the lower half-plane be denoted by C+ = {z ∈ C : Imz > 0}
and C− = {z ∈ C : Imz < 0} respectively. For every p ∈ (0,+∞], we denote by L p

+
to be the Hardy space on C+, which is defined by L p

+ = L p
+ (R) := {g ∈ Hol(C+) :

‖g‖L p
+
< +∞}, where

‖g‖L p
+
= sup

y>0

(∫

R

|g(x + iy)|pdx
) 1

p

, if p ∈ (0,+∞), (1.21)

and ‖g‖L∞+ = supz∈C+
|g(z)|. A function g ∈ L∞+ is called an inner function if |g| = 1

on R. When p = 2, the Paley–Wiener theorem yields the identification between L2
+ and


[L2(R)]:
L2
+ = F−1[L2(0,+∞)] = { f ∈ L2(R) : supp f̂ ⊂ [0,+∞)} = 
(L2(R)),

where F : f ∈ L2(R) �→ f̂ ∈ L2(R) denotes the Fourier–Plancherel transform.
Similarly, we set L2− = (IdL2(R) − 
)(L2(R)). Let the filtered Sobolev spaces be
denoted as Hs

+ := L2
+
⋂

Hs(R) and Hs− := L2−
⋂

Hs(R), for every s ≥ 0. We set
H∞(R,R) :=⋂s≥0 Hs(R,R).

The domain of definition of an unbounded operator A on some Hilbert space E is
denoted by D(A) ⊂ E . Given another operator B on D(B) ⊂ E such that A(D(A)) ⊂
D(B) andB(D(B)) ⊂ D(A), their Lie bracket is an operator defined onD(A)

⋂

D(B) ⊂
E , which is given by [A,B] := AB − BA. If the operator A is self-adjoint, let σ(A)

denote its spectrum, σpp(A) denotes the set of its eigenvalues and σcont(A) denotes
its continuous spectrum. Then σcont(A)

⋃

σpp(A) = σ(A) ⊂ R. Given two C-Hilbert
spaces E1 and E2, letB(E1, E2) denote the C-Banach space that consists of all bounded
C-linear transformations E1 → E2, equipped with the uniform norm. We set B(E1) :=
B(E1, E1).

All manifolds introduced in this paper are smoothmanifoldswithout boundary. Given
a smooth manifold M of real dimension N , let C∞(M) denote all smooth functions
f : M → R and the set of all smooth vector fields is denoted by X(M). The tangent
(resp. cotangent) space to M at p ∈ M is denoted by Tp(M) (resp. T ∗

p (M)). Given

k ∈ N+, the R-vector space of smooth k-forms on M is denoted by �k(M). Given a
R-vector space V, we denote by �k(V∗) the vector space of all k-covectors on V. Given
a smooth covariant tensor field A on M and X ∈ X(M), the Lie derivative of A with
respect to X is denoted by LX (A), which is also a smooth tensor field on M. If N is
another smooth manifold, F : N → M is a smooth map and A is a smooth covariant
k-tensor field on M, the pullback of A by F, denoted by F∗A, is a smooth k-tensor field
on N that is defined by ∀p ∈ N, ∀ j = 1, 2, . . . , k,

(F∗A)p(v1, v2, . . . , vk) = AF(p) (dF(p)(v1), dF(p)(v2), . . . , dF(p)(vk)) ,
∀v j ∈ Tp(N). (1.22)

Given a positive integer N , let C≤N−1[X ] denote the C-vector space of all poly-
nomials with complex coefficients whose degree is no greater than N − 1 and
CN [X ] = C≤N [X ]\C≤N−1[X ] consists of all polynomials of degree exactly N .
Given Q ∈ CN [X ], we set Q(X) := ∑N

j=0 a j X j , if Q(X) = ∑N
j=0 a j X j . We

set R+ = [0,+∞), R
∗
+ = (0,+∞) and C

∗ = C\{0}. Let D(z, r) ⊂ C denote the
open disc of radius r > 0, whose center is z ∈ C and its boundary is denoted by
C (z, r) = ∂D(z, r) = {η ∈ C : |η − z| = r}.
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1.2. Organization of the paper. The construction of action–angle coordinates for the
BO equation (1.3) on UN mainly relies on the Lax pair formulation ∂t Lu = [Bu, Lu],
discoveredbyNakamura [15] andBock–Kruskal [4]. Section2 is dedicated to the spectral
analysis of the Lax operator Lu : h ∈ H1

+ �→ −i∂xh −
(uh) ∈ L2
+ given by definition

2.2 for general symbol u ∈ L2(R,R), where 
 denotes the Szegő projector given in
(1.20) and the Hardy space L2

+ is given in (1.21). Then Lu is an unbounded self-adjoint
operator on L2

+ that is bounded frombelow, it has essential spectrumσess(Lu) = [0,+∞).
In addition, if u ∈ L2(R, x2dx)

⋂

L2(R,R), every eigenvalue of Lu is negative and
simple, thanks to the following identity,

λ|ϕ̂(0)|2 = −2π‖ϕ‖2L2 , if λ ∈ R and ϕ ∈ Ker(λ− Lu), (1.23)

which is firstly found by Wu [24] in the case λ < 0. Then we introduce a generating
functional which encodes the entire BO hierarchy,

Hλ(u) = 〈(Lu + λ)−1
u,
u〉L2 , if λ ∈ C\σ(−Lu), (1.24)

in Definition 2.14. It provides a sequence of conservation laws controlling every Sobolev
norm.

In Sect. 3, we study the shift semigroup (S(η)∗)η≥0 acting on the Hardy space L2
+,

where S(η) f = eη f and eη(x) = eiηx . Then a weak version of the Lax Theorem 3.2,
which is stated as Lemma 3.3, can be obtained by solving a linear differential equation
with constant coefficients. Every N -dimensional subspace of L2

+ that is invariant under

the infinitesimal generator G = i d
dη

∣

∣

η=0+ S(η)
∗ is of the form C≤N−1[X ]

Q , for some monic
polynomial Q ∈ CN [X ] whose roots are contained in the lower half-plane C_.

In Sect. 4, the real analytic structure and symplectic structure of the N -soliton subset
UN are established at first. Then we continue the spectral analysis of Lu , ∀u ∈ UN . The
Lax operator Lu has N simple eigenvalues λu1 < λu2 < · · · < λuN < 0 and the Hardy
space L2

+ splits as

L2
+ =Hcont(Lu)

⊕

Hpp(Lu), Hcont(Lu) =Hac(Lu) = �u L
2
+,

Hpp(Lu) = C≤N−1[X ]
Qu

, (1.25)

where Qu denotes the characteristic polynomial of u given by (1.9) and �u = Qu
Qu

is
an inner function on the upper half-plane C+. Proposition 1.9 is proved by identifying
M(u) in (1.18) as the matrix of the restriction G|Hpp(Lu) associated to the spectral basis
{ϕu

1 , ϕ
u
2 , . . . , ϕ

u
N }, where ϕu

j ∈ Ker(λuj − Lu) such that ‖ϕu
j ‖L2 = 1 and

∫

R
uϕu

j > 0.
The generating function Hλ in (1.24) can be identified as the Borel–Cauchy transform
of the spectral measure of Lu associated to
u, which yields the invariance of UN under
the BO flow in H∞(R,R). Hence (1.3) is a globally well-posed Hamiltonian system on
UN .

Section 5 is dedicated to completing the proof of theorem 1. The generalized angle
variables are the real parts of the diagonal elements of the matrix M(u), i.e. γ j : u ∈
UN �→ Re〈Gϕu

j , ϕ
u
j 〉L2 ∈ R and the action variables are I j : u ∈ UN �→ 2πλuj ∈ R.

Thanks to the Lax pair formulation dL(u)(XHλ
(u)) = [Bλ

u , Lu], where L : u ∈ UN �→
Lu ∈ B(H1

+ , L
2
+) is R-affine and Bλ

u is some skew-adjoint operator on L2
+, we have

2π{λ j , γk} = δk j and {λ j , λk} = 0 on UN , 1 ≤ j, k ≤ N . Then�N : UN → �N ×R
N



Complete integrability of the Benjamin–Ono equation on the multi-soliton manifolds 1059

is a real analytic immersion. The diffeomorphismproperty of�N is given byHadamard’s
global inverse function theorem. Finally, we show that�N : (UN , ω) → (�N ×R

N , ν)

is a symplectomorphism by restricting ω − �∗
Nν to a special Lagrangian submanifold

�N :=⋂N
j=1 γ

−1
j (0) ⊂ UN . Corollary 1.11 is proved in Sect. 6.

Remark 1.13. (Comparison with Gérard–Kappeler [8]) The BO equation on T = R/

2πZ reads as

∂tv = HT∂2x v − ∂x (v
2), (t, x) ∈ R× T, (1.26)

where HT denotes the Hilbert transform on L2(T,C) that is defined by HT f (x) =
−i∑|n|≥1

|n|
n f̂ (n)einx , ∀ f =∑n∈Z

f̂ (n)einx ∈ L2(T,C). It can be written in Hamil-
tonian form on appropriate Sobolev spaces

∂tv = ∂x∇vE
T(v), ET(v) = 1

2π

∫ 2π

0

(

1

2
(|∂x | 12 v(x))2 − 1

3
v(x)3

)

dx, (1.27)

where XET(v) = ∂x∇vET(v) is the Hamiltonian vector field of ET with respect to the
symplectic form

ωT( f1, f2) =
∑

|n|≥1

i

2πn
f̂1(n) f̂2(n), f j =

∑

|n|≥1
f̂ j (n)e

inx ∈ L2
r,0(T) := {v ∈ L2(T,R) : v̂(0) = 0}.

(1.28)

The global Birkhoff coordinates for (1.26) on L2
r,0(T) described in theorem 1.1 of [8] is

denoted by

ζT : v ∈ L2
r,0(T) �→ (ζn(v))n≥1 ∈ h

1
2
+ , (1.29)

where h
1
2
+ := {(zn)n∈N+ ⊂ C : ‖(zn)n∈N+‖21

2
:=∑n≥1 |n||zn|2 < +∞} is a weighted �2-

sequence space. Thanks to theorem 7.1 of [8], the N -gap potential manifoldUT

N defined
by (1.17) is a connected, real analytic, symplectic submanifold of (L2

r,0(T), ωT) given

by (1.28) and UT

N is characterized by

UT

N = {v ∈ L2
r,0(T) : ζN (v) �= 0, ζ j (v) = 0, ∀ j > N }. (1.30)

So it is invariant under the flow of equation (1.26) and dimR UT

N = 2N. Let ν̃ :=
i
∑N

j=1 dz j ∧ dz j denote the canonical symplectic form on C
N−1×C

∗. The restriction
of complex Birkhoff coordinates ζT given by (1.29), to the manifold UT

N establishes a
real analytic diffeomorphism

ζT

N :=
(

ζT

)

∣

∣

UT

N
: v ∈ UT

N �→ (ζ1(v), ζ2(v), . . . , ζN (v)) ∈ C
N−1 × C

∗, (1.31)

such that ζT

N preserves the symplectic structure, i.e.
(

ζT

N

)∗
ν̃ = ωT, and the energy

functional ET in (1.27), when expressed in the coordinate functions, is given by

ET(v) =
N
∑

n=1
n2|ζn(v)|2 −

N
∑

n=1

(

N
∑

k=n
|ζk(v)|2

)2

, ∀v ∈ UT

N .
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The generating functional defined in (1.24) plays a key role in proving the local dif-
feomorphism property and the symplectomorphism property of action–angle/Birkhoff
map in both theorem 1 of this paper and theorem 7.1 of [8]. The real analytic structure
of UN (resp.UT

N ) is constructed by establishing a real analytic embedding from an open
subset of C

N to L2(R,R) (resp. L2(T,R)) with range given by UN (resp. UT

N ). A real
analytic covering map from the N -soliton manifold UN to the N -gap potential manifold
UT

N is established in remark 1.8. However, the construction of the action–angle map�N

in (1.14) is quite different from the construction of the Birkhoff map ζT in [8].

1. The symplectic form ωT given by (1.28) is well defined on L2
r,0(T), which is a

C-Hilbert space that contains every manifold UT

N . So UT

N is a symplectic submanifold
of (L2

r,0, ω
T). The BO equation on the torus (1.26), when restricted toUT

N , is interpreted

as an integrable subsystem of equation (1.26) on (L2
r,0, ω

T). On the other hand, in the
space non-periodic regime, we do not know whether there exists a large submanifold
of L2(R,R), denoted by L, such that L contains every multi-soliton manifold UN , L is
invariant under the flow of (1.1), and there exist action–angle coordinates for the BO
equation (1.1) on L, whose restriction to UN is�N given in (1.14). Evidently, L can not
be chosen as W = ∂x (H1(R,R)) given by (1.4), because UN

⋂

W = ∅. However, the
2-covector ω : (h1, h2) ∈ W2 �→ 〈h1, ∂−1x h2〉L2(R) is defined on W . The extension of
the symplectic form ω ∈ �2(UN ), which is defined by (1.11), to the manifold L would
be the major difficulty for constructing action–angle coordinates of the BO equation
(1.1) on L. Since UN

⋂

W = ∅, we have to use Cartan’s formula (4.2) in order to prove
the closedness of the 2-form ω : u ∈ UN �→ ωu = ω ∈ �2(W∗), which may not be
interpreted as a pullback of ω. Moreover, the simple connectedness of UN is established
by a special property of the Viète map (4.1).

2. In any case, the Lax operator for the BO equation is self-adjoint and bounded
from below. The spectrum of the Lax operator LT

v in the space-periodic regime consists
of a sequence of simple eigenvalues σ(LT

v ) = {λT

0 (v) < λT

1 (v) < · · · } ⊂ R and the
gap between each two of them is at least 1. Then the n th action variable is defined
by |ζn(v)|2 := λT

n (v) − λT

n−1(v) − 1 in [8], ∀n ≥ 1. However, in order to prove the
simplicity and negativeness of eigenvalues of the Lax operator Lu in Definition 2.2 for
the BO equation on the line (1.1), we have to introduce the auxiliary identity (1.23).
The action variables for equation (1.1) on UN are actually the eigenvalues of 2πLu ,
∀u ∈ UN .

3. The shift operator ST : f ∈ L2
+(T) �→ eix f (x) ∈ L2

+(T) and its adjoint
are bounded operators on the Hardy space L2

+(T) := 
T(L2(T,C)), where 
T :
∑

n∈Z
gneinx ∈ L2(T,C) �→∑

n≥0 gneinx ∈ L2(T,C) denotes the Szegő projector on
L2(T,C). So both the inverse formula for v ∈ L2(T,R), which is denoted by formula
(4.5) in [8], and the spectral characterization ofUT

N , which is given by formula (1.30) of
this paper and (7.2) in [8], can be directly obtained by computing the 0 th Fourier mode
of each eigenfunction of the space-periodic Lax operator LT

v without using Beurling’s
theorem that characterizes all the shift-invariant subspaces of L2

+(T) = Hpp(LT
v ). On

the other hand, in the case of the BO equation on the line (1.1), the Lax operator Lu in
definition 2.2 has not only eigenvalues but also continuous spectrum. In order to deter-
mine the characteristic polynomial Qu in (1.9) and prove the spectral characterization
Theorem 4.8 for UN , we have to do the spectral decomposition (1.25) and identify each
spectral subspace as the corresponding closed shift-invariant (also called translation-
invariant) subspace by both introducing the two shift semigroups (S(η))η≥0, (S(η)∗)η≥0,
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and using Lax’s scalar representation Theorem 3.2 or its special case stated as Lemma
3.3. In fact, ∀u ∈ UN , the spectral subspace Hac(Lu) is invariant under (S(η))η≥0;
the spectral subspaceHpp(Lu) is invariant under (S(η)∗)η≥0 and dimC Hpp(Lu) = N .
Since the infinitesimal generator G = i d

dη

∣

∣

η=0+ S(η)
∗ is an unbounded, densely defined

operator on L2
+(R), given by (3.2), we study its restriction to the N -dimensional spectral

subspace Hpp(Lu). Then Lemma 3.3 yields that Qu(X) = det(X − G|Hpp(Lu)).

1.3. Related work. Besides the global well-posedness problem of the BO equation (1.1),
various properties of its multi-soliton solutions have been investigated in detail. Both
the solitary waves for (1.1) and the internal periodic waves for (1.26) are completely
classified in Amick–Toland [2]. The H1-orbital stability of double solitons of (1.1) is
obtained in Neves–Lopes [16]. In Dobrokhotov–Krichever [6], themulti-phase solutions
(periodic multi-solitons) for (1.26) are constructed by finite zone integration and they
have also established an inversion formula for multi-phase solutions. Compared with
their work, we give a geometric description of the inverse spectral transform by proving
the real bi-analyticity and the symplectomorphism property of the action–angle map

�N given by (1.14). Furthermore, the inverse spectral formula u = −2Im Q′
u

Qu
with

Qu(x) = det(x −G|Hpp(Lu)) = det(x −M(u)) provides a spectral connection between
the Lax operator Lu and the operator G|Hpp(Lu), ∀u ∈ UN .

