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Abstract: This paper is dedicated to proving the complete integrability of the Benjamin—
Ono (BO) equation on the line when restricted to every N-soliton manifold, denoted by
Un . We construct generalized action—angle coordinates which establish a real analytic
symplectomorphism from Z/y onto some open convex subset of R* and allow to solve
the equation by quadrature for any such initial datum. As a consequence, Uy is the
universal covering of the manifold of N-gap potentials for the BO equation on the torus
as described by Gérard—Kappeler (Commun Pure Appl Math, 2020. https://doi.org/10.
1002/cpa.21896. arXiv:1905.01849). The global well-posedness of the BO equation
on Uy is given by a polynomial characterization and a spectral characterization of the
manifold Uy . Besides the spectral analysis of the Lax operator of the BO equation and
the shift semigroup acting on some Hardy spaces, the construction of such coordinates
also relies on the use of a generating functional, which encodes the entire BO hierarchy.
The inverse spectral formula of an N-soliton provides a spectral connection between the
Lax operator and the infinitesimal generator of the very shift semigroup.
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1. Introduction

The Benjamin—Ono (BO) equation on the line reads as
du =Hd>u — d,(u?), (1, x) eRxR, (1.1)

where u is real-valued and H = —isign(D) : L*>(R) — L?(R) denotes the Hilbert
transform, D = —idy,

Hf(¢) = —isign(€) f(§), Vf € LA(R). (1.2)

sign(££) = =+1, for all £ > 0 and sign(0) = O, f € L2(R) denotes the Fourier—
Plancherel transform of f € L2(R). We adopt the convention L” (R) = L?(R, C).Its R-
subspace consisting of all real-valued L?-functions is specially emphasized as L” (R, R)
throughout this paper. Equipped with the inner product (f, g) € L*(R) x L*(R)
(f.8)2 = fR f(x)g(x)dx € C, L>(R) is a C-Hilbert space. Derived by Benjamin [3]
and Ono [17], the BO equation (1.1) describes the evolution of weakly nonlinear internal
long waves in a two-layer fluid. Equation (1.1) is globally well-posed in every Sobolev
space H*(R, R), see Tao [23] for s > 1, see lonescu—Kenig [10] for s > 0, etc. On
appropriate Sobolev spaces, equation (1.1) can be written in Hamiltonian form

0t = 0xVy, E(u), E(u) = =(Dlu,u) _1 1 —l/ u3, (1.3)
R

1

2 H IHI 3

where V, E (1) denotes the LZ(R)-gradient of E, 0, is the Gardner—Faddeev—Zakharov
Poisson structure and X g (1) = 0,V, E(u) is the Hamiltonian vector field of E with
respect to the Poisson structure d,. Since d, = —d} is an unbounded operator on
L?>(R, R) with domain H'(R, R) and range given by

W= d, (HI(R, R)) ={uel*RR): / 'ﬂ‘;;'zds < +00}, (1.4)
R
its inverse 0, LW — HU(R,R) is a symplectic structure on W. A 2-covector @ €
AZ(W*) is defined by @(h1, hy) = (h1, E)x_lhz)Lz, Vhi, hy € W. Under appropriate
conditions on the functionals F and G, w is the symplectic form corresponding to the
Gardner bracket, which is defined by

{F,G}(u) := (0, V, F(u), ViG(u)) 2. (1.5)
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The goal of this paper is to show the complete integrability of equation (1.1) when
restricted to every multi-soliton manifold. Recall the scaling and translation invariances
of equation (1.1): if u = u(¢, x) is a solution, so is the function u., : (t,x) >
cu(c?t, clx — y)). A smooth solution u = u(z, x) is called a solitary wave of (1.1) if
there exists R € C*°(RR) solving the following non local elliptic equation

HR +R-R>*=0, Rx) >0 (1.6)

such thatu(t, x) = R.(x —y —ct), where R.(x) = ¢R(cx),forsomec > Oand y € R.
In [2], Amick and Toland have shown that the unique (up to translation) solution of (1.6)
is given by

R(x) = Vx € R. (1.7)

l+x2 ’

Definition 1.1. For any positive integer N € N, := Z[)(0, +00), the set Uy is defined
as follows,

N
={ue L’ R.R):u(x) =Y ¢;R(cj(x —x)).c; >0, x;€R,

j=1
V1l <j <N} (1.8)
Afunctionu € Uy is called an N-soliton of the BO equation (1.1). The set of translation—
scaling parameters of u is given by P(u) := {x; — cl_li, X3 — cz_li, ce XN — cg,li}
and m(z) denotes the multiplicity of z € P(u) in the expression of u in (1.8). As
a consequence, u(x) =y —2mlmz - ang g polynomial characterization of

2€P(U) (x—Rez)?+(Im2)?
each N-soliton is given as follows,

u(x)= Y ImZ2D = —ZImQ(X;, 0.X) = [ x-2™@, @19

z2€P(u) zeP(u)

where Q, € C[X] is called the characteristic polynomial of u, Vu € Uy .

The setUy is in one to one correspondance with the set My that consists of all polynomials
of degree N with leading coefficient 1, whose roots are contained in the lower half plane
C- = {z € C : Imz < 0}. Moreover, the bijection u € Uy — Q, € Vy provides the
real analytic structure on Uy .

Proposition 1.2. Equipped with the subspace topology of the R-Hilbert space L*(R, R),
the subset Uy is a simply connected, real analytic, embedded submanifold of L*>(R, R)
and dimr Uy = 2N. For every u € Uy, the tangent space to Uy at u is given by
T.(UN) = B.cpoy R™P (Regp,) DR™D (Img,)), where ¢_(x) := (x —2)72, ¥z €
Pu) c C_.

Given u € Uy, we have fR u = 27w N, so the tangent space 7, (Uy) is included in an
auxiliary space
T:={heL*R, (1 +x>dx): h(R) CR, h(©0) =0} (1.10)

The Hardy’s inequality yields that 7 is contained in the auxiliary space VV given b 2/ (1.4).
Sow N L?(x%dx) = T. We define a real analytic 2-form w : u € Uy — @ € A*(W*),
ie.

[ m@h + fy(6)h
wu(hy, hy) = ﬁé%df Z_Imfo 1@;;(5)%
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Vhi, hy € T,(Un). (1.11)

Then we show that w establishes the symplectic structure, which corresponds to the
Gardner bracket (1.5), on the N-soliton manifold U/ defined by (1.8).

Proposition 1.3. Endowed with w in (1.11), the real analytic manifold Uy, w) is a
symplectic manifold. For any smooth function f : Uy — R, let Xy € X(Uy) denote its
Hamiltonian vector field, then

Xp() =0, Vf@) € T,Uy), Vu€Uy. (1.12)

The Gardner bracket in (1.5) coincides with the Poisson bracket associated to the
symplectic form w, i.e. for another smooth function g : Uy — R, we have
oy (X r(u), Xg(w)) = {f, g}(u), Yu € Uy.

The following result indicates the global well-posedness of the BO equation (1.1) on the
manifold Uy .

Proposition 1.4. For every N € Ny, the manifold Uy is invariant under the BO flow.

Remark 1.5. Since Uy C H*®R,R)(L*R, x*dx) with HXR,R) := (),~¢
H* (R, R), the energy functional E in (1.3) is well defined on Uy . So equations (1.1)
and (1.3) are equivalent on Uy .

Inspired from the construction of Birkhoff coordinates of the space-periodic BO equation
in Gérard—Kappeler [8], we want to establish the generalized action—angle coordinates
of (1.1) on Uy. Let

Qn ={r1.r2,....rN) €RY i1y <y < <1y <0} (1.13)

denote the subset of actions. For any j,k = 1,2,..., N, the Kronecker symbol is
denoted by &, i.e. §j = 1if j = k; §; = 0,1if j # k. The main result of this paper is
stated as follows.

Theorem 1. There exists a real analytic diffeomorphism

Oy uelUy— (Ii(w), Lw),...,Inw); i), y2(u),...,yn@)) € Qy x RY
(1.14)

such that the following statements hold:
(i) The Poisson brackets (1.5) between the coordinate functions are well defined and

{Ij,]k}zo, {I',yk}zakj, {)/j,)/k}ZO on Uy, Vj,k=1,2,...,N.
(1.15)

(ii) The energy functional E defined in (1.3), when expressed in the coordinate func-
tions, is given by

N
1 2
E(u):—g Ellj(u) , Yu € Uy.
J:

The coordinates {/;}1<;<n are referred to as actions and {y;}1<j<n as (generalized)
angles.
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Corollary 1.6. When expressed in the generalized action—angle coordinates I}, y;, 1 <
J < N, the restriction of the BO equation (1.1) to Uy reads as

O (Ij ou) () ={E, I;j}u@®) =0, 8 (yjou)®) ={E, yj}u®)=k;u@), vieR, (1.16)

where K := —% is referred to as the j th frequency and u : t € R — u(t) € Uy solves
equation (1.1). As a consequence, 1jou(t) = Ijou(0) and yjou(t) = yjou(0)+(k;o
u(0))t. Foranyr € Qp, <I>X,1 (r} xR isa Lagrangian submanifold that is invariant
under the flow of (1.1).

Remark 1.7. For any j = 1,2,..., N, the frequency k; : Uy — (0, +00) is a linear
function of the action /;. Hence the motions of the angles are completely decoupled.

Remark 1.8. The image of actions Q2 is a noncompact convex polytope. As a conse-
quence, the manifold I/ can be interpreted as the universal covering of the manifold of
N-gap potentials U;\T, for the Benjamin—Ono equation on the torus T := R /27 Z, which
is introduced in theorem 7.1 of Gérard—Kappeler [8],

Uy :={v=2Reh € LX(T,R) : Mm:-ﬂ%%%,QeCMML(LW)
where (C;rv [X] consists of all polynomials £ € C[X] of degree N with leading coefficient
1, whose roots are contained in the annulus &/ := {z € C : |z| > 1}. Since the
fundamental group of U;J\T, is (Z, +), the manifold UIE is mapped real bi-analytically onto

Un /7. We refer to remark 1.13 to see the comparison between the main theorem 1 and
theorem 7.1 of [8].

A precise description of @y is given in Definition 5.1 and Theorem 5.2. In order to estab-
lish the link between the action—angle coordinates and the translation—scaling parameters
of an N-soliton, we introduce the inverse spectral matrix associated to @y, denoted by
M:uely— (Myj(u))i<k,j<n € CN*N _ where

. . i ; . . — 2mi I (u)
ij (u) == Vi (u) + Ijn(it)’ ViI<j=<N; Mkj () == Ik(u)f}j(u) Il}(u),

Vi< j#k<N. (1.18)

Proposition 1.9. Given u € Uy, the polynomial Q, in (1.9) is the characteristic poly-
nomial of the inverse spectral matrix M(u) € CN*N defined by (1.18). As a conse-

quence, an N-soliton is expressed by u(x) = 29;1 ¢jR(cj(x — x})) if and only if its
translation—scaling parameters {x; — c;li}lstN C C_ are eigenvalues with corre-

sponding multiplicities of the matrix M (1), whose coefficients are expressed in terms of
the action—-angle coordinates (1;(u), yj(u))1<j<n € QN X RN,

Proposition 1.9 is restated with more details in Theorem 4.8, Proposition 5.4 and Corol-
lary 5.5, which both give a spectral characterization of the N-soliton manifold Uy and
establish a spectral connection between the inverse spectral matrix M (u) € CV*V and
the Lax operator L,, which is given in Definition 2.2, of the BO equation (1.1), for any
u € Uy. Then an explicit expression of solutions of equation (1.1) on the multi-soliton
manifolds can be deduced by using Corollary 1.6 and Proposition 1.9.
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Corollary 1.10. Ifu : t € R +— u(t) € Uy solves equation (1.1) such that u(0) = uy,
then for any (t, x) € R x R, we have
-1
u(t, x) = u(t, x; uo) = 2Im((M(uo) — (x + £B(uo))) ™ X(uo), Y (uo))cn, (1.19)

where the inner product of CV is (X, Y>1$N = XTY; and Yu € Uy, the matrix M (u) is
given by (1.18), the matrix B(u) € CN*N and the vectors X (u), Y (u) € CN are defined
by

Iy (u)
VX! = (Il )L .. Ty ). ™

_ B(u) =
Vo v = GiInwi b i,

' Iy (u)

One application of the explicit formula (1.19) is to describe the asymptotic behavior of
the multi-soliton solutions of the BO equation (1.1).

Corollary 1.11. Givenug € Uy, we setuoo(t X) = Uoo(t, X; Ug) 1= ijzl Rkj(uo)(x—

vj(wo) — K;j(uo)t), where Ro(x) = T 2 e and kK = —%. Ifu:t e R u(t) ey
solves (1. 1) with u(0) = ug, then

(i) for any R > 0, we have lim;—, o0 u(t) — oo (1)l 2(— g g) = 05

(ii) for any x € R, we have lim;_, +oo ([(tx;) =1
When t — =00, the N-soliton solutions of equation (1.1) can be approximated asymp-
totically by the superposition of N solitons such that the j th soliton which starts from
the point y; (u¢), moves with constant velocity K (#0) and constant scaling parameter
K (uo). We refer to Matsuno [14] and the references therein to see another expression
of multi-soliton solutions, the soliton interactions, the non linear superposition principle
and other asymptotic behaviors of solutions of equation (1.1), which are studied by using
Hirota’s bilinear transformation, the pole expansion and the Bicklund transformation.
However, it still remains to solve an algebraic equation (see for instance Proposition 1.9
or formula (3.266) in section 3.3 of Matsuno [14]) by radicals in order to express the
velocity & scaling parameter K (uo) and the starting point y; (uo) of the asymptotic
approximation u, (o) in terms of the translation—scaling parameters with correspond-
ing multiplicities of the initial datum uo € Uy . Compared with Matsuno [14], we give
a precise and explicit expression of the velocity & scaling parameter Kk ; (i) = —@
of us(ug), thanks to the min-max formula (4.8) and definition 5.1.

Remark 1.12. When N = 1, formula (1.19) has been established in Benjamin [3], Ono
[17] and Amick—Toland [2]. Moreover, letu : t € R +— u(t) € U solve the BO equation

(1.1),if u(0, x) = Cz(fﬁ for some x; € Rand ¢ > 0, then uso(t, x) = u(t, x) =
-

21 Y(t, x) € R2.

A x—(x1+c10)2+1°

1.1. Notation. Before outlining the construction of action—angle coordinates, we intro-
duce some notations used in this paper. The indicator function of a subset A C X is
denoted by 14, i.e. 14(x) = 1 if x € A and 14(x) = 0 if x € X\A. Recall that
H: L2(R) — L2(R) denotes the Hilbert transform given by (1.2). SetId 2 (f) = f,

forevery f € L2(R). Let IT : L%2(R) — L2(R) denote the Szegd projector, defined by

M= 220" o [7(6) = 10400 ©) /6), VE R, VfeL2R). (120)
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If O is an open subset of C, we denote by Hol(£D) all holomorphic functions on O. Let
the upper half-plane and the lower half-plane be denoted by C; = {z € C : Imz > 0}
and C_ = {z € C : Imz < 0} respectively. For every p € (0, +o0], we denote by L*
to be the Hardy space on C,, which is defined by L? = L?(R) := {g € Hol(C,) :
||g||Lf < +00}, where

1
gl » = sup </ Ig(X+iy)|”dx)[ ., if p e (0,+00), (1.21)
y>0 R

and [ gl = sup,cc, 18(2)|- A function g € L3° is called an inner function if |g| = 1

on R. When p = 2, the Paley—Wiener theorem yields the identification between L% and
M[L*(R)]:

L? = F7UL%(0, +00)] = {f € L*(R) : suppf C [0, +00)} = MI(L*(R)),

where F : f € L*(R) f € L%(R) denotes the Fourier—Plancherel transform.
Similarly, we set L? = (Isz(R) — II)(L%(R)). Let the filtered Sobolev spaces be
denoted as HY := L% N H*R) and H® := L* (| H*(R), for every s > 0. We set
H®R,R) :=(,»0 H* R, R).

