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Abstract: Thegenerationof certifiable randomness is themost fundamental information-
theoretic task that meaningfully separates quantum devices from their classical coun-
terparts. We propose a protocol for exponential certified randomness expansion using a
single quantum device. The protocol calls for the device to implement a simple quan-
tum circuit of constant depth on a 2D lattice of qubits. The output of the circuit can be
verified classically in linear time, and is guaranteed to contain a polynomial number of
certified random bits assuming that the device used to generate the output operated using
a (classical or quantum) circuit of sub-logarithmic depth. This assumption contrasts with
the locality assumption used for randomness certification based on Bell inequality vio-
lation and more recent proposals for randomness certification based on computational
assumptions. Furthermore, to demonstrate randomness generation it is sufficient for a
device to sample from the ideal output distribution within constant statistical distance.
Our procedure is inspired by recent work of Bravyi et al. (Science 362(6412):308–311,
2018), who introduced a relational problem that can be solved by a constant-depth quan-
tum circuit, but provably cannot be solved by any classical circuit of sub-logarithmic
depth. We develop the discovery of Bravyi et al. into a framework for robust randomness
expansion. Our results lead to a new proposal for a demonstrated quantum advantage
that has some advantages compared to existing proposals. First, our proposal does not
rest on any complexity-theoretic conjectures, but relies on the physical assumption that
the adversarial device being tested implements a circuit of sub-logarithmic depth. Sec-
ond, success on our task can be easily verified in classical linear time. Finally, our task
is more noise-tolerant than most other existing proposals that can only tolerate multi-
plicative error, or require additional conjectures from complexity theory; in contrast, we
are able to allow a small constant additive error in total variation distance between the
sampled and ideal distributions.
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1. Introduction

A fundamental point of departure between quantum mechanics and classical theory is
that the former is non-deterministic: quantum mechanics, through the Born rule, posits
the existence of experiments that generate intrinsic randomness. This observation leads
to the simplest and most successful “test of quantumness” to have been designed and
implemented: the Bell test [Bel64]. Far beyond its role as a test of the foundations of
quantum mechanics, the Bell test has become a fundamental building block in quan-
tum information, from protocols for quantum cryptography (e.g. device-independent
quantum key distribution [Eke91,VV14]) to complexity theory (e.g. delegated quantum
computation [RUV13], multiprover interactive proof systems [CHTW04]) and much
more [BCP+14]. Yet, while a loophole-free implementation of a Bell test has been
demonstrated [HBD+15,GVW+15,SMSC+15] it remains a challenging experimental
feat, which unfortunately leaves its promising applications wanting (here ”loophole-
free” refers to a stringent set of experimental standards which ensure that all required
assumptions have been verified “beyond reasonable doubt”). The increasingly powerful
quantum devices that are being experimentally realized tend to be single-chip, and do not
have the ability to implement loophole-free Bell tests. The task of devising convincing
“tests of quantumness” for such devices is challenging.

Until recently the only proposal for such tests was the design of so-called “quantum
supremacy experiments” [HM17], which specify classical sampling tasks that can in
principle be implemented by a mid-scale quantum device, but cannot be simulated by
any efficient classical randomized algorithm (under somewhat standard computational
assumptions [AC17,HM17]). These proposals share a number of well-recognized lim-
itations. Firstly, while the sampling part of the process can be done efficiently on a
quantum computer, verifying that the quantum computer is sampling from a hard dis-
tribution requires a computational effort which scales exponentially in the number of
qubits. Secondly, their experimental realization is hindered by a generally poor tolerance
to errors in the implementation, which is compounded by the necessity to implement
circuits with relatively large (say, at least

√
N for an N × N grid) depth. Combined with

the resort to complexity-theoretic assumptions for which there is little guidance in terms
of concrete parameter settings (see however [DHKLP18]), this has led to an ongoing
race in efficient simulations [CZX+18,HNS18,MFIB18]. Indeed, the proposals operate
in a limited computational regime, requiring a machine with, say, at least 50 qubits
(to prevent direct clasical simulation) but at most 70 qubits (so that verification can be
performed in a reasonable amount of time)—leaving open the question of what to do
with a device with more than, say, 100 qubits. At a more conceptual level, the proposals
are based on computational tasks that appear arbitrary (such as the implementation of
a random quantum circuit from a certain class). In particular, they do not lead to any
further characterization of the successful device, that could be used to e.g. build a secure
delegation protocol or even simply certify a simple property such as the preparation of
a specific quantum state or the implementation of a certain class of measurements.

We propose a different kind of experiment, or “test of quantumness”, for large but
noisy quantum devices, that is inspired from recent work of Bravyi et al. on the power of
low-depth quantum circuits [BGK18]. Our test is applicable in a regimewhere the device
has a large number of qubits, but may only have the ability to implement circuits of low
(constant) depth, due e.g. to a limited gate fidelity. We argue that the test overcomes
the main limitations outlined above: it generates useful outcomes (certifiably random
bits), it is easily verifiable (in classical linear time), and it is robust to a small amount
of error (it is sufficient to generate outputs within constant statistical distance from the
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ideal distribution1). The test does not require any assumption from complexity theory,
but instead considers a novel physical assumption (introduced in [BGK18]): that the
device implements a circuit whose depth is at most a small constant times the logarithm
of the number of qubits. Intuitively, this assumption trades off locality (as required by
the Bell test) for time (as measured by circuit depth). It is particularly well-suited to
quantum devices for which the number of qubits can be made quite large, but the gate
fidelity remains low, limiting the depth of a circuit that can be implemented. Informally,
we show the following.

Theorem 1.1. There exists universal constants c, d > 0, a family of distributions
{DN }N∈N such that for every N ≥ 1, DN is an efficiently sampleable distribution
on {0, 1}N2

, and a family of efficiently verifiable relations {RN }N∈N such that for every
N ≥ 1, RN ⊆ {0, 1}N2 × {0, 1}N2

, such that the following holds:

• (Completeness) There exists a family of depth-3 geometrically local (in 2D) quantum
circuits {CN }N∈N such that for any N ≥ 1 and any input x in the support of DN it
holds that (x, CN (x)) ∈ RN with probability 1.
• (Soundness) For any family of classical circuits {CN }N∈N such that for every N ≥ 1,
CN has constant fan-in and depth at most c log N, the probability that (x, CN (x)) ∈
RN for x ∼ DN is O(N−1/5).
• (Randomness certification) It is possible to efficiently generate a sample from DN
using O(log2 N ) uniformly random bits. Moreover, for any family {CN }N∈N of (clas-
sical or quantum) circuits with gates of constant fan-in and such that CN has depth
at most c log N and satisfies

Pr
x∼DN

[
(x, CN (x)) ∈ RN

] = �
(
N−1/5),

it holds that the distribution of CN (x) for x ∼ DN has �(Nd) bits of (smooth)
min-entropy.

We refer to Theorem 6.7 for a precise statement. In particular, the output entropy
is quantified using the quantum conditional min-entropy, conditioned on the inputs to
the circuit and quantum side information that may be correlated with the initial state of
the circuit. In this sense it is guaranteed that outputs generated by the circuit contain
“genuine” randomness, that is independent from the circuit inputs and uncorrelated from
an eavesdropper that may hold a quantum state entangled with the state of any ancilla
qubits on which the circuit operates. Thus our construction achieves both randomness
certification (outputs of the circuit have entropy as long as a simple test is passed with
sufficiently large probability) and expansion (outputs of the circuit have entropy even
conditioned on the inputs).