Concerning the investigation of the integrability of the BO equations (1.1) and (1.26),
besides the discovery of their Lax pair structures, we mention the pioneering work of
Ablowitz–Fokas [1], Coifman–Wickerhauser [5], Kaup–Matsuno [12] and Wu [24,25]
about the direct and inverse scattering transform of (1.1). Equations (1.1) and (1.26)
both admit an infinite hierarchy of conservation laws that control every Hs-norm of the
solutions, see [1] and [5] for the case 2s ∈ N, see Talbut [22] for the case − 1

2 < s < 0
and for conservation laws controlling Besov norms, etc. In the space-periodic regime,
Gérard andKappeler have shown in [8] that (1.26) admits global Birkhoff coordinates on
L2
r,0(T), see also remark 1.13 for the comparison between [8] and theorem1 of this paper.

We point out that both Korteweg–de Vries (KdV) equation on T (see Kappeler–Pöschel
[11]) and the cubic defocusingSchrödinger (dNLS) equation onT (seeGrébert–Kappeler
[9]) admit global Birkhoff coordinates. The theory of finite-dimensional Hamiltonian
system is transferred to BO, KdV and dNLS equations on T through the submanifolds
of finite-gap potentials, which are introduced in order to solve the periodic KdV initial
problem. Moreover, the cubic Szegő equations both on T (see Gérard–Grellier [7]) and
on R (see Pocovnicu [18]) admit global (generalized) action–angle coordinates on all
finite-rank generic rational function manifolds, denoted respectively by M(N )Tgen and

M(N )Rgen. A real analytic covering map can be established fromM(N )Rgen toM(N )Tgen.
Moreover, the cubic Szegő equations both on T and on R have inverse spectral formulas
which permit the Szegő flows to be expressed explicitly in terms of time-variables and
initial data without using action–angle coordinates. The shift semigroup (S(η)∗)η≥0 and
its infinitesimal generator G are also used in [18].

Remark 1.14. The BO equation (1.1) can be interpreted as a Schrödinger-type equation,
which is filtered by the Szegő projector 
 : L2(R) → L2

+. If u : t ∈ R �→ u(t) ∈
H2(R,R) solves (1.1) and w : t ∈ R �→ w(t) := 
(u(t)) ∈ H2

+ , then equation (1.1)
reads as an NLS–Szegő equation

i∂tw − ∂2xw + i∂x (w
2 + 2
(|w|2)) = 0, (t, x) ∈ R× R. (1.32)
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We refer to Sun [20,21] to see the long time and asymptotic behavior of otherNLS–Szegő
equations.

2. The Lax Operator

This section is dedicated to studying the Lax operator Lu in the Lax pair formulation
of the BO equation (1.1). Then we describe the location of its spectrum and revisit the
simplicity of its eigenvalues. At last, we introduce a generating functional Hλ which
encodes the entire BO hierarchy. The equation ∂t u = ∂x∇uHλ(u) also enjoys a Lax
pair structure. Now, we recall a basic fact concerning unitarily equivalent self-adjoint
operators.

Proposition 2.1. If E1 and E2 are two Hilbert spaces, let A be a self-adjoint operator
defined on D(A) ⊂ E1 and B be a self-adjoint operator defined on D(B) ⊂ E2. Both A
and B have spectral decompositions

E1 =Hac(A)
⊕

Hsc(A)
⊕

Hpp(A), E2 =Hac(B)
⊕

Hsc(B)
⊕

Hpp(B).

(2.1)

IfA and B are unitarily equivalent i.e. there exists a unitary operator U : E1 → E2 such
that

BU = UA, D(B) = UD(A), (2.2)

then σxx(A) = σxx(B) and UHxx(A) =Hxx(B), for every xx ∈ {ac, sc, pp}. Moreover,
for every bounded borel function f : R → C, f (A) is a bounded operator on E1, f (B)

is a bounded operator on E2, we have f (B) = U f (A)U∗.

2.1. Spectral analysis I. In this subsection, we study the essential spectrum and discrete
spectrumof the Lax operator Lu . The spectral analysis of Lu such that u is amulti-soliton
in definition 1.1, will be continued in Sect. 4.2.

Definition 2.2. Given u ∈ L2(R,R), its associated Lax operator Lu is an unbounded
operator on L2

+, given by Lu := D − Tu , where D : h ∈ H1
+ �→ −i∂xh ∈ L2

+ and Tu
denotes the Toeplitz operator of symbol u, defined by Tu : h ∈ H1

+ �→ 
(uh) ∈ L2
+,

where the Szegő projector 
 : L2(R) → L2
+ is given by (1.20). If u ∈ H1(R,R) in

addition, we define Bu := i(T|D|u − T 2
u ) ∈ B(H1

+ , L
2
+).

Both D and Tu are densely defined symmetric operators on L2
+ and ‖Tu(h)‖L2 ≤

‖u‖L2‖h‖L∞ , for every h ∈ H1
+ and u ∈ L2(R,R). Moreover, the Fourier–Plancherel

transform implies that D is a self-adjoint operator on L2
+, whose domain of definition is

H1
+ .

Proposition 2.3. If u ∈ L2(R,R), then Lu is an unbounded self-adjoint operator on
L2
+, whose domain of definition is D(Lu) = H1

+ . Moreover, Lu is bounded from below.
The essential spectrum of Lu is σess(Lu) = σess(D) = [0,+∞) and its pure point

spectrum satisfies σpp(Lu) ⊂ [−‖u‖2
L2

4C4 ,+∞), where C = inf f ∈H1
+\{0}

‖|D| 14 f ‖L2‖ f ‖L4 denotes

the Sobolev constant.
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Proof. For every h ∈ L2
+, let μ

D
h denote the spectral measure of D associated to h,

then we have 〈 f (D)h, h〉L2 = ∫ +∞
0 f (ξ) |ĥ(ξ)|

2

2π dξ , so dμD
h (ξ) = 1[0,+∞)(ξ)|ĥ(ξ)|2

2π dξ .
Thus σ(D) = σess(D) = σac(D) = [0,+∞). If u ∈ L2(R,R), we claim that Pu :=
Tu ◦ (D + i)−1 is a Hilbert–Schmidt operator on L2

+.

In fact, let F : h ∈ L2
+ �→ ĥ√

2π
∈ L2(R∗

+) denotes the renormalized Fourier–

Plancherel transform, then Au := F ◦ Pu ◦F−1 is an operator on L2(R∗
+). Then we

have Aug(ξ) =
∫ +∞
0 Ku(ξ, η)g(η)dη, where Ku(ξ, η) := û(ξ−η)

2π(η+i) , ∀ξ, η ∈ R
∗
+. So

‖Au‖HS(L2(R∗
+))

≤ ‖K‖L2(R∗
+×R

∗
+)
≤ ‖u‖L2

2 . Since Pu is unitarily equivalent to Au , we

have ‖Pu‖2HS(L2
+)
=∑λ∈σ(Pu)

λ2 =∑λ∈σ(Au)
λ2 = ‖Au‖2HS(L2(R∗

+))
≤ ‖u‖2

L2

4 .

Then the symmetric operator Tu is relatively compact with respect to D and
Weyl’s essential spectrum theorem (Theorem XIII.14 of Reed–Simon [19]) yields that
σess(Lu) = σess(D) and Lu is self-adjoint with D(Lu) = D(D) = H1

+ . Moreover,

|〈Tu f, f 〉L2 | = | ∫
R
u| f |2| ≤ ‖u‖L2‖ f ‖2L4 ≤ C−2‖u‖L2‖ f ‖L2‖|D| 12 f ‖L2 holds by

Sobolev embedding ‖ f ‖L4 ≤ C−1‖|D| 14 f ‖L2 , for every f ∈ H1
+ . Then Lu is bounded

from below, precisely 〈Lu f, f 〉L2 = ‖|D| 12 f ‖2
L2 − 〈Tu f, f 〉L2 ≥ −‖u‖2

L2
‖ f ‖2

L2

4C4 . When

λ < −‖u‖2
L2

4C4 , the map Lu−λ : H1
+ → L2

+ is injective. Hence σpp(Lu) ⊂ [−‖u‖2
L2

4C4 ,+∞).
��

Proposition 2.4. Assume that u ∈ L2(R, (1 + x2)dx) and u is real-valued. For every
λ ∈ R and ϕ ∈ Ker(λ− Lu), we have ûϕ ∈ C1(R)

⋂

H1(R) and the following identity
holds,

|〈u, ϕ〉L2 |2 = −2πλ‖ϕ‖2L2 . (2.3)

Thus σpp(Lu) ⊂ (−∞, 0) and for every λ ∈ σpp(Lu), we have

Ker(λ− Lu) ⊂ {ϕ ∈ H1
+ : ϕ̂|R+ ∈ C1(R+)

⋂

H1(R+) and

ξ �→ ξ [ϕ̂(ξ) + ∂ξ ϕ̂(ξ)] ∈ L2(R+)}. (2.4)

Before the proof of proposition 2.4, we recall a lemma concerning the regularity of
convolutions.

Lemma 2.5. For any p ∈ (1,+∞), we have Wm,p(R) ∗ Wn, p
p−1 (R) ⊂ Cm+n(R)

⋂

Wm+n,+∞(R), ∀m, n ∈ N. For every f ∈ Wm,p(R) ∗ Wn, p
p−1 (R), we have

lim|x |→+∞ ∂α
x f (x) = 0, ∀α = 0, 1, . . . ,m + n.

Remark 2.6. Identity (2.3) was firstly found byWu [24] in the case λ < 0. We show that
(2.3) still holds in the case λ ≥ 0. Hence the operator Lu has no eigenvalues in [0,+∞).

Proof of proposition 2.4. We choose u ∈ L2(R, (1+ x2)dx) such that u(R) ⊂ R, λ ∈ R

and ϕ ∈ L2
+ such that Lu(ϕ) = λϕ. Applying the Fourier–Plancherel transform, we

obtain

ûϕ(ξ)1[0,+∞)(ξ) = (ξ − λ)ϕ̂(ξ) =: gλ(ξ). (2.5)
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Since û ∈ H1(R) and ϕ̂ ∈ L2(R), their convolution ûϕ = 1
2π û ∗ ϕ̂ ∈ C1(R)

⋂

C0(R),
where C0(R) denotes the uniform closure of Cc(R) with respect to the L∞(R)-
norm, by Lemma 2.5. We claim that if λ < 0, then ϕ̂ ∈ C1(R+); if λ ≥ 0, then
ϕ̂ ∈ C(R+)

⋂

C1(R+\{λ}).
In fact, if λ ≥ 0, we have gλ(λ) = 0. Otherwise, λ would be a singular point of ϕ̂

that prevents ϕ̂ from being a L2 function on R+, because ξ → 1
ξ−λ

/∈ L2(R+). By using

the fact g ∈ C1(R+) (g is right differentiable at ξ = 0 and the derivative g′ is right
continuous at ξ = 0), we have

ϕ̂(ξ) = gλ(ξ)− gλ(λ)

ξ − λ
→
{

g′λ(λ), if λ > 0;
g′λ(0+), if λ = 0;

when ξ → λ. So ϕ̂ ∈ C(R+) and limξ→+∞ ϕ̂(ξ) = 0. Then we derive (2.5) with respect
to ξ to get

− i x̂u ∗ ϕ̂(ξ) = g′λ(ξ) = (ûϕ)′(ξ) = ϕ̂(ξ) + (ξ − λ)(ϕ̂)′(ξ), ∀ξ ∈ [0,+∞)\{λ}.
(2.6)

Thus we have

d
dξ [(ξ − λ)|ϕ̂(ξ)|2] = |ϕ̂(ξ)|2 + 2Re[((ξ − λ)(ϕ̂)′(ξ))ϕ̂(ξ)]

= 2Re[(ûϕ)′(ξ)ϕ̂(ξ)] − |ϕ̂(ξ)|2. (2.7)

• When λ < 0, it suffices to use the Plancherel formula
∫ +∞
0 (ûϕ)′(ξ)ϕ̂(ξ)dξ =

−2π i ∫
R
xu(x)|ϕ(x)|2dx and to integrate equation (2.7) on [0,+∞). Since (ξ −

λ)|ϕ̂(ξ)|2 = ûϕ(ξ)ϕ̂(ξ) → 0, as ξ → +∞, we have λ|ϕ̂(0)|2 = ∫ +∞
0

d
dξ [(ξ −

λ)|ϕ̂(ξ)|2]dξ = 4π Im
∫

R
xu(x)|ϕ(x)|2dx − ∫ +∞0 |ϕ̂(ξ)|2dξ = −2π‖ϕ‖2

L2(R)
.

• When λ > 0, there may be some problem of derivability of ϕ̂ at ξ = λ. We replace
the integral

∫ +∞
0 by two integrals

∫ λ−ε

0 and
∫ +∞
λ+ε , for some ε ∈ (0, λ). We set I(ε) :=

λ|ϕ̂(0)|2 − ε|ϕ̂(λ − ε)|2 − ε|ϕ̂(λ + ε)|2, then I(ε) = 2Re
(

∫ +∞
0 (ûϕ)′(ξ)ϕ̂(ξ)dξ−

∫ λ+ε
λ−ε

(ûϕ)′(ξ)ϕ̂(ξ)dξ
)

− ∫ +∞0 |ϕ̂(ξ)|2dξ +
∫ λ+ε
λ−ε

|ϕ̂(ξ)|2dξ . Thanks to the continuity of

ϕ̂ on R+, we have λ|ϕ̂(0)|2 = limε→0+ I(ε) = −2π‖ϕ‖2
L2(R)

.
•When λ = 0, we use the same idea and integrate (2.7) over interval [ε,+∞), for some
ε > 0. Then J (ε) := −ε|ϕ̂(ε)|2 = 2Re

∫ +∞
ε

(ûϕ)′(ξ)ϕ̂(ξ)dξ − ∫ +∞
ε

|ϕ̂(ξ)|2dξ → 0,
as ε → 0.
So we always have−2π‖ϕ‖2

L2(R)
= λ|ϕ̂(0)|2, if ϕ ∈ Ker(λ−Lu). As a consequence Lu

has only negative eigenvalues, if the real-valued function u ∈ L2(R, (1+x2)dx). Finally
we use ûϕ(0) = −λϕ̂(0) to get identity (2.3). If λ ∈ σpp(Lu) and ϕ ∈ Ker(λ− Lu)\{0},
we want to prove that

ξ �→ (1 + |ξ |)∂ξ ϕ̂(ξ) ∈ L2(0,+∞). (2.8)

In fact, since ϕ ∈ H1
+ ↪→ L∞(R) and u ∈ L2(R, (1 + x2)dx), we have ûϕ = û∗ϕ̂

2π ∈
H1(R). Formula (2.5) yields that ξ �→ (|λ| + ξ)ϕ̂(ξ) ∈ L2(R) and we have ϕ̂ ∈ L1(R).
The hypothesis u ∈ L2(R, x2dx) implies that the convolution term x̂u ∗ ϕ̂ ∈ L2(R).
Since λ < 0, we obtain (2.8) by using formula (2.6). ��
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Corollary 2.7. Assume that u ∈ L2(R, (1 + x2)dx) and u is real-valued. Then every
eigenvalue of Lu is simple. If u ∈ L∞(R) in addition, then σpp(Lu) is a finite subset of

[−‖u‖2
L2

4C4 , 0).

Proof. Fix λ ∈ σpp(Lu) and set Vλ = Ker(λ − Lu), then dimC(Vλ) ≥ 1. We define
a linear form A : Vλ → C such that A(ϕ) := ∫

R
uϕ. Then identity (2.3) yields that

Ker(A) = {0}. Thus we have Vλ
∼= Vλ/Ker(A) ∼= Im(A) ↪→ C. So dimC(Vλ) = 1.

When u ∈ L∞(R) in addition, the finiteness of σpp(Lu)
⋂

(−∞, 0) is given by Theorem
1.2 of Wu [24]. ��

2.2. Lax pair formulation. We recall some known results of global well-posedness of
the BO equation on the line.

Proposition 2.8 (Tao [23], Ionescu–Kenig [10], etc.). Given s ≥ 0, the Fréchet space
C(R, Hs(R)) is endowed with the topology of uniform convergence on every com-
pact subset of R. There exists a unique continuous mapping u0 ∈ Hs(R) �→ u ∈
C(R, Hs(R)) such that u solves the BO equation (1.1) with initial datum u(0) = u0.

Proposition 2.9 (Ablowitz–Fokas [1], Coifman–Wickerhauser [5], etc.). For every
n ∈ N := Z

⋂[0,+∞), if u0 ∈ H
n
2 (R,R), let u : t ∈ R �→ u(t) ∈ H

n
2 (R,R)

solves equation (1.1) with initial datum u(0) = u0, then we have C(‖u0‖H n
2
) :=

supt∈R ‖u(t)‖H n
2
< +∞.

When u ∈ H2(R,R), the Toeplitz operators T|D|u and Tu are bounded both on L2
+ and

on H1
+ . So Bu is a bounded skew-adjoint operator both on L2

+ and on H1
+ .

Proposition 2.10. Let u : t ∈ R �→ u(t) ∈ H2(R,R) denote the unique solution of
equation (1.1), then

∂t Lu(t) = [Bu(t), Lu(t)] ∈ B(H1
+ , L

2
+), ∀t ∈ R. (2.9)

The proof of proposition 2.10 can be found in Gérard–Kappeler [8], Wu [24] etc. In
order to make this paper self contained, we recall it here.