The domain of definition of an unbounded operator A on some Hilbert space £ is
denoted by D(A) C £. Given another operator 3 on D(B) C & such that A(D(A)) C
D(B) and B(D(B)) C D(A), their Lie bracket is an operator defined on D(A) (D(B) C
&, which is given by [ A, B] := AB — BA. If the operator A is self-adjoint, let o (A)
denote its spectrum, op,(A) denotes the set of its eigenvalues and ocont(A) denotes
its continuous spectrum. Then o¢on (A) | 0pp(A) = o (A) C R. Given two C-Hilbert
spaces &1 and &, let B (&1, &) denote the C-Banach space that consists of all bounded
C-linear transformations £ — &>, equipped with the uniform norm. We set B(&;) :=
B, Er).

All manifolds introduced in this paper are smooth manifolds without boundary. Given
a smooth manifold M of real dimension N, let C°°(M) denote all smooth functions
f : M — R and the set of all smooth vector fields is denoted by X(M). The tangent
(resp. cotangent) space to M at p € M is denoted by 7,(M) (resp. T;(M)). Given

k € N, the R-vector space of smooth k-forms on M is denoted by Q%(M). Given a
R-vector space V, we denote by A¥(V*) the vector space of all k-covectors on V. Given
a smooth covariant tensor field A on M and X € X(M), the Lie derivative of A with
respect to X is denoted by Zx (A), which is also a smooth tensor field on M. If N is
another smooth manifold, F : N — M is a smooth map and A is a smooth covariant
k-tensor field on M, the pullback of A by F, denoted by F*A, is a smooth k-tensor field
on N that is defined by Vp e N,Vj = 1,2, ...k,

(F*A)p(vi, v2, ..., k) = Ap(p) (dF(p)(v1), dF (p)(v2), ..., dF(p)(v))
Vu; € T,(N). (1.22)

Given a positive integer N, let C<y_1[X] denote the C-vector space of all poly-
nomials with complex coefficients whose degree is no greater than N — 1 and
Cy[X] = C<ny[XI\C<y_1[X] consists of all polynomials of degree exactly N.
Given 0 € Cy[X], we set O(X) = Y a; X/, if 0(X) = Y ga;X/. We
set Ry = [0, +00), R = (0, +00) and C* = C\{0}. Let D(z,r) C C denote the
open disc of radius r > 0, whose center is z € C and its boundary is denoted by
C(z,r)y=0D(z,r)={neC:n—2zl=r}.
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1.2. Organization of the paper. The construction of action—angle coordinates for the
BO equation (1.3) on Uy mainly relies on the Lax pair formulation o,L,, = [By, L,],
discovered by Nakamura [15] and Bock—Kruskal [4]. Section 2 is dedlcated to the spectral
analysis of the Lax operator L, : h € Hl —idch — TI(uh) € L2 % given by definition
2.2 for general symbol u € L*(R, R), where IT denotes the Szego projector given in
(1.20) and the Hardy space LE is given in (1.21). Then L, is an unbounded self-adjoint
operator on L% that is bounded from below, it has essential spectrum oess (L) = [0, +00).
In addition, if u € L*(R, x%dx) N L*(R, R), every eigenvalue of L, is negative and
simple, thanks to the following identity,

M@O))* = =27 |lll7,, if AeR and ¢ € Ker(r — Ly), (1.23)

which is firstly found by Wu [24] in the case A < 0. Then we introduce a generating
functional which encodes the entire BO hierarchy,

Hy(u) = ((Ly +A) "', M) 2, if A € C\o(—Ly), (1.24)

in Definition 2.14. It provides a sequence of conservation laws controlling every Sobolev
norm.

In Sect. 3, we study the shift semigroup (S(17)*),>0 acting on the Hardy space Li,
where S(n) f = e, f and ¢,(x) = €% Then a weak version of the Lax Theorem 3.2,
which is stated as Lemma 3.3, can be obtained by solving a linear differential equation
with constant coefficients. Every N-dimensional subspace of L% that is invariant under

Coy_1[X .
CanilX] , for some monic

the infinitesimal generator G = i% |77:O+ S(m)* is of the form
polynomial Q € Cy[X] whose roots are contained in the lower half-plane C_.

In Sect. 4, the real analytic structure and symplectic structure of the N-soliton subset
Uy are established at first. Then we continue the spectral analysis of L, Vu € Uy. The
Lax operator L, has N simple eigenvalues A{ < A5 < --- < A}, < 0 and the Hardy

space L% splits as

L3 = Hom(Li) @ Hp(Li),  Hoomt(Lu) = Hie(Lu) = O, L3,

Hip(Ly) = =, (1.25)

where Q, denotes the characteristic polynomial of u given by (1.9) and ®, = % is
an inner function on the upper half-plane C... Proposition 1.9 is proved by identif};ing
M (u) in (1.18) as the matrix of the restriction G| S (L) associated to the spectral basis
{of. ¢35, ... on}, where ¢ € Ker(A] — L )such that [|¢%]l2 = 1 and mep > 0.
The generating function HA in (1.24) can be identified as the Borel-Cauchy transform
of the spectral measure of L, associated to ITu, which yields the invariance of /y under
the BO flow in H*° (R, R). Hence (1.3) is a globally well-posed Hamiltonian system on
Un.

Section 5 is dedicated to completing the proof of theorem 1. The generalized angle
variables are the real parts of the diagonal elements of the matrix M (u), i.e. y; : u €
Uy — Re(G<pJ’4, ¢?>L2 € R and the action variables are I; : u € Uy 271)3’ e R.
Thanks to the Lax pair formulation dL (1) (X ¢, (1)) = [ ,Ly],where L : u € L{N —
L, € %(H] L2) is R-affine and B)‘ is some skew- adJomt operator on L+, we have
27 {Aj, vk} = &jand {Aj, Ay} =0onlUy, 1 < j,k < N.Then @y : Uy — Qy x RV
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is areal analytic immersion. The diffeomorphism property of ®  is given by Hadamard’s
global inverse function theorem. Finally, we show that &y : Uy, w) = (Qn X RV v)
is a symplectomorphism by restricting @ — ®3,v to a special Lagrangian submanifold

AN = ﬂj-vzl yj_l(O) C Uy . Corollary 1.11 is proved in Sect. 6.

Remark 1.13. (Comparison with Gérard—Kappeler [8]) The BO equation on T = R/
27 Z reads as

dv=H"9%v—8,(v?), (t,.x) eRxT, (1.26)

where HT denotes the Hilbert transform on L2(T, C) that is defined by HT f(x) =
—i Y a1 2 f ()™ Vf =3, f(n)el™ € L2(T, C). It can be written in Hamil-
tonian form on appropriate Sobolev spaces

v =0, VoET(v), ET(v)= 1 /271 <1(|a 120(x))2 — lv(x)3> dx, (1.27)
tV — Ux Vo ) - X ) .
2t Jy \2 3

where X pr(v) = 0, V, E T(v) is the Hamiltonian vector field of ET with respect to the
symplectic form

ST )= Y s fam. ;= Y fime™ € LoD = (v e LX(T.R) : (0) = 0).

[n|=1 [n|>1

(1.28)
The global Birkhoff coordinates for (1.26) on Lio(’JI‘) described in theorem 1.1 of [8] is
denoted by
1
tTive L} o(T) = (Za(v))n=1 € b, (1.29)

1
where b+2— = {(Zn)n€N+ cC: ||(Zn)n€N+“2l = Zn>l |Vl||Zn|2 < 400} is awelghted Zz'
! >

sequence space. Thanks to theorem 7.1 of [8], the N-gap potential manifold U;\T, defined
by (1.17) is a connected, real analytic, symplectic submanifold of (Lf’O(T), oT) given
by (1.28) and U;\T, is characterized by

Uy={eLi(T) : ¢v@ #£0, @) =0, Vj>N}\L (1.30)

So it is invariant under the flow of equation (1.26) and dimp UIE = 2N. Let v =
i Z;V:] dz; A dz; denote the canonical symplectic form on CN=1 % C*. The restriction

of complex Birkhoff coordinates ¢T given by (1.29), to the manifold U IE establishes a
real analytic diffeomorphism

(T = (87) yz v € U > 100, 20, o ov (@) € TV x € (131
such that ;‘E preserves the symplectic structure, i.e. (;%)* 7 = ', and the energy
functional ET in (1.27), when expressed in the coordinate functions, is given by

N

N N 2
ETw) =) "n’le> =) <Z |f;k<v>|2> . VveUR.
n=1 k=n

n=1
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The generating functional defined in (1.24) plays a key role in proving the local dif-
feomorphism property and the symplectomorphism property of action—angle/Birkhoff
map in both theorem 1 of this paper and theorem 7.1 of [8]. The real analytic structure
of Uy (resp. U;\T,) is constructed by establishing a real analytic embedding from an open
subset of CN to L2(R, R) (resp. L%(T, R)) with range given by Uy (resp. U;\T,). A real
analytic covering map from the N-soliton manifold Uy to the N-gap potential manifold
U;\T, is established in remark 1.8. However, the construction of the action—angle map ®
in (1.14) is quite different from the construction of the Birkhoff map ;T in [8].

1. The symplectic form o™ given by (1.28) is well defined on L%,O(T)’ which is a
C-Hilbert space that contains every manifold U;\I,. So Ug is a symplectic submanifold
of (L%,O’ a)T). The BO equation on the torus (1.26), when restricted to U ,'J\T,, is interpreted

as an integrable subsystem of equation (1.26) on (Lf’o, 7). On the other hand, in the
space non-periodic regime, we do not know whether there exists a large submanifold
of L2(R, R), denoted by £, such that £ contains every multi-soliton manifold Uy, £ is
invariant under the flow of (1.1), and there exist action—angle coordinates for the BO
equation (1.1) on £, whose restriction to Uy is ® given in (1.14). Evidently, £ can not
be chosen as W = 3, (H' (R, R)) given by (1.4), because Uy (W = @. However, the
2-covector w : (hy, hp) € W2 (hy, Bx_lhz)Lz(R) is defined on W. The extension of

the symplectic form w € Q% (Uy), which is defined by (1.11), to the manifold £ would
be the major difficulty for constructing action—angle coordinates of the BO equation
(1.1) on £. Since Uy () W = 0, we have to use Cartan’s formula (4.2) in order to prove
the closedness of the 2-form w : u € Uy +— w, = @ € A>(W*), which may not be
interpreted as a pullback of @. Moreover, the simple connectedness of U/ is established
by a special property of the Viete map (4.1).

2. In any case, the Lax operator for the BO equation is self-adjoint and bounded
from below. The spectrum of the Lax operator L'g in the space-periodic regime consists
of a sequence of simple eigenvalues G(Llr) = {Ag(v) < )\}T(v) < ---} C R and the
gap between each two of them is at least 1. Then the n th action variable is defined
by 1, (0)|? = )»E(v) — kg_l(v) — 1 in [8], Vn > 1. However, in order to prove the
simplicity and negativeness of eigenvalues of the Lax operator L, in Definition 2.2 for
the BO equation on the line (1.1), we have to introduce the auxiliary identity (1.23).
The action variables for equation (1.1) on Uy are actually the eigenvalues of 27 L,,
Yu € Uy.

3. The shift operator ST : f € Li(T) — e f(x) e L%('JT) and its adjoint
are bounded operators on the Hardy space L%(']I‘) = T (L%(T, C)), where TIT :
> nez gne™ € LA(T,C) > Y, gne'™™ € L*(T, C) denotes the Szegd projector on
L?(T, C). So both the inverse formula for v € L*>(T, R), which is denoted by formula
(4.5) in [8], and the spectral characterization of U T which is given by formula (1.30) of
this paper and (7.2) in [8], can be directly obtained by computing the 0 th Fourier mode
of each eigenfunction of the space-periodic Lax operator L;J)T without using Beurling’s
theorem that characterizes all the shift-invariant subspaces of Li(']I‘) = %p(L?)T). On
the other hand, in the case of the BO equation on the line (1.1), the Lax operator L, in
definition 2.2 has not only eigenvalues but also continuous spectrum. In order to deter-
mine the characteristic polynomial @, in (1.9) and prove the spectral characterization
Theorem 4.8 for Uy, we have to do the spectral decomposition (1.25) and identify each
spectral subspace as the corresponding closed shift-invariant (also called translation-
invariant) subspace by both introducing the two shift semigroups (S(1)) >0, (S(1)*) >0,
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and using Lax’s scalar representation Theorem 3.2 or its special case stated as Lemma
3.3. In fact, Yu € Uy, the spectral subspace s%c(L,) is invariant under (S(1)),>0;
the spectral subspace %, (L) is invariant under (S(1)*);>0 and dimc %4, (L,) = N

Since the infinitesimal generator G = i% |n:O+S (n)* is an unbounded, densely defined
operator on L%(R), given by (3.2), we study its restriction to the N-dimensional spectral

subspace .7, (L,). Then Lemma 3.3 yields that O, (X) = det(X — G|t%’f)p(Lu))-

1.3. Related work. Besides the global well-posedness problem of the BO equation (1.1),
various properties of its multi-soliton solutions have been investigated in detail. Both
the solitary waves for (1.1) and the internal periodic waves for (1.26) are completely
classified in Amick—-Toland [2]. The H '-orbital stability of double solitons of (1.1) is
obtained in Neves—Lopes [16]. In Dobrokhotov—Krichever [6], the multi-phase solutions
(periodic multi-solitons) for (1.26) are constructed by finite zone integration and they
have also established an inversion formula for multi-phase solutions. Compared with
their work, we give a geometric description of the inverse spectral transform by proving
the real bi-analyticity and the symplectomorphism property of the action—angle map

dp given by (1.14). Furthermore, the inverse spectral formula # = —2Im Q; with
0, (x) =det(x — G| S L)) = det(x — M (u)) provides a spectral connection between
the Lax operator L, and the operator G| S (L) Yu € Uy.

Concerning the investigation of the integrability of the BO equations (1.1) and (1.26),
besides the discovery of their Lax pair structures, we mention the pioneering work of
Ablowitz—Fokas [1], Coifman—Wickerhauser [5], Kaup—Matsuno [12] and Wu [24,25]
about the direct and inverse scattering transform of (1.1). Equations (1.1) and (1.26)
both admit an infinite hierarchy of conservation laws that control every H*-norm of the
solutions, see [1] and [5] for the case 25 € N, see Talbut [22] for the case —% <s <0
and for conservation laws controlling Besov norms, etc. In the space-periodic regime,
Gérard and Kappeler have shown in [8] that (1.26) admits global Birkhoff coordinates on
L2 o(T), see also remark 1.13 for the comparison between [8] and theorem 1 of this paper.
We point out that both Korteweg—de Vries (KdV) equation on T (see Kappeler—Poschel
[11]) and the cubic defocusing Schrodinger (ANLS) equation on T (see Grébert—Kappeler
[9]) admit global Birkhoff coordinates. The theory of finite-dimensional Hamiltonian
system is transferred to BO, KdV and dNLS equations on T through the submanifolds
of finite-gap potentials, which are introduced in order to solve the periodic KdV initial
problem. Moreover, the cubic Szegd equations both on T (see Gérard—Grellier [7]) and
on R (see Pocovnicu [18]) admit global (generalized) action—angle coordinates on all
finite-rank generic rational function manifolds, denoted respectively by M (N )gen and

M(N )Eg%m. A real analytic covering map can be established from M (N ) to M(N)T gen-
Moreover, the cubic Szegd equations both on T and on R have inverse spectral formulas
which permit the Szegd flows to be expressed explicitly in terms of time-variables and
initial data without using action—angle coordinates. The shift semigroup (S(1)*),>0 and
its infinitesimal generator G are also used in [18].