Theorem 6.7 provides a “test of quantumness” in the sense that given a (family of)
circuit CN that maps N 2 bits to N 2 bits and satisfies (x, CN (x)) ∈ RN with sufficiently
large probability when x ∼ DN , it must be that either the circuit is non-classical, or it
has at least logarithmic depth. The requirement for succeeding in our test is more robust
than most existing proposals, that require the output distribution to be multiplicatively
close to the target distribution. In contrast, in our case it is sufficient to hit a certain target
(the relationR, that itself is very permissive) an inverse polynomial fraction of the time!
The downside is that the condition that the circuit has small depth may be difficult to
certify in practice; we discuss the use of timing assumptions below.

1 In fact, even less is needed; see the description of the protocol.
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Aside from the application to randomness expansion, Theorem 1.1 strengthens the
main result of Bravyi et al. [BGK18] in multiple ways. In the first version of their work
that was publicized [BGK17] Bravyi et al. provide a relation such that for any classical
circuit of sufficiently low depth, there exists an input such that the circuit must return an
output that satisfies the relation with probability bounded away from 1. In contrast, we
point out the existence of an efficiently sampleable distribution on inputs such that, for
any classical low-depth circuit, we know that on average over the choice of an input the
circuit returns an output that satisfies the relation with at most small probability. This
improvement follows using a simple extension of the arguments in [BGK17], and in fact
a similar improvement was independently derived by Bravyi et al. in the final version
of their paper [BGK18]. In addition to this improvement, which is key to the practical
relevance of the scheme, we address the following question left open in [BGK18]: how
small can one drive the maximum success probability of any classical low-depth circuit
(i.e. the “soundness”)?

Theorem 1.2. (Exponential soundness) There exists universal constants c, c′ > 0, a
family of distributions {DN }N∈N such that for every N ≥ 1, DN is an efficiently sam-
pleable distribution on {0, 1}N2

, and a family of efficiently verifiable relations {RN }N∈N
such that for every N ≥ 1, RN ⊆ {0, 1}N2 × {0, 1}N2

, such that the following holds:

• (Completeness) As in Theorem 1.1.
• (Soundness) For any family of classical circuits {CN }N∈N such that for every N ≥ 1,
DN has depth at most c log N, the probability that (x, CN (x)) ∈ R for x ∼ DN is
O(exp(−Nc′

)).

Note that the strengthened statement on the possibility for low-depth classical circuits
to generate outputs that satisfy the right relation comes at the cost that in Theorem 1.2
it is no longer the case that it is possible to sample from D using poly-logarithmically
many bits. Nevertheless, it remains possible to sample from D in classical randomized
polynomial-time, which is crucial for an experimental demonstration. In this case the im-
provement in the soundness guarantee is significant since it allows to use the test provided
by the relation R as a means to distinguish relatively noisy quantum circuits of depth
3—where here by “noisy” we mean that the circuits would satisfy (x,D(x)) ∈ R with
probability that is e.g. inverse-polynomial, instead of 1 for a perfect implementation—
from classical circuits of logarithmic depth, that may achieve (x,D(x)) ∈ R with
probability that is exponentially small at best.
Discussion.Wecomment on the depth assumption that underlies our results, and their po-
tential for a practical demonstration of a quantum advantage (a.k.a. “quantum supremacy
experiment”). The quantum circuit required for a successful implementation of our task
is relatively straightforward to implement. It can be realized in three phases. A first,
offline phase initializes EPR pairs (or three-qubit GHZ states) between nearest-neighbor
qubits on a 2D grid. In a second phase, each qubit is provided an input, according to
which either the qubit should be measured according to a single-qubit Pauli observable,
or the qubit and one of its neighbors should be measured in the Bell basis. Finally, in
the third phase the measurement outcomes are aggregated and verified using a simple
classical linear-time computation.

In order to demonstrate a quantum advantage, the crucial requirement is that the sec-
ond phase should be implemented using a procedure that is “certified” to have low depth.
Since this is a physical assumption, it can never be rigorously proven. Nevertheless, it
is possible to imagine experiments under which the assumption would hold “beyond
reasonable doubt”. We describe two such experiments.
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In a first scenario, the verification of the depth constraint could be based on a calcula-
tion that takes into account state-of-the-art clock speeds. The fastest classical processors
operate at speeds of order 1GHz, so that for an integer N , a circuit of depth d = log(N )

takes time of order 10−9 log(N ) seconds to implement. In contrast, current gate times
for, say, ion-trap quantum computers are of order 100 nanoseconds [SBT+18], meaning
that the quantum circuit realizing our task could be implemented in time roughly 10−7

seconds. To observe a quantum advantage it is thus necessary to ensure log(N ) � 102,
leading to an impractical circuit size. However, a reasonable factor 10 improvement in
the gate time for quantum gates could enable a demonstration based on a grid of order
210 × 210 qubits. Although far beyond current capabilities, the number is not beyond
reach. Keeping in mind the extreme simplicity of the task to be implemented, it is not
unreasonable to hope that such circuits may exist within 5–10 years.

In the previous scenario we allowed both the classical and quantum procedures solv-
ing our task to do so in a highly localized, single-chip fashion. The distributed nature
of the task lends itself well to another type of implementation, that would be more
demanding for a classical adversarial behavior, and may thus lead to a more practical
demonstration of quantum advantage. Consider a network of constant-qubit devices ar-
ranged in a N × N grid, such that devices may be separated by large (say, kilometric)
distances. In the first, offline phase the devices use nearest-neighbor quantum commu-
nication channels to distribute EPR pairs. In the second phase, each device receives a
classical input, performs a simple local measurement, and returns a classical output (no
communication is required). Our result implies that, to even approximately reproduce
the output distribution implemented by this procedure, a classical network would need
to operate in at least �(log N ) rounds, where in each round a device can communicate
with a constant number of devices located at arbitrary locations in the network (the
network need not be 2D: at each step, a device is allowed to broadcast arbitrarily but
can only receive information from a constant number of devices, whose identity must
be fixed ahead of time). Taking into account inevitable latency delays incurred in any
such network, this second scenario suggests that our task may lead to an interesting test
for a future quantum internet [WEH18].

Finally we comment on the fidelity requirement for the gates of a quantum circuit
implementing our task. Even though the circuit is only of constant depth, it is important
that, along a typical path of length O(N ) between two qubits in the N × N grid, none
of the gates leads to an error. This means that per-gate fidelity is required to be of order
1−O(1/N ). For N of order 210, as suggested in the first scenario described above, such
fidelities are within reach. We also note that by changing the architecture of the circuit
from a 2D grid to a 3D grid it may be possible to leverage existing protocols for entan-
glement distribution using noisy resources [RBH05]. Unfortunately, this comes with the
drawback of a challenging 3D architecture for which there is no current implementation.

Proof idea. Our starting point is the key observation, made by Bravyi et al. [BGK18],
that a sub-logarithmic depth circuit made of gates with constant fan-in has a form of
implied locality, where the “forward lightcone” of most input vertices only includes a
vanishing fraction of output vertices. In particular, two randomly chosen input locations
are unlikely to have overlapping lightcones. If the input to the circuit is non-trivial in
those two locations only, then the outputs in each input location’s forward lightcone
are obtained by a computation that depends on that input only. In other words, we
have a reduction from classical, low-depth circuits to two-party local computation that
exactly preserves properties of the output. While the same lightcone argument holds true
for a quantum circuit, the quantum circuit has the ability of distributing entanglement
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across any two locations in depth 2, by executing a sequence of entanglement swapping
procedures in parallel. Thus the same reduction maps a quantum, low-depth circuit to a
two-party local computation, where the parties may perform their local computation on
a shared entangled state. Since there are well-known separations between the kinds of
distributions that can be generated by performing local operations on an entangled state,
as opposed to no entanglement at all—this is precisely the scope of Bell inequalities—
Bravyi et al. have obtained a separation between the power of low-depth classical and
quantum circuits.