Proof. Since d
dt (L ◦ u)(t) = −T∂t u(t) = −TH∂2x u(t)−∂x(u(t)2), it suffices to prove

[Bu, Lu] + TH∂2x u−∂x(u2) = 0 for every u ∈ H2(R,R). In fact, we have û(−ξ) = û(ξ),

u = 
u + 
u and |D|u = D
u − D
u. Since both Tu and Bu are bounded both
L2
+ → L2

+ and H1
+ → H1

+ , we have

[Bu, Lu] f =−
( f ∂x |D|u) + i
[u
( f |D|u)− |D|u
(u f )] +
[∂xu
(u f ) + u
( f ∂xu)]
= −
( fH∂2x u) + I1 + I2 ∈ L2

+,
(2.10)

for every f ∈ H1
+ , where the terms I1 and I2 are given by

I1 := i
[u
( f |D|u)− |D|u
(u f )]
= 
[ f
u∂x
u + f
u∂x
u] −
u
( f ∂x
u)−
( f
u)∂x
u +
[
( f
u)∂x
u −
u
( f ∂x
u)],

I2 := 
[∂x u
(u f ) + u
( f ∂x u)] = 
( f
u)∂x
u +
u
( f ∂x
u) +
(
u
( f ∂x
u))

+ 2 f
u∂x
u +
[ f
u∂x
u + f
u∂x
u +
( f
u)∂x
u].
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Since ∂x
u ∈ L2−, we have 
[
( f
u)∂x
u] = 
[ f
u∂x
u]. Thus,

I1 + I2 = 2 f
u∂x
u + 2
[ f
u∂x
u + f
u∂x
u +
( f
u)∂x
u] = 
[ f ∂x (u2)] ∈ H1
+ .

(2.11)

Formulas (2.10) and (2.11) yield that [Bu, Lu] f = 
[ f (∂x (u2)−H∂2x u)]. Thus equation
(2.9) holds along the evolution of equation (1.1). ��
Remark 2.11. As indicated in Gérard–Kappeler [8], there are many choices of the oper-
ator Bu . We can replace Bu by any operator of the form Bu + Pu such that Pu is a
skew-adjoint operator commuting with Lu . For instance, we set Cu := Bu + i L2

u and we
obtain Cu = iD2 − 2iDTu + 2iTD
u . So (Lu,Cu) is also a Lax pair of the BO equation
(1.1). The advantage of the operator Bu = i(T|D|u − T 2

u ) is that Bu : L2
+ → L2

+ is
bounded if u is sufficiently regular. For instance, u ∈ H2(R,R).

Let U : t �→ U (t) ∈ B(L2
+) := B(L2

+, L
2
+) denote the unique solution of the following

equation

U ′(t) = Bu(t)U (t), U (0) = IdL2
+
, (2.12)

if u : t ∈ R �→ u(t) ∈ H2(R,R) denote the unique solution of equation (1.1). The sys-
tem (2.12) is globally well-posed inB(L2

+), thanks to Proposition 2.9 and the following
estimate

‖Bu(h)‖L2 � (‖u‖H2 + ‖u‖2H1)‖h‖L2 , ∀h ∈ L2
+, ∀u ∈ H2(R,R).

Since B∗u = −Bu , the operator U (t) is unitary for every t ∈ R. Thus, the Lax pair
formulation (2.9) of the BO equation (1.1) is equivalent to Lu(t) = U (t)Lu(0)U (t)∗ ∈
B(H1

+ , L
2
+). On the one hand, the spectrum of Lu is invariant under the BO flow. On

the other hand, there exists a sequence of conservation laws controlling every Sobolev
norms H

n
2 (R), n ≥ 0. Furthermore, the Lax operator in the Lax pair formulation is

not unique. If f ∈ L∞(R) and p is a polynomial with complex coefficients, then we
have f (Lu(t)) = U (t) f (Lu(0))U (t)∗ ∈ B(L2

+) and p(Lu(t)) = U (t)p(Lu(0))U (t)∗ ∈
B(HN

+ , L2
+), where N is the degree of the polynomial p.

Proposition 2.12. Given n ∈ N, let u : t ∈ R �→ u(t) ∈ H
n
2 (R,R) solve equation

(1.1), we set

En(u) := 〈Ln
u
u,
u〉

H− n
2 ,H

n
2
. (2.13)

Then En(u(t)) = En(u(0)), for every t ∈ R. In particular, E1 = E on H
1
2 (R,R), where

the energy functional E is given by (1.3).

In order to prove Proposition 2.12, we need the following result.

Proposition 2.13. If u : t ∈ R �→ u(t) ∈ H2(R,R) solve the BO equation (1.1), then
we have

∂t
u(t) = Bu(t)(
u(t)) + i L2
u(t)(
u(t)) ∈ L2

+. (2.14)
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Proof. For every u ∈ H2(R,R), Bu is a bounded operator on both L2
+ and H1

+ , 
u ∈
D(Lu) = H1

+ . We have û(−ξ) = û(ξ), u = 
u +
u and |D|u = D
u − D
u. Since
D
u ∈ L2−, we have
(
uD
u) = 
(uD
u). Thus the following two formulas hold,

Bu(
u) = i(T|D|u − T 2
u )(
u) = i(
u)(D
u)− i
(uD
u)− iT 2

u (
u)

= 
u∂x
u −
(u∂x
u)− iT 2
u (
u),

i L2
u(
u) = iD2
u − iTu(D
u)− iD ◦ Tu(
u) + iT 2

u (
u)

= −i∂2x
u − Tu(∂x
u)− ∂x [Tu(
u)] + iT 2
u (
u).

Then Bu(
u) + i L2
u(
u) = −i∂2x
u − 2
[
u∂x
u +
u∂x
u +
u∂x
u]. Finally

we replace u by u(t), where u : t ∈ R �→ u(t) ∈ H2(R,R) solves equation (1.1) to
obtain (2.14). ��
Proof of proposition 2.12. It suffices to prove it in the case u0 ∈ H∞(R,R). Then
we use the density argument and the continuity of the flow map u0 ∈ Hs(R) �→
u ∈ C([−T, T ]; Hs(R)) in proposition 2.8, where ∀T > 0, s ≥ 0. We choose u =
u(t) ∈ H∞(R,R) = ⋂

s≥0 Hs(R,R), so Ln
u
u, ∂t
u and ∂t (Ln

u)
u = [Bu, Ln
u]
u

are in H∞(R,C). Thus ∂t En(u) = 2Re〈Ln
u
u, ∂t
u〉L2 + 〈∂t (Ln

u)
u,
u〉L2 . Since
Bu+i L2

u is skew-adjoint, we have 2Re〈Ln
u
u, ∂t
u〉L2 = 〈[Ln

u, Bu+i L2
u]
u,
u〉L2 =

〈[Ln
u, Bu]
u,
u〉L2 by (2.14). Since (Ln

u, Bu) is also a Lax pair of (1.1), we have
∂t En(u) = 〈([Ln

u, Bu] + ∂t (Ln
u))
u,
u〉L2 = 0. In the case n = 1, we assume that

u ∈ H1(R,R). Since u = 
u +
u, |D|u = D
u − D
u and
∫

R
(
u)3 = 0, we have

〈|D|u, u〉L2 = 2〈D
u,
u〉L2 and
∫

R
u3 = 3

∫

R
(
u +
u)|
u|2 = 3

∫

R
u|
u|2. ��

2.3. The generating functional. We introduce a newconservation lawof theBOequation
(1.1) that encodes the entire BO hierarchy.

Definition 2.14. Given u ∈ L2(R,R), λ ∈ C\σ(−Lu), the generating functional of
equation (1.1) is defined byHλ(u) = 〈(Lu+λ)−1
u,
u〉L2 . The subsetX := {(λ, u) ∈
R× L2(R,R) : 4C4λ > ‖u‖2

L2} is open in R× L2(R,R), where the Sobolev constant

is given by C = inf f ∈H1
+\{0}

‖|D| 14 f ‖L2‖ f ‖L4 .

Since σ(Lu) ⊂ [−‖u‖2
L2

4C4 ,+∞), the map (λ, u) ∈ X �→ Hλ(u) = 〈(Lu +

λ)−1
u,
u〉L2 ∈ R is real analytic.

Proposition 2.15. Let u : t ∈ R �→ u(t) ∈ H∞(R,R) denote the solution of the BO
equation (1.1) and we choose λ ∈ C\σ(−Lu(0)), thenHλ(u(t)) = Hλ(u(0)), for every
t ∈ R.

Proof. Let u : t ∈ R �→ u(t) ∈ H∞(R,R) solve equation (1.1). Since σ(−Lu(t)) =
σ(−Lu(0)) by Proposition 2.1, the operator λ + Lu(t) ∈ B(H1

+ , L
2
+) is invertible and we

have

∂tHλ(u) = 2Re〈(Lu + λ)−1
u, ∂t
u〉L2 − 〈(Lu + λ)−1∂t Lu(Lu + λ)−1
u,
u〉L2 .

(2.15)
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Formula (2.14) yields that

2Re〈(Lu + λ)−1
u, ∂t
u〉L2

= 〈[(Lu + λ)−1, Bu + i L2
u]
u,
u〉L2 = 〈[(Lu + λ)−1, Bu]
u,
u〉L2 ,

〈[(Lu + λ)−1, Bu]
u,
u〉L2

= 〈(Lu + λ)−1[Bu, Lu + λ](Lu + λ)−1
u,
u〉L2 .

Then ∂t Lu = [Bu, Lu] yields that ∂t Hλ(u(t)) = 0. ��
Given (λ, u) ∈ X , there exists a neighbourhood of u in L2(R,R), denoted by Vu such
that the restrictionHλ : v ∈ Vu �→ Hλ(v) ∈ R can be expressed by power series. Then
the Fréchet derivative ofHλ at u is given by dHλ(u)(h) = 〈wλ,
h〉L2 + 〈wλ,
h〉L2 +
〈Thwλ,wλ〉L2 = 〈h, wλ + wλ + |wλ|2〉L2 , ∀h ∈ L2(R,R), where wλ ∈ H1

+ is defined
by wλ ≡ wλ(u) ≡ wλ(x, u) = [(Lu + λ)−1 ◦
]u(x), ∀x ∈ R. So

∇uHλ(u) = |wλ(u)|2 + wλ(u) + wλ(u). (2.16)

Given (λ, u0) ∈ X fixed, we consider the following equation

∂t u = ∂x∇uHλ(u) = ∂x

(

|wλ(u)|2 + wλ(u) + wλ(u)
)

, u(0) = u0. (2.17)

There exists anopen subsetVu0 of L
2(R,R) such thatv ∈ Vu0 �→ ∂x

(|wλ(v)|2 + wλ(v)+
wλ(v)) ∈ L2(R,R) is real analytic and u0 ∈ Vu0 . Hence equation (2.17) admits a unique
local L2(R,R)-solution by Cauchy–Lipschitz theorem.

Remark 2.16. In Sect. 4, we show that u ∈ UN �→ ∂x∇u f (u) ∈ Tu(UN ) is exactly
the Hamiltonian vector field of the smooth function f : UN → R with respect to the
symplectic form ω on the N -soliton manifold UN defined in (1.11).

Proposition 2.17. Given (λ, u0) ∈ X fixed, there exists ε > 0 such that (λ, u(t)) ∈ X ,
for every t ∈ (−ε, ε), where u : t ∈ (−ε,+ε) �→ u(t) ∈ L2(R,R) solves (2.17) with
initial datum u(0) = u0. Then

∂t Lu(t) = [Bλ
u(t), Lu(t)], where Bλ

v := i(Twλ(v)Twλ(v) + Twλ(v) + Twλ(v)), if (λ, v) ∈ X .

(2.18)

Remark 2.18. For every u ∈ H∞(R,R) and ε ∈ (0, 4C4

‖u‖2
L2

), we set H̃ε(u) := 1
ε
H 1

ε
(u)

and B̃ε,u := 1
ε
B

1
ε
u . Recall that En(u) = 〈Ln

u
u,
u〉L2 , we have the following Taylor
expansion

H̃ε(u) =
K
∑

k=0
(−ε)n En(u)− (−ε)K 〈(Lu + 1

ε
)−1
u, LK

u 
u〉L2 , ∀K ∈ N. (2.19)

Then Proposition 2.17 leads to a Lax pair formulation for the equations corresponding

to the conservation laws in the BO hierarchy, ∂t Lu = [ dn
dεn

∣

∣

∣

ε=0 B̃ε,u, Lu], where now u

evolves according to the Hamiltonian flow of En = (−1)n dn
dεn
∣

∣

ε=0H̃ε with respect to
the Gardner–Faddeev–Zakharov Poisson structure. In the case n = 1, we have E1 = E
and Bu = d

dε

∣

∣

ε=0 B̃ε,u .
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Before proving Proposition 2.17, we introduce the Hankel operators of symbols in
L2(R)

⋃

L∞(R). They are used to calculate the commutators of Toeplitz operators.
We notice that the Hankel operators are C-anti-linear and the Toeplitz operators are
C-linear. For every symbol v ∈ L2(R)

⋃

L∞(R), its associated Hankel operator is
defined by Hv(h) = Thv = 
(vh), ∀h ∈ H1

+ . If v ∈ L∞(R), then Hv : L2
+ → L2

+
is a bounded operator. If v ∈ L2(R), then Hv may be an unbounded operator on
L2
+ whose domain of definition contains H1

+ . For any b ∈ H1(R), h ∈ H1
+ , we have

‖Tb(h)‖H1 + ‖Hb(h)‖H1 � ‖b‖H1‖h‖H1 , so both Tb and Hb are bounded on L2
+ and on

H1
+ .

Lemma 2.19. For every v,w ∈ L2
+
⋂

L∞(R) and u ∈ L2(R), we have

[Tv, Tw] = −Hv ◦ Hw ∈ B(L2
+). (2.20)

If w ∈ H1
+ in addition, then we have Tu(w) ∈ L2

+ and

HTuw = Tw ◦ H
u + Hw ◦ Tu = Tu ◦ Hw + H
u ◦ Tw ∈ B(H1
+ , L

2
+). (2.21)

Proof. For every v,w ∈ L2
+
⋂

L∞(R) and h ∈ L2
+, we have wh = 
(wh) +
(wh) ∈

L2
+. Thus,we have [Tv, Tw]h = 
(v
(wh)−w
(vh)) = 
(vwh−v
(wh)−vwh) =

−
(v
(wh)) = −Hv ◦ Hw(h) ∈ L2
+. Given u ∈ L2(R) and w ∈ H1

+ , for every
h ∈ H1

+ , we have wh = 
(wh) + 
(wh) ∈ H1(R) and Hw(h), Tw(h) ∈ H1
+ . So


(u
(wh)) = 
(
(wh)
u) = H
u ◦ Tw(h) ∈ L2
+ and we have

HTuw(h) = 
(
(uw)h) = 
(uwh) = 
(u
(wh) + u
(wh))

= (Tu ◦ Hw + H
u ◦ Tw)(h) ∈ L2
+.

Similarly, we have uh = 
(uh)+
(uh) ∈ L2(R) and
(uh) = 
(h
u) = H
u(h) ∈
L2
+. Thus, we have HTuw(h) = 
(wuh) = 
(w
(uh) + w
(uh)) = (Tw ◦ H
u +

Hw ◦ Tu)(h) ∈ L2
+. ��

Lemma 2.20. Given (λ, u) ∈ X given in Definition 2.14, set wλ(u) = (Lu + λ)−1 ◦

(u) ∈ H1

+ , then

[D− Tu, Twλ(u)Twλ(u) + Twλ(u) + Twλ(u)] = TD[|wλ(u)|2+wλ(u)+wλ(u)] ∈ B(H1
+ , L

2
+).

(2.22)

Proof. We use abbreviation wλ := wλ(u) ∈ H1
+ , then wλ ∈ H1−. If f +, g+ ∈ H1

+
and f −, g− ∈ H1−, then [T f + , Tg+ ] = [T f − , Tg−] = 0, because for every h ∈ L2

+, we
have T f + [Tg+(h)] = f +g+h = Tg+[T f +(h)] and T f −[Tg−(h)] = 
( f −
(g−h)) =

( f −g−h) = 
(g−
( f −h)) = Tg−[T f −(h)]. Since 
u ∈ L2

+ and 
u ∈ L2−, we use
Leibnitz’s rule and formula (2.20) to obtain that

[D− Tu, Twλ + Twλ ] = TDwλ + TDwλ − [Tu, Twλ ] − [Tu, Twλ ] (2.23)

= TDwλ + TDwλ − [T
u, Twλ ] − [T
u, Twλ ]
= TDwλ + TDwλ − HwλH
u + H
u Hwλ.
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Similarly, formula (2.20) implies that

[Tu, TwλTwλ ] = [Tu, Twλ ]Twλ + Twλ [Tu, Twλ ]
= [T
u, Twλ ]Twλ + Twλ [T
u, Twλ ] = HwλH
uTwλ − TwλH
u Hwλ.