Remark 1.14. The BO equation (1.1) can be interpreted as a Schrodinger-type equation,
which is filtered by the Szeg projector IT : L*(R) — L%. Ifu:teR— u@ e
H?(R,R) solves (I.1)and w : t € R — w(r) := I(u(t)) € HZ, then equation (1.1)
reads as an NLS—Szegé equation

igw — 82w +id,(w? + 2M(Jw») =0, (r,x) e RxR. (1.32)
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We refer to Sun [20,21] to see the long time and asymptotic behavior of other NLS—Szegd
equations.

2. The Lax Operator

This section is dedicated to studying the Lax operator L, in the Lax pair formulation
of the BO equation (1.1). Then we describe the location of its spectrum and revisit the
simplicity of its eigenvalues. At last, we introduce a generating functional H;, which
encodes the entire BO hierarchy. The equation d;u = 9.V, H, (#) also enjoys a Lax
pair structure. Now, we recall a basic fact concerning unitarily equivalent self-adjoint
operators.

Proposition 2.1. If £| and &, are two Hilbert spaces, let A be a self-adjoint operator
defined on D(A) C &1 and B be a self-adjoint operator defined on D(B) C &,. Both A
and B have spectral decompositions

&1 = ool A) P Hc (A @D Hp (A, & = Hae(B) @D Hie(B) P H4p(B).
2.1)

If A and B are unitarily equivalent i.e. there exists a unitary operator U : £y — &, such
that

BU=UA DB)=UDA), (2.2)

then oxx (A) = oxx(B) and U 76« (A) = Fx(B), for every xx € {ac, sc, pp}. Moreover,
for every bounded borel function f : R — C, f(A) is a bounded operator on &y, f(B)
is a bounded operator on &, we have f(B) = U f(A)U*.

2.1. Spectral analysis I. In this subsection, we study the essential spectrum and discrete
spectrum of the Lax operator L,,. The spectral analysis of L, such that « is a multi-soliton
in definition 1.1, will be continued in Sect. 4.2.

Definition 2.2. Given u € LZ(R, R), its associated Lax operator L, is an unbounded
operator on L2, given by L, := D — T,, where D : h € H! > —id,h € L? and T,
denotes the Toeplitz operator of symbol u, defined by 7, : h € H l — Il(uh) € Li,
where the Szeg6 projector IT : L2(R) — L% is given by (1.20). If u € H'(R, R) in
addition, we define B, := i(Tipjy — Tuz) e B(H!, L%).

Both D and T, are densely defined symmetric operators on L% and || T, (h)||;2 <
llull 7211 oo, for every h € Hl and u € L>(R, R). Moreover, the Fourier—Plancherel
transform implies that D is a self-adjoint operator on L%, whose domain of definition is
H!.

Proposition 2.3. If u € L*(R,R), then L, is an unbounded self-adjoint operator on

L%, whose domain of definition is D(L,) = HJ}. Moreover, L, is bounded from below.
The essential spectrum of L, is 0ess(Ly) = 0Oess(D) = [0, +00) and its pure point
1

llull? . DI £l 2
L L
T +00), where C = 1nff€H+|\{0} /T4 denotes

spectrum satisfies opp(Ly) C [—
the Sobolev constant.
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Proof. For every h € L2, let ,u,,ll) denote the spectral measure of D associated to A,

2
then we have (f(D)h, h)2 = [ £&)HOLdg, so duP (&) = Mdg
L h
Thus o (D) = 0e(D) = oaC(D) = [0,+00). If u € LZ(R, R), we claim that P, :=

T, o (D +i)~! is a Hilbert—Schmidt operator on L%.

In fact, let F : h € L2 \/szn € L*(R}) denotes the renormalized Fourier—

Plancherel transform, then A, := .% o P, o .# ! is an operator on Lz(Rj‘r). Then we

have A,g(8) =[5> Ku(&, n)g(n)dn, where K, (€, 1) = $1, V&, 5 € RY. So

||-Au||H$(L2(Rj)) < ||K||L2(R*><R1) < Ju ”L2 . Since P, is unitarily equivalent to A,, we

llel)?
have ”P"”HS(LZ ZAEG(’P,,))‘ = ZAEJ(AM))‘ = ”A””HS(U(Ri)) = TL
Then the symmetric operator 7, is relatively compact with respect to D and
Weyl’s essential spectrum theorem (Theorem XIII.14 of Reed—Simon [19]) yields that
Oess(Ly) = 0ess(D) and L, is self-adjoint with D(L,) = D(D) = H +1 Moreover,

1
(Tufs ezl = | [pulf1P] < ||uI|L2||f||L4 < C?[lull 21 £ 12 1IDI2 f1 2 holds by

Sobolev embedding || f|l;+ < C~ 1|||D| 4 f|l2, forevery f € HJ}. Then L, is bounded

2 2
from below, precisely (L, f, f);2 = |||D|%f||i2 — (T fs fy2 = D2V when

4c?
flull? L
L2 themap L, — A : H! — L2 isinjective. Hence opp(Ly) C [—

+00).
O

el >
4ct >

A< — ach

Proposition 2.4. Assume that u € L*(R, (1 + x*)dx) and u is real-valued. For every
L € Rand ¢ € Ker(A — L), we have up € C'(R) (| H'(R) and the following identity
holds,

[, @) 121* = =27 Allgll3 . (2.3)

Thus opp(Ly) C (=00, 0) and for every A € opp(Ly), we have

Ker(h— L,) C {p € H! : gr, € C'R) [ |H'(R,) and
£ > E[QE) +0:0(5)] € LA R} (2.4)

Before the proof of proposition 2.4, we recall a lemma concerning the regularity of
convolutions.

Lemma 2.5. For any p € (1,+00), we have W"™P(R) * W"’%(R) c C™"(R)

p
WmH+R), Vm,n € N. For every f € W™P(R) x W"»-T(R), we have
lim|y|5 400 07 f(Xx) =0, Vo =0,1,...,m+n.

Remark 2.6. Identity (2.3) was firstly found by Wu [24] in the case . < 0. We show that
(2.3) still holds in the case A > 0. Hence the operator L, has no eigenvalues in [0, +00).

Proof of proposition 2.4. We choose u € L*(R, (1+x?)dx) suchthat u(R) C R, A € R
and ¢ € L% such that L,(¢) = Ag. Applying the Fourier—Plancherel transform, we
obtain

19 (E)1[0,400) (§) = (6 — 1)P(§) =: g2(6). (2.5)
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Since i € H'(R) and ¢ € L2(R), their convolution &g = 5-i * ¢ € C'(R) " Co(R),
where Co(R) denotes the uniform closure of C.(R) with respect to the L°°(R)-
norm, by Lemma 2.5. We claim that if A < 0, then ¢ € Cl(R+); if A > 0, then
¢ € C(Ry) N C' R4 \{A)).

In fact, if A > 0, we have g (1) = 0. Otherwise, A would be a singular point of ¢
that prevents ¢ from being a L? function on R,, because £ — $+/\ ¢ L*(R,). By using

the fact g € C'(R,) (g is right differentiable at & = 0 and the derivative g’ is right
continuous at & = 0), we have

oo - SO =80 {gm), it 2> 0;

£ g0, if A=0;

when & — 1. So ¢ € C(Ry) and limg_, 100 $(£) = 0. Then we derive (2.5) with respect
to & to get

—iXux (&) = g, (§) = U9) (§) = (&) + (€ —M(@)' (), V& €0, +00)\(A}.
(2.6)

Thus we have
ELE = DIGE ] = [8E)” +2Re[((E — M (@) E)G(E)]
= 2Re[(@9)' (€)$(E)] — 16(E) . 2.7

e When A < 0, it suffices to use the Plancherel formula 0+°°(ﬁg\o)’(§)5($)d§ =
—ZnifR xu(x)|@(x)|?dx and to integrate equation (2.7) on [0, +00). Since (§ —
MIBENI? = 19E)PE) — 0, as £ — +o0, we have APO)> = [ £I(E —
VIGE)PIdE = drIm fi ru(0)lo@)Pdx — 5> 19E)1PdE = —27llpl2, -

e When A > 0, there may be some problem of derivability of ¢ at & = A. We replace
the integral f0+oo by two integrals fOA_E and I +°:, for some € € (0, ). We set Z(¢) :=

MO = elp0. — OFF = el + O, then T(e) = 2Re ( f; (@) €)§()ds—

) ©9(E)dE) — [ 19()PdE + [7¢16(6)[dé. Thanks to the continuity of

¢ on Ry, we have A@(0)|* = lime—o+ Z(€) = =27 @175 -

e When A = 0, we use the same idea and integrate (2.7) ) over interval [€, +00), for some
€ > 0. Then J(€) := —€|@(e)|* = 2Re [ (@) (€)@(E)dg — [ 1¢(£)|*dE — 0,
ase — 0.

So we always have —277 || ¢ ||?

L2(R)
has only negative eigenvalues, if the real-valued function u € L*(R, (1+x2)dx). Finally
we use #¢(0) = —A¢(0) to get identity (2.3). If 1 € opp(L,) and ¢ € Ker(r — L,)\{0},
we want to prove that

= /\|¢(0)|2,if¢ € Ker(A—L,). As aconsequence L,

Er> (1+[ED9(E) € L*(0, +00). (2.8)
In fact, since ¢ € H! < L®(R) and u € L*(R, (1 + x*)dx), we have i1 = % €
H'(R). Formula (2.5) yields that & > (JA| +&)@(£) € L?(R) and we have ¢ € L' (R).
The hypothesis u € L*(R, x2dx) implies that the convolution term Xu * ¢ € L2(R).
Since A < 0, we obtain (2.8) by using formula (2.6). O
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Corollary 2.7. Assume that u € LR, (1 + x3)dx) and u is real-valued. Then every
eigenvalue of L, is simple. If u € L°°(R) in addition, then opp(Ly) is a finite subset of
flel?

[_ 4Cﬁ2 ) O)

Proof. Fix A € opp(Ly) and set V) = Ker(A — L), then dim¢(V;) > 1. We define
a linear form A : V, — C such that A(p) := fR ug. Then identity (2.3) yields that
Ker(A) = {0}. Thus we have V), = V,/Ker(A) = Im(4) — C. So dim¢c(V,) = 1.
When u € L*(R) in addition, the finiteness of opp (L) ((—o0, 0) is given by Theorem
1.20of Wu[24]. O

2.2. Lax pair formulation. We recall some known results of global well-posedness of
the BO equation on the line.

Proposition 2.8 (Tao [23], Ionescu—Kenig [10], etc.). Given s > 0, the Fréchet space
CR, H*(R)) is endowed with the topology of uniform convergence on every com-
pact subset of R. There exists a unique continuous mapping ug € H'(R) — u €
C(R, H5(R)) such that u solves the BO equation (1.1) with initial datum u(0) = uy.

Proposition 2.9 (Ablowitz—Fokas [1], Coifman—Wickerhauser [5], etc.). For every
neN:=ZN[0,+00), ifug € HX(R,R), letu : t € R — u(t) € H2(R,R)
solves equation (1.1) with initial datum u(0) = ug, then we have C(|Iu0||H%) =
Sup;cr ||u(t)||H% < +00.

Whenu € H 2(]R, R), the Toeplitz operators Tp|, and T, are bounded both on L% and
on H/. So B, is a bounded skew-adjoint operator both on L2 and on H,.

Proposition 2.10. Let u : t € R — u(t) € H*(R, R) denote the unique solution of
equation (1.1), then

dLuwy = [Buwy, Luy) € B(HL, L), VieR. (2.9)

The proof of proposition 2.10 can be found in Gérard—Kappeler [8], Wu [24] etc. In
order to make this paper self contained, we recall it here.

Proof. Since %(L ouw)t) = —Touty = —Tuo2u()—o,(u)?) it suffices to prove
[By, L,]+ Taozu—, (u?) = 0 for every u € H*(R, R). In fact, we have ii(—£) = (&),

u = Iu + Tu and |Dju = DITu — DIIu. Since both 7, and B, are bounded both
L2 — L2 and H! — H!, we have

[Bu, Lu1f = — T1(f0x|Dlu) + iTl[uI1(f|Dlu) — [DIuIT@uf)] + H[0xull(uf) + ull(f o u)]
(2.10)
= —TI(fH?u) + T + Tp € L2,

for every f € H/, where the terms Z; and Z, are given by

Zy = il[ull(f|Dlu) — |DluIl(uf)]
= TI[ fTTud, Mu + fTud, ] — Oul1(f 8, Tu) — TT(f TTu)dy Mu + TI[IT(f TTu)d, T — TTuT1( £, Tu)],
Ty = M[d,ull(uf) + ull(fdyu)] = TI(fTTu)d, Tue + TuTT(f 3, Tlue) + TT(TTuT1( f 9, TTue))
+ 2 fTIud, Tlu + T1[ f Tudy Tu + fT1udy Mu + T1(f TTu) 3, u).
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Since 9, ITu € L2, we have TI[TT( fTTu)d, [Tu] = T1[ fTIud, I1u]. Thus,

Ty + T = 2 f Tud, Tu + 2T f Tud, i + £ T0ud, Tu + T TT)d, T = T[£9, u?)] € H.
(2.11)

Formulas (2.10) and (2.11) yield that [B,, L,,]1f = TI[f (8, (u?)—Hd2u)]. Thus equation
(2.9) holds along the evolution of equation (1.1). O

Remark 2.11. As indicated in Gérard—Kappeler [8], there are many choices of the oper-
ator B,,. We can replace B, by any operator of the form B, + P, such that P, is a
skew-adjoint operator commuting with L, . For instance, we set C, := B, +i Lg and we
obtain C, = iD? — 2iDT, + 2i Tpry,. So (Ly, C,) is also a Lax pair of the BO equation
(1.1). The advantage of the operator B, = i(Tipj, — T?) is that B, : L2 — L2 is
bounded if u is sufficiently regular. For instance, u € H 2(R, R).

LetU:t—U() € ‘B(L%) = ‘B(L%r, L%) denote the unique solution of the following
equation

U'(t) = BupU(1).  U0)=1d,5, (2.12)

ifu:teRr u(t) e H*(R, R) denote the unique solution of equation (1.1). The sys-
tem (2.12) is globally well-posed in %(Li), thanks to Proposition 2.9 and the following
estimate

IBuMliz2 S Ulull gz + lull 0kl 2, Vhe Ly, Vu e HX(R,R).