We build on this argument in the following way. Our first contribution is to boost
the argument in [BGK18] from a worst-case to a “high probability” statement. Instead
of showing that (i) for every classical circuit, there is some choice of input on which
the classical circuit will fail, and (ii) there is a quantum circuit that succeeds on every
input, we show that there exists a suitable distribution on inputs that is such that, (i)
any classical circuit fails with high probability given an input from the distribution, and
(ii) there is a quantum circuit that succeeds with high probability (in fact, probability
1) on the distribution. Second, we observe that the construction in [BGK18] imposes
constraints not only on classical low-depth circuits, but also on quantum low-depth
circuits; this observation enables the reduction to nonlocal games hinted at above. Finally,
we amplify the argument to show how a polynomial number of Bell experiments can
be simultaneously “planted” into the input to the circuit. This allows us to perform a
reduction to a nonlocal game inwhich there is a large number of players divided into pairs
which each perform their own distinct Bell experiment. By adapting techniques from
the area of randomness expansion from nonlocal games [AFDF+18] we are then able to
conclude that any sub-logarithmic-depth circuit, classical or quantum, that succeeds on
our input distribution, must generate large amounts of entropy. Moreover, this guarantee
holds even if the circuit only correctly computes a sufficiently large but constant fraction
of outputs for the games.

Related work. Two recent works investigate the question of certified randomness gener-
ation outside of the traditional framework of Bell inequalities. In [BCM+18] randomness
is guaranteed based on the computational assumption that the device does not have suf-
ficient power to break the security of post-quantum cryptography. The main advantages
of this proposal are that the assumption is a standard cryptographic assumption, and that
verification is very efficient. A drawback is the interactive nature of the protocol, where
only a fraction of a bit of randomness is extracted in each round. In [Aar18], Aaronson
announced a randomness certification proposal based on the Boson Sampling task. The
main advantage of the proposal is that it can potentially be implemented on a device with
fewer than 100 qubits. Drawbacks are the difficulty of verification, that scales exponen-
tially, and the resort to somewhat non-standard complexity conjectures, for which there
is little evidence of practical hardness (e.g. it may not be clear how to set parameters
for the scheme so that an adversarial attack would require time 280). In comparison, we
would say that an advantage of our proposal is its simplicity to implement (on an axis
different from Aaronson’s: we require many more qubits, but a much simpler circuit,
of constant depth and with classically controlled Clifford gates only), its robustness to
errors, and its ease of verification. A possible drawback is the physical assumption of
bounded depth, that may or may not be reasonable depending on the scenario (in contrast
to cryptographic or even complexity-theoretic assumptions, that operate at a higher level
of generality).

Two other works obtained concurrently and independently from ours establish di-
rectly related, but strictly incomparable, results. In [Gal18] Le Gall obtains an average-
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case hardness result that is very similar to our Theorem 1.2, with a concrete constant
c′ = 1/2 that is likely better than the one that we achieve here. Le Gall’s proof is based
on an ingenious construction using the framework of graph states; although some as-
pects are similar in spirit to ours (such as the use of parallel repetition to amplify the
soundness guarantees) the proof rests on rather different intuition. In independent work,
BeneWatts et al. [BWKST19] extend the results of [BGK18] to obtain a result analogous
to our Theorem 1.2, with a strengthened soundness property which holds even against
so-called AC0 circuits. AC0 circuits are still required to have constant depth but may
contain AND and OR gates of arbitrary fan-in (instead of constant fan-in for [BGK18]
and our results). Their proof applies to the same relation as [BGK18] but uses more
involved techniques from classical complexity theory to obtain the strengthened lower
bound. Neither of these results obtains an application to randomness expansion as in our
Theorem 1.1.

2. Preliminaries

2.1. Notation. Finite-dimensional Hilbert spaces are designated using calligraphic let-
ters, such as H. A register A, B, R, represents a physical subsystem, whose associated
Hilbert space is denotedHA,HB, etc.We say a register is classical if there is a fixed basis
|i〉 in which the only allowed states of the subsystem are states of the form

∑
i pi |i〉〈i |,

which are diagonal in the designated basis. We write IdR for the identity operator on
HR. A POVM {Ma} on H is a collection of positive semidefinite operators on H such
tht

∑
a M

a = Id. For X a linear operator on H, we write Tr(X) for the trace and
‖X‖1 = Tr

√
X†X for the Schatten-1 norm.

For an integer d ≥ 1 an observable over Zd is a unitary operator A such that Ad = Id.

For ω = e
2iπ
d and taking addition modulo d we write

X =
d−1∑

i=0

|i + 1〉〈i | and Z =
d−1∑

i=0

ωi |i〉〈i |

for the generalized qudit Pauli X and Z operators, which are observables acting on
H = C

d . Given an integer d ≥ 1 and a tuple s ∈ Z
2
d , we write σs = Xs0 Zs1 for a

one-qudit Pauli acting on C
d . Given an integer n ≥ 1 and a string r ∈ (Z2

d)
n , we write

σr = ⊗iσri for an n-qudit Pauli acting on (Cd)⊗n .

2.2. Nonlocal games. We consider two types of games: multiplayer nonlocal games,
and circuit games. Circuit games are nonstandard, and we introduce them in Sect. 5.
Nonlocal games are defined as follows.

Definition 2.1. (Nonlocal game) Let � ≥ 1 be an integer. An �-player nonlocal game G
consists of finite question and answer sets X = X1×· · ·×X� and A = A1×· · ·× A� re-
spectively, a distributionπ on X , and a family of coefficients V (a1, . . . , a�|x1, . . . , x�) ∈
[0, 1], for (x1, . . . , x�) ∈ X and (a1, . . . , a�) ∈ A. We call an element x ∈ X in the
support of π a query, and for i ∈ {1, . . . , �} the i th entry xi of x a question to the i th
player. We refer to the function V (·|·) as the win condition for the game, and for any
query x , to a tuple a such that V (a|x) = 1 as a valid (or winning) tuple of answers (to
query x). When players return valid answers we say that they win the game.



56 M. Coudron, J. Stark and T. Vidick

Definition 2.2. (Strategy) Let � ≥ 1 be an integer, and G an �-player nonlocal game.
An �-player strategy τ = (ρ, {Mxi }) for G consists of an �-partite density matrix ρ ∈
H1 ⊗ · · · ⊗ H�, and for each i ∈ {1, . . . , �} a collection of measurement operators
{Mai

xi }ai∈Ai on Hi indexed by xi ∈ Xi and with outcomes ai ∈ Ai .

Definition 2.3. (Game value) Let G be an �-player nonlocal game, and τ = (ρ, {Mai
xi })

a strategy for the players in G. The value of τ in G is

ω∗
τ (G) =

∑

x1,...,x�

π(x1, . . . , x�)
∑

a1,...,a�

V (a1, . . . , a�|x1, . . . , x�)Tr
(
(Ma1

x1 ⊗· · ·⊗Ma�
x�

) ρ
)
.

A strategy τ is called perfect if ω∗
τ (G) = 1. The entangled value (or simply value) of G,

ω∗(G), is defined as the supremum over all strategies τ of ω∗
τ (G).

To compare strategies we first introduce a notion of distance between measurements,
with respect to an underlying state. (This is a standard definition in the area of self-
testing.)