(2.24)

For every h ∈ H1
+ , since wλ,Dwλ ∈ L2−, we have

[D, TwλTwλ ]h = [D, Twλ ]Twλh + Twλ [D, Twλ ]h
= TDwλ(Twλh) + Twλ(TDwλh)

= 
[Dwλ
(wλh) + wλ
(Dwλh)] = 
[(wλDwλ + wλDwλ)h] ∈ L2
+.

So [D, TwλTwλ ] = TD|wλ|2 ∈ B(H1
+ , L

2
+). We use formula (2.20) and Leibnitz’s Rule to

obtain that

[D, TwλTwλ ] = [D, TwλTwλ ] − [D, H2
wλ
] = TD|wλ|2 − HDwλHwλ + HwλHDwλ (2.25)

Recall that wλ = (λ + Lu)
−1
u, then we have

Dwλ = Tu(wλ)− λwλ +
u. (2.26)

The formulas (2.21) and (2.26) imply the following two identities,

HDwλ − TwλH
u = HTuwλ − λHwλ + H
u − TwλH
u = HwλTu − λHwλ + H
u,

HDwλ − H
uTwλ = HTuwλ − λHwλ + H
u − H
uTwλ = TuHwλ − λHwλ + H
u .

(2.27)

We use formulas (2.24), (2.25) and (2.27) to get the following formula

[D− Tu, TwλTwλ ] = TD|wλ|2 − (HDwλ − TwλH
u)Hwλ + Hwλ(HDwλ − H
uTwλ)

=TD|wλ|2 − (HwλTuHwλ − λH2
wλ

+ H
u Hwλ) + (HwλTuHwλ − λH2
wλ

+ HwλH
u)

=TD|wλ|2 − H
u Hwλ + HwλH
u .

(2.28)

At last, we combine formulas (2.23) and (2.28) to obtain formula (2.22). ��
End of the proof of proposition 2.17. For every u : t �→ u(t) ∈ L2(R,R) solving equa-
tion (2.17), we have d

dt (L ◦ u)(t) = −T∂t u(t) = −iTD(wλ(u(t))wλ(u(t))+wλ(u(t))+wλ(u(t))).
Consequently, the Lax equation (2.18) is obtained by identity (2.22) in Lemma 2.20. ��

3. The Action of the Shift Semigroup

In this section, we introduce the semigroup of shift operators (S(η)∗)η≥0 acting on the
Hardy space L2

+ and classify all finite-dimensional translation-invariant subspaces of
L2
+. For every η ≥ 0, we define the operator S(η) : L2

+ → L2
+ such that S(η) f = eη f ,

where eη(x) = eiηx . Then, its adjoint is given by S(η)∗ = Te−η . We have S(η)∗ ◦ Lu ◦
S(η) = Lu + ηIdL2

+
, ∀η ≥ 0. Since ‖S(η)∗‖B(L2

+)
= ‖S(η)‖B(L2

+)
= 1, (S(η)∗)η≥0
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is a contraction semi-group. Let −iG denote its infinitesimal generator, i.e. G f =
i d
dη

∣

∣

η=0+ S(η)
∗ f ∈ L2

+, ∀ f ∈ D(G), where

D(G) :={ f ∈ L2
+ : f̂|R+ ∈ H1(0,+∞)}, (3.1)

because limε→0 ‖ψ−τεψ
ε

− ∂xψ‖L2(0,+∞) = 0, where τεψ(x) = ψ(x − ε) and
ψ ∈ H1(0,+∞). Every function f ∈ D(G) has bounded Hölder continuous Fourier
transform by Morrey’s inequality and Sobolev extension operator yields the existence
of f̂ (0+) := limξ→0+ f̂ (ξ). The operator G is densely defined and closed. The Fourier
transform of G f is given by

̂G f (ξ) = i∂ξ f̂ (ξ), ∀ f ∈ D(G), ∀ξ > 0. (3.2)

The Hille–Yosida theorem implies that (−∞, 0) ⊂ ρ(iG) and ‖(G − λi)−1‖B(L2
+)
≤

λ−1, ∀λ > 0.

Lemma 3.1. For every b ∈ L2(R)
⋂

L∞(R), we have Tb(D(G)) ⊂ D(G) and the
following identity

[G, Tb]ϕ = i ϕ̂(0+)
2π 
b (3.3)

holds for every ϕ ∈ D(G).

Proof. For every η > 0 and ϕ ∈ D(G), both S(η)∗ and Tb are bounded operators on

L2
+, so we have 1

η
([S(η)∗, Tb]ϕ)∧ (ξ) = 1

2πη

(

b̂ ∗ ϕ̂(ξ + η)− b̂ ∗ (1R+(τ−ηϕ̂))(ξ)
)

=
1

2πη

∫ ξ+η
ξ

b̂(ζ )ϕ̂(ξ + η − ζ )dζ , ∀ξ > 0, where τ−ηϕ̂(x) = ϕ̂(x + η), ∀x ∈ R. Then we
change the variable ζ = ξ + tη, for 0 ≤ t ≤ 1,

1
η

(

[S(η)∗ − IdL2+
, Tb]ϕ

)∧
(ξ) = 1

2π

∫ 1

0
b̂(ξ + tη)ϕ̂((1− t)η)dt = aη̂b(ξ) +̂φη(ξ), ∀ξ > 0, (3.4)

where aη := 1
2π

∫ 1
0 ϕ̂((1 − t)η)dt ∈ C and φη ∈ L2

+ such that ̂φη(ξ) := 1
2π

∫ 1
0 [b̂(ξ +

tη) − b̂(ξ)]ϕ̂((1 − t)η)dt , ∀ξ > 0. Since ϕ̂|R+ ∈ H1(0,+∞), ϕ̂ is bounded
and limη→0+ ϕ̂(η) = ϕ̂(0+), Lebesgue’s dominated convergence theorem yields that

limη→0+ aη = ϕ̂(0+)
2π . Since b ∈ L2(R), we have limε→0 ‖τε b̂− b̂‖L2 = 0. So ‖φη‖2L2 �

‖ϕ̂‖2L∞
∫ 1
0

∫ +∞
0 |b̂(ξ + tη)− b̂(ξ)|2dξdt = ‖ϕ̂‖2L∞

∫ 1
0 ‖τ−tηb̂− b̂‖2

L2dt → 0, if η → 0+.

Thus (3.4) implies that 1
η
[S(η)∗ − IdL2

+
, Tb]ϕ = aη
b + φη → ϕ̂(0+)

2π 
b in L2
+, when

η → 0+. Since ϕ ∈ D(G) and Tb is bounded, we have i
η
Tb[(S(η)∗−IdL2

+
)ϕ] → (TbG)ϕ

in L2
+, when η → 0+. Consequently, i

η
(S(η)∗ − IdL2

+
)(Tbϕ) → (TbG)ϕ + i ϕ̂(0+)

2π 
b in

L2
+ when η → 0+. So Tbϕ ∈ D(G) and (3.3) holds. ��

The following scalar representation theorem discovered by Lax in [13] allows to classify
all translation-invariant subspaces of the Hardy space L2

+, which plays the same role as
the Beurling’s theorem in the case of Hardy space on the circle.

Theorem 3.2. (Lax) Every nonempty closed subspace of L2
+ that is invariant under the

semigroup of shift operators (S(η))η≥0 is of the form �L2
+, where � is a holomorphic

function on the upper-half plane C+ = {z ∈ C : Imz > 0}. We have |�(z)| ≤ 1,
for all z ∈ C+ and |�(x)| = 1, ∀x ∈ R. Moreover, � is uniquely determined up to
multiplication by a complex constant of absolute value 1.
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The following lemma classifies all finite-dimensional subspaces that are invariant under
the semi-group (S(η)∗)η≥0, which is a weak version of Theorem 3.2.

Lemma 3.3. Let M be a subspace of D(G) ⊂ L2
+ of finite dimension N = dimC M ≥ 1

and G(M) ⊂ M. Then there exists a unique monic polynomial Q ∈ CN [X ] such that
Q−1(0) ⊂ C− and M = C≤N−1[X ]

Q . Moreover, Q is the characteristic polynomial of the
operator G|M.

Proof. We set M̂ = { f̂ ∈ L2(0,+∞) : f ∈ M}, then dimC M̂ = N . Since ̂G f =
i∂ξ f̂ on R\{0}, the restriction G|M is unitarily equivalent to i∂ξ |M̂ by the renormalized
Fourier–Plancherel transformation. So the characteristic polynomial Q ∈ CN [X ] of
i∂ξ |M̂ is well defined, let {β1, β2, . . . , βn} ⊂ C denote the distinct roots of Q and m j

denotes themultiplicity ofβ j , we have
∑n

j=1m j = N and there exist c0, c1, . . . , cN−1 ∈
C such that Q(z) = det(z−i∂ξ |M̂ ) =∏n

j=1(z−β j )
m j = zN +

∑N−1
k=0 ckzk . TheCayley–

Hamilton theorem implies that Q(i∂ξ ) = 0 on the subspace M̂ . Ifψ ∈ M̂ ⊂ L2(0,+∞),
then ψ is a weak-solution of the following differential equation

i−N Q(−D)ψ = ∂Nξ ψ +
N−1
∑

k=0
ik−N ck∂

k
ξ ψ = 0 on (0,+∞), ψ ≡ 0 on (−∞, 0), (3.5)

where D = −i∂ξ . The differential operator Q(−D) is elliptic on the open interval
(0,+∞) i.e. the symbol of the principal part of Q(−D), denoted by aQ : (x, ξ) ∈
(0,+∞) × R �→ (−ξ)N , does not vanish except for ξ = 0. So ψ is a smooth function
on (0,+∞). The solution space

Sol(3.5) = SpanC{ f̂ j,l}0≤l≤m j−1,1≤ j≤n, f̂ j,l(ξ) = ξ l e−iβ j ξ1R+ , (3.6)

has complex dimension
∑n

j=1m j = N , so we have Sol(3.5) = M̂ ⊂ L2
+ and Imβ j < 0,

∀ j = 1, 2, . . . , N . At last, we have M = SpanC{ f j,l}0≤l≤m j−1,1≤ j≤n = C≤N−1[X ]
Q ,

where f j,l(x) = l!
2π [(−i)(x−β j )]l+1 , ∀x ∈ R. The uniqueness is obtained by identifying

all the roots. ��
Lemma 3.4. For every monic polynomial Q ∈ CN [X ] such that Q−1(0) ⊂ C−, the
associated inner function is defined by � = �Q = Q

Q . The following identity holds for

every ϕ ∈ C≤N−1[X ]
Q ,

ϕ̂(ξ) = 〈S(ξ)∗ϕ, 1−�〉L2 , ∀ξ > 0. (3.7)

In particular, ϕ̂(0+) = 〈ϕ, 1−�〉L2 .

Proof. Formula (3.6) yields that C≤N−1[X ]
Q ⊂ D(G), G(

C≤N−1[X ]
Q ) ⊂ C≤N−1[X ]

Q and

ϕ̂ ∈ C1(R∗
+), for any ϕ ∈ C≤N−1[X ]

Q . Set ϕ = P
Q , for some P ∈ C≤N−1[X ], then we

have �ϕ = Q
Q

P
Q = P

Q
∈ L2−. Since Q(X) = ∏N

j=1(X − β j ), Imβ j < 0, we have

�(x) = 1+2i
∑N

j=1
Imβ j
x−β j

+O( 1
x2
), when x → +∞, so 1−� ∈ L2

+. As a consequence,

we have ϕ̂(ξ) = ∫
R
ϕ(y)(1−�(y))e−iyξdy = 〈S(ξ)∗ϕ, 1−�〉L2 , ∀ξ > 0. ��
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4. The Manifold of Multi-solitons

This section is dedicated to a geometric description of every multi-soliton subset given
in definition 1.1. Then we give a spectral characterization for the real analytic symplectic
manifold UN in order to prove the global well-posedness of the BO equation (1.1) on
UN .

4.1. Differential structure and symplectic structure. The real analytic structure of UN
is constructed at first.

Proof of proposition 1.2. The set VN := {Q ∈ CN [X ] : Q−1(0) ⊂ C−, limx→+∞
Q(x)
xN

= 1} is identified as V(CN−), where V : (β1, β2, . . . , βN ) ∈ C
N �→

(a0, a1, . . . , aN−1) ∈ C
N denotes the Viète map, defined by

N
∏

j=1
(X − β j ) =

N−1
∑

k=0
ak X

k + XN . (4.1)

Recall that V : C
N → C

N is a both open and closed quotient map. For any open simply
connected subset A ⊂ C

N , if A is saturated with respect to V and A
⋂

� �= ∅ with
� := {(β, β, . . . , β) ∈ C

N : ∀β ∈ C}, then V(A) is an open simply connected subset
of C

N . With the subspace topology of C
N and the Hermitian form HCN (X,Y ) = XT Y ,

the subset (V(CN−),HCN ) is a simply connected Kähler manifold of complex dimension

N . The map �N : (a0, a1, . . . , aN−1) ∈ V(CN−) �→ 
u = i Q
′

Q ∈ L2
+, where Q is given

by Q(X) = ∑N−1
k=0 ak Xk + XN , is both a holomorphic immersion and a topological

embedding. So 
(UN ) = �N ◦ V(CN−) is an embedded complex analytic submanifold
of L2

+ and dimC(
(UN )) = N . The map �N : V(CN−) → 
(UN ) is a biholomorphism
and T
u(
(UN )) =⊕z∈P(u) C

m(z)φz , where φz(x) = (x− z)−2, ∀z ∈ P(u), ∀u ∈ UN .
The proof is completed by using the isometry property of the R-linear isomorphism√
2
 : u ∈ L2(R,R) �→ √

2
u ∈ L2
+. In fact, we have 2Re|L2

+
= (
|L2(R,R))

−1 and
‖u‖L2 = √

2‖
u‖L2 . ��
We set E := L2(R,R)

⋂

L2(R, x2dx), Ec := {u ∈ E : ∫
R
u = c}, ∀c ∈ R. Then

we have UN ⊂ E2πN , Tu(UN ) ⊂ E0 = T defined in (1.10), ∀u ∈ UN . Moreover, T
is included in W = ∂x (H1(R,R)), which is defined in (1.4), thanks to the following
lemma.

Lemma 4.1 (Hardy). For every f ∈ H1(R) such that f (0) = 0, we have
∫

R

| f (x)|2
|x |2 dx ≤

4‖∂x f ‖2L2 .

So the 2-formω in (1.11) iswell defined.Thenwe show thatω is a real analytic symplectic
form on UN .

Proof of proposition 1.3. Given any smooth vector field X ∈ X(UN ), let X�ω ∈
�1(UN ) denote the interior multiplication by X , i.e. (X�ω)(Y ) = ω(X,Y ), for every
Y ∈ X(UN ). The first step is prove that dω = 0 on UN by using the following Cartan’s
formula:

LXω = X�(dω) + d(X�ω). (4.2)
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Let φ denote the smooth maximal flow of X . If t is sufficiently close to 0, then φt : u ∈
UN �→ φ(t, u) ∈ UN is a local diffeomorphism by the fundamental theorem on flows.
For any u ∈ UN , h1, h2 ∈ Tu(UN ), we compute the Lie derivative of ω with respect
to X ,

(LXω)u(h1, h2) = lim
t→0

ωφt (u)(dφt (u)h1,dφt (u)h2)−ωu(h1,h2)
t

= lim
t→0

ω
(

dφt (u)h1−h1
t , dφt (u)h2

)

+ lim
t→0

ω
(

h1,
dφt (u)h2−h2

t

)

.

So (LXω)u(h1, h2) = (h1ω(X, h2)) (u) − (h2ω(X, h1)) (u). We choose (V, xi ) a
smooth local chart for UN such that u ∈ V and the tangent vector hk has the coor-
dinate expression hk = ∑2N

j=1 h
( j)
k

∂
∂x j

∣

∣

u , for some h( j)
k ∈ R, j = 1, 2 . . . , 2N and

k = 1, 2. The tangent vector hk can be identified as some locally constant vector
field Yk ∈ X(UN ), which is defined by Yk : v ∈ V �→ ∑2N

j=1 h
( j)
k

∂
∂x j

∣

∣

v
∈ Tv(UN ),

Yk : u �→ (Yk)u = hk , ∀k = 1, 2. Then the vector field [Y1,Y2] vanishes in the open
subset V . The exterior derivative of the 1-form β = X�ω is computed as dβ(Y1,Y2) =
Y1 (β(Y2)) − Y2 (β(Y1)) + β([Y1,Y2]). Thus (d(X�ω))u (h1, h2) = (LXω)u(h1, h2).
Then Cartan’s formula (4.2) yields that X�(dω) = 0. Since X ∈ X(UN ) is arbitrary, we
have dω = 0.

Given u ∈ UN , we claim that the linear map ϒω
u : h ∈ Tu(UN ) �→ h�ωu ∈ T ∗

u (UN )

is injective.