Since B} = —B,, the operator U(¢) is unitary for every t+ € R. Thus, the Lax pair
formulation (2.9) of the BO equation (1.1) is equivalent to L,y = U ()L, @)U (#)* €
B(H 1 Li). On the one hand, the spectrum of L, is invariant under the BO flow. On
the other hand, there exists a sequence of conservation laws controlling every Sobolev

norms H? (R), n > 0. Furthermore, the Lax operator in the Lax pair formulation is
not unique. If f € L°°(R) and p is a polynomial with complex coefficients, then we
have f(Ly) = U(t) f(Luo)U@®)* € B(L3) and p(Ly) = U @) p(Luo)U(1)* €
%(H+N, L%), where N is the degree of the polynomial p.

Proposition 2.12. Given n € N, letu : t € R — u(t) € H%(R, R) solve equation
(1.1), we set

En(u) == (L' Tlu, Tu) (2.13)

Then E, (u(t)) = E,(u(0)), foreveryt € R. In particular, E1 = E on H% (R, R), where
the energy functional E is given by (1.3).
In order to prove Proposition 2.12, we need the following result.

Proposition 2.13. Ifu : t € R — u(t) € H*(R, R) solve the BO equation (1.1), then
we have

O TTu(t) = By (Mu(®) +i Ly, (Mu(t)) € L. (2.14)
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Proof. For every u €¢ H 2(R, R), B, is a bounded operator on both L% and H +1, IMu €
D(L,) = H. We have ii(—&) = @i(€), u = Mu + Tu and |D|u = DITu — DTTu. Since
DITu € L?, wehave IT(ITuDTIu) = IT(uDTIx). Thus the following two formulas hold,

B, (Tu) = i (Tipjy — T2)(Mu) = i (TMu)(DMu) — i T1(uDTlu) — i T2 (Tu)
= Tudy Mu — T (ud, M) — i T2 (Tu),
iL2(TMu) = iD*Mu — i T,,(DIu) — iD o T, (Tu) + i T> (Tu)
= —id2Mu — T, (9, M) — 8, [T, (TTu)] + i T2 (Twe).

Then B, (Tu) +i L2 (Tu) = —id>Tu — 2T1[TTud, TTu + Tud, Tu + TTud, [u]. Finally
we replace u by u(t), where u : t € R +— u(t) € H?(R, R) solves equation (1.1) to
obtain (2.14). 0O

Proof of proposition 2.12. Tt suffices to prove it in the case ug € H*(R, R). Then
we use the density argument and the continuity of the flow map up € H*(R) +—
u € C([-T,T]; H*(R)) in proposition 2.8, where VT' > 0, s > 0. We choose u =
u(t) € H°(R,R) = (,=0 H* (R, R), so L"Tu, 8T and 8;(L")Mu = [B,, L"]Mu
are in H* (R, C). Thus 9;E, (u) = 2Re(L"Tu, 9;TTu) ;> + (3; (L!)TTu, Tu) ;2. Since
B, +i L2 is skew-adjoint, we have 2Re (L TTu, 8, TTu) ;2 = ([L", B,+i L2 TTu, Mu);» =
(L7, ByIT1u, Iu) ;2 by (2.14). Since (L}, B,) is also a Lax pair of (1.1), we have
0 En(u) = (([L}, Byl + 0;(L!))u, Mu);> = 0. In the case n = 1, we assume that
u € H'(R,R). Since u = TMu + Tu, |D|u = DITu — DIu and [, (ITu)* = 0, we have
(IDlu, u);2 = 2(DTu, Tu) ;2 and [ u? =3 [p(Mu + )| Tu|? = 3 [pu|Mul*>. O

2.3. The generating functional. We introduce a new conservation law of the BO equation
(1.1) that encodes the entire BO hierarchy.

Definition 2.14. Given u € L*(R,R), > € C\o(—L,), the generating functional of
equation (1.1) is defined by H;, (u) = ((L,+A) "' Tu, [Mu);2. Thesubset X' := {(X, u) €
R x L*(R,R) : 4C*A > ||u|17,} is open in R x L*(R, R), where the Sobolev constant

1
. . D14 £l
is given by C = inf ;1\ o W

2
Since o(L,) C [—%&oo), the map (A, u) € X — H,(u) = ((L, +
A) "y, ITu);2> € Ris real analytic.

Proposition 2.15. Let u : t € R — u(t) € H*® (R, R) denote the solution of the BO
equation (1.1) and we choose A € C\o (—Ly(0)), then H; (u(t)) = H; (u(0)), for every
teR.

Proof. Letu : t € R — u(t) € H*®(R, R) solve equation (1.1). Since o (—L,)) =
o (—Ly(0)) by Proposition 2.1, the operator A + L, € B(H], L) is invertible and we
have

My (u) = 2Re((Ly + A) " T, 8:TTu) 2 — ((Ly +A) 710, Ly (Ly + A) ™' T, Tut) ;.
(2.15)
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Formula (2.14) yields that

2Re((Ly +A) "' Tu, 8, TTu) >

= ([(Ly + )", By + i L21 T, Tu) ;2 = ([(Ly +2) ™", B, 1w, M) 2,
([(Lu + 27", B, 1w, Tu) >

= ((Ly +M) "' [Bu, Ly + A1(Ly + A) "' Tlu, Tu) ;2.

Then 3,L,, = [By, L,] yields that 3, Hy (u(t)) = 0. O

Given (A, u) € X, there exists a neighbourhood of u in L%(R, R), denoted by V, such
that the restriction H, : v € V,, — H, (v) € R can be expressed by power series. Then
the Fréchet derivative of H, at u is given by dH, (u)(h) = (wy, [1h) 2 + (wy, [Th) 2 +
(Thwy, wy) 2 = (h, wy, +wy + [wi|?) 2, Yh € L2(R, R), where wy, € H! is defined
by wy = wy(u) = wi(x,u) =[(L, + Ao Mu(x), Vx € R. So

Vi H () = |wa ()| + wy () + 05 (). (2.16)

Given (A, ug) € X fixed, we consider the following equation
O = 0.V Hu () = 0x (lwa @ + w2 (0 + D) w© =ug. 217)

There exists an open subset V,, of L?(R, R) suchthatv € V,, > 9y (Jwa (v)[* + wy, (v)+
wy, (v)) € L2(R, R) isreal analytic and ug € Vy, - Hence equation (2.17) admits a unique
local L%(R, R)-solution by Cauchy—Lipschitz theorem.

Remark 2.16. In Sect. 4, we show that u € Uy +— 0,V, f(u) € T,(Uy) is exactly
the Hamiltonian vector field of the smooth function f : Uy — R with respect to the
symplectic form w on the N-soliton manifold U/ defined in (1.11).

Proposition 2.17. Given (A, ug) € X fixed, there exists ¢ > O such that (A, u(t)) € X,
for every t € (—¢,¢€), where u : t € (—¢,+¢) — u(t) € LZ(R, R) solves (2.17) with
initial datum u(0) = ug. Then

¥ Luwy = [Blyy Luwyl, where B} :=i(Tu, )T, ) + Tun) + Troy)s if (L, v) € X
(2.18)
Remark 2.18. For every u € H*® (R, R) and € € (0, ﬁ), we set He (1) := %Hl(u)
L2 €
- 1
and B¢, := éB,j . Recall that E,(u) = (L] T1u, Iu);2, we have the following Taylor
expansion
K
Heu) =Y (=€)"En(u) — (=) (L + H7' M, LETu) 12, VK €N, (2.19)
k=0
Then Proposition 2.17 leads to a Lax pair formulation for the equations corresponding
to the conservation laws in the BO hierarchy, o;L, = [%

OBe,u, L, ], where now u

€=
n

evolves according to the Hamiltonian flow of E, = (—1)"dd—

o 6207:[E with respect to
the Gardner-Faddeev—Zakharov Poisson structure. In the case n = 1, we have £y = E
and By, B

= Qe le=0Peu-
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Before proving Proposition 2.17, we introduce the Hankel operators of symbols in
LZ(R) (J L*°(R). They are used to calculate the commutators of Toeplitz operators.
We notice that the Hankel operators are C-anti-linear and the Toeplitz operators are
C-linear. For every symbol v € L?(R)|J L% (R), its associated Hankel operator is
defined by H,(h) = T;v = M(vh), Vh € HL. If v € L®(R), then H, : L2 — L2
is a bounded operator. If v € L?(R), then H, may be an unbounded operator on
L2 whose domain of definition contains H. For any b € H'(R),h € H), we have
T PN g1 + | Hp(B) | gt S BN g1 121 15 s0 both T, and Hj, are bounded on L% and on
H!.

Lemma 2.19. For every v, w € L% N L®MR)andu € L%(R), we have
[Ty, Tyl = —H, o H, € B(L2). (2.20)
If w € H in addition, then we have T,(w) € L% and

Hr,p =Ty o Hryy + Hy o Ty = Ty 0 Hy + Hryy 0 Ty € B(H!, L), (2.21)

+

Proof. Forevery v, w € L2 (| L®(R) and h € L2, we have wh = I1(wh) + IT(wh) €
L2.Thus, we have [T, Tzlh = TT(vI1(wh) —wIl(vh)) = MT(vwh—vIl(wh)—vwh) =
—T(wII(wh)) = —H, o Hy(h) € L%. Given u € L*(R) and w € H+1, for every
h € H!, we have wh = Tl(wh) + TI(wh) € H'(R) and Hy, (h), Tx(h) € H!. So
M (uTl(wh)) = N(T1(wh)u) = Hr, o Ti(h) € L2 and we have

Hr,y(h) = TI(M(uw)h) = M(uwh) = DI (wh) +uTl(Wh))
= (T, o Hy + Hry, o Typ)(h) € L2.
Similarly, we have uh = T1(uh)+T1(uh) € L*>(R) and IT(uh) = M (hTu) = Hn,(h) €

L2. Thus, we have Hr,,(h) = Ml(wuh) = M(wIl(uh) + wIl(@h)) = (T, o Hmy +
Hy,oTp(h) e L. O

Lemma 2.20. Given (A, u) € X given in Definition 2.14, set w; (u) = (L, + n o
IM(u) € Hl, then

172
[D — Ty Tw; ) Ty ) + Twy. ) + Tiwr )] = Topjw; ) Paws (4w, ] € B, LY).
(2.22)

Proof. We use abbreviation w, := w; (u) € Hl, then w; € HL. If f* g* ¢ Hl
and f7,g” € H!, then [Ty+, Tgr] = [Ty, Ty-1 = 0, because for every h € L%, we
have Ty+[Tg+(h)] = f*g*h = Tg+[Ty+(h)] and Ti-[T,-(W)] = II(fTTI(g"h) =
TI(f~g~h) = TI(g"TI(f~h)) = T,-[Ts-(h)]. Since Mu € L? and TTu € L%, we use
Leibnitz’s rule and formula (2.20) to obtain that

[D - Tua Tw;\ + TE)L] = TDUJ)L + TDw,\ - [Tu’ Tw)\] - [Tua TW)L] (223)
= TDwk + TDEX - [va ka] - [Tl'[u, TEA]
= TDw)L + TDE)L - Hw;LHl'Iu + Hl'IunW
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Similarly, formula (2.20) implies that

[Tua Tw;\ TE)L] = [Tu’ Tw;]ka + Tw)L[Tua TEA]
= [va ka]TW)L + Tw,\ [Tl_lu’ TW)L] = Hw)\ HHMTW)L - Tw,\ HHMHW)L'
(2.24)

For every h € Hl, since w;, Dw,, € L? , we have

[Da TW)L ka]h = [Dv TE,L]TwAh + TW)L [Da wa]h
= TDE)\(Tw)Lh) + TW)L(TDwAh)
= M[Dw), [1(wyh) + Wy, TT1(Dwyh)] = [(w,Dwy, + w; Dw;)h] € L.

So [D, Ty, Tw, 1 = TDlwxlz € %(Hl, Li). We use formula (2.20) and Leibnitz’s Rule to
obtain that

[D, Ty, T,1 = [D, T, Tw, 1 — [D, Hl%_A] = Tpjw, 2 — How, Huw, + Hy, Hpw, (2.25)
Recall that w; = (A + L)~ 'Tlu, then we have
Dw; = T, (wy) — Awy,_+ IMu. (2.26)
The formulas (2.21) and (2.26) imply the following two identities,

HDwx - TwAHHu = I_IT,,w;L - )\Hwk + Hry — Tw)\Hl'[u = HwATu - )‘«wa + Hriy,
I'IDw;L - Hl'[uTEA = AT, w, — )\'wa + HHu - HHMTE)L = TLtHwA - AI{w;L + HHu-
(2.27)

We use formulas (2.24), (2.25) and (2.27) to get the following formula

[D - TLH Tw,\TE)L] = TDlw;le - (HDw;\ - Tw,\HHu)Hw)L + Hw;»(HDw;L - HHMTE)L)
=Tpyu, 2 — (Huw, TuHw, — »Hy, + HruHuw,) + (Hw, Ty Hw, — MHy, + Hy, Hri)
=TD|wx|2 - Hl'lunA + HwAHl'Iw

(2.28)

At last, we combine formulas (2.23) and (2.28) to obtain formula (2.22). 0O

End of the proof of proposition 2.17. Foreveryu : t — u(r) € L*(R, R) solving equa-
tion (2.17), we have %(L ou)(t) = —Toury = —iTD(wy(u(t))ws (u(t))+ws )+ (1)) -
Consequently, the Lax equation (2.18) is obtained by identity (2.22) in Lemma 2.20. O

3. The Action of the Shift Semigroup

In this section, we introduce the semigroup of shift operators (S(17)*),>0 acting on the
Hardy space LE and classify all finite-dimensional translation-invariant subspaces of
Li. For every n > 0, we define the operator S(n) : L% — Li such that S(n) f = ¢, f,
where e;(x) = €'™. Then, its adjoint is given by S(n)* = T,_,. We have S(n)* o L, o
S(n) = Ly +nld;2, Vn = 0. Since [S)*llgg(z2) = IS g2y = 1, (S )y=0
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is a contraction semi-group. Let —iG denote its infinitesimal generator, i.e. Gf =
i%|n:O+S(n)*f € L2,¥Yf € D(G), where

D(G) :={f € L% : fr, € H'(0, +00)}, (3.1)

because lim¢_.¢ ||'/’_€ﬂ — 0¥ ll20.400) = 0, where 7 (x) = ¥ (x — €) and
Vv € HY0, +00). Every function f € D(G) has bounded Holder continuous Fourier
transform by Morrey’s inequality and Sobolev extension operator yields the existence

of f 0% := limg_, o+ f (&). The operator G is densely defined and closed. The Fourier
transform of G f is given by

Gf¢) =idf(&)., VfeD@G)., V&=>0. (3.2)
The Hille—Yosida theorem implies that (—oo, 0) C p(iG) and ||[(G — )»i)’1 ”%(L%) <
A~Lva > 0.
Lemma 3.1. For every b € L*(R) () L*°(R), we have T,(D(G)) C D(G) and the
following identity

(G, Tylp = 4% m1p (3.3)

holds for every ¢ € D(G).
Proof. For every n > 0 and ¢ € D(G), both S(n)* and T} are bounded operators on
L2, 50 we have £ (S)*, Ty1o)" ) = 5k (b (6 +m) = b x (1, (@) ©)) =

271—,7 f§+” b(Z)P(E + 1 — 0)dE, YE > 0, where T_,$(x) = ¢(x +17), ¥x € R. Then we
change the variable { =& +¢tn,for0 <t <1,

1. -~
L(iso* 14,2, 70) " ©) = 5 /0 b& +mg((1 = mdr = aph(§) + (). V& > 0. (3.4)

where a, = % Jo @((1 — Hyn)dt € C and ¢, € L2 such that @7(5) = % fol [b(& +

tn) — I;(S)](ﬁ((l — tn)dt, VE > 0. Since ¢|g, € H'(0,+00), ¢ is bounded
and lim,_, o+ (n) = @(0%), Lebesgue’s dominated convergence theorem yields that

lim, o+ ay = 2. Since b € L2(R), we have lim,_q [|zeh — b]l ;2 = 0. So gl <

16130 fo Jo™ 1bE+1m) —b(E)Pdedt = 1§13 fy IT-1qb—bII2,dt — 0,y — OF.
Thus (3.4) implies that %[S(n)* — IdLE’ Tyle = ayT1b + ¢, — @Hb in L%, when
n — 0%*.Since ¢ € D(G) and T}, is bounded, we have %Tb[(S(Tl)* —IdL%)ga] — (TpG)g
in LE, when n — 0*. Consequently, %(S(n)* — Isz)(Tbgo) — (TpG)ep + @Hb in
L2 when n — 0%. So Ty € D(G) and (3.3) holds. O

The following scalar representation theorem discovered by Lax in [13] allows to classify

all translation-invariant subspaces of the Hardy space L%, which plays the same role as
the Beurling’s theorem in the case of Hardy space on the circle.