Definition 2.4. (State-dependent distance) Let ρ be a density matrix in H and let M =
{Ma}a, N = {Na}a be two POVM on H that have the same set of outcomes. The
state-dependent distance between M and N is

dρ(M, N ) =
( ∑

a

Tr
(
(Ma − Na)2ρ

))1/2
. (1)

Definition 2.5. (Closeness of strategies) Let τ = (ρ, {Mai
xi }), τ̃ = (ρ̃, {M̃ai

xi }) be strate-
gies for an �-player nonlocal game G. We say that τ is ε-close to τ̃ if and only if
‖ρ − ρ̃‖1 ≤ ε and for all i ∈ {1, . . . , �} it holds that Exdρ(Mxi , M̃xi ) ≤ ε, where the
expectation is over x = (x1, . . . , x�) drawn from π .

Definition 2.6. (Isometric strategies) Let τ = (ρ, {Mai
xi }) and τ ′ = (ρ′, {(M ′)aixi }) be

strategies for an �-player nonlocal game G, and ε > 0. We say that τ is ε-isometric to τ ′
if and only if there exist isometries Vi : Hi → H′

i for each i ∈ {1, . . . , �} such that τ ′
is ε-close to the strategy τ̃ = (ρ̃, {M̃ai

xi }), where ρ̃ = (V1 ⊗ · · · ⊗ V�)ρ(V1 ⊗ · · · ⊗ V�)
†

and for all i ∈ {1, . . . , �}, xi ∈ Xi and ai ∈ Ai , M̃
ai
xi = Vi M

ai
xi V

†
i .

Definition 2.7. We say that a game G is robustly rigid if the following holds. There is a
continuous function f : R+ → R+ such that f (0) = 0 and a strategy τ for G such that
for any δ ≥ 0, any strategy τ ′ with value at least ω∗

τ (G) − δ is f (δ)-isometric to τ . We
refer to f as the robustness of the game.

Note that for a game to be robustly rigid it is necessary that there exists a unique
strategy τ such that ω∗

τ (G) = ω∗(G), up to isometry.

2.3. Circuits. We refer to [NC02] for an introduction to the quantum circuit model. We
consider layered circuits over an arbitrary gate set. The choice of a specific gate set may
affect the depth of a circuit; for concreteness, the reader may consider the standard gate
set {X, Z , H, T,CNOT }, where here X, Z are the Pauli observables over C2,

H = 1√
2

(
1 1
1 −1

)
, T =

(
1 0
0 eiπ/4

)
,
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and CNOT is the controlled-NOT gate. In general, gates in the gate set used to specify
the circuit may have arbitrary fan-out, but are restricted to fan-in atmost K , where K ≥ 2
is a parameter that is considered a constant (in contrast to the depth D of the circuit,
that is allowed to grow with the number of input wires to the circuit). Note that if C is a
quantum circuit, “fan-in” is the same as locality, i.e. the number of qubits that a gate acts
on nontrivially. In particular, for quantum circuits bounded fan-in automatically implies
bounded fan-out.

It is convenient to generalize the usual notion of Boolean circuit to allow circuits that
act on inputs taken from a larger domain, e.g. C : �n → �m , where� is a finite alphabet.
Similar to the fan-in, whenever using the O(·) notationwe consider the cardinality of� a
constant. A circuit of depth D and fan-in K over� can be converted in a straightforward
way in a circuit of depth D and fan-in K · �log2 |�|� over {0, 1}. For the case of quantum
circuits, allowing a non-Boolean � amounts to considering a circuit that operates on
d-dimensional qudits, for d = |�|, instead of 2-dimensional qubits.

2.4. Entropies. Given a bipartite density matrix ρAB we write H(A|B)ρ , or simply
H(A|B) when ρAB is clear from context, for the conditional von Neumann entropy,
H(A|B) = H(AB)− H(B), with H(X)σ = −Tr(σ ln σ) for any density σ onHX. We
recall the definition of (smooth) min-entropy.

Definition 2.8. (Min-entropy) Let ρXE be a density matrix on two registers X and E,
such that the register X is classical. The min-entropy of X conditioned on E is defined
via the following optimization problem over the space Pos (HE) of positive semidefinite
operators on H.

Hmin(X |E)ρ = max{λ ≥ 0 : ∃σE ∈ Pos (HE) ,Tr(σE) ≤ 1, s.t. 2−λ IdX ⊗σE ≥ ρXE}.
When the state ρ with respect to which the entropy is measured is clear from context
we simply write Hmin(X |E) for Hmin(X |E)ρ . For ε ≥ 0 the ε-smooth min-entropy of
X conditioned on E is defined as

H ε
min(X |E)ρ = max

σXE∈B(ρXE,ε)
Hmin(X |E)σ ,

where B(ρXE, ε) is the ball of radius ε around ρXE, taken with respect to the purified
distance.2

The following theorem justifies the use of the smooth min-entropy as the appropriate
notion of entropy for randomness extraction.

Theorem 2.9. [DPVR12] For any integers n,m and for any ε > 0 there exists a
d = O(log2(n/ε) · logm) and an efficient classical procedure Ext : {0, 1}n×{0, 1}d →
{0, 1}m such that for any density matrix ρXE = ∑

x |x〉〈x |X ⊗ ρx
E such that the regis-

ter X is an n-bit classical register and Hmin(X |E) ≥ 2m, letting ρZYE = 2−d ∑
x,y

|Ext(x, y)〉〈Ext(x, y)|Z ⊗ |y〉〈y|Y ⊗ ρx
E it holds that

∥∥ρZYE −Um ⊗Ud ⊗ ρE
∥∥
1 ≤ ε,

where for an integer � ≥ 1, U� = 2−� Id is the totally mixed state on � qubits and
ρE = ∑

x ρx
E.

2 The definition of the purified distance is not important for us, and we defer to [Tom15] for a precise
definition.
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3. Stabilizer Games

In this section we introduce a restricted class of nonlocal games that we will be con-
cerned with throughout the paper. We call the games stabilizer games. They have the
property that the game always has a perfect quantum strategy τ = (ρ, {Mxi }) that uses
an entangled state ρ = |ψ〉〈ψ | that is a graph state, on which the players make mea-
surements that are specified by tensor products of Pauli observables. It is important for
our results that there is a perfect strategy such that the entangled state can be prepared
by a quantum circuit of low depth (in fact, constant depth) starting on a |0〉 state. It will
also be convenient that the same perfect strategy only requires the measurement of Pauli
operators, and that the win condition in the game is a linear function of the players’
answers.

We proceed with a formal definition. The games we consider have � players. In the
intended strategy for the players, each player j ∈ {1, . . . , �} holds k j qudits, measures
m j commuting Pauli observables over Zd (depending on its question), and reports the
m j outcomes.

Definition 3.1. (Stabilizer game) An (�, k,m) stabilizer game G = (Xi , {wx , bx }) is an
�-player nonlocal game defined from the following data.

• a number of players �,
• a parameter d for the dimension of the qudits (in the honest strategy),
• for j ∈ {1, . . . , �}, a parameter k j for the number of qudits held by the j th player
(ibid),
• for j ∈ {1, . . . , �}, a parameter m j for the number of simultaneous measurements
made by the j th player (ibid),
• for j ∈ {1, . . . , �}, a set X j , each element of which is identified with the label
x ∈ (Z2

d)
k j of a k j -qudit Pauli,

• a distribution π on queries x ∈ ∏�
j=1 X

m j
j , such that any (x1, . . . , x�) in the support

of π is such that for each j , x j designates an m j -tuple of commuting k j -qudit Pauli
observables,
• for each query x in the support of π , a vector wx ∈ ∏�

j=1(Zd)
m j and a coefficient

bx ∈ Zd that are used to specify the win condition in the game.