In fact, for any h ∈ Kerϒω
u , we define h := 2Re(i
h) ∈ Tu(UN ). Then the second

expression of (1.11) yields that 0 = (h�ωu)(h ) = ∫ +∞
0

|ĥ(ξ)|2
πξ

dξ and hence h =
2Re ◦ 
(h) = 0. So ω is nondegenerate and it is a real analytic symplectic form
on UN . For any smooth function f : UN → R, its Hamiltonian vector field X f ∈
X(UN ) is given by X f (u) := −(ϒω

u )−1(d f (u)). Since d f (u)(h) = 〈h,∇u f (u)〉L2 =
i
2π

∫

R

ĥ(ξ)
ξ

iξ(∇u f (u))∧(ξ)dξ , ∀h ∈ Tu(UN ), formula (1.12) is obtained. ��
Corollary 4.2. Endowed with Hermitian form H, which is defined by H
u(h1, h2) :=
∫ +∞
0

ĥ1(ξ)ĥ2(ξ)
πξ

dξ , ∀h1, h2 ∈ T
u(
(UN )), ∀u ∈ UN , (
(UN ),H) is a Kähler manifold
and ω = −
∗(ImH).

4.2. Spectral analysis II. We continue to study the spectrum of the Lax operator Lu
introduced in Definition 2.2. The general case u ∈ E = L2(R,R)

⋂

L2(R, x2dx) has
been studied in Sect. 2.1. We restrict our study to the case u ∈ UN in this subsection.
The operator Lu has the following spectral decomposition

L2
+ =Hac(Lu)

⊕

Hsc(Lu)
⊕

Hpp(Lu). (4.3)

Let Qu denote the characteristic polynomial of u given by (1.9) and �u := �Qu = Qu
Qu

denotes the inner function on C+ associated to Qu . We have S(η)[�uh] = �u[S(η)h],
∀h ∈ L2

+, so �u L2
+ is a closed subspace of L2

+ that is invariant under the semigroup
(S(η))η≥0 in section 3. Set K�u := (�u L2

+)
⊥. Thus,

L2
+ = �L2

+

⊕

K�u , S(η)∗(K�u ) ⊂ K�u and G(D(G)
⋂

K�u ) ⊂ K�u .

(4.4)
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where G is defined in (3.2). The following proposition identifies the subspaces in (4.3)
and (4.4).

Proposition 4.3. If u ∈ UN , then Lu has exactly N simple negative eigenvalues and we
have

Hac(Lu) = �u L
2
+, Hsc(Lu) = {0}, Hpp(Lu) = K�u = C≤N−1[X ]

Qu
. (4.5)

Proof. Fix u ∈ UN , we use abbreviation Q := Qu and� := �u . The first step is to prove
K� = C≤N−1[X ]

Q . In fact, ∀h ∈ L2
+ and f = P

Q ∈ C≤N−1[X ]
Q , for some P ∈ C≤N−1[X ],

we have 〈 f,�h〉L2 = 〈 P
Q
, h〉L2 . Since Q(x) = ∏N

j=1(x − β j ) with Im(β j ) < 0, the

meromorphic function P
Q
has poles in C+, so P

Q
∈ L2−. Thus 〈 f,�h〉L2 = 〈 P

Q
, h〉L2 =

0. Thus C≤N−1[X ]
Q ⊂ (�L2

+)
⊥ = K�. Conversely, if f ∈ K�, then 〈�−1 f, h〉L2 =

〈 f,�h〉L2 = 0, for every h ∈ L2
+. Thus g := Q

Q
f ∈ L2−. It suffices to prove that P :=

Q f = Qg ∈ C[X ]. In fact,̂Q f = Q(i∂ξ ) f̂ and supp( f̂ ) ⊂ [0,+∞) ⇒ supp(̂Q f ) ⊂
[0,+∞). Similarly, we have supp((Qg)∧) ⊂ (−∞, 0]. So supp(P̂) ⊂ {0} and P is a
polynomial. Since f = P

Q ∈ L2(R), we have deg P ≤ N−1. So K� ⊂ C≤N−1[X ]
Q ⊂ K�.

The second step is to show that

Lu(�h) = �Dh, ∀h ∈ L2
+. (4.6)

In fact,wehave C≤N−1[X ]
Q ⊂ L2

+,� = Q
Q and D�

�
= DQ

Q
−DQ

Q = i Q
′

Q −i Q
′

Q
= 
u+
u =

u on R, then Lu(�h) = (D − Tu)(�h) = �Dh + h
(

D�− i Q
′

Q � + i Q
′

Q

)

= �Dh +

h�
(

D�
�
− i Q

′
Q + i Q

′

Q

)

= �Dh. Recall that Lu = L∗u , so we have Lu(K�) ⊂ K�.

Since dimC K� = N , Corollary 2.7 yields that the Hermitian matrix Lu|K� has exactly
N distinct eigenvalues. Hence K� ⊂Hpp(Lu).

We set U� : L2
+ → �L2

+ such that U�h = �h. Then U−1
� = U∗

� : g ∈ �L2
+ �→

�−1g ∈ L2
+, i.e U� : L2

+ → �L2
+ is unitary. Moreover, we have U�(H1

+ ) = �H1
+ =

H1
+
⋂

�L2
+. Formula (4.6) yields that U�[D(D)] = �H1

+ = H1
+
⋂

�L2
+ = D(Lu|�L2

+
)

and U∗
�Lu|�L2

+
U� = D. For every bounded Borel function f : R → C, we have

f (Lu|�L2
+
)U� = U� f (D) by proposition 2.1. Let μψ = μ

Lu
ψ denote the spectral

measure of Lu associated toψ ∈ L2
+. Then

∫

R
f (ξ)dμ�h(ξ) = 〈 f (Lu)U�h,U�h〉L2 =

〈 f (D)h, h〉L2 = 1
2π

∫ +∞
0 f (ξ)|ĥ(ξ)|2dξ , ∀h ∈ L2

+. So 2πdμ�h(ξ) = 1R+ |ĥ(ξ)|2dξ .
The measure μ�h is absolutely continuous with respect to the Lebesgue measure on R.
Thus �L2

+ ⊂Hac(Lu) ⊂Hcont(Lu) = (Hpp(Lu))
⊥ ⊂ �L2

+ and (4.5) is obtained. We
have supp(μ�h) ⊂ [0,+∞). For any ξ > 0, there exists h ∈ L2

+
⋂

L1(R) such that
ĥ(ξ) �= 0. So we have σess(Lu) = σcont(Lu) = σac(Lu) = [0,+∞). ��
Definition 4.4. For every u ∈ UN , we have the following spectral decomposition of Lu :

σ(Lu) = σac(Lu)
⋃

σsc(Lu)
⋃

σpp(Lu), where σac(Lu) = [0,+∞), σsc(Lu) = ∅ (4.7)

and σpp(Lu) = {λu1, λu2, . . . , λuN } consists of all eigenvalues of Lu . Proposition 2.3

yields that Lu is bounded from below and −‖u‖2
L2

4C4 ≤ λu1 < · · · < λuN < 0 with

C = inf f ∈H1
+\{0}

‖|D| 14 f ‖L2‖ f ‖L4 .



1076 R. Sun

Hence the min-max principle (Theorem XIII.1 of Reed–Simon [19]) yields that

λun = sup
dimC F=n−1

I(F, Lu), I(F, Lu) = inf{〈Luh, h〉L2 : h ∈ H1
+

⋂

F⊥, ‖h‖L2 = 1} (4.8)

where, the above supremum, F describes all subspaces of L2
+ of complex dimension

n − 1, 1 ≤ n ≤ N . When n ≥ N + 1, supdimC F=n−1 I(F, Lu) = inf σess(Lu) = 0.
Given j = 1, 2, . . . , N , Proposition 2.4 and Corollary 2.7 yield that there exists a unique
function ϕ j : u ∈ UN �→ ϕu

j ∈Hpp(Lu) such that

Ker(λuj − Lu) = Cϕu
j , ‖ϕu

j ‖L2 = 1, 〈ϕu
j , u〉L2 =

√

2π |λuj |, (4.9)

for every j = 1, 2, . . . , N . Then {ϕu
1 , ϕ

u
2 , . . . , ϕ

u
N } is an orthonormal basis of the sub-

space Hpp(Lu). Before proving the real analyticity of each eigenvalue, we show its
continuity at first.

Lemma 4.5. For every j = 1, 2, . . . , N, the j th eigenvalue λ j : u ∈ UN �→ λuj ∈ R is
Lipschitz continuous on every compact subset of UN .

Proof. For every f ∈ H1(R), the Sobolev embedding ‖ f ‖L4 ≤ C−1‖|D| 14 f ‖L2 yields
that ∀u, v ∈ UN ,

∣

∣〈Luh, h〉L2 − 〈Lvh, h〉L2

∣

∣ ≤ ‖u − v‖L2‖h‖2L4 ≤ C−2‖u − v‖L2‖|D| 12 h‖L2‖h‖L2 ,

∀h ∈ H1
+ . (4.10)

Given j = 1, 2, . . . , N and a subspace F ⊂ L2
+ whose complex dimension is j − 1,

we choose a function h ∈ F⊥
⋂⊕ j

k=1 Ker(λ
u
k − Lu) ⊂ H1

+ such that ‖h‖L2 = 1. We

have h =∑ j
k=1 hkϕ

u
k for some hk ∈ C. Then 〈Luh, h〉L2 =∑ j

k=1 |hk |2λuk ≤ λuj < 0,
because λuk < λuk+1. We have the following estimate

‖D| 12 h‖2L2 = 〈Dh, h〉L2 = 〈Luh, h〉L2 + 〈uh, h〉L2 ≤ λuj + ‖u‖L2‖h‖2L4

≤ C−2‖u‖L2‖|D| 12 h‖L2‖h‖L2 . (4.11)

So estimates (4.10) and (4.11) yield that 〈Lvh, h〉L2 ≤ λuj +C
−4‖u‖L2‖u−v‖L2 . Since F

is arbitrary, themax–min formula (4.8) implies that |λuj−λv
j | ≤ C−4(‖u‖L2 +‖v‖L2)‖u−

v‖L2 . Every compact subset K ⊂ UN is bounded in L2(R,R). Hence u ∈ K �→ λuj ∈ R

is Lipschitz continuous. ��
Proposition 4.6. For every j = 1, 2, . . . , N, the j th eigenvalue λ j : u ∈ UN �→ λuj ∈ R

is real analytic.

Its proof is based on Kato’s perturbation theory for linear operators.

Proof. For every u ∈ UN , let P
j
u denotes the Riesz projector of the eigenvalue λuj . Then

there exists ε0 > 0 such that the family of closed discs {D(λuj , ε0)}1≤ j≤N
⋃{D(0, ε0)}

is mutually disjoint and for every j, k = 1, 2 . . . , N and any closed path �u
j (piecewise
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C1 closed curve) in D(λuj , ε0) with respect to which the eigenvalue λuj has winding
number 1, we have

P
j
u = 1

2π i

∮

�u
j

(ζ − Lu)
−1dζ, P

j
u ◦ P

j
u = P

j
u, P

j
uϕ

u
k = δk jϕ

u
k . (4.12)

by Theorem XII.5 of Reed–Simon [19]. We choose �u
j to be the counterclockwise-

oriented circle C (λuj , ε) in (4.12) for some ε ∈ (0, ε0). We claim that ImP
j
u = Ker(λuj −

Lu) = Cϕu
j .

It suffices to show that P j
u |Hac(Lu) = 0. In fact the operator P

j
u = gλuj (Lu) is self-adjoint

and bounded, where the bounded Borel function gλ : R → R is given by

gλ(x) := 1

2π i

∮

C (λ,ε)

(ζ − x)−1dζ = 1(λ−ε,λ+ε)(x), a.e. on R,

for every λ ∈ R. Since P
j
u(Hpp(Lu)) ⊂ Cϕu

j ⊂ Hpp(Lu), we have P
j
u(Hac(Lu)) ⊂

Hac(Lu). Letμψ = μ
Lu
ψ denote the spectral measure of Lu associated toψ ∈Hac(Lu),

whose support is included in [0,+∞) by (4.7), so 〈P j
uψ,ψ〉L2 = 1

2π i

∮

C (λuj ,ε)
〈(ζ −

Lu)
−1ψ,ψ〉L2dζ = 1

2π i

∫ +∞
0

(

∮

C (λuj ,ε)
(ζ − ξ)−1dζ

)

dμψ(ξ) = 0. Set ψ̃ = P
j
uψ ∈

Hac(Lu), then ‖ψ̃‖2L2 = 〈P j
uψ̃, ψ̃〉L2 = 0. So the claim is obtained.

For every fixed j = 1, 2, . . . N , we have λuj = Tr(Lu ◦P
j
u). Since every eigenvalue λk :

v ∈ UN �→ λv
k ∈ R is continuous, there exists an open subset V ⊂ UN containing u such

that supv∈V sup1≤k≤N |λv
k − λuk | < ε0

3 . We set ε = 2ε0
3 , then λv

j ∈ D(λuj , ε)\D(λuk , ε0),
for every v ∈ V and k �= j . For example, in the next picture, the dashed circles denote
respectively C (λuj , ε0) and C (λuk , ε0); the smaller circles denote respectively C (λuj , ε)

andC (λuk , ε)with j < k. The segments inside small circles denote the possible positions
of λv

j and λv
k .

λuj

λv
j λv

k

λuk

0

Then σ(Lv)
⋂

D(λuj , ε0) = {λv
j } and C (λuj , ε) is a closed path in D(λuj , ε0) with

respect to which λv
j has winding number 1. Thus,

P
j
v =

1

2π i

∮

C (λuj ,ε)

(ζ − Lv)
−1dζ, λv

j = Tr(Lv ◦ P
j
v), ∀v ∈ V. (4.13)
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Since v ∈ V �→ Lv ∈ B(H1
+ , L

2
+) is R-affine and i : A ∈ BI(H1

+ , L
2
+) �→ A−1 ∈

B(L2
+, H

1
+ ) is complex analytic, where BI(H1

+ , L
2
+) ⊂ B(H1

+ , L
2
+) denotes the open

subset of all bijective bounded C-linear transformations H1
+ → L2

+, we have the real
analyticity of the following map

(ζ, v) ∈
(

D(λuj ,
3

4
ε0)\D(λuj ,

1

2
ε0)

)

× V �→ (ζ − Lv)
−1 ∈ B(L2

+, H
1
+ ). (4.14)

Hence the maps P
j : v ∈ V �→ P

j
v ∈ B(L2

+, H
1
+ ) and λ j : v ∈ V �→ Tr(Lv ◦ P

j
v) ∈ R

are both real analytic by composing (4.13) and (4.14). ��
Recall that Hpp(Lu) = C≤N−1[X ]

Qu
⊂ D(G) is given by (3.6), ∀u ∈ UN . We have the

following consequence.

Corollary 4.7. For every j = 1, 2, . . . , N, both the map ϕ j : u ∈ UN �→ ϕu
j ∈ H1

+ and
the map � j : u ∈ UN �→ 〈Gϕu

j , ϕ
u
j 〉L2 ∈ C are real analytic.

Proof. Given u, v ∈ UN , we have P
j
vϕ

u
j = 〈ϕu

j , ϕ
v
j 〉L2ϕv

j . Since the Riesz projec-

tor P
j : v ∈ UN �→ P

j
v ∈ B(L2

+, H
1
+ ) is real analytic in the proof of proposi-

tion 4.6 and ‖P j
uϕ

u
j ‖L2 = 1, there exists a neighbourhood of u, denoted by V , such that

‖P j
vϕ

u
j ‖L2 > 1

2 for every v ∈ V and P
j : v ∈ V �→ P

j
v ∈ B(L2

+, H
1
+ ) can be expressed

by power series. Then we have ϕv
j = P

j
vϕ

u
j

〈ϕu
j ,ϕ

v
j 〉L2 and � j (v) = 〈G◦P j

v(ϕ
u
j ),P

j
v(ϕ

u
j )〉L2

‖P j
v(ϕ

u
j )‖2L2

.

Hence the restriction � j : v ∈ V �→ ‖P j
v(ϕ

u
j )‖−2L2 〈G ◦ P

j
v(ϕ

u
j ),P

j
v(ϕ

u
j )〉L2 ∈ C is

real analytic. Since (4.9) yields that 〈P j
vϕ

u
j , v〉L2 =

√

−2πλv
j 〈ϕu

j , ϕ
v
j 〉L2 , the restriction

ϕ j : v ∈ V �→
√

−2πλvj

〈P j
vϕ

u
j ,v〉L2

P
j
vϕ

u
j ∈ H1

+ is real analytic. ��

4.3. Characterization theorem. This subsection is dedicated to proving the following
spectral characterization theorem for multi-solitons.

Theorem 4.8. Given N ∈ N+, a function u ∈ UN if and only if u ∈ L2(R, (1+ x2)dx) is
real-valued, dimC Hpp(Lu) = N and
u ∈Hpp(Lu). Moreover, we have the following
inverse formula


u(x) = i det(x − G|Hpp(Lu))
−1 d

dx

(

det(x − G|Hpp(Lu))
)

, ∀x ∈ R. (4.15)

The direct sense is given by Proposition 4.3. Before proving the converse sense of
Theorem 4.8, we need to prove the invariance of Hpp(Lu) under G, if u ∈ L2(R, (1 +
x2)dx) is real-valued, 
u ∈ Hpp(Lu) and dimC Hpp(Lu) = N ≥ 1. We give another
version of formula of commutators (see also Lemma 3.1).