Theorem 3.2. (Lax) Every nonempty closed subspace of L% that is invariant under the
semigroup of shift operators (S(n))y>0 is of the form OL?2, where ® is a holomorphic
function on the upper-half plane C, = {z € C : Imz > 0}. We have |©(z)| < 1,
forall z € Cy and |®(x)| = 1, Vx € R. Moreover, © is uniquely determined up to
multiplication by a complex constant of absolute value 1.
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The following lemma classifies all finite-dimensional subspaces that are invariant under
the semi-group (S (1)*),>0, which is a weak version of Theorem 3.2.

Lemma 3.3. Let M be a subspace of D(G) C Li of finite dimension N = dimc M > 1
and G(M) C M. Then there exists a unique monic polynomial Q € Cy[X] such that

0~ 0)cC_and M = W Moreover, Q is the characteristic polynomial of the
operator G| y.

Proof. We set M = {f € L%(0,+00) : f € M}, then dimc M = N. Since Gf =
i9g f on R\{0}, the restriction G|y is unitarily equivalent to i 9 | ;; by the renormalized
Fourier—Plancherel transformation. So the characteristic polynomial Q € Cy[X] of
i0g |y is well defined, let {B1, B2, ..., By} C C denote the distinct roots of Q and m;
denotes the multiplicity of 8, we have Z;;l mj = N andthereexistco, ¢y, ..., cny—1 €
Csuchthat Q(z) = det(z—idg| ) = [[}_; z—B)" = N4V erzk. The Cayley-—
Hamilton theorem implies that Q(id¢) = 0 on the subspace M.1f /S M C L2(0, +00),
then i is a weak-solution of the following differential equation

N-1

iTNoDy =0y + Yy " Negafy =0 on (0,+00), Y=0 on (00,0, (3.5)
k=0
where D = —ids. The differential operator Q(—D) is elliptic on the open interval

(0, +00) i.e. the symbol of the principal part of Q(—D), denoted by ag : (x,§) €
0, +00) x R — (—S)N, does not vanish except for £ = 0. So ¥ is a smooth function
on (0, +00). The solution space

Sol(3.5) = Spanc{fj.Yozizm;—11<j=n.  fiu() =E'eTPE1p,,  (3.6)

has complex dimension Z?:] mj = N,sowehave Sol(3.5) = M C L_% andImpB; <0,
Coy-1[X]
Q b

I . . . . P
D =BT Vx € R. The uniqueness is obtained by identifying

Vj =1,2,...,N. At last, we have M = Span(c{fj,l}oflfmj,l,15]-5,, =
where f;;(x) =
all the roots. 0O

Lemma 3.4. For every monic polynomial Q € Cy[X] such that 071(0) c C_, the
associated inner function is defined by ©® = ©g = % The following identity holds for
eve Con-1[X]
rye e 0
PE) = (SE) 9, 1 = 0O)2, VE>O0. (3.7)

In particular, $(0%) = (¢, 1 — O) ;2.

Proof. Formula (3.6) yields that =X« p(G), G(E=251H) ¢ E2oilX 4ng

¢ € CI(RY), for any ¢ € w Set ¢ = %, for some P € C<y_1[X], then we
have O¢ = %5 = % € L%. Since Q(X) = H;y:l(X — Bj), ImB; < 0, we have
O()=1+2i Zjv:l ff’;’j +(’)(x]—2), when x — 400,501 —0 € L%. As a consequence,
we have ¢(§) = [ (N1 — O(y)e 75dy = (SE)*p, 1 — ©),2,V6 > 0. O
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4. The Manifold of Multi-solitons

This section is dedicated to a geometric description of every multi-soliton subset given
in definition 1.1. Then we give a spectral characterization for the real analytic symplectic
manifold Uy in order to prove the global well-posedness of the BO equation (1.1) on
Un.

4.1. Differential structure and symplectic structure. The real analytic structure of Uy
is constructed at first.

Proof of proposition 1.2. The set Vy := {Q € Cy[X] : 071(0) ¢ C_, limy_ 400

L€ = 1) is identified as V(CY), where V : (B1.f2.....Bv) € CV
(ag,ai,...,an—1) € CV denotes the Viete map, defined by
N N-—1
H(X —Bj) = Z ar Xk + xV. (4.1)
j=l1 k=0

Recall that V : CV — CV is a both open and closed quotient map. For any open simply
connected subset A C CV, if A is saturated with respect to Vand A[| A # @ with
A={B,B8,...,B8) € CN . VB e C}, then V(A) is an open simply connected subset
of CV. With the subspace topology of CV and the Hermitian form Hcv (X, Y) = X7V,
the subset (V(CY), Hew) is a simply connected Kéihler manifold of complex dimension
N.Themap 'y : (ag, a1, ...,an—1) € V(CY) > Mu = i% € L%, where Q is given
by Q(X) = ,iV;O] ap X* + X", is both a holomorphic immersion and a topological
embedding. So [T(Uy) =Ty o V(CY) is an embedded complex analytic submanifold
of L% and dimc(IT(Uy)) = N. The map 'y : V€Y > TUy) isa biholomorphism
and Tr, (TTUN)) = D, cpy) C™@,. where §_(x) = (x —2)72,Vz € P(u), Yu € Uy.
The proof is completed by using the isometry property of the R-linear isomorphism
2T i u e Lz(R, R) — V2Mu € L%. In fact, we have 2RC|L$ = (H|L2(R’R))’l and
lull 2 = V21Tl 2. O

We set £ := L2(R,R) (L*(R, x%dx), & = {u € & : [pu = c}, YVc € R. Then
we have Uy C Expn, T,(UN) C Ey = T defined in (1.10), Yu € Uy. Moreover, T
is included in W = 8,(H' (R, R)), which is defined in (1.4), thanks to the following
lemma.

Lemma 4.1 (Hardy). For every f € H'(R) such that f(0) = 0, we have [ %dx <
4llox f 117,

Sothe2-formwin (1.11)is well defined. Then we show that w is areal analytic symplectic
form on Uy.

Proof of proposition 1.3. Given any smooth vector field X € XUy), let X_.w €
Q! (Uy) denote the interior multiplication by X, i.e. (Xuw)(Y) = w(X,Y), for every
Y € X(Up). The first step is prove that dw = 0 on Uy by using the following Cartan’s
formula:

Lxw = X,(do) +d(X ). (4.2)
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Let ¢ denote the smooth maximal flow of X. If ¢ is sufficiently close to O, then ¢; : u €
Uy +— ¢(t,u) € Uy is alocal diffeomorphism by the fundamental theorem on flows.
For any u € Uy, h1, hy € 7,(Uy), we compute the Lie derivative of w with respect
to X,

(Lxw)u(hy, ha) = lim w¢;(u)(d¢t(“)hl»d¢tr(u)h2)_wu(hlsh2)

— lim @ <M de, (u)hg) + hm ® (hl, d¢r(u)thth2) '

t—0

So (Lxw)u(hi, hy) = (ho(X, h)) @) — (hhw(X, h1)) (u). We choose (V,x') a
smooth local chart for Uy such that © € V and the tangent vector h; has the coor-
dinate expression hy = Z h(]) 9 , for some h,((]) eR,j=1,2...,2N and
k = 1,2. The tangent Vector hi can be identified as some locally constant vector

field ¥, € X(Uy). which is defined by ¥, : v € V > Y3 n | e T,y
Yr : u— (Yr), = h, Yk = 1, 2. Then the vector field [Y1. Ya] Vamshes in the open
subset V. The exterior derivative of the 1-form 8 = X .w is computed as d8 (Y1, Y2) =
Y1 (B(Y2)) — Y2 (B(Y1)) + B([Y1, Y2]). Thus (d(X_w)), (h1, h2) = (Lxw)y(h1, h2).
Then Cartan’s formula (4.2) yields that X 1(dw) = 0. Since X € X(Uy) is arbitrary, we
have dw = 0.

Given u € Uy, we claim that the linear map Y? : h € 7,(Un) — how, € T, (Un)
is injective.

In fact, for any & € KerY,’, we define h® := 2Re(iT1h) € T,(Uy). Then the second

expression of (1.11) yields that 0 = (how,)(h?) = f+°° |h(S)| ~—7-d& and hence h =
2Re o I1(h) = 0. So w is nondegenerate and it is a real analytlc symplectic form
on Uy. For any smooth function f : Uy — R, its Hamiltonian vector field X ; €

X(Uy) is given by X r(u) := —(T"’)_l(df(u)). Since d f(u)(h) = (h, V, f(u));2 =
e h@)ls(v Fw)~€)dE, Yh € T, (Uy), formula (1.12) is obtained. O
Corollary 4.2. Endowed with Hermitian form ), which is defined by 9, (h1, h2) =

e %@z(s) d, Yhy, hy € T, (TTUN)), Yu € Uy, (TTUN), ) is a Kihler manifold
and w = —IT*(Im$H).

4.2. Spectral analysis II. We continue to study the spectrum of the Lax operator L,
introduced in Definition 2.2. The general case u € £ = L*(R, R) N L?(R, x2dx) has
been studied in Sect. 2.1. We restrict our study to the case u € Uy in this subsection.
The operator L, has the following spectral decomposition

3 = (L) @ Hie (L) D Hp (L) (4.3)

Let O, denote the characteristic polynomial of u given by (1.9) and ®, := ©g, = %
denotes the inner function on C, associated to Q,. We have S(n)[®,h] = ©,[S(n)h],
Vh € L2, s0 ©,L2 is a closed subspace of L2 that is invariant under the semigroup
(8(m))y=0 in section 3. Set Ko, := (@,,Li)l. Thus,

L} =0L; @ Ke,. S)*(Ke,) C Ko, and GD(G)[ |Ke,) C Ko,
(4.4)



Complete integrability of the Benjamin—Ono equation on the multi-soliton manifolds 1075

where G is defined in (3.2). The following proposition identifies the subspaces in (4.3)
and (4.4).

Proposition 4.3. If u € Uy, then L, has exactly N simple negative eigenvalues and we
have

He(Ly) = OuLY,  Hie(L) = {0}, Hp(Ly) = Ko, = =51 45
Proof. Fixu € Uy, weuse abbreviation Q := Q, and ® := ©,,. The first step is to prove
Ko = W In fact, Vi € Ler and f = 5 € W for some P € C<y_1[X],
we have (f, ©Oh);> = (i h) ;2. Since Ox) = ]—HV (= 3-) with Im(8;) < 0, the
meromorphic function £ has polesin C;, s0 = € L? . Thus (f, Oh);2 = (P h)j» =
0. Thus =518 ¢ (@Li)L = Ko. Conversely, if f € Ko, then (O~ f,h),» =
(f, ®h);2 =0, forevery h € L%. Thus g := %f e L2 . It suffices to prove that P :=

of = @g € C[X]. In fact, @7 = Q(iag)f and supp(f) C [0, +00) = supp(é?) C

[0, +00). Similarly, we have supp((ag)A) C (—o00,0]. So supp(f’) C {0} and P is a
Cony_1[X]

polynomial. Since f = 5 € L>(R),wehavedeg P < N—1.SoKg C 0 C Ko.
The second step is to show that

L,(®h)=©®Dh, Vhel]. (4.6)
Infact,wehavew cL:,O= dDO DQQ DQQ = z%—z T = = Mu+Tlu =

u on R, then L, (®h) = (D — Tu)(®h) — ODh +h (D@ - i%’@ +i%) — @Dh +

h® (% — i% +i%> ©®Dh. Recall that L, = L}, so we have L,(Kg) C Kp.

Since dim¢ K¢ = N, Corollary 2.7 yields that the Hermitian matrix L, k¢ has exactly
N distinct eigenvalues. Hence Ko C p(Ly).

We set Ug : L2 — ©L2 such that Ugh = ®h. Then Ug' = U : g € OL? >
O g e L?,ieUg : L2 — OL? is unitary. Moreover, we have Ug(H)) = OH) =
H| (" ©L3. Formula (4.6) yields that Ug[D(D)] = OH, = H} (OL; = D(L,o,2)
and UZ:)Lm@ 12 Ue = D. For every bounded Borel function f : R — C, we have
f(Lu\@Li)UG = Uep f(D) by proposition 2.1. Let uy = uil‘ denote the spectral
measure of L, associatedtow € L2 Then fR f&dpenE) = (f(Ly)Ueh,Uph);> =

(SO, Y2 = 32 [ FEIAE)PdE, Vh € L. So 2mdpen(§) = 1z, |h(E)]7ds.
The measure wej, is absolutely continuous with respect to the Lebesgue measure on R.

Thus ©L2 C H4e(Ly) C Hom(Ly) = (Hpp(Ly))™ C OL2 and (4.5) is obtained. We
have supp(uen) C [0, +00). For any & > 0, there exists h € Li N L'(R) such that
h(&) # 0. So we have oess(Ly) = 0cont (Ly) = 0ac(Ly) = [0,+00). O

Definition 4.4. For every u € Uy, we have the following spectral decomposition of L,:

o (Lu) = oac(Lu) | Jose (L) | J opp(Lu),  where oac(Ly) = [0,+00), ose(Ly) =8 (4.7)

and opp(Ly) = {A], A3, ..., A%} consists of all eigenvalues of L,. Proposition 2.3
2
yields that L, is bounded from below and — ”Zgﬁz

1
. IIDI 1,
C=infrepyivio) 7

<M < - < My < 0 with
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Hence the min-max principle (Theorem XIII.1 of Reed—Simon [19]) yields that

M= sup  3(F.L,. 3(F L,)=inf((Lyh k)2 heH[\Fhlhl =11 (4.8)
dim(CF:rzfl

where, the above supremum, F describes all subspaces of L% of complex dimension
n—1,1<n < N.Whenn > N +1, SUPdime F=n—1 J(F, L,) = inf oess(Ly) = 0.
Given j = 1,2, ..., N, Proposition 2.4 and Corollary 2.7 yield that there exists a unique
function ¢; : u € Uy > (p? € Jp(Ly,) such that

Ker()"? - Lu) = C‘P;t, ”‘p]M”LZ = 15 <(p?v u)Lz = 1/ 27T|}“7|’ (49)

forevery j = 1,2,..., N. Then {¢{, ¢}, ..., go}‘v} is an orthonormal basis of the sub-
space %, (L,). Before proving the real analyticity of each eigenvalue, we show its
continuity at first.