To play, the verifier samples a question x j ∈ X
m j
j for each player. Each player responds

with a string a j ∈ Z
m j
d . Let x = (x1, . . . , x�) and a = (a1, . . . , a�). The players win if

wx · a = bx , (2)

where the inner product is over vectors inZ
∑

m j
d . Using the notation fromDefinition 2.1,

V (a|x) = 1 if wx · a = bx , and 0 otherwise.

In a stabilizer game each player is tasked with reporting m values in Zd . It is then
natural to use a representation of strategies in terms of observables over Zd . We adapt
Definition 2.2 as follows.

Definition 3.2. Let G = (Xi , {wx , bx }) be a stabilizer game. A strategy τ = (ρ, {Mx j })
for G is specified by an �-partite density matrix ρ and for each j ∈ {1, . . . , �} and
x j = (x j,1, . . . , x j,m j ) ∈ X

m j
j a family of m j -tuples of commuting observables Mx j =

(Mx j ,1, . . . , Mx j ,m j ) over Zd .
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Note that in the definition, for s ∈ {1, . . . ,m j } the observable Mx j ,s may depend on
the whole m j -tuple x j , and not only on x j,s .

We introduce a notion of “honest strategy” in a stabilizer game.

Definition 3.3. (Honest strategy) Let G = (X j , {wx , bx }) be a stabilizer game. A hon-
est strategy in G is a strategy in which the state ρ is an (

∑
j k j )-qudit �-partite pure

state |ψ〉 such that the j th player has k j qubits, and the player’s observables Mx j =
(Mx j ,1, . . . , Mx j ,m) associated with question x j = (x j,1, . . . , x j,m j ) ∈ X

m j
j are pre-

cisely them j commuting Pauli observables specified by x j . We say that the strategy has
depth d if the state |ψ〉 can be prepared by a quantum circuit of depth at most d starting
from the |0〉 state.

3.1. Pauli observables. Recall the notation σr , where r ∈ (Z2
d)

k , introduced in Sect. 2.1
to designate an arbitrary k-qudit Pauli observable.

Definition 3.4. (Correction value) Let q, r ∈ (Z2
d)

k . The correction value corr (q) ∈ Zd
is defined such that

ωcorr (q) I = [σq , σr ], (3)

where the brackets denote the group commutator, [P, Q] = PQP−1Q−1.

(The above definition takes advantage of the fact that the group commutator of Pauli
matrices is always a scalar multiple of the identity matrix.) By abuse of notation, we
will also sometimes write cor as a vector valued function, where if r = cor(r1, . . . , ri )
and q = (q1, . . . , qi ) then corr (q) is defined as (corr1(q1), . . . , corri (qi )).

The following lemma shows that the function cor can be computed locally.

Lemma 3.5. (Cor can be computed locally) For a string s, let s|i denote the string which
is equal to si in the i th position and 0 everywhere else. Then for any q and r,

∑

i

corr |i (q|i ) = corr (q). (4)

Proof. First, notice that
corr |i (q|i ) = corr |i (q). (5)

To see this, recall that cor is computed as the phase of the group commutator of a Pr |i
and σ(q). We can evaluate this group commutator one tensor factor at a time. In all
tensor factors other than i , the commutator will be trivial since the r operator is identity.
Therefore, the commutator does not change if we also set the q operator to identity.

Next, we need that for any fixed q, the map r �→ corr (q) is an additive homomor-
phism. In other words,

corr+r ′(q) = corr (q) + corr ′(q). (6)

To see this, we apply Lemma 3.6 with A = σq , B = σr , C = σr ′ .
The lemma follows by combining Equations (5) and (6) with the observation that

r = ∑
i r |i . ��

Lemma 3.6. (Commutators) Suppose B commutes with [A,C]. Then [A, B][A,C] =
[A, BC].
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Proof. Write [A, BC] as A(BC)A−1(BC)−1.Note that by definition, AB = [A, B]BA.
Then we have

[A, BC] = A(BC)A−1(BC)−1

= ABCA−1C−1B−1

= [A, B]BACA−1C−1B−1

= [A, B]B[A,C]B−1

= [A, B][A,C],
where the last line follows from commutation of B and [A,C]. ��

3.2. Rotated and stretched stabilizer games. In this sectionwe define stretched stabilizer
games which formalize the notion of distributing a stabilizer game out over long “paths”.
One property of stretched games is that players on far ends of the paths have outputs
which require correction according to a function of the outputs along the intermediate
points in the paths. We introduce a notion of rotated stabilizer game that captures this
scenario by allowing the players to report an additional “rotation string”.

Definition 3.7. (Rotated stabilizer game) Given a stabilizer game G = (X j , {wx , bx })
the rotated stabilizer game associated with G, GR , is defined as follows. For each j ∈
{1, . . . , �} and question x j ∈ X

m j
j , the j th player reports an answer a j ∈ Z

m j
d together

with a rotation string r j ∈ (Z2
d)

k j . The win condition (2) is replaced by the condition

wx · (a − corr (x)) = bx , (7)

where r = (r1, . . . , r�).

Observe that if r is the 0 vector then for any q, corr (q) = 0, so the win condition for
the rotated game GR reduces to the win condition for G. Therefore any strategy for G
implies a strategy for GR with the same success probability. More generally, it is possible
to define a strategy in GR by having the players conjugate their observables in G by an
arbitrary Pauli observable (the same for all observables), and report as rotation string
the string that specifies the observable used for conjugation.

Using Lemma 3.5 it follows that there is a reduction in the other direction as well.
Given a strategy for GR , one obtains a strategy for G by replacing the answer (ai , ri )
from the i th player in GR by the answer

(ai − corri (qi )) (8)

inG. The following lemma summarizes this observation in terms of rigidity of the rotated
game. Recall the definition of a robustly rigid game in Definition 2.7.

Lemma 3.8. (Rotation preserves rigidity) Suppose that a stabilizer game G is robustly
rigid (see Definition 2.7). Let τ = (|ψ〉〈ψ | , {Mx j }) be a rigid strategy and f the
robustness. Then the rotated stabilizer game GR is rigid in the following sense. For any
strategy τ = (ρ′, {M ′

x j }) that has value w′ = ω∗
τ (G) in GR, there is a strategy in G that

is a coarse-graining of (ρ′, {M ′
x j }) according to (8),3 and that has value w′ in G. In

particular, up to local isometries the state ρ′ is within distance f (1 − w′) of |ψ〉〈ψ |.
3 Here by “coarse-graining” we mean the strategy that is implied by requiring each player to compute the

update (8) locally; Lemma 3.5 shows that this can always be done.
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We introduce a notion of “stretched” rotated game, that will be useful when we relate
circuit games to stablizer games.

Definition 3.9. (Stretched stabilizer game) Let G = (X j , {wx , bx }) be a stabilizer game,
and � = (�1, . . . , ��) an �-tuple of finite sets, such that for j ∈ {1, . . . , �}, � j has k j
designated elements (u j,1, . . . , u j,k j ). Each element of � j is used to index one out of
|� j | qudits that are supposed to be held by the j th player. To G and � we associate a
“stretched” game GS

� as follows. In GS
� the parameter k j is replaced by k′

j = |� j |. For
any k j -qudit Pauli observable asked to player j in G, there is a k′

j -qubit Pauli observable

in GS
� such that the observable acts as the identity on the additional (k′

j − k j ) qubits. The

win condition in GS
� is the same as in G.