Lemma 4.9. For u ∈ L2(R, (1 + x2)dx), u is real-valued, ∀ϕ ∈ Ker(λ− Lu) for some
λ ∈ σpp(Lu), then we have ϕ, Tuϕ, Luϕ ∈ D(G) and

[G, Tu]ϕ = i ϕ̂(0+)
2π 
u, [G, Lu]ϕ = iϕ − i ϕ̂(0+)

2π 
u. (4.16)
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Proof. In Proposition 2.4, we have shown that ûϕ ∈ H1(R), so (Tuϕ)∧ = ûϕ1R+ ∈
H1(0,+∞) and Tuϕ ∈ D(G). So Gϕ ∈ H1

+ = D(Lu) = D(Tu). Moreover, we have ϕ̂

is right-continuous at ξ = 0+ and ϕ̂ ∈ C1(0,+∞). The weak-derivative of ϕ̂ is denoted
by ∂w

ξ ϕ̂, δ0 denotes the Dirac measure with support {0}, then ∂w
ξ ϕ̂ = 1R

∗
+

d
dξ ϕ̂ + ϕ̂(0+)δ0

and ∂ξ (û ∗ ϕ̂) = ∂w
ξ (û ∗ ϕ̂) = û ∗ ∂w

ξ ϕ̂ by Lemma 2.5. Since ϕ̂ = 1R
∗
+
ϕ̂ a.e. in

R and û ∈ H1(R), we have û ∗̂Gϕ(ξ) = û ∗ [1R
∗
+
̂Gϕ](ξ), for every ξ > 0 and

([G, Tu]ϕ)∧(ξ) = i
2π ∂ξ (û ∗ ϕ̂)(ξ) − i

2π û ∗ [1R
∗
+

d
dξ ϕ̂](ξ) = i

2π ϕ̂(0+)̂u(ξ). The first
formula of (4.16) is obtained. Since Lu = D − Tu , we claim that Dϕ ∈ D(G). In fact,
∂ξ (Dϕ)∧(ξ) = ϕ̂(ξ) + ξ∂ξ ϕ̂(ξ), ∀ξ > 0. Thus (2.4) implies that ̂Dϕ ∈ H1(0,+∞).
Then ([G,D]ϕ)∧ (ξ) = i∂ξ (ξ ϕ̂)(ξ) − ξ · i∂ξ ϕ̂(ξ) = i ϕ̂(ξ), ∀ξ > 0. So we have
[∂x ,G] = IdL2

+
. The second formula of (4.16) holds. ��

Proposition 4.10. If u ∈ L2(R, (1 + x2)dx) is real-valued, dimC Hpp(Lu) = N ≥ 1
and 
u ∈Hpp(Lu), then we have Hpp(Lu) ⊂ D(G) and G(Hpp(Lu)) ⊂Hpp(Lu).

Proof. There exists an orthonormal basis of the vector space Hpp(Lu), denoted by
{ψ1, ψ2, . . . , ψN }, such that Luψ j = λ jψ j , where σpp(Lu) = {λ1, λ2, . . . , λN } ⊂
(−∞, 0) and λ j < λ j+1. Since (2.4) implies that Hpp(Lu) ⊂ G−1(H1

+ )
⋂

D(G),

formula (4.16) gives that f j := [Lu,G]ψ j = −iψ j+
iψ̂ j (0+)

2π 
u ∈Hpp(Lu). Sowehave
〈 f j , ψ j 〉L2 = 〈Gψ j , Luψ j 〉L2−〈GLuψ j , ψ j 〉L2 = λ(〈Gψ j , ψ j 〉L2−〈Gψ j , ψ j 〉L2) =
0. For every j = 1, 2, . . . , N , we set g j := ∑

1≤k≤N ,k �= j
〈 f j ,ψk 〉L2
λk−λ j

ψk . Since f j =
∑

1≤k≤N ,k �= j 〈 f j , ψk〉L2ψk , we have (Lu−λ j )g j = f j = (Lu−λ j )Gψ j . Then Gψ j −
g j ∈ Ker(Lu − λ j ) = Cψ j and Gψ j ∈ g j + Cψ j ⊂ Hpp(Lu). We conclude by
Hpp(Lu) = SpanC{ψ1, ψ2, . . . , ψN }. ��
Now, we perform the proof of converse sense of Theorem 4.8 and give the explicit
formula of Qu .

End of the proof of theorem 4.8. ⇐: Proposition 4.10 yields that G(Hpp(Lu)) ⊂
Hpp(Lu). Let Q denote the characteristic polynomial of the operator G|Hpp(Lu), then

we have Hpp(Lu) = C≤N−1[X ]
Q by Lemma 3.3. So 
u = P0

Q , for some P0 ∈ C[X ] such
that deg P0 ≤ N − 1. It remains to show that P0 = i Q′.
In fact, we have Lu(

P
Q ) = (D−TP0

Q
−TP0

Q

)( PQ ) = DP
Q −
(P0P

QQ
)+ (i Q′−P0)P

Q2 ∈ C≤N−1[X ]
Q ,

for every P ∈ C≤N−1[X ], thanks to the invariance of Hpp(Lu) under Lu . Partial-

fraction decomposition implies that 
(P0P
QQ

) ∈ C≤N−1[X ]
Q . So (i Q′−P0)P

Q ∈ C≤N−1[X ]
for every P ∈ C≤N−1[X ]. Choose P = 1, since deg(i Q′ − P0) ≤ N − 1, we have
P0 = i Q′, so u ∈ UN . Since Q ∈ CN [X ] is monic and Q−1(0) ⊂ C−, we have
Qu(x) = Q(x) = det(x − G|Hpp(Lu)). ��
We refer to Proposition 4.10 and formula (4.4) to see the invariance of Hpp(Lu) ⊂
D(G) under G, ∀u ∈ UN . The translation–scaling parameters of u can be identified as
the spectrum of G|Hpp(Lu). The matrix representation of G|Hpp(Lu) with respect to the
orthonormal basis {ϕu

1 , ϕ
u
2 , . . . , ϕ

u
N } is given in Proposition 5.4.

4.4. The invariance under the Benjamin–Ono flow. Proposition 1.4 is proved in this
subsection. At first, we show the invariance of the property x �→ xu(x) ∈ L2(R) under
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the BO flow. Then the spectral characterization Theorem 4.8 is used to establish the
global well-posedness of the Hamiltonian system (1.3) on UN .

Lemma 4.11. If u0 ∈ H2(R,R)
⋂

L2(R, x2dx), let u = u(t, x) solves the BO equation
(1.1) with initial datum u(0) = u0, then u(t) ∈ L2(R, x2dx), for every t ∈ R.

Remark 4.12. This result can be strengthened by replacing the assumption u0 ∈
H2(R,R) by a weaker assumption u0 ∈ H

3
2 +(R,R) = ⋃

s> 3
2
Hs(R,R), because one

can construct a conservation law of (1.1), which controls the Hs-norm of solution,
∀s > − 1

2 , by using the method of perturbation of determinants. We refer to Talbut [22]
to see details. It suffices to use Lemma 4.11 to prove Proposition 1.4.

Before proving Lemma 4.11, we need some commutator estimates.

Lemma 4.13. For a general locally Lipschitz function χ : R → R such that
∂xχ, ∂3xχ, ∂5xχ ∈ L1(R), we have the following commutator estimates

‖[|D|, χ ]g‖L2 + ‖[∂x , χ ]g‖L2 � (‖∂xχ‖L1‖∂3xχ‖L1 )
1
2 ‖g‖L2 , ∀g ∈ L2(R),

‖|D|[∂x , χ ]g‖L2 � (‖∂xχ‖L1‖∂3xχ‖L1 )
1
2 ‖∂x g‖L2 + (‖∂xχ‖L1‖∂5xχ‖L1 )

1
2 ‖g‖L2 , ∀g ∈ H1(R).

(4.17)

Proof. Since 2π
∣

∣ ([|D|, χ ]g)∧ (ξ)
∣

∣ ≤ ∫

η∈R

∣

∣|ξ | − |η|∣∣|χ̂(ξ − η)||ĝ(η)|dη ≤ |̂∂xχ | ∗
|ĝ|(ξ), Young’s convolution inequality yields that ‖[|D|, χ ]g‖L2 � ‖̂∂xχ‖L1‖g‖L2 . We

set R1 = ‖∂xχ‖−
1
2

L1 ‖∂3xχ‖
1
2
L1 , then ‖̂∂xχ‖L1 ≤ ‖̂∂xχ‖L∞

∫

|ξ |≤R1
dξ +

∫

|ξ |>R1

‖̂∂3xχ‖L∞
|ξ |2

dξ � ‖∂xχ‖L1R1+
‖∂3xχ‖L1R1

= 2(‖∂xχ‖L1‖∂3xχ‖L1)
1
2 . Similarly,wehave‖[∂x , χ ]g‖L2 �

‖̂∂xχ‖L1‖g‖L2 � (‖∂xχ‖L1‖∂3xχ‖L1)
1
2 ‖g‖L2 , so the first inequality of (4.17) is

obtained. Since 2π
∣

∣ (|D|[∂x , χ ]g)∧ (ξ)
∣

∣ ≤ |ξ | ∫
η∈R

|ξ−η||χ̂(ξ−η)||ĝ(η)|dη ≤ |̂∂2xχ |∗
|ĝ|(ξ) + |̂∂xχ | ∗ |̂∂x g|(ξ), then ‖|D|[∂x , χ ]g‖L2 � ‖̂∂2xχ‖L1‖g‖L2 + ‖̂∂xχ‖L1‖∂x g‖L2 .

We set R2 := ‖∂xχ‖−
1
4

L1 ‖∂5xχ‖
1
4
L1 , then ‖̂∂2xχ‖L1 ≤ ‖̂∂xχ‖L∞

∫

|ξ |≤R1
|ξ |dξ +

∫

|ξ |>R1

‖̂∂5xχ‖L∞
|ξ |3 dξ � ‖∂xχ‖L1R2

2 +
‖∂5xχ‖L1

R2
2

= 2(‖∂xχ‖L1‖∂5xχ‖L1)
1
2 . Finally, we

add them together to get the second estimate of (4.17). ��
Now we prove the invariance of the property x �→ xu(x) ∈ L2(R) is invariant under
the BO flow.

Proof of lemma 4.11. We choose a cut-off function χ ∈ C∞
c (R) such that χ decreases

in [0,+∞), χ is even, 0 ≤ χ ≤ 1, χ ≡ 1 on [−1, 1] and supp(χ) ⊂ [−2, 2]. If
u0 ∈ H2(R,R)

⋂

L2(R, x2dx), let u : t ∈ R �→ u(t) ∈ H2(R,R) solves the BO
equation (1.1) with initial datum u(0) = u0, we claim that there exists a constant
C = C(‖u(0)‖H1) such that

I (R, t) :=
∫

R

χ2( xR )|x |2|u(t, x)|2dx

≤ Ce|t |(
∫

R

|x |2|u(0, x)|2dx + 1), ∀t ∈ R, ∀R > 1, (4.18)
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In fact, we define ρ(x) := xχ(x). For every R > 0, we set ρR(x) := Rρ( xR ) = xχ( xR ).
Thus

∂t I (R, t) = 2Re〈ρ2
R |D|∂xu(t)− 2ρ2

Ru(t)∂xu(t),

u(t)〉L2 = J1(u(t)) + J2(u(t)),

where for every u ∈ H2(R), we define

J1(u) := −4Re〈ρ2
Ru∂xu, u〉L2 �⇒

|J1(u)| ≤ 4‖∂xu‖L∞‖ρRu‖2L2 � ‖u‖H2‖ρRu‖2L2 (4.19)

and J2(u) := 2Re〈ρ2
R |D|∂xu, u〉L2 = 〈[ρ2

R, |D|∂x ]u, u〉L2 . Since [ρ2
R, |D|∂x ] =

ρR[ρR, |D|∂x ] + [ρR, |D|∂x ]ρR and [ρR, |D|∂x ] = [ρR, |D|∂x ]∗ = [ρR, |D|]∂x +
|D|[ρR, ∂x ], we have

J2(u) = 2Re〈[ρR, |D|]∂xu, ρRu〉L2 + 2Re〈|D|[ρR, ∂x ]u, ρRu〉L2 .

Since ‖∂xρR‖L1 = R‖∂xρ‖L1 , ‖∂3xρR‖L1 = R−1‖∂xρ‖L1 and ‖∂5xρR‖L1 =
R−3‖∂xρ‖L1 , the commutator estimates (4.17) yield that if u ∈ H2(R), then

|J2(u)| ≤ 2‖ρRu‖2L2 + ‖[ρR, |D|]∂xu‖2L2 + ‖|D|[ρR, ∂x ]u‖2L2

� ‖ρRu‖2L2 + ‖∂xρR‖L1‖∂3xρR‖L1‖∂xu‖2L2 + ‖∂xρR‖L1‖∂5xρR‖L1‖u‖2L2

� ‖ρRu‖2L2 + ‖∂xρ‖L1‖∂3xρ‖L1‖∂xu‖2L2 + R−2‖∂xρ‖L1‖∂5xρ‖L1‖u‖2L2

� ‖ρRu‖2L2 + ‖u‖2H1

(4.20)

for every R ≥ 1. Proposition 2.9 and 2.12 yield that there exists a conservation law of
(1.1) controlling H2-norm of the solution. Let u : t ∈ R �→ u(t) ∈ H2(R) denote the
solution of the BO equation (1.1). Then supt∈R ‖u(t)‖H2 �‖u0‖H2 1. Since I (R, t) =
‖ρRu(t)‖2L2 , estimates (4.19) and (4.20) imply that |∂t I (R, t)| ≤ C(I (R, t)+1), ∀t ∈ R,
for some constant C = C(‖u0‖H2). Thus (4.18) is obtained by Gronwall’s inequality.
Let R → +∞, we conclude by Lebesgue’s monotone convergence theorem. ��
Since the generating function λ ∈ C\σ(−Lu) �→ Hλ(u) ∈ C is the Borel–Cauchy
transform of the spectral measure of Lu , the invariance of UN under the BO flow is
obtained by the inverse spectral transform.

End of the proof of proposition 1.4. If u0 ∈ UN ⊂ H∞(R,R)
⋂

L2(R, x2dx), let u =
u(t, x) denote the solution of the BO equation (1.1) with initial datum u(0) = u0,
then u(t) ∈ H∞(R,R)

⋂

L2(R, x2dx) by Proposition 2.8 and Lemma 4.11. Given
λ ∈ C\R, the generating function Hλ : u ∈ L2(R,R) → R reads as Hλ(u) =
〈(λ + Lu)

−1
u,
u〉L2 = ∫
R

dmu(ξ)
ξ+λ with mu := μ

Lu

u , where μ

Lu
ψ denotes the spectral

measure of Lu associated to the function ψ ∈ L2
+. So the holomorphic function λ ∈

C\R �→ Hλu is the Borel–Cauchy transform of the positive Borel measure mu . The
total variation mu(R) = ‖
u‖2

L2 is a conservation law of the BO equation (1.1) by
Proposition 2.12 and formula (2.14). Thanks to the Stieltjes inversion formula, every
finite Borel measure is uniquely determined by its Borel–Cauchy transform. For every
t ∈ R, we have Hλ[u(t)] = Hλ[u(0)] by proposition 2.15. Since u(0) ∈ UN , we have

[u(0)] ∈ Hpp(Lu(0)) by Proposition 4.3. Consequently, there exist c1, c2, . . . , cN ∈
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R\{0} such thatμLu(t)

[u(t)] = mu(t) = mu(0) = μ

Lu(0)

[u(0)] =

∑N
j=1 c jδλu(0)j

. Then
[u(t)] ∈
Hpp(Lu(t)), ∀t ∈ R. The Lax pair structure yields the unitary equivalence between
Lu(t) and Lu(0). So dimC Hpp(Lu(t)) = dimC Hpp(Lu(0)) = N by Proposition 2.1. We
conclude by Theorem 4.8. ��

5. The Generalized Action–Angle Coordinates

In this section, we construct the global (generalized) action–angle coordinates �N in
Theorem 1 of the Hamiltonian system (1.3) with solutions in the real analytic symplectic
manifold (UN , ω) of real dimension 2N given in Proposition 1.2. The goal of this section
is to establish the diffeomorphism property and the symplectomorphism property of�N .
Proposition 1.3 yields that the Poisson bracket of two smooth functions f, g : UN → R

is given by

{ f, g} : u ∈ UN �→ ωu(X f (u), Xg(u)) = 〈∂x∇u f (u),∇ug(u)〉L2 ∈ R. (5.1)

Given u ∈ UN , Proposition 4.3 yields that there exist λu1 < λu2 < · · · < λuN < 0 and

ϕu
j ∈ Ker(λuj − Lu) ⊂ D(G) such that ‖ϕu

j ‖L2 = 1 and 〈u, ϕu
j 〉L2 =

√

2π |λuj |, thanks
to the spectral analysis in Sect. 4.2.

Definition 5.1. For every j = 1, 2, . . . , N , the map I j : u ∈ UN �→ 2πλuj ∈ R is
called the j th action. The map γ j : u ∈ UN �→ Re〈Gϕu

j , ϕ
u
j 〉L2 ∈ R is called the j th

(generalized) angle.