Lemma 4.5. Forevery j =1,2,..., N, the j th eigenvalue A; : u € Uy )»;f eRis
Lipschitz continuous on every compact subset of Uy .

Proof. Forevery f € H'(R), the Sobolev embedding Nfllps < c! |||D|%f||Lz yields
that Yu, v € Uy,

_ 1
(Luh,h) 2 — (Lo, 2| < llu— vl 2hll74 < C % u — vl 2l[IDI2A] 212l 2.
Vh e H!. (4.10)

Given j = 1,2,..., N and a subspace F C Li whose complex dimension is j — 1,
we choose a function heFtN @izl Ker(A} — L,) C H! suqh that ||i]|;2 = 1. We
have h = "i_, hio} for some hy € C. Then (Lyh, h) 2 = Y 0_ |he|*Al < A <0,
because A; < Ay, ;. We have the following estimate

1
IDIZR||7, = (Dh, k)2 = (Lyh, h) 2+ (uh, )2 < A+ el 20170174
_ 1
< C%|lull 2 IDIZ Rl 2]l A]l 2. (4.11)
Soestimates (4.10) and (4.11) yield that (L, h);2 < A;’.+C_4||u||Lz||u—v||Lz.SinceF
is arbitrary, the max—min formula (4.8) implies that |)»? —A?| <C*(lu lz2+vll ) lu—

vl ;2. Every compact subset K C Uy is bounded in L*(R,R).Henceu € K > )\? eR
is Lipschitz continuous. 0O

Proposition 4.6. Forevery j = 1,2, ..., N, thejtheigenvalue i : u € Uy — 1 € R
is real analytic.

Its proof is based on Kato’s perturbation theory for linear operators.

Proof. For every u € Uy, let IP’& denotes the Riesz projector of the eigenvalue A;?. Then

there exists €g > 0 such that the family of closed discs {B(A‘j?, €0)}<j<N U{B(O, €)}
is mutually disjoint and for every j, k = 1,2..., N and any closed path I‘? (piecewise
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C! closed curve) in D()J]’-, €p) with respect to which the eigenvalue A;’. has winding
number 1, we have

) 1 ~ ) ) . .

Pu=s—¢ ¢-L)'d,  PuoPy=P, Pigf=38g. (“12)
T

by Theorem XII.5 of Reed—Simon [19]. We choose l"? to be the counterclockwise-

oriented circle %()\7, €)in (4.12) for some € € (0, €p). We claim that ImIP’,{ = Ker(k;‘. -

Ly) = (CQDJM

It suffices to show that P} | s, (1) = 0. In fact the operator P}, = g (Ly) is self-adjoint

and bounded, where the bounded Borel function g; : R — R is given by

1 _
g (x) == — € =07 =1p-ca0k), ae on R,
2mi E(A,€)
for every A € R. Since P} (#p(Ly)) C Cg C Hp(Ly), we have P (Hie(Ly)) C
Fac(Ly). Let py = ui" denote the spectral measure of L, associated to ¢ € J%.(Ly),
whose support is included in [0, +00) by (4.7), so (P{;w, Y2 = % ﬁﬁ”(k”« 6)((; —
J’

L)W )08 = 5k (7% (Fogu o€ —6)71d0) duy ) = 0. Set § = Ply
Hoe(Ly), then |71, = (Pir, )2 = 0. So the claim is obtained.

For every fixed j = 1,2, ... N, we have A? =Tr(L,o IP’ﬁ). Since every eigenvalue Ay :
v € Uy +— A} € Ris continuous, there exists an open subset V C Uy containing u such
that sup,cy sup; <y 1A — Al < §. Weset e = 23ﬂ, then 17 € D(AY, \D(\Y, €p),
for every v € V and k # j. For example, in the next picture, the dashed circles denote
respectively € (1%, €0) and €' (A}, €p); the smaller circles denote respectively € (A%, €)

and ¥’ (MY, €) with j < k. The segments inside small circles denote the possible positions
of A;f and A}

[ e}

Then o (Ly) () D(A?, €) = {)ij} and %(A?, €) is a closed path in D(X;’., €o) with
respect to which )»7 has winding number 1. Thus,

. 1 .
Bl= 5 b )(; —L)7'de, AU =Tr(LyoP)),  VveV. (4.13)
6 k?,e
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Since v € V > L, € B(H}, L?) is R-affine andi : A € By(H},L2) > A7! €
B(L2, H]) is complex analytic, where B5(H]}, L2) C B(H]}, L) denotes the open
subset of all bijective bounded C-linear transformations H} — L2, we have the real
analyticity of the following map

(¢, v) e (D(,\f;, ieo)\ﬁ(m, %eo)> xVis (¢ — L)~ e B2 HD. (4.14)

Hence the maps Pl:iveVis P‘,’,' € %(Li, Hl) and A; :v eV Tr(L, oIP’i) eR
are both real analytic by composing (4.13) and (4.14). O

Recall that %, (L,) = % C D(G) is given by (3.6), Vu € Uy. We have the
following consequence.

Corollary 4.7. For every j = 1,2,..., N, both the map ¢; : u € Uy > go’; € H! and
themap O 1 u € Uy (Gq)’;, (p?)Lz € C are real analytic.

Proof. Given u,v € Uy, we have IP’{;go;f = ((p}?, go}?)quJ}’. Since the Riesz projec-
tor P/ v e Uy IE”{; € %(Li, H l) is real analytic in the proof of proposi-
tion 4.6 and || P gz)y |lz2 = 1, there exists a neighbourhood of u, denoted by V), such that
||IP’£¢;‘||L2 > 3 foreveryv e VandP/ :v e V > Pl e B(L2, H)) can be ex.pressed
(GoPy (¢).PL(9)) 2
IPL @Iz,
Hence the restriction U; : v € V ||]P",’J(<p7)||222(G oP‘l’,(w;‘),P‘l’)(w;‘))Lz e Cis
real analytic. Since (4.9) yields that (IP’{@]’?, V)2 = /—271)\? ((pj’4, ga}?) 12, the restriction
=27\l

I i u 1 ;
(IP{,w]’f,v)Lz Pv(pj € H, isreal analytic. O

J
Pu(/)j

[Ty and G;(v) =

by power series. Then we have go}? =

pjveEV>

4.3. Characterization theorem. This subsection is dedicated to proving the following
spectral characterization theorem for multi-solitons.

Theorem 4.8. Given N € N, a functionu € Uy ifand only ifu € L*>(R, (1+x%)dx) is
real-valued, dimc 54 (L,) = N and Nu € J,,(Ly,). Moreover, we have the following
inverse formula

Mu(x) = i det(x — Glgy 1)~ & (det(x _ G|%p(Lu))) . VxeR. (4.15)

The direct sense is given by Proposition 4.3. Before proving the converse sense of
Theorem 4.8, we need to prove the invariance of 7,,(L,) under G, if u € L*(R, (1 +
x2)dx) is real-valued, IMu € Jp(Ly) and dimg 545 (L) = N > 1. We give another
version of formula of commutators (see also Lemma 3.1).

Lemma 4.9. For u € L*(R, (1 + x2)dx), u is real-valued, Vo € Ker(r — L) for some
A € opp(Ly), then we have ¢, T,,¢, L, € D(G) and

[G. Tl = 42X Mu, (G Lulp = ip — 42 Mu, (4.16)
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Proof. In Proposition 2.4, we have shown that #p € H'(R), so (T,¢)" = uplg, €
H'(0, +00) and T.e € D(G). So Gy € H] D(L,) = D(T,). Moreover, we have ¢
is rlght continuous at £ = 0* and ¢ € C'(0, +00). The weak-derivative of ¢ is denoted
by 35 @, 8o denotes the Dirac measure with support {0}, then 8S o= IR* & @+ @078
and 9 (&1 * @) = ag @ @) = i * 8 ¢ by Lemma 2.5. Since ¢ = 1g:¢ ae. in
R and i € H'(R), we have i * Ggo(fg‘) = ux* [IR*Gw (&), for every £ > 0 and
([G. T J9)"(€) = 50l * )(€) — 51 * [Mps 5 £01¢6) = 5= @(0)i(€). The first
formula of (4.16) is obtained. Since Lu =D-— Tu, we claim that Dy € D(G) In fact,
Bg(D(p)A(é) = @(&) + £0:9(§), V& > 0. Thus (2.4) implies that Dgo e H'(0, +00).

Then ([G,Dlp)" (§) = id:(§@)(§) — & - i0:0(§) = ip(§), Y& > 0. So we have
[0x,G]=1d L2 The second formula of (4.16) holds. O

Proposition 4.10. If u € L*(R, (1 + x?)dx) is real-valued, dim¢ (L) = N > 1
and Nu € 7p(Ly), then we have 75,(L,) C D(G) and G(, (L)) C Hpp(Ly).

Proof. There exists an orthonormal basis of the vector space J#,(L,), denoted by
{¥1, Y2, ..., ¥}, such that L,; = A, where opp(Ly) = {A1,22,..., AN} C
(—00,0) and A; < Aj41. Since (2.4) implies that J%,(L,) C G~'(HH)ND(G),
formula (4.16) gives that f; := [Ly, G1¥/; = —ivrj+ 40 M € #p(Ly,). Sowe have
(fis ¥ =(GYj, Luvrj) 2 —(GLyVj, Y2 = M(GYy, 1</fj)]/e2)_<G¢jy Yi)p2) =
0. Forevery j = 1,2,..., N, we set g; = > nizj Q;_’;J,Lz Yk Since fj =
Y 1<k<N ko {fis V) 2k, wehave (Ly —1j)gj = fj = (Lu—2;)Grj. Then G —
gj € Ker(L, — 1j) = Cy; and Gyj € g; + Cy; C J4p(Ly). We conclude by
Hpp(Lu) = Spanc{y1, ¥o,...,¥n}. O

Now, we perform the proof of converse sense of Theorem 4.8 and give the explicit
formula of Q,,.

End of the proof of theorem 4.8. «: Proposition 4.10 yields that G(J%p(L,)) C
Jp(Ly). Let Q denote the characteristic polynomial of the operator G| Hip(Ly)» then
we have (L) = M by Lemma 3.3. So [Ty = P° , for some Py € C[X] such
thatdegPy < N — 1. It remams to show that Py =i Q’.
In fact, wehave L, ( )= ([D-— Tp0 TPO)( ) = M H(POP)_l_(lQ —PyP (CgN—l[X]’
0

0? 0
for every P € C<y_1[X], thanks to the invariance of J%,(L,) under L,. Partial-

fraction decomposition implies that H(POP e v é'[x]. So (iQ/éPO)P € C<n-11X]

for every P € C<y_;[X]. Choose P = 1 since deg(iQ" — Pp) < N — 1, we have
Py = iQ),sou € Uy. Since Q € Cy[X] is monic and Q~1(0) ¢ C_, we have
0u(x) = Q(x) = det(x — Gl (1) O

We refer to Proposition 4.10 and formula (4.4) to see the invariance of J%,(L,) C
D(G) under G, Yu € Uy. The translation—scaling parameters of u can be identified as
the spectrum of G|z (L,)- The matrix representation of G|z (,) With respect to the
orthonormal basis {¢{, ¢5, ..., goK,} is given in Proposition 5.4.

4.4. The invariance under the Benjamin—Ono flow. Proposition 1.4 is proved in this
subsection. At first, we show the invariance of the property x — xu(x) € L?(R) under
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the BO flow. Then the spectral characterization Theorem 4.8 is used to establish the
global well-posedness of the Hamiltonian system (1.3) on Uy .

Lemma 4.11. Ifug € H*(R, R) N L%(R, x2dx), letu = u(t, x) solves the BO equation
(1.1) with initial datum u(0) = ug, then u(r) € L2(R, xzdx),for everyt € R.

Remark 4.12. This result can be strengthened by replacing the assumption ug €
H?*(R, R) by a weaker assumption uq € H%Jr(R, R) = UD% H* (R, R), because one

can construct a conservation law of (1.1), which controls the H*-norm of solution,
Vs > — %, by using the method of perturbation of determinants. We refer to Talbut [22]
to see details. It suffices to use Lemma 4.11 to prove Proposition 1.4.

Before proving Lemma 4.11, we need some commutator estimates.

Lemma 4.13. For a general locally Lipschitz function x : R — R such that
0x X, 8; X, 83 x € LY(R), we have the following commutator estimates

1
ILIDL x1gll 2 + k. x1gll 2 < (e xll 1 183 x 0,02 Mgl 2. Vg € LA(R), @17

L , . 1
DI, xIgl 2 S U183 x 02 H0xgl 2 + Hoxx Il 133 x LD 2 gl 2, Vg e H'(R).

Proof. Since 2| (D], x19)" ®)] = f,ce [1E] = Inl[IZ € = mllganldn < [o.x] =

|g1(§), Young’ sconvolutlon inequality yields that [|[|D], x1gll;2 < ||8x)(||L1 ||g||L2 We
0 o0
set Ry = [0 x| 2|I33xllLl,then Xl = Bexlie [y, € + [, 22 A
< [EX XHLI 3 b Qi <
dé§ S loxx g Ri+ = = 2(l10x x I 1 195 x | 1) 2. Similarly, we have [|[0x, x 1812 <

1 . . .
”axX”Ll”g”L2 S (||8xx||L1|I8,3X||L1)?||g||Lz, so the first inequality of (4.17) is

~

obtained. SinceZﬂ! (IDI[3x, x1&)" ©)| < €] [, 16 = nllX E =mII&(dn < |82 |*
1818) + [0 x1 * 18:81(6). then |||DI[3x, lglz2 S 182 xlliglp + 18xx N1 13xgll 2
We set Ry = ||axX||L14 ||35X|IL1, then [[03xll < l9xxllLe fig<r, [E1dE +

—

33 xll oo o3 x| TR
Seiomy EEEAE S N IR + S = 201,171,172 Finally, we

add them together to get the second estimate of (4.17). O

Now we prove the invariance of the property x — xu(x) € L?(R) is invariant under
the BO flow.

Proof of lemma 4.11. We choose a cut-off function x € CZ°(R) such that x decreases
in [0, +00), x iseven, 0 < x < 1, x = 1 on [—1,1] and supp(x) C [-2,2]. If
uo € H>(R,R)L*(R, x%dx), letu : t € R — u(t) € H*(R,R) solves the BO
equation (1.1) with initial datum u(0) = ug, we claim that there exists a constant
C =C(|lu(0)|| g1) such that

I(R, 1) :=/Rx2<%>|x|2|u(r,x>|2dx

gce"'(/ Ix)?u(0, x)]’dx +1), VieR, VR > 1, (4.18)
R
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In fact, we define p(x) := x x (x). Forevery R > 0, we set pr(x) := Rp(%) = xx (%)-
Thus

0iI(R, 1) = 2Re(pg|D]dsu(t) — 2pxu(t)deu(t),
()2 = J1 ) + D)),

where for every u € H 2(R), we define

Ji(u) := —4Re(prudu, u) 2 =
|T1@)| < 4lldcull=lloruls < lullg2llorul; (4.19)

and J>(u) := 2Re(p%|D|dyu,u);> = ([p%, |DId]u,u);2. Since [p%, [D]dy] =
prIPR, IDIdx] + [pr, IDIdx]or and [pr, D|dx] = [pr, IDId:]* = [pr, [DI13x +
ID|[or, 0x], we have

J2(u) = 2Re([pr, ID[10xu, pru) 2 + 2Re(|D|[pr, Ox]u, prut) 2.