Given a stabilizer game G and sets � = (�1, . . . , ��), we write GS,R
� = (GS

�)R for
the rotated stretched stabilizer game associated with G and �.

3.3. Repeated games. For an integer r ≥ 1 we consider the game that is obtained by
repeating a stabilizer game r times in parallel, with r independent sets of � players (that
may share a joint entangled state).

Definition 3.10. Let G be an (�, k,m) stabilizer game, and r ≥ 1 an integer. The r-
fold repetition of G is the (r�, k) stabilizer game Gr that is obtained by executing G
independently in parallel with r groups of � players.More formally, the input distribution
πr in Gr is the direct product of r copies of the input distribution π in G, and the win
condition in Gr is the AND of the win conditions in each copy of G.

For purposes of randomness expansion, in Sect. 6 we consider repeated games for
which the input distribution πr is not exactly the direct product of r copies of π , but
a derandomized version of it. Similarly, to achieve better robustness, instead of the
AND of the winning conditions we may consider a win condition that is satisfied as
soon as sufficiently many of the win conditions for the subgames are satisfied. These
modifications are explained in Sect. 6.1.

3.4. The Magic Square game. For concreteness we give two examples of stabilizer
games, the Memin-Peres Magic Square game [Mer90b] and the Mermin GHZ
game [Mer90a]. The former is given for illustration; the latter will be used towards
randomness expansion in Sect. 6.

Definition 3.11. (Magic Square game) Consider the following 3×3 matrix, where each
entry is labeled by a two-qubit Pauli observable:

⎡

⎣
X ⊗ I I ⊗ X X ⊗ X
I ⊗ Z Z ⊗ I Z ⊗ Z
X ⊗ Z Z ⊗ X (X Z) ⊗ (Z X)

⎤

⎦ . (9)

The Magic Square game is a (2, 2, 2) stabilizer game over 2-dimensional qubits defined
as follows. The sets

X1 = X2 =
{
(X ⊗ I, I ⊗ X), (I ⊗ Z , Z ⊗ I ), (X ⊗ Z , Z ⊗ X)

(X ⊗ I, I ⊗ Z), (I ⊗ X, Z ⊗ I ), (X ⊗ X, Z ⊗ Z)

}
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each contain 6 pairs of two qubit-Pauli observables, each pair corresponding to either a
row or column of (9). The distribution π is uniform. For any query x = (x1, x2) each
player reports two bits associated with the two observables it was asked about. We can
associate a third bit to the third observable in the corresponding row or column by taking
the parity of the first two bits, except for the case of the third column, where we take
the parity plus 1. The constraint wx · a = b expresses the constraint that, whenever the
questions x1, x2 are associated with a row and column that intersect in an entry of the
square, the outcomes associated with the intersection should match.

Definition 3.12. (Honest strategy in the Magic Square game) In the honest strategy,
the two players share two EPR pairs. Upon reception of a question that indicates two
commuting two-qubit Pauli observables, the player measures both observables on her
qubits and reports the two outcomes.

The following robustness result is shown in [WBMS16].

Theorem 3.13. The Magic Square game is robustly rigid, with respect to the honest
strategy and with robustness f (δ) = O(

√
δ).

Next we recall the Mermin GHZ game.

Definition 3.14. (GHZ game) The game GHZ is a (3, 1, 1) stabilizer game over 2-
dimensional qubits defined as follows. The sets X1 = X2 = X3 = {0, 1}. The distribu-
tion π is uniform over the set {(0, 0, 0), (0, 1, 1), (0, 1, 1), (1, 0, 1)}. For all queries x
the vector wx = (1, 1, 1). For x = (0, 0, 0), bx = 0, and for all other x , bx = 1.

It is well-known that there is a honest strategy based on making Pauli measurements
on a GHZ state |ψGHZ〉 = 1√

2
(|000〉 + |111〉) (which can be prepared in depth 3) and

that succeeds with probability 1 in the game GHZ.

4. Lightcone Arguments for Low-Depth Circuits

Let N ≥ 1 be an integer. We write gridN for the set {1, . . . , N }2, that we often identify
with the “grid graph” of degree 4, which is the graph on this vertex set with an edge
between (i, j) and (i±1, j±1), with addition taken modulo N . (As a matter of notation
we often identify a graph with its vertex set.)

For an integer 0 ≤ L ≤ N and u ∈ gridN we write BoxL(u), or Box(u) when L
is implicit, for the set BoxL(u) = {u} + {−L , . . . , L}2 ⊆ gridN (with addition again
taken modN ). In other words, BoxL(u) is the closed ball of radius L around u in the
L∞ metric.

4.1. Lightcones. Recall that the circuits that we consider are defined over an arbitrary
gate set with bounded fan-in K . Given a circuit C, we introduce the natural notion of a
circuit graph, with vertices at the gates and edges along the wires.

Definition 4.1. Let C be a circuit. The circuit graph associated with C is a directed graph
on vertex set V = I∪U ∪O. Here I contains one vertex for each input wire,O contains
one vertex for each output wire, and U contains one vertex for each gate. There is an
edge from u to v if the output of u is an input of v. In particular, all vertices of I are
sources (have indegree 0) and all vertices of O are sinks (have outdegree 0). We call
vertices in I input vertices and vertices in O output vertices.
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We typically consider circuits that are spatially local on a 2D grid, in which case we
identify the input and output sets of the graph with a grid, i.e. I = O = gridN for
some integer N ≥ 1. Note that the circuit graph of a circuit with fan-in K has in-degree
bounded by K , but has no a priori bound on the out-degree.

Definition 4.2. Let C be a circuit. For a vertex v in the circuit graph define its backward
lightcone Lb(v) as the set of input vertices u for which there exists a path in the circuit
graph from u to v. For an input vertex u define the forward lightcone of u, L f (u), as
the set of output vertices v such that u ∈ Lb(v).

The following lemma is established in Section 4.2 of [BGK18] during the proof of
their Theorem 2. We include the short proof for completeness.

Lemma 4.3. [BGK18] Let C be a circuit that has depth D and maximum fan-in K . Then
the following hold:

• All backward lightcones are small. That is, for every vertex v of the circuit graph,
|Lb(v)| ≤ K D.
• Most forward lightcones are small. That is, for any μ ∈ (0, 1),

Pr
v
[L f (v) ≥ μ−1K D] ≤ μ, (10)

where the probability is taken over the choice of a uniformly random input vertex
v ∈ I.

Proof. Every path in the circuit graph has length at most D. Each vertex has indegree
at most K . Then for any fixed vertex v, there are at most K D distinct paths through the
circuit graph ending at v. Therefore, |Lb(v)| ≤ K D .

Now consider the directed graph with an edge from u to v if u ∈ Lb(v). The in-
degree of vertex v is equal to |Lb(v)| while its out-degree is ∣

∣L f (v)
∣
∣. Each vertex has

an in-degree of at most K D , so there are at most nK D edges in the graph, where n is the
number of output wires for the circuit. Fix μ ∈ (0, 1). By Markov’s inequality, at most
μn vertices may have out-degree at least 1

μ
K D . ��

4.2. Input patterns. We introduce a method to “plant” queries to the players in a stabi-
lizer game into the input to a circuit. The main definition we need is of an input pattern,
that specifies locations for each players’ question, as well as paths between these lo-
cations. These paths, or “stars”, will be useful in the design of a quantum circuit that
implements the players’ strategy as a low-depth quantum circuit; this is explained in
Sect. 5.1.