The set �N is defined by (1.13) and we adopt the superscript instead of the subscript
in this section: �N = {(r1, r2, . . . , r N ) ∈ R

N : r1 < r2 < · · · < r N < 0}. Then
the real analytic manifold (�N × R

N , ν) is a symplectic manifold of real dimension
2N , where ν =∑N

j=1 dr j ∧ dα j . The action–angle map is given by �N : u ∈ UN �→
(I1(u), I2(u), . . . , IN (u); γ1(u), γ2(u), . . . , γN (u)) ∈ �N ×R

N . Theorem 1 is restated
here.

Theorem 5.2. The map �N has following properties:
(a). The map �N : UN → �N × R

N is a real analytic diffeomorphism.
(b). The pullback of ν by �N is ω, i.e. �∗

Nν = ω.

(c). We have E ◦ �−1
N : (r1, r2, . . . , r N ;α1, α2, . . . , αN ) ∈ �N × R

N �→
− 1

2π

∑N
j=1 |r j |2 ∈ (−∞, 0).

Remark 5.3. The real analyticity of �N : UN → �N × R
N is given by Proposition 4.6

and Corollary 4.7. The symplectomorphism property (b) is equivalent to the Poisson
bracket characterization (1.15). The family (XI1 , XI2 , . . . , XIN ; Xγ1 , Xγ2 , . . . , XγN ) is
linearly independent in X(UN ) and we have

d�N (u) : XIk (u) �→ ∂
∂αk

∣

∣

�N (u), d�N (u) : Xγk (u) �→ − ∂
∂rk

∣

∣

�N (u).

The assertion (c) is obtained by a direct calculus: 
u =∑N
j=1〈
u, ϕu

j 〉L2ϕu
j , formula

(4.9) yields that E(u) = 〈Lu(
u),
u〉L2 =∑N
j=1 |〈
u, ϕu

j 〉L2 |2λuj = −∑N
j=1

I j (u)2

2π .
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This section is organized as follows. The matrix associated to G|Hpp(Lu) is expressed
in terms of actions and angles in Sect. 5.1. In Sect. 5.2, the Poisson brackets of actions
and angles are used to prove the local diffeomorphism property of �N . The bijectivity
of �N is obtained by Hadamard’s global inverse function theorem in Sect. 5.3. Finally,
we use Sects. 5.4 and 5.5 to prove that �N : (UN , ω) → (�N × R

N , ν) preserves the
symplectic structure.

5.1. The inverse spectral matrix. We continue to study the infinitesimal generator G
defined in (3.2) when restricted to the invariant subspaceHpp(Lu)with complex dimen-
sion N . Then we state a general linear algebra lemma that describes the location of
eigenvalues of the operator G|Hpp(Lu).

Proposition 5.4. For every u ∈ UN , let M(u) = (Mkj (u))1≤k, j≤N ∈ C
N×N denote the

inverse spectral matrix defined by (1.18) and Definition 5.1. Then M(u) is the matrix
associated to the operator G|Hpp(Lu) with respect to the basis {ϕu

1 , ϕ
u
2 , . . . , ϕ

u
N }, i.e.

Mkj (u) = 〈Gϕu
j , ϕ

u
k 〉L2 , 1 ≤ k, j ≤ N.

Proof. Since Lu = L∗u and Hpp(Lu) ⊂ D(G), we have (λuj − λuk )〈Gϕu
j , ϕ

u
k 〉L2 =

〈[G, Lu]ϕu
j , ϕ

u
k 〉L2 . Since formulas (2.5) and (4.9) imply that −λuj

̂ϕu
j (0) = ûϕu

j (0) =
√

2π |λuj |, we use formula (4.16) to obtain that if k and j are different, then

(λuj − λuk )〈Gϕu
j , ϕ

u
k 〉L2 = 〈iϕu

j − i
2π
̂ϕu
j (0

+)
u, ϕu
k 〉L2 = − i

2π
̂ϕu
j (0

+)̂uϕu
k (0) =

−i
√

λuk
λuj
. In the case k = j , we have 〈G∗ f, g〉L2 = − i

2π

∫ +∞
0 f̂ (ξ)∂ξ ĝ(ξ)dξ =

i
2π

[

f̂ (0+)ĝ(0+) +
∫ +∞
0 ∂ξ f̂ (ξ)ĝ(ξ)dξ

]

and 〈G∗ f, g〉L2 = 〈G f, g〉L2 + i
2π f̂ (0+)ĝ(0+),

for any f, g ∈Hpp(Lu)byusing formula (3.2).Consequently,wehave Im〈Gϕu
j , ϕ

u
j 〉L2 =

− 1
4π |̂ϕu

j (0)|2 = − 1
2|λuj | = ImMj j (u). ��

Corollary 5.5. For every u ∈ UN , we define two vectors X (u),Y (u) ∈ R
N as

X (u)T = (

√

|λu1 |,
√

|λu2 |, . . . ,
√

|λuN |), Y (u)T = (

√

|λu1 |−1,
√

|λu2 |−1, . . . ,
√

|λuN |−1), (5.2)

Then we have the following inverse spectral formula


u(x) = −i〈(M(u)− x)−1X (u),Y (u)〉CN , ∀x ∈ R. (5.3)

Hence, the map �N : UN → �N × R
N is injective.

Proof. For any k, j = 1, 2, . . . , N , let Ku
kj (x) denote the (N − 1)× (N − 1) sub-

matrix obtained by deleting the k th row and j th column of the matrix M(u) − x ,
for all x ∈ R. The Cramer’s rule yields that 〈(M(u) − x)−1X (u),Y (u)〉CN =
∑

1≤k, j≤N
(−1)k+ j det(Ku

kj (x))

det(M(u)−x)

√

λuk
λuj
=

∑N
j=1 det(Ku

j j (x))+R
det(M(u)−x) , where R :=∑1≤k �= j≤N (−1)k+ j

det(Ku
kj (x))

√

λuk
λuj
= i(

∑N
j=1 λuj −

∑N
k=1 λuk ) det(M(u)− x) = 0 by (1.18) and Defini-

tion 5.1. If Qu(x) = det(x − M(u)), then Q′
u(x) = (−1)N−1∑N

j=1 det(Ku
j j (x)). Then

formula (5.3) is obtained by formula (4.15). ��
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The next lemma describes the location of spectrum of all matrices of the form defined
as (1.18).

Lemma 5.6. For every N ∈ N+, we choose N negative numbers λ1 < λ2 < · · · <

λN < 0 and γ1, γ2, . . . , γN ∈ R. The matrix M = (Mk j )1≤k, j≤N ∈ C
N×N is defined

as M j j = γ j + i
2λ j

and Mk j = i
λk−λ j

√

λk
λ j
, if k �= j . Then  (M) := M−M∗

2i is

negative semi-definite and σpp(M) ⊂ C−.

Proof. ThevectorVλ ∈ R
N is defined asV T

λ := ((2|λ1|)− 1
2 , (2|λ2|)− 1

2 , . . . , (2|λN |)− 1
2 ).

So we have  (M) =
(

− 1
2
√|λ j ||λk |

)

1≤k, j≤N
= −Vλ · V T

λ . Thus 〈( (M))X, X〉CN =
−|〈X, Vλ〉CN |2 ≤ 0. So  (M) is negative semi-definite. If μ ∈ σpp(M) and V ∈
Ker(μ−M)\{0}, it suffices to show Imμ < 0. Since

−|〈V, Vλ〉CN |2 = 〈 (M)V, V 〉CN = Imμ‖V ‖2
CN ,

where ‖V ‖2
CN = 〈V, V 〉CN > 0, (5.4)

we have Imμ ≤ 0.Assume thatμ ∈ R, then formula (5.4) yields that V ⊥ Vλ.Moreover,
we have (M−M∗)V = −2i〈V, Vλ〉CN Vλ = 0. We set Dλ ∈ C

N×N to be the diagonal
matrix whose diagonal elements are λ1, λ2, . . . , λN , i.e. Dλ = (λkδ jk)1≤k, j≤N . Then
we have the following formula

[M, Dλ] = i(IN + 2DλVλV
T
λ ). (5.5)

So [M, Dλ]V = iV by (5.5). Finally, i‖V ‖2
CN = 〈(M − μ)DλV, V 〉CN =

〈DλV, (M∗ − μ)V 〉CN = 0 contradicts the fact that V �= 0. Consequently, we have
μ ∈ C−. ��

5.2. Poisson brackets. In this subsection, the Poisson bracket defined in (5.1) is general-
ized in order to obtain the first two formulas of (1.15). It can be defined between a smooth
function from UN to an arbitrary Banach space and another smooth function from UN to
R. For every smooth function f : UN → R, its Hamiltonian vector field X f ∈ X(UN ) is
given by (1.12). For any Banach space E and any smoothmap F : u ∈ UN �→ F(u) ∈ E ,
we define the Poisson bracket of f and F as follows

{ f, F} : u ∈ UN �→ { f, F}(u) := dF(u)(X f (u)) ∈ TF(u)(E) = E . (5.6)

If E = R, then the definition in formula (5.6) coincides with (5.1). For every u ∈ UN

and λ ∈ C\σ(−Lu), since 
u =∑N
j=1〈
u, ϕu

j 〉L2ϕu
j , the generating functional

Hλ(u) = 〈(Lu + λ)−1
u,
u〉L2 = −
N
∑

j=1

2πλuj

λ + λuj
(5.7)

is well defined. The analytical continuation allows to extend the map λ �→ Hλ(u) to the
domain C\σpp(−Lu), and it has simple poles at every λ = −λuj . Proposition 2.3 yields
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that −‖u‖2
L2

4C4 ≤ λu1 < · · · < λuN < 0, where C = inf f ∈H1
+\{0}

‖|D| 14 f ‖L2‖ f ‖L4 denotes the

Sobolev constant. So we introduce

Y = {(λ, u) ∈ R× UN : 4C4λ > ‖u‖2L2} = X
⋂

(R× UN ) , (5.8)

where X is given by Definition 2.14. Then Y is open in R×UN andH : (λ, u) ∈ Y �→
−∑N

j=1
2πλuj
λ+λuj

∈ R is real analytic by Proposition 4.6. The Fréchet derivative of Hλ is

given by (2.16), so

XHλ
(u) = ∂x∇uHλ(u) = ∂x (|wλ(u)|2 + wλ(u) + wλ(u)), ∀(λ, u) ∈ Y, (5.9)

by formula (1.12), where wλ(u) = (Lu + λ)−1(
u). The following proposition restates
the Lax pair structure of the Hamiltonian equation associated to Hλ. Even though the
stability of UN under the Hamiltonian flow of Hλ remains as an open problem, the
Poisson bracket defined in (5.6) provides an algebraic method to obtain the first two
formulas of (1.15).

Proposition 5.7. Given (λ, u) ∈ Y defined by (5.8), we have {Hλ, L}(u) = [Bλ
u , Lu]

and

{Hλ, λ j }(u) = 0, {Hλ, γ j }(u) = Re〈[G, Bλ
u ]ϕu

j , ϕ
u
j 〉L2 = − λ

(λ+λuj )
2 , (5.10)

for every j = 1, 2, . . . , N, where Bλ
u = i(Twλ(u)Twλ(u) + Twλ(u) + Twλ(u)).

Proof. Since L : u ∈ L2(R,R) �→ Lu = D − Tu ∈ B(H1
+ , L

2
+), ∀u ∈ L2

+, we
have dL(u)(h) = −Th , ∀h ∈ L2

+. If (λ, u) ∈ Y , then the C-linear transforma-
tion Lu + λ ∈ B(H1

+ , L
2
+) is bijective. So formula (5.9) yields that {Hλ, L}(u) =

dL(u)(XHλ
(u)) = −T∂x (|wλ(u)|2+wλ(u)+wλ(u)). Then identity (2.22) yields the Lax equa-

tion for the Hamiltonian flow of the generating function Hλ, i.e.

{Hλ, L}(u) = [Bλ
u , Lu] ∈ B(H1

+ , L
2
+). (5.11)

Consider the map Lϕ j : u ∈ UN �→ Luϕ
u
j = λujϕ

u
j ∈ H1

+ , for every (λ, u) ∈ Y , we
have

{Hλ, L}(u)ϕu
j + Lu

({Hλ, ϕ j }(u)
) = λuj {Hλ, ϕ j }(u) + {Hλ, λ j }(u)ϕu

j ∈ H1
+ .

Then (5.11) yields (λuj − Lu)
(

Bλ
uϕ

u
j − {Hλ, ϕ j }(u)

)

= {Hλ, λ j }(u)ϕu
j . Since ϕu

j ∈
Ker(λuj − Lu) and ‖ϕu

j ‖L2 = 1 by (4.9), we have {Hλ, λ j }(u) = 〈(λuj − Lu)
(

Bλ
uϕ

u
j−

{Hλ, ϕ j }(u)
)

, ϕu
j 〉L2 = 0. We defineN2 : ϕ ∈ L2 �→ ‖ϕ‖2

L2 , thenN2 ◦ ϕ j ≡ 1 on UN .
Then we have

0 = d(N2 ◦ ϕ j )(u)
(

XHλ
(u)
) = 2Re〈ϕu

j , {Hλ, ϕ j }(u)〉L2 . (5.12)
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So there exists r ∈ R such that Bλ
uϕ

u
j − {Hλ, ϕ j }(u) = irϕu

j because Ker(λ
u
j − Lu) =

Cϕu
j by corollary 2.7 and formula (5.12). Since Bλ

u is a skew-adjoint operator on

L2
+ and γ j = Re〈Gϕu

j , ϕ
u
j 〉L2 , we have {Hλ, γ j }(u) = Re

(

〈G{Hλ, ϕ j }(u), ϕu
j 〉L2+

〈Gϕu
j , {Hλ, ϕ j }(u)〉L2

)

= Re〈[G, Bλ
u ]ϕu

j , ϕ
u
j 〉L2 . Furthermore, for every (λ, u) ∈ Y ,

formula (3.3) implies that [G, Twλ(u)] = 0 and

[G, Bλ
u ] f = i[G, Twλ(u)](Twλ(u)( f ) + f ) = − 1

2π [(wλ(u) f )
∧(0+) + f̂ (0+)]wλ(u), ∀ f ∈ D(G).

(5.13)

Since (wλ(u)ϕu
j )
∧(0+) = 〈ϕu

j , wλ(u)〉L2 = (λ + λuj )
−1〈u, ϕu

j 〉L2 and 〈u, ϕu
j 〉L2 =

−λuj
̂ϕu
j (0

+), we replace f by ϕu
j in formula (5.13) to obtain 〈[G, Bλ

u ]ϕu
j , ϕ

u
j 〉L2 =

− λ
(λ+λuj )

2 , ∀(λ, u) ∈ Y . ��

Remark 5.8. Recall that H̃ε = 1
ε
H 1

ε
and B̃ε,u := 1

ε
B

1
ε
u in Remark 2.18, ∀(ε−1, u) ∈ Y .

In general, the identity (−1)n {En, γ j }(u) = Re〈[G, dn
dεn
∣

∣

ε=0 B̃ε,u]ϕu
j , ϕ

u
j 〉L2 holds for

every conservation law En = (−1)n dn
dεn
∣

∣

ε=0H̃ε in the BO hierarchy, ∀1 ≤ j ≤ N .

Corollary 5.9. Forany j, k = 1, 2, . . . , N,wehave2π{λ j , γk}(u) = δk j , {λk, λ j }(u) =
0, ∀u ∈ UN .

Proof. Given u ∈ UN , ∀λ >
‖u‖2

L2

4C4 , we have (λ, u) ∈ Y , then formula (5.7) and

formula (5.10) imply that − λ
(λ+λuj )

2 = {Hλ, γ j }(u) = 2π
∑N

k=1{ λ
λ+λk

, γ j }(u) =
−2πλ

∑N
k=1

{λk ,γ j }(u)
(λ+λuk )

2 and 0 = {Hλ, λ j }(u) = 2πλ
∑N

k=1
{λk ,λ j }(u)
(λ+λuk )

2 , ∀ j = 1, 2, . . . , N .

The uniqueness of analytic continuation yields that − z
(z+λuj )

2 = −2π z∑N
k=1

{λk ,γ j }(u)
(z+λuk )

2

and
∑N

k=1
{λk ,λ j }(u)
(z+λuk )

2 = 0, ∀z ∈ C\R. ��
Recall that the actions I j : u ∈ UN �→ 2πλuj and the generalized angles γ j : u ∈ UN �→
Re〈Gϕu

j , ϕ
u
j 〉L2 are both real analytic functions by Proposition 4.6 and Corollary 4.7.

Proposition 5.10. Givenu ∈ UN , the family {dI1(u), dI2(u), . . . dIN (u); dγ1(u), dγ2(u),
. . . dγN (u)} is linearly independent in the cotangent space T ∗

u (UN ). As a consequence,
�N : UN → �N × R

N is a local diffeomorphism.