Since [[xprllr = Rldplt, 132kl = R™deplpr and [183prl =
R73||3,p|| .1, the commutator estimates (4.17) yield that if u € H*(R), then

2 2 2
|2)| < 2llprully2 + IIlor, IDI10xull2 + 1DI[og, 0xlull;-
2 3 2 5 2
S llorullps + 10 pr L 105 pRIL 0 ull72 + 110x pR I L1197 oR 1Lt el 2
2 2 -2 2
S loruly2 + 10xpll 103 pll 1 19:ully2 + R 10cpll L1117 o1l el

< llorull3 > + lull,,
(4.20)

for every R > 1. Proposition 2.9 and 2.12 yield that there exists a conservation law of
(1.1) controlling H 2_norm of the solution. Let u : t € R + u(r) € H*(R) denote the
solution of the BO equation (1.1). Then sup; g |[u(®) || ;2 S\Iuolle 1. Since I (R, t) =
loru(t) ||i2, estimates (4.19) and (4.20) imply that |3, (R, 1)| < C(I (R, t)+1),Vt € R,
for some constant C = C(||ug|| z2). Thus (4.18) is obtained by Gronwall’s inequality.
Let R — +00, we conclude by Lebesgue’s monotone convergence theorem. 0O

Since the generating function A € C\o(—L,) — H, (u) € C is the Borel-Cauchy
transform of the spectral measure of L,, the invariance of {/y under the BO flow is
obtained by the inverse spectral transform.

End of the proof of proposition 1.4. If ug € Uy € H®(R, R) (" L*(R, x>dx), let u =
u(t, x) denote the solution of the BO equation (1.1) with initial datum u(0) = uy,
then u(r) € H*R,R) L2*(R, x2dx) by Proposition 2.8 and Lemma 4.11. Given
L € C\R, the generating function H, : u € L*>(R,R) — R reads as Hj(u) =
((A+ Ly)" 'y, Mu); 2 = fR % with m,, := M%ﬁp where ui" denotes the spectral

measure of L, associated to the function ¥ € L2. So the holomorphic function A €
C\R +— H,u is the Borel-Cauchy transform of the positive Borel measure m,. The
total variation m, (R) = ||1'Iu||i2 is a conservation law of the BO equation (1.1) by
Proposition 2.12 and formula (2.14). Thanks to the Stieltjes inversion formula, every
finite Borel measure is uniquely determined by its Borel-Cauchy transform. For every
t € R, we have H, [u(¢)] = H;[u(0)] by proposition 2.15. Since u(0) € Uy, we have
M[u(0)] € F5p(Ly)) by Proposition 4.3. Consequently, there exist 1, ¢2,...,cy €
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L, L,
R\{0} such that s {1 |\ = My = Myu(0) = fpfig = 211 €;8,u0. Then TT[u(1)] €
J
Fp(Luy), Yt € R. The Lax pair structure yields the unitary equivalence between

Ly and Ly (g). So dim¢ 5, (Ly () = dimg 45, (Ly)) = N by Proposition 2.1. We
conclude by Theorem 4.8. 0O

5. The Generalized Action—-Angle Coordinates

In this section, we construct the global (generalized) action—angle coordinates ®y in
Theorem 1 of the Hamiltonian system (1.3) with solutions in the real analytic symplectic
manifold (U, w) of real dimension 2N given in Proposition 1.2. The goal of this section
is to establish the diffeomorphism property and the symplectomorphism property of ® .
Proposition 1.3 yields that the Poisson bracket of two smooth functions f, g : Uy — R
is given by

{f.8}rucln > o, (Xy), X)) = (0 Vi f(u), Vigw))2 € R (5.1)

Given u € Uy, Proposition 4.3 yields that there exist A] < A3 < --- < A}, < 0 and

<p;f € Ker()»? — L,) C D(G) such that ||g0’;||L2 = 1 and (u, (p’;.)Lz = /2n|)\’;|, thanks
to the spectral analysis in Sect. 4.2.

Definition 5.1. For every j = 1,2,...,N,themap I; : u € Uy 271)»‘; e Ris
called the j th action. The map y; : u € Uy Re(Ggo;f, gp’;)Lz € R is called the j th
(generalized) angle.

The set Q2 is defined by (1.13) and we adopt the superscript instead of the subscript
in this section: Qy = {(r', 72, ..., rY) e RV : vl <2 < ... < N < 0}. Then
the real analytic manifold (Q2xy x RY, v) is a symplectic manifold of real dimension
2N, where v = Zj»v:l dr/ A da’. The action—angle map is given by ®y : u € Uy +>
(L), L), ..., InwW); y1(m), y2(u), ..., yn@)) € QN x RY. Theorem 1 is restated
here.

Theorem 5.2. The map ®y has following properties:

(a). The map ®y : Uy — Qn x RY is a real analytic diffeomorphism.

(b). The pullback of v by @y is w, i.e. DV = w.

(c). We have E o CDX,I : (rl,rz,...,rN;al,az,...,oeN) € Qv x RV
= YN 1r? € (=00, 0).

Remark 5.3. The real analyticity of ®y : Uy — Qun x RY is given by Proposition 4.6
and Corollary 4.7. The symplectomorphism property (b) is equivalent to the Poisson
bracket characterization (1.15). The family (X, Xp,, ..., X1y Xy, Xpph oo, Xpy) i
linearly independent in X ({/ ) and we have

ddy ) : Xy, (u) > APy (u) = Xy (1) > —

dak 1Dy (u) ark 1oy (u)”
The assertion (c) is obtained by a direct calculus: [Tu = Z;V:l (Mu, <p]’4) 12 (p?, formula

(4.9) yields that E(u) = (Lo (M), Tt} g2 = SN (T, @) o PA% = — YO 1007
’ j=1 PHGILEL j=1 "2
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This section is organized as follows. The matrix associated to G|z (L,) 1s expressed
in terms of actions and angles in Sect. 5.1. In Sect. 5.2, the Poisson lgrackets of actions
and angles are used to prove the local diffeomorphism property of ® . The bijectivity
of @y is obtained by Hadamard’s global inverse function theorem in Sect. 5.3. Finally,
we use Sects. 5.4 and 5.5 to prove that @y : Uy, w) — (Qy X RN v) preserves the
symplectic structure.

5.1. The inverse spectral matrix. We continue to study the infinitesimal generator G
defined in (3.2) when restricted to the invariant subspace .7, (L, ) with complex dimen-
sion N. Then we state a general linear algebra lemma that describes the location of
eigenvalues of the operator G|z (L,)-

Proposition 5.4. For every u € Uy, let M(u) = (My;(u))1<k, j<n € CN*N denote the
inverse spectral matrix defined by (1.18) and Definition 5.1. Then M (u) is the matrix
associated to the operator G|z (L,) with respect to the basis {o], 05, ..., 0N} Le
Myj(u) = (Goj, g2 1 <k, j <N.

Proof. Since L, = L} and J%p(L,) C D(G), we have ()L;’. - )\Z)(G(p’;,gol’:)Lz =

([G, Lu]goj’f, @i ) 2. Since formulas (2.5) and (4.9) imply that —A‘;@(O) = u<pJ’4 0) =

/271|)J;.|, we use formula (4.16) to obtain that if k and j are different, then

A4 — MG )2 = (9" — =" O Tu gf) 2 = —3=0" (0M)ug(0) =
LAY . i 2 =
—i ﬁ In the case k = j, we have (G*f,g);2 = —5 0+°° f(€)o:g(&)ds =

= [f(o+)§<o+) + fo ™ O f(é)?(é)ds] and (G* f, g) 12 = (Gf. &) 12 + 5= £ (09)2(0M),
forany f, g € Hpp(Ly) by using formula (3.2). Consequently, we have Im(G ¢, ¢') 2 =

~ 25 9] OF = — gz = ImM; (). O

Corollary 5.5. For every u € Uy, we define two vectors X (u), Y (u) € RY as

X" = (1, /2, rn. ve” = (et gt k. (52)

Then we have the following inverse spectral formula

Mu(x) = —i((M(u) — x)_lX(u), Y(u))cn, Vx € R. (5.3)
Hence, the map @y : Uy — QN X RN is injective.

Proof. For any k,j = 1,2,..., N, let K,‘;j(x) denote the (N — 1) x (N — 1) sub-
matrix obtained by deleting the k th row and j th column of the matrix M (u) — x,
for all x € R. The Cramer’s rule yields that ((M(u) — x)~' X (u), Y(u))oyv =

(D det(Kl. () [ T det(kY (x)+R ) i
2 i<k, j<N IG5 \ x_tk; = S aaran o Where R =3y (=D
det(K; (x)) i—f =0 A% = 30, M) det(M (u) — x) = 0 by (1.18) and Defini-

tion 5.1. If Q,(x) = det(x — M (u)), then Q/,(x) = (—)N~! ZI,.V:I det(K;.‘j (x)). Then
formula (5.3) is obtained by formula (4.15). O
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The next lemma describes the location of spectrum of all matrices of the form defined
as (1.18).

Lemma 5.6. For every N € Ny, we choose N negative numbers A1 < Ay < --- <
Ay <O0andy,y2,...,yN € R The matrix M = (Myj)1<k, j<N € CN*N s defined
as Mjj = yj + ZZT] and My; = _Akikj‘/;\»_/;’ if k # j. Then S(M) = —MEIJM* is
negative semi-definite and opp (M) C C_.

Proof Thevector V; € RV isdefinedas V7 := ((2|A1))72, 212" 2, ..., @Pn)72).
So we have I(M) = [ ———— = —V; - V. Thus (S(M)X, X)cov =
2/ 1A 1Akl I<k,j<N

—(X, VA)CN|2 < 0. So J(M) is negative semi-definite. If 1 € opp(M) and V €
Ker(u — M)\{0}, it suffices to show Imu < 0. Since

—[(V. Vi)ew P = (SIMV, V)ew = Imp| V(|2
where [|V[|Zy = (V. V)en > 0, (5.4)

we have Impu < 0. Assume that 1 € R, then formula (5.4) yields that V L V, . Moreover,
we have (M — M*)V = =2i(V, V3 )en Vi = 0. We set D* € CV*N (o be the diagonal
matrix whose diagonal elements are Ay, Ao, ..., Ay, i.e. D* = (Ak8ji)1<k,j<n- Then
we have the following formula

M, D] =iy +2D*V, V). (5.5)

So [M,D*]V = iV by (5.5). Finally, i||V||éN = (M — WDV, V)en =
(D*V, (M* — u)V)en = 0 contradicts the fact that V # 0. Consequently, we have
neC_. O

5.2. Poisson brackets. In this subsection, the Poisson bracket defined in (5.1) is general-
ized in order to obtain the first two formulas of (1.15). It can be defined between a smooth
function from Uy to an arbitrary Banach space and another smooth function from Uy to
R. For every smooth function f : Uy — R, its Hamiltonian vector field X ; € X(Uy) is
given by (1.12). For any Banach space £ and any smoothmap F : u € Uy — F(u) € &,
we define the Poisson bracket of f and F as follows

{f,F}:ueclUy— {f FYu) =dF W) (Xrw) € Trw (&) =£. (5.6)

If £ = R, then the definition in formula (5.6) coincides with (5.1). For every u € Uy
and A € C\o(—L,), since [Tu = Z;v:l (Mu, (p’;)Lup}?, the generating functional

. N 271)\?
Ho.(u) = (L, +2) " T, Tlu) ;2 2_2“,\;
J=

(5.7)

is well defined. The analytical continuation allows to extend the map A +— H () to the
domain C\opp(—Ly), and it has simple poles at every A = —)J;. Proposition 2.3 yields



Complete integrability of the Benjamin—Ono equation on the multi-soliton manifolds 1085

L
IIDI3 1112

llull? .
By <M <o <Ay < 0, where C = mffeHl\{O} i denotes the

that —— e
Sobolev constant. So we introduce

Y={0u) eRxUy :4C*% > Jul].} = X[ (R x Un), (5.8)

where X is given by Definition 2.14. Then YV isopenin R x Uy and H : (A, u) € YV —
25 XY

— Zyz 1 ;—A’ € R is real analytic by Proposition 4.6. The Fréchet derivative of H,, is
J

given by (2.16), so
X, () = 3V Hy () = 0 (lw, @) + wa ) + W (w)), Y, u) €Y, (5.9)

by formula (1.12), where w; (1) = (L, + )~ (ITu). The following proposition restates
the Lax pair structure of the Hamiltonian equation associated to H,. Even though the
stability of Uy under the Hamiltonian flow of H, remains as an open problem, the
Poisson bracket defined in (5.6) provides an algebraic method to obtain the first two
formulas of (1.15).

Proposition 5.7. Given (,, u) € Y defined by (5.8), we have {H,, L}(u) = [B,f, Ly]
and

{Ha j}w) =0, {Ha, vj}w) =Re([G, Bylg}, ¢4) 12 = — s, (5.10)

IR

forevery j =1,2,..., N, where B,i‘ = (T, w) T, ) + Twy ) + Ty w))-

Proof. Since L : u € L>R,R) + L, = D—T, € B(H!, L2), Vu € L2, we
have dL(u)(h) = —Ty, Yh € L%. If (A,u) € Y, then the C-linear transforma-
tion L, + » € B(H}, L?) is bijective. So formula (5.9) yields that {H;, L}(u) =
dL () (X, ) = =Ty (Ju, (u)2+w;, (w)+w; (wy)- Lnen identity (2.22) yields the Lax equa-
tion for the Hamiltonian flow of the generating function H,,, i.e.

{Hy, LYu) = [B}, L,] € B(H}, L?). (5.11)

u

Consider the map Lg; : u € Uy Lufp; = A?goj
have

IS Hl, for every (A, u) € Y, we

{Ha, LY@ + Ly ({Ha. 9}w)) = X4(Ha. 0} @) + {H, 2} w)g? € HY.

Then (5.11) yields (){; — Ly (BQ(pf; — {Hx, qoj}(u)) = {H,, Aj}(u)go}?. Since (pl’; €
Ker(A* — L,) and [|¢% ]2 = 1 by (4.9), we have {H;., &;}(w) = (A% — Ly) (Bgcp;f—
{H, gﬂj}(u)) , (p?)Lz = 0. We define N> : ¢ € L? — ||¢||?,, then N> op; =1lonUy.

L2
Then we have

0 =dN209))) (X3, W) = 2Re(@}, (Ha, 9;}w)) 2. (5.12)
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So there exists » € R such that B;‘(p; —{Hx, @j}(u) = irga;’ because Ker(k? — L, =
(C(p;f by corollary 2.7 and formula (5.12). Since BL); is a skew-adjoint operator on

Ler and y; = Re(Ggo;.‘, (p?)Lz, we have {H,, y;}(u) = Re ((G{H,\, <pj}(u),<p;4)Lz+

(G(p;‘., {H;., (pj}(u))Lz> = Re([G, B,’}]go;f, (p;?)Lz. Furthermore, for every (A, u) € ),
formula (3.3) implies that [G, T, ()] = 0 and

(G, B} =[G, Ty, ()} (T, 0y () + ) = — = [@3. 1) ) OF) + F O wy (), Vf € D(G).
(5.13)
Sinci\(wx(u)wjf)A(Oﬂ = (¢}, wa@)2 = (+ 1) Nu,¢f) , and (u,¢}) , =
M “(0*) we replace f by go;f in formula (5.13) to obtain ([G, B,i‘]g{)?,(/)?)Lz =
(Mmz,\?’(l u)y€)y. O

- - 1
Remark 5.8. Recall that H, = lH1 and B, := lB‘ in Remark 2.18, V(e~!, u) € ).
In general, the identity (—1)" {En, vitu) = Re([G, 4 de” o OBG,L,]q)?, go;.‘)Lz holds for

every conservation law E, = (—1)”% e=0H€ in the BO hierarchy, V1 < j < N.