Definition 4.4. (Star) See Fig. 1. We say that a subset of gridN is a box if it is equal
to BoxL(u) for some integer L and vertex u. A star � is a collection of disjoint boxes
together with a collection of disjoint paths such that

• each path has its endpoints on the boundaries of boxes, and
• contracting each box to a single vertex, and each path to a single edge, results in a a
star graph, i.e. a graph that has � vertices of degree one, one vertex of degree �, and
no other vertices.

We use the term central box to refer to the unique box which contains one endpoint of
every path. If b0 is the central box, we may say that the star � is centered at b0. By
abuse of notation, we often write � to refer to the set of vertices contained in the paths
and boxes of �.
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Fig. 1. A star centered at box b0, connecting � = 3 boxes b1, b2, b3 in gridN (grid edges are not shown on
the picture). The paths may be extended inside each box to connect the vertices u1, u2, u3 to g1, g2, g3 in an
arbitrary way. Such connections will be used in Sect. 5.1 to define low-depth measurements which distribute
a three-qubit state at sites g1, g2, g3 among the qubits u1, u2, u3. On the right, we show the contraction of
the star to a star graph. The paths are contracted to single edges (shown by thick lines) and the boxes are
contracted to single vertices (shown by filled-in circles)

The following definition captures exactly the amount of information that we need
to remember about a given circuit C in order to talk about the spread of correlations
within C—we will forget everything about the circuit except some information about its
lightcones.

Definition 4.5. (Input pattern) Let G be an (�, k,m) stabilizer game. Let 1 ≤ r ≤ N
be integer. An input pattern associated with (G, N , r) is a tuple P = {(u(i), �(i))}1≤i≤r
such that

• each u(i) = (u(i)
1 , . . . , u(i)

� ) is an �-tuple of vertices of gridN , which we refer to as
input locations,
• each �(i) is a star,
• the vertices of u(i) are contained in distinct noncentral boxes of �(i). For a vertex
u, we write Box(u) for the box that contains u.

Remark 4.6. We often write patterns as P = {(u(i), �(i))} without specifying the range
of the index i , that we generally leave implicit. When we write “a pair (u(i), �(i))”,
without the use of the curly brackets, we mean a pair, for some abitrary but fixed index
i .

Definition 4.7. (Circuit specification) A circuit specification S on gridN is a triple
S = (L f , badin, badout ) such that for all u ∈ gridN , L f (u) ⊆ gridN is a set called
the forward lightcone associated with u, and badin, badout ⊆ gridN are sets called the
bad input set and bad output set respectively.

Definition 4.8. For integer B, Rin, Rout we say that a circuit specification S = (L f ,

badin, badout ) on gridN is (B, Rin, Rout )-bounded if the following hold: |badin| ≤
Rin , |badout | ≤ Rout , and for every u ∈ gridN\badin it holds that |L f (u)| ≤ B.

Given a fixed circuit specification, the following definition captures the conditions
that are required for an input pattern so that the circuit game associated with that input
pattern can be reduced to a nonlocal game (the reduction is explained in Sect. 5).
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The intuition to keep in mind for the definition is as follows: each player in the
nonlocal game receives her input from one of the input locations and puts her output
along the paths of the star. Each player also puts some outputs inside their box of the star.
In order for it to be possible to implement the strategy locally, we must have the outputs
of each player be causally independent of the inputs of the other players. We ensure this
by checking that the forward lightcone of one player’s input misses the locations of the
other players’ outputs.

Definition 4.9. (Causality-respecting patterns) Let S = (L f , badin, badout ) be a cir-
cuit specification. Let P = {(u(i), �(i))i } be an input pattern. We say that a pair
(u(i), �(i)) is individually-S-causal with respect to P if the following hold:4

(a) For each k, the forward lightcone of u(i)
k misses �(i), except possibly near u(i)

k . More

precisely, L f (u
(i)
k ) ∩ �(i) ⊆ Box(u(i)

k ).

(b) For all (u( j), �( j)) ∈ P (with j �= i) and for all k, the forward lightcone of u( j)
k

misses �(i) entirely, i.e. L f (u
( j)
k ) ∩ �(i) = ∅.

(c) �(i) misses badout , i.e. �(i) ∩ badout = ∅.
Furthermore, we say that a pair (u, �) is S-valid if the following conditions hold.

(d) Every input location lies outside of badin , i.e. u
(i)
k ∩ badin = ∅ for all k, i .

We say that an input pattern P is S-causal if every (u(i), �(i)) ∈ P is individually-S-
causal and S-valid with respect to P .

Finally, we introduce a distribution on input patterns so that for any circuit specifi-
cation S that is (B, Rin, Rout )-bounded for sufficiently small parameters B, Rin , and
Rout , a sample from the distribution gives an S-causal pattern with high probability (see
Sects. 4.3 and 4.4).

Definition 4.10. (Random input patterns) Let L , N ≥ 1, � ≥ 1, and 1 ≤ r ≤ N
be integer such that 3L

√
� + 1 ≤ M = �N/

√
r�. Divide gridN in r disjoint squares

S(1), . . . , S(r) of side length M each.5 Partition each square into T = � M
2L+1�2 boxes of

side length (2L+1), in an arbitrary way. For each possible choice of (�+1) distinct boxes
b0, b1, . . . , b� within a square, fix a collection stars(b0, . . . , b�) of L/� stars such that

• each star has b0 as its central box and b1, . . . , b� as its other boxes,
• the total length of the paths in any star is at most 2�M , and
• the paths of the distinct stars are vertex-disjoint.

Consider the following distributionD(r)(N , L) on input patterns on gridN . For each
i ∈ {1, . . . , r} select b(i)

0 , . . . , b(i)
� uniformly at random among the T boxes that partition

the i th square S(i), for j ∈ {1, . . . , �}, a vertex u(i)
j uniformly at random within the j th

selected box. Finally, select a star�(i) ∈ stars(b(i)
0 , b(i)

1 , . . . , b(i)
� ) uniformly at random.

Return the input pattern P = {(u(i), �(i))}1≤i≤r .

4 Recall that we identify a star � with the union of the vertex sets of its paths and boxes.
5 It does not matter where these squares are located, as long as they do not overlap.
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4.3. Single-input patterns. We would like to show that patterns in the support of D(r)

are “very nearly” S-causal for most S in the sense that removing only an exponentially
small fraction of inputs yields an S-causal pattern. To warm up, we argue that for
any (B, Rin, Rout )-bounded circuit specification S, an input pattern sampled from the
distributionD(1) introduced in Definition 4.10 is S-causal with high probability. We use
this single-input analysis later to show that in a many-input pattern, most of the inputs
are individually-S-causal.

In this subsection only, we use M instead of N to denote the grid size. We do this
because the distributionD(r)(N , L) can be (informally) thought of as the direct product
of r copies of D(1)(M, L), and the former is of greater interest to us.

Lemma 4.11. Let M ≥ 1, 1 ≤ B, L ≤ M/4 and 0 ≤ Rin, Rout ≤ M2 be integer. Let
S = (L f , badin, badout ) be a circuit specification for gridM that is (B, Rin, Rout )-
bounded. LetP = { (u, �) } be drawn from the distributionD(1) introduced in Definition
4.10. Then the probability that the unique pair (u, �) in P is not individually-S-causal
with respect to P is O(L2(Rout + B)/M2 + (Rout + B)/L). Moreover, the probability
that P is not S-valid is O(Rin/M2). Overall, the probability that P is not S-causal is
at most

O
(
L2(Rout + B)/M2 + (Rout + B)/L + Rin/M

2
)

, (11)

where the O notation hides factors polynomial in �.

Proof. We check all conditions in Definition 4.9. SinceP contains only one (input, star)
pair, condition (b) (which restricts the interactions between pairs) is satisfied automati-
cally.

Now we check conditions (a) and (c). Call a box bad if it intersects badout . Under
D(1) there are �M/(2L +1)�2 ≥ 1/4(M/2L)2 possible box locations. By a union bound,
the probability that any box is bad is at most 16L2Rout/M2 = O(L2Rout/M2). There
are at least L/� possible choices for the paths of �. Since all such choices are disjoint,
again by a union bound the probability that � ∩ X �= ∅ for some subset X is at most
� |X | /L . Letting X = badout ∪ ⋃

i L f (ui ), so that |X | ≤ Rout + �B, we see that the

probability of violating condition (a) or condition (c) is at most O
(

�Rout+�2B
L

)
.

Similarly, since the u j are chosen independently, for any u �= u′ ∈ {u0, u1, . . . , u�}
the probability that L f (u) ∩ Box(u′) �= ∅ is 16L2B/M2 = O(L2B/M2).

Finally we check condition (d). Any u j is chosen independently among (2L + 1)2 ≥
M2/8 = �(M2) possibilities, so the probability that u j ∈ badin is at most 8Rin/M2 =
O(Rin/M2); we conclude by the union bound, and absorb the parameter � in the O(·).

��

4.4. Arbitrary-input patterns. We extend the argument from the previous section to the
case where the input pattern contains more than one input.

Lemma 4.12. (Random input patterns are usually causal) Let N ≥ 1, 1 ≤ r ≤ N and
1 ≤ B, Rin, L ≤ N/4 be integer. Let S = (L f , badin,∅) be a circuit specification
for gridN that is (B, Rin, 0)-bounded. Then the probability that an input pattern P
chosen according to D(r)(N , L) (as defined in Definition 4.10) is not S-causal is at
most O(r2B(r(L2 + Rin)/N 2 + 1/L)).
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Proof. Let P = {(u(i), �(i))} be an input pattern chosen according to D(r)(M, L). For
i ∈ {1, . . . , r}we letP(i) be the single-pair pattern {(u(i), �(i))}. Let Xi be the indicator
variable that the pair (u(i), �(i)) is not individually-S-causal with respect to P . Let Yi
be the indicator that (u(i), �(i)) is not S-valid. To see that P is S-causal, it suffices to
check that each input is S-valid and individually-S-causal with respect toP . This is true
if and only if

∑
i Xi = 0 and

∑
i Yi = 0. We first bound the latter event.

Claim 4.13. It holds that

Pr
( ∑

j

Y j �= 0
)

= O
(
r2Rin/N

2). (12)

Proof. Applying the second bound in Lemma 4.11 and using that M = �N/
√
r� it

follows that for any i ∈ {1, . . . , r},
Pr (Yi �= 0) = Pr

(P(i) is not S-valid) ≤ 8Rin/M
2 = O

(
r Rin/N

2).

The claim follows by a union bound over the r patterns P(i). ��
Next we turn to the Xi .

Claim 4.14.

Pr
( ∑

i

Xi �= 0
)

= O
(
r2B(r L2/N 2 + 1/L)

)
+

∑

i

Pr
( ∑

j �=i

Y j �= 0
)
. (13)

Proof. For any i ∈ {1, . . . , r} let

bad(i)
out =

⋃

k �=i

(
∪ j L f (u

(k)
j )

)
,

and define a specification S(i) = (L f , badin, bad
(i)
out ). With these definitions, it follows

that

Pr(Xi = 0) = Pr
(P(i) is individually-S-causal)

≥ Pr
(P(i) is individually-S(i)-causal

)
. (14)

Indeed condition (c) of being individually-S(i)-causal (see Definition 4.9) implies all
conditions of being individually-S-causal for S = (L f , badin,∅).

In the event that P( j) is S-valid for all j �= i (that is, when
∑

j �=i Y j = 0) we know

that L f (u
(k)
j ) ≤ B for each ( j, k) ∈ {1, . . . , �} × {1, . . . , r}, and thus that |bad(i)

out | ≤
�r B = O(r B). Using that the marginal distribution of a single pair (u(i), �(i)) from P
is equal to D(1)(M, L) (when seen as a distribution on the square S(i) associated with
(u(i), �(i))), it follows from the bound in Lemma 4.11 that for any i ∈ {1, . . . , r},

Pr
(
Xi �= 0

∣∣∣
∑

j �=i

Y j = 0
)

= O
(
r B(r L2/N 2 + 1/L)

)
. (15)

Applying the union bound,
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Pr
( ∑

i

Xi �= 0
)

≤
∑

i

Pr (Xi �= 0)

≤
∑

i

Pr
(
Xi �= 0

∣∣∣
∑

j �=i

Y j = 0
)
+ Pr

( ∑

j �=i

Y j �= 0
)

≤ O
(
r2B(r L2/N 2 + 1/L)

)
+

∑

i

Pr
(∑

j �=i

Y j �= 0
)
,

where the last line follows from (15). ��
To conclude the proof of the lemma we write

Pr
(P is not S-causal) = Pr

(∑

i

Xi + Yi �= 0
)

≤ Pr
(∑

i

Xi �= 0
)
+ Pr

(∑

j

Y j �= 0
)

≤ O
(
r2B(r L2/N 2 + 1/L)

)
+

∑

i

Pr
( ∑

j �=i

Y j �= 0
)
+ O

(
r2Rin/N

2)

≤ O
(
r2B(r L2/N 2 + 1/L)

)
+ O

(
r3Rin/N

2) + O
(
r2Rin/N

2)

= O
(
r2B(r(L2 + Rin)/N

2 + 1/L)
)

,

where the third line uses (13) and (12) and the fourth uses (12). ��
The previous lemma shows that a random input pattern P is S-causal with high

probability. In this case we can define a game from P so that in the game, a shallow
circuit with specificationS can be simulated by a set of spacelike-separated players. This
simulation is perfect when P is exactly S-causal. More generally, a weaker simulation
argument still applies if a small constant fraction of inputs inP are notS-causal. The next
lemma shows that this condition can be guaranteed to hold with much higher probability,
exponentially close to 1 rather than inverse-polynomially close. This bound will be used
in the proof of Theorem 1.2.

Lemma 4.15. (Random input patterns are mostly causal with high probability) Let N ≥
1, 1 ≤ r ≤ N and 1 ≤ B, Rin, L ≤ N/4 be integer. Let S = (L f , badin,∅) be a
circuit specification for gridN that is (B, Rin, 0)-bounded. Consider an input pattern
P chosen according to D(r)(N , L). Let

PV AL = {
(u, �) ∈ P|(u, �) is S-valid},

PCAUS = {
(u, �) ∈ P|(u, �) is individually-S-causal with respect to PV AL

}
.

Then there exist universal constants C,C ′ > 0 such that if p = C ′r B(r L2/N 2 + �/L)

then for any t > 0,

Pr
( |PCAUS| ≥ r(1 − p) − 2t

) ≥ 1 − 2 exp
(
−t2/8r

)
, (16)

Pr
( |PV AL | ≥ r(1 − Cr Rin/N

2) − t
) ≥ 1 − 2 exp

(
−2t2/r

)
. (17)
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For later convenience we note that (16) and (17) can be combined by a union bound
to obtain

Pr
( |PV AL ∩ PCAUS| ≥ r(1 − Cr Rin/N

2 − 2p) − 3t
) ≥ 1 − 4 exp

(
− t2

8r

)
. (18)

Proof. The proof relies on concentration arguments to bound the probabilities in (16)
and (17). The second bound, (17), is easier to show, because it can be expressed