Proof. Givena1, a2, . . . , aN , b1, b2, . . . , bN ∈ R such that (
∑N

j=1 a jdI j (u)+b jdγ j (u))
(h) = 0, ∀h ∈ Tu(UN ). Corollary 5.9 yields that ∀ j, k = 1, 2, . . . , N , we have
dI j (u)(XIk (u)) = {Ik, I j }(u) = 0 and dγ j (u)(XIk (u)) = {Ik, γ j }(u) = δ jk . We
replace h by XIk (u) to obtain that bk = 0. Then set h = Xγk (u), we have ak = 0. ��
Since all the actions (I j )1≤ j≤N are in evolution by Corollary 5.9 and the differen-
tials (dI j (u))1≤ j≤N are linearly independent for any u ∈ UN , the level set Lr :=
⋂N

j=1 I
−1
j (r j ) is a real analytic Lagrangian submanifold ofUN ,∀r = (r1, r2, . . . , r N ) ∈

�N . Moreover, Lr is invariant under the Hamiltonian flow of I j , ∀ j = 1, 2, . . . , N , by
the Arnold–Liouville theorem.
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5.3. The diffeomorphism property. This subsection is dedicated to proving the real bi-
analyticity of �N : UN → �N × R

N . It remains to show its surjectivity. The proof is
based on Hadamard’s global inverse function theorem.

Theorem 5.11. (Hadamard) Suppose X and Y are connected smooth manifolds, then
every proper local diffeomorphism F : X → Y is surjective. If Y is simply connected
in addition, then every proper local diffeomorphism F : X → Y is a diffeomorphism.

Lemma 5.12. The map �N : UN → �N × R
N is proper.

Proof. If K is compact in �N × R
N , we choose un ∈ �−1

N (K ), so

�N (un) = (2πλ
un
1 , 2πλ

un
2 , . . . , 2πλ

un
N ; γ1(un), γ2(un), . . . , γN (un)) ∈ K , ∀n ∈ N.

We assume that there exists (2πλ1, 2πλ2, . . . , 2πλN ; γ1, γ2, . . . , γN ) ∈ K such that
λ
un
j → λ j and γ j (un) → γ j up to a subsequence. So (M(un))n∈N converges

to some matrix M = (Mkj )1≤k, j≤N ∈ C
N×N whose coefficients are defined by

Mkj = i
λk−λ j

√ |λk ||λ j | , if k �= j ; Mj j = γ j − i
2|λ j | , ∀1 ≤ j, k ≤ N . Lemma 5.6

yields that σpp(M) ⊂ C−. We set Q(x) := det(x − M) and u = i Q
′

Q − i Q
′

Q
∈

UN . The Viète map V is defined in (4.1) and V(CN−) is open in C
N . Then there

exists a(n) = (a(n)0 , a(n)1 , . . . , a(n)N−1), a = (a0, a1, . . . , aN−1) ∈ V(CN−) such that

Qn(x) = det(x − M(un)) = ∑N−1
j=0 a(n)j x j + xN and Q(x) = ∑N−1

j=0 a j x j + xN .

We have limn→+∞ Qn(x) = Q(x), ∀x ∈ R. So limn→+∞ a(n) = a. The continu-
ity of �N : a = (a0, a1, . . . , aN−1) ∈ V(CN−) �→ 
u = i Q

′
Q ∈ L2

+ yields that


un → 
u in L2
+, as n → +∞. Since UN inherits the subspace topology of L2(R,R),

we have (un)n∈N converges to u in UN . The continuity of the map �N shows that
�N (u) = (2πλ1, 2πλ2, . . . , 2πλN ; γ1, γ2, . . . , γN ) ∈ K . ��
Proposition 5.13. The map �N : UN → �N × R

N is a real analytic diffeomorphism.

5.4. A Lagrangian submanifold. In general, the symplectomorphism property of �N
is equivalent to its Poisson bracket characterization (1.15). The first two formulas of
(1.15), which are given in Corollary 5.9, lead us to focusing on the study of a special
Lagrangian submanifold of UN , denoted by

�N := {u ∈ UN : γ j (u) = 0, ∀ j = 1, 2, . . . , N }. (5.14)

Lemma 5.14. For every u ∈ UN , then each of the following four properties implies the
others:

(a) The N-soliton u ∈ �N .
(b) For every x ∈ R, we have 
u(x) = 
u(−x).
(c) The N-soliton u is an even function R → R.
(d) The Fourier transform û is real-valued.

Proof. (a) ⇒ (b) is obtained by (5.3) and (5.2). (b) ⇒ (c) is given by the for-
mula u = 
u + 
u. (c) ⇒ (d) is given by u(x) = u(x) = u(−x). Finally,
(d) ⇒ (a): fix λ ∈ σpp(Lu) = {λu1, λu2, . . . , λuN } and ϕ ∈ Ker(λ − Lu). Since both

u and its Fourier transform û are real-valued, we have [(ϕ)∨]∧(ξ) = ϕ̂(ξ), where
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(ϕ)∨(x) := ϕ(−x),∀x, ξ ∈ R. Since Tu((ϕ)∨) = (Tuϕ)∨, we have (ϕ)∨ ∈ Ker(λ−Lu).
We choose the orthonormal basis {ϕu

1 , ϕ
u
2 , . . . , ϕ

u
N } in Hpp(Lu) as in formula (4.9).

Corollary 2.7 yields that dimC Ker(λ − Lu) = 1. There exists θ̃ j ∈ R such that

(ϕu
j )
∨ = ei θ̃ jϕu

j ⇔ (ϕu
j )
∧(ξ) = ei θ̃ j (ϕu

j )
∧(ξ), ∀ξ ∈ R, ∀ j = 1, 2, . . . , N . So we

set φu
j := exp(

i θ̃ j
2 )ϕu

j , then its Fourier transform (φu
j )
∧ is a real-valued function. Hence

γ j (u) = Re〈Gφu
j , φ

u
j 〉L2(R) = − 1

2π Im〈∂ξ [(φu
j )
∧], (φu

j )
∧〉L2(0,+∞) = 0. ��

Lemma 5.15. The level set �N is a real analytic Lagrangian submanifold of (UN , ω).

Proof. The map γ : u ∈ UN �→ (γ1(u), γ2(u), . . . , γN (u)) ∈ R
N is a real ana-

lytic submersion by Proposition 5.10. So the level set �N is a properly embedded
real analytic submanifold of UN and dimR �N = N . The classification of the tan-
gent space Tu(UN ) is given by Proposition 1.2. If u(x) = ∑N

j=1
2η j

x2+η2j
, for some

η j > 0, then we have Tu(�N ) = ⊕N
j=1 R f uj , where f uj (x) = 2[x2−η2j ]

[x2+η2j ]2
. We

have ( f uj )
∧(ξ) = −2π |ξ |e−η j |ξ |. Then by definition of ω, we have ωu(h1, h2) =

i
2π

∫

R

ĥ1(ξ)ĥ2(ξ)
ξ

dξ = i
2π

∫

R

ĥ1(ξ)ĥ2(ξ)
ξ

dξ ∈ iR, ∀h1, h2 ∈ Tu(�N ). Since the sym-
plectic form ω is real-valued, we have ωu(h1, h2) = 0, for every h1, h2 ∈ Tu(�N ).
Since dimR(�N ) = N = 1

2 dimR UN , �N is a Lagrangian submanifold of UN . ��

5.5. The symplectomorphism property. Finally, we prove the assertion (b) in Theorem
5.2, i.e. the map �N : (UN , ω) → (�N × R

N , ν) is symplectic. We set #N = �−1
N :

�N ×R
N → UN , let #∗

Nω denote the pullback of the symplectic form ω by #N which
is defined by (1.22). The goal of this subsection is to prove that

ν̃ := #∗
Nω − ν = 0. (5.15)

Lemma 5.16. For every u ∈ UN , set p = �N (u) ∈ �N × R
N . Then we have

d�N (u)(XIk (u)) = ∂
∂αk

∣

∣

p, ∀k = 1, 2, . . . , N . (5.16)

Proof. Fix u ∈ UN and p = �N (u), ∀h ∈ Tu(UN ), we have d�N (u)(h) ∈
Tp(�N ×R

N ). For every smooth function f : p = (r1, r2, . . . , r N ;α1, α2, . . . , αN ) ∈
�N × R

N �→ f (p) ∈ R, we have (d�N (u)(h)) f = d( f ◦ �N )(u)(h) =
∑N

j=1(dI j (u)(h)
∂ f
∂r j

∣

∣

p + dγ j (u)(h)
∂ f
∂α j

∣

∣

p). For every k = 1, 2, . . . , N , we replace h

by XIk (u) ∈ Tu(UN ), thus Corollary 5.9 yields that
∂ f
∂αk

∣

∣

p =
(

d�N (u)(XIk (u))
)

f . ��
Lemma 5.17. For every1 ≤ j < k ≤ N, there exists a smooth function c jk ∈ C∞(�N×
R

N ) such that

ν̃ =
∑

1≤ j<k≤N

c jkdr
j ∧ drk,

∂c jk
∂αl

∣

∣

∣

p
= 0, ∀ j, k, l = 1, 2, . . . , N , (5.17)

for every p = (r1, r2, . . . , r N ;α1, α2, . . . , αN ) ∈ �N × R
N .
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Proof. The proof is divided into three steps. The first step is to prove that for every
p ∈ �N × R

N and every V ∈ Tp(�N × R
N ),

ν̃p(
∂

∂αl

∣

∣

p, V ) = 0, ∀l = 1, 2, . . . , N . (5.18)

In fact, let u = #N (p) ∈ UN and p = (r1, r2, . . . , r N ;α1, α2, . . . , αN ), so rl =
rl(p) = Il ◦ #N (p). Then we have (#∗

Nω)p(
∂

∂αl

∣

∣

p, V ) = ωu(d#N (p)
(

∂
∂αl

∣

∣

p

)

,

d#N (p)(V )) = ωu(XIl (u), d#N (p)(V )) by (5.16). Thus (#∗
Nω)p(

∂
∂αl

∣

∣

p, V ) =
−dIl(u)(d#N (p)(V )) = −d(Il ◦ #N )(p)(V ). On the other hand, νp( ∂

∂αl

∣

∣

p, V ) =
∑N

j=1(dr j ∧dα j )( ∂
∂αl

∣

∣

p, V ) = −drl(p)(V ). Thus (5.18) is obtained by ν̃ = #∗
Nω−ν.

Since we have ν̃ = ∑

1≤ j<k≤N (a jkdα j ∧ dαk + b jkdr j ∧ dαk + c jkdr j ∧ drk), for

some smooth functions a jk, b jk, c jk ∈ C∞(�N × R
N ), the second step is to prove

that a jk = b jk = 0 on �N × R
N , for every 1 ≤ j < k ≤ N . In fact, we have dr j ∧

drk( ∂
∂αl

∣

∣

p, V ) = 0, dr j∧dαk( ∂
∂αl

∣

∣

p, V ) = −δkldr j (p)(V ) and dα j∧dαk( ∂
∂αl

∣

∣

p, V ) =
δ jldαk(p)(V )− δkldα j (p)(V ). Let l ∈ {2, . . . , N } be fixed, ∀1 ≤ j < k ≤ N ,

∑

1≤l<k≤N

alkdα
k(p)(V )−

∑

1≤ j<l≤N

(a jldα
j (p)(V ) + b jldr

j (p)(V ))

= ν̃p(
∂

∂αl

∣

∣

p, V ) = 0. (5.19)

Then we replace V by ∂
∂r j

∣

∣

p and ∂
∂α j

∣

∣

p respectively in (5.19), then a jl = b jl = 0,
∀1 ≤ j ≤ l − 1.

It remains to show that c jk depends only on r1, r2, . . . , r N , for every 1 ≤ j < k ≤ N .
The symplectic form ω is closed by Proposition 1.3 and ν = dκ is exact, where κ =
∑N

j=1 r jdα j . So dν̃ = #∗
N (dω) = 0. Precisely, we have

∑

1≤ j<k≤N
∑N

l=1
(

∂c jk
∂αl

dαl∧
dr j ∧ drk +

∂c jk
∂rl

drl ∧ dr j ∧ drk
)

= 0. Since the family {dr j∧drk∧dαl}1≤ j<k≤N ,1≤l≤N
⋃{dr j ∧ drk ∧ drl}1≤ j<k<l≤N is linearly independent in �3(UN ), we have

∂c jk
∂αl

= 0,
for any 1 ≤ j < k ≤ N and l = 1, 2, . . . , N . ��
Since the 2-form ν̃ is independent of α1, α2, . . . , αN , it suffices to consider points
p = (r,α) ∈ �N × R

N with α = 0. We shall prove ν̃ = 0 by introducing the
Lagrangian submanifold �N × {0RN }.
End of the proof of formula (5.15). We have �N × {0RN } = �N (�N ), where �N is
the Lagrangian submanifold of (UN , ω) defined by (5.14). If q ∈ �N × {0RN }, set
v = #N (q) ∈ �N , we have

Tq(�N × {0RN }) =
N
⊕

j=1
R

∂

∂r j

∣

∣

∣

q
= d�N (v)(Tv(�N )). (5.20)
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For any point p = (r1, r2, . . . , r N ;α1, α2, . . . , αN ) ∈ �N × R
N and ∀V1, V2 ∈

Tp(�N × R
N ), where Vm = ∑N

j=1
(

a(m)
j

∂
∂r j

∣

∣

p + b(m)
j

∂
∂α j

∣

∣

p

)

, a(m)
j , b(m)

j ∈ R, m =
1, 2, we choose q = (r1, r2, . . . , r N ; 0, 0, . . . , 0) ∈ �N × {0RN } and W1,W2 ∈
Tq(�N × {0RN }), where Wm =∑N

j=1 a
(m)
j

∂
∂r j

∣

∣

q , m = 1, 2. We set v = #N (q) ∈ �N .

Since c jk(p) = c jk(q), then (5.17) yields that ν̃p(V1, V2) = ∑

1≤ j<k≤N (a
(1)
j a(2)k −

a(1)k a(2)j )c jk(p) = ν̃q(W1,W2) = ωv(d#N (v)(W1), d#N (v)(W2)), because we have
νq(W1,W2) = 0. The identification (5.20) yields that hm := d#N (v)(Wm) ∈ Tv(�N ),
for m = 1, 2. Consequently, we have ν̃p(V1, V2) = ωv(h1, h2) = 0. ��

6. Asymptotic Approximation

This section is dedicated to describing the asymptotic behavior of the multi-soliton
solutions of (1.1).

Proof of corollary 1.11. Given u ∈ UN , we defineM(u) = (Mj j (u)δk j )1≤k, j≤N , where
Mj j is given in (1.18). Given (t, x) ∈ R

2, we setA = A(u, t, x) :=M(u)−x− t
π
V(u),

whereV is given in Corollary 1.10. ThenA(u, t, x)−1 = (a j (u, t, x)δk j )1≤k, j≤N , where
a j (x, t, u)−1 := γ j (u) − x − t

π
I j (u) + π i

I j (u)
. We set K(u) := M(u) − M(u), then

∀u0 ∈ UN , we have u∞(t, x, u0) = 2Im〈A(u0, t, x)−1X (u0),Y (u0)〉CN . If u : t ∈
R �→ u(t) ∈ UN solves the BO equation (1.1) such that u(0) = u0 and |t | is large, then

u(t, x) =u(t, x; u0) = 2Im〈(A(u0, t, x) + K(u0))
−1 X (u0), Y (u0)〉CN

=u∞(t, x; u0) + 2Im
∑

n≥2
〈
(

−A(u0, t, x)
−1K(u0)

)n
A(u0, t, x)

−1X (u0), Y (u0)〉CN .
(6.1)

Given R > 0, we have ‖A(u0, t)−1‖L∞x (−R,R) ≤∑N
j=1
(

(
|I j (u0)|

π
|t | − R− |γ j (u0)|)2 +

π2

I j (u0)2

)− 1
2

→ 0, when |t | → +∞. So there exists T(u0, R, N ) > 0 such

that 2N 2‖A(u0, t)−1‖L∞x (−R,R)‖K(u0)‖CN×N < 1, if |t | ≥ T(u0, R, N ). Moreover,

‖A(u0, t)−1‖2L2
x (R)

≤ π
∑N

j=1 k j (u0). Then (6.1) yields that

‖u(t)− u∞(t)‖L2x (−R,R) �u0,N
∑

n≥2
‖
(

−A(u0, t)
−1K(u0)

)n
A(u0, t)

−1‖L2x (−R,R)

�u0,N ‖A(u0, t)
−1‖2L∞x (−R,R)‖K(u0)‖2CN×N ‖A(u0, t)

−1‖L2x (R)
→ 0

as |t | → +∞. Given x ∈ R, similarly, there exists T′(u0, x, N ) > 0 such that the
series of functions t ∈ [T′(u0, x, N ),+∞) �→ 2t2Im

∑

n≥2〈
(−A(u0, t, x)−1K(u0)

)n

A(u0, t, x)−1X (u0),Y (u0)〉CN ∈ C converges uniformly. Since limt→±∞ t2u∞(t, x) =
∑N

j=1 2
k j (u0)3

and limt→±∞ tA(u0, t, x)−1 = −πV(u0)−1, we have u(t,x)
u∞(t,x) = 1 +

2t2Im
∑

n≥2〈
(−A(u0, t, x)−1K(u0)

)n
A(u0, t, x)−1X (u0),Y (u0)〉CN (t2u∞(t, x))−1

→ 1, as |t | → +∞ by formula (6.1). ��
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