Corollary 5.9. Forany j,k =1,2,..., N,wehave2m{}j, y}(u) = Skj, {Ax, Aj}(u) =
0, Yu € Uy.

2
%, we have (A,u) € ), then formula (5.7) and

N
—gmme = My = 27 S vl =
2 ' Mk .
—2mA YN, {(ifiu})(?) and 0 = {Hy, hj}(u) = 22 YN | Labil <§+X/}:})(?)’V] =1,2,....N

N oyt
=27z} ke (ijz)z

Proof. Given u € Uy, YA >
formula (5.10) imply that

The uniqueness of analytic continuation yields that —m =
j

and YN AW g v e C\R. O

(z+A)?

Recall that the actions I : u € Uy > 271%’} and the generalized angles y; : u € Uy —
Re(Ggo;’, (p;f) 12 are both real analytic functions by Proposition 4.6 and Corollary 4.7.

Proposition 5.10. Givenu € Uy, the family {d11 (), dIx (1), ...dIx (w); dy(u), dy2(u),
..dyn(u)} is linearly independent in the cotangent space 1, (Un). As a consequence,
Dy Uy = Qn x RY isalocal diffeomorphism.

Proof. Givenay,as,...,ay,b1,ba,...,by € Rsuchthat (2?;1 a;jdl;(u)+b;dy;(u))
(h) = 0, Vh € T,(Uy). Corollary 5.9 yields that Vj,k = 1,2,..., N, we have
dlj ) (X W) = {Ix, I;}w) = 0 and dy; )(X;, W) = {Ix, yj}w) = 5. We
replace i by X, (1) to obtain that by = 0. Then set h = X, (u), we have gy = 0. O

Since all the actions (/;);1<j<n are in evolution by Corollary 5.9 and the differen-
tials (d/;(u))1<j<n are linearly independent for any u € Uy, the level set L,
ﬂ;v:] 1]71 (r/)isareal analytic Lagrangian submanifold of Uy, Vr = o2 oM e
Q. Moreover, Ly is invariant under the Hamiltonian flow of I;,Vj =1,2,..., N, by
the Arnold-Liouville theorem.
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5.3. The diffeomorphism property. This subsection is dedicated to proving the real bi-
analyticity of ®y : Uy — Qn x RY. It remains to show its surjectivity. The proof is
based on Hadamard’s global inverse function theorem.

Theorem 5.11. (Hadamard) Suppose X and Y are connected smooth manifolds, then
every proper local diffeomorphism F : X — Y is surjective. If Y is simply connected
in addition, then every proper local diffeomorphism F : X — Y is a diffeomorphism.

Lemma 5.12. The map Oy : Uy — Qn x RY is proper.

Proof. If K is compact in Qy x RY, we choose u, € @&1 (K), so
Dy (up) = QuAy", 205", .. 27 A vi(un), va(un), ..., yN(up)) € K, Vn eN.

We assume that there exists 2w A, 2w A2, ..., 27TAN; V1, V2, ..., YN) € K such that

A'}” — Xj and y;(u,) — y; up to a subsequence. So (M(u,)),en converges

to some matrix M = (Myj)1<k,j<N € CN*N whose coefficients are defined by
- i M| s i M = v i i
My = )\ki/\_,- /ﬁ, ifk # j, Mj; =y — 2|i,—|’ V1l < j,k < N.Lemma 5.6

—

yields that opp(M) C C_. We set Q(x) := det(x — M) and u = i2 L ¢

[9)
Uy. The Viete map V is defined in (4.1) and V(CY) is open in CV. Then tQhere
exists a® = (ai”,a,....aV’ ), a = (ag,a1,...,ay—1) € V(CV) such that
0n(x) = det(x — M(uy,)) = Zﬁ.vz‘ol aj.")xf +xV and Q(x) = Z;";Ol ajxd +xN,
We have lim, .00 On(x) = Q(x), Vx € R. So lim,_, 4+ a®™ = a. The continu-
ity of Ty : a = (ag,ap,...,an—1) € VCY) > Tu = i% e L? yields that

IMu, — Iu in Li, as n — +00. Since Uy inherits the subspace topology of L>(R, R),
we have (u,),eN converges to u in Uy. The continuity of the map ®py shows that
Oyw) = Qai, 27k, ..., 2T AN V1, V2, ..., YN) €E K. O

Proposition 5.13. The map ®y : Uy — Uy x RY is a real analytic diffeomorphism.

5.4. A Lagrangian submanifold. In general, the symplectomorphism property of @y
is equivalent to its Poisson bracket characterization (1.15). The first two formulas of
(1.15), which are given in Corollary 5.9, lead us to focusing on the study of a special
Lagrangian submanifold of Uy, denoted by

Ay :={uecly:yjw)=0, Vj=12,... N} (5.14)

Lemma 5.14. For every u € Uy, then each of the following four properties implies the
others:

(a) The N-solitonu € Ay.

(b) For every x € R, we have Tu(x) = Mu(—x).
(¢) The N-soliton u is an even function R — R.
(d) The Fourier transform i is real-valued.

Proof. (a) = (b) is obtained by (5.3) and (5.2). (b) = (c) is given by the for-
mula u = Iu + Iu. (¢c) = (d) is given by u(x) = u(x) = u(—x). Finally,
(d) = (a): fix & € opp(Ly) = {A], 23, ..., A%} and ¢ € Ker(A — L,). Since both
u and its Fourier transform 7 are real-valued, we have [(@)V]"(§) = ¢(£), where
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@)V (x) := p(—x),Vx, & € R.Since T, ((9)) = (T,p)", wehave ()" € Ker(A—L,).
We choose the orthonormal basis {¢}, @5, ..., @y} in Hpp(Ly) as in formula (4.9).
Corollary 2.7 yields that dim¢ Ker(A — L,) = 1. There exists 8; € R such that
(w_y)v = eiﬁfw;* & (PDNE) = el @N"(E), V€ € R,Vj = 1,2,...,N. So we
set qb;.‘ = exp(w%)go;‘, then its Fourier transform (qb;‘)A is a real-valued function. Hence
vi(w) =Re(GeY, ¢") 12wy = =2 Im (3 [($)"], (9)) [2(0.400) = 0. O

Lemma 5.15. The level set Ay is a real analytic Lagrangian submanifold of Uy , o).

Proof. The map y : u € Uy — (1), y2(m),...,yn)) € RY is a real ana-
lytic submersion by Proposition 5.10. So the level set Ay is a properly embedded
real analytic submanifold of Uy and dimgr Ay = N. The classification of the tan-

gent space 7,(Uy) is given by Proposition 1.2. If u(x) = Z?jzl )%;2, for some
J
N " u 2[x2—n3]
nj > 0, then we have 7,(Ay) = @jlef,, where fj x) = m We
J
have (f]’.‘)A(E) = —2m|&|le il Then by definition of w, we have w,(hi, hy) =

o Jp W@ = L [, MERE g € iR, Vhy, hy € T,(Ay). Since the sym-
plectic form w is real-valued, we have w, (h, hy) = 0, for every hy, hy € T,(Ay).
Since dimg(Ay) = N = % dimp Uy, Ay is a Lagrangian submanifold of Uy. 0O

5.5. The symplectomorphism property. Finally, we prove the assertion (b) in Theorem
5.2,1.e. the map Py : Uy, w) = (Qy X RV, v) is symplectic. We set Wy = d>;1 :
Qn xRN = Uy, let WY denote the pullback of the symplectic form w by Wy which
is defined by (1.22). The goal of this subsection is to prove that

Vi=Wyw—v=0. (5.15)

Lemma 5.16. For every u € Uy, set p = Oy (u) € Qn x RN, Then we have

ddy () (X1, () = 5% Vk=1,2,...,N. (5.16)

r
Proof. Fix u € Uy and p = Oyu), YVh € T,(Uy), we have dOy(u)(h) €
T,(22y x RY). For every smooth function f : p = (r!,r2, ..., rV;al,a?, ... aV) €
Qv x RN+ f(p) € R, we have (dPyw)(h)) f = d(f o Py)w)(h) =
Y@l ) () 2L p+ dyj(u)(h)%|p). For every k = 1,2,..., N, we replace h
by Xy, (u) € T,(Uy), thus Corollary 5.9 yields that % b= (dPn ) (X () f. O

Lemma 5.17. Foreveryl < j < k < N, there exists a smooth function Cjk € C®(Qyx
RN) such that

- ; ocjk
D= Z cjkerAdrk, 2

| =00 viki=128, s17)
al 1p

1<j<k<N

forevery p = (', r?, ...V al a2, . o) e Qy x RV,
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Proof. The proof is divided into three steps. The first step is to prove that for every
peQy xRN andevery V e T,(Qy x RM),

DGl V) =0, V=12 N. (5.18)
In fact, let u = Wy(p) € Uy and p = (,.1’,.2,,_.,rN;oﬂ,ogZ,,..,o(N)7 so rl =
rl(p) = I o Wn(p). Then we have (\Il]’f,w)p(% p V) = ou(d¥n(p) (%L,)’

d¥y(p)(V)) = ou(Xpu),d¥y(p)(V)) by (5.16). Thus (\Il;:/w)p(% » V) =
—dL(w)(d¥N(p)(V)) = —d(; o Yn)(p)(V). On the other hand, vp(%’p, V) =

d
Zj?’zl(drf /\dotj)(% V)= —dr!(p)(V). Thus (5.18) is obtained by I = ¥}, —v.

Since we have ¥ = Y, _; 4y (@jrda’/ A dak +bjrdr/ A do* +¢jrdr/ A drt), for
some smooth functions aj, bji, cjx € C®(Qy x RM), the second step is to prove
thatajr = bjx = 0 on Qy X RY, for every | < j < k < N. In fact, we have dr/ A
drk (2 V) =0, drf'/\dak(% p» V) = —8udr/ (p)(V) and da/ Aok V)=
Sjldak(p)(V) —Sda/ (p)(V). Letl € {2,..., N} befixed,Vl1 < j <k <N,

> apdd (p)(V) = D" (ajdad (p)(V) +bjdr! (p)(V))

1<i<k<N 1<j<I<N
V) =0. (5.19)

Then we replace V by %b’ and L|p respectively in (5.19), then aj; = bj; = 0,

da/
Vi<j<Il—-1.
It remains to show that ¢ j; depends only on rlr? .., rN forevery 1 < j <k < N.
The symplectic form w is closed by Proposition 1.3 and v = dk is exact, where k =

Z?’:l rida’/. So db = W} (dw) = 0. Precisely, we have D i<j<k<N Z;v=1 (%dal/\

dri A drk + E’(,;‘Tffdrl Adri A drk) = 0. Since the family {dr/ Adrf Ada!}1 < ck<n.1<1<n
U{dr/ A drk A drl}i<jk<i<n is linearly independent in 23Uy ), we have 3;7’," =0,
foranyl < j<k<Nandl=1,2,...,N. O

Since the 2-form v is independent of al,a?, ..., &V, it suffices to consider points
p = (r,a) € Qy x RY with @ = 0. We shall prove i = 0 by introducing the
Lagrangian submanifold Qy x {Ogw~}.

End of the proof of formula (5.15). We have Qn x {Ognv} = Py (An), where Ay is
the Lagrangian submanifold of (Uy, ) defined by (5.14). If ¢ € Qun x {Ogn}, set
v=Wy(g) € Ay, we have

N
d
Ty x 0pn)) = PR 5| = dow (T (AN)). (5.20)
j=1
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For any point p = (r N.ogl, N) € QNX]RN and VV, V, €
T,(Qy x RY), where Vm = (a 67|p+b(m) f) | ) ﬁm)’b;m) ceR m =
1,2, we choose ¢ = (r!, rN:0,0,...,0) € Qn x {Ogn} and Wy, W, €

T,(Q2n % {Ogn)), whereW = Zjv a5
Since cjr(p) = cji(g), then (5.17) yields that v,(Vi, Vo) = Zl<]<k<N(a

aaP)cje(p) = Bg(Wi, Wa) = w,(dWy (v)(W1), dy (1) (W2)), because we have
vy (W1, W) = 0. The identification (5.20) yields that h,, := dWx(v)(W,,) € Ty (An),
form = 1, 2. Consequently, we have v, (Vy, V2) = wy(h1,h) =0. O

,m=1,2.Wesetv=Wy(q) € Apn.
(1) (2)

6. Asymptotic Approximation

This section is dedicated to describing the asymptotic behavior of the multi-soliton
solutions of (1.1).

Proof of corollary 1.11. Givenu € Uy, we define M(u) = (M (u)dxj)1<k, j<n» Where
M ; is givenin (1.18). Given (¢, x) € R?, wesetA = A(u, 1, x) := M(u) —x — —‘II(u)
where U is given in Corollary 1. 10 Then Ql(u fx) L = (aj(u,t,x)8j) 1<k, j<N»where
aj(x,t, w~ = vi(w) —x — I (u) + 700 (u) We set R(u) := Mu) — M(u), then
Yug € Uy, we have uso(t, x, uo) = 2Im(A(uo, t, x) "' X (ug), Y(uo))ev. lfu : t €
R+ u(t) € Uy solves the BO equation (1.1) such that u(0) = ug and |¢| is large, then

(e, ) =u(t. x: ) = 2Am((Alug. 1.3) + Kup) ™ X (wo). ¥ (o)) ey
oot x:1) + 2Im Y (A 1.7 Rw)) " Ao, . 1)~ X wo). ¥y v OV

n>2

. _ I;
Given R > 0, we have [|(uo. 1)~ |- r.p) < 20, ((@m ~ R~y o))+

1

2

—,.Z,zo)z) — 0, when [t|] — +00. So there exists T(ug, R, N) > 0 such
J

that 2N 2|2 (uy, )*]||Loc( RR)||ﬁ(uo)||(CNxN < 1, if [t|] = %(ug, R, N). Moreover,
1A (ug, )~ IHLZ(R) nZ/ 1 K (up). Then (6.1) yields that

n
) = oo Ol 2 g gy Sugn Y I (=20, 07 R)) " Awo. M2 _p )

n>2

SN 120, 700 g o 1RO 2y ey 10, 1 2 ) — 0

as |t| — +oo. Given x € R, similarly, there exists ¥'(ug, x, N) > 0 such that the
series of functions ¢ € [T (ug, x, N), +00) > 2¢2Im anz((—ﬂ(uo, t, x)_lﬁ(uo))n
A(ug, t, x)_lX(uo) Y (up))cn € Cconverges uniformly. Since lim,_, 4o Puso(t, x) =

27 I (u Ko and 1im;— 100 1Aug, t, x)~! = —7BV(up)~!, we have M';(f(’[’f;) =1+

2t Im Zn>2 (—Ql(uo,t,x)_lﬁ(uo)) Auo, 1, )™ X (uo), ¥ (uo))en (oo (t, x)) ™!
— 1, as [t] = +oo by formula (6.1). O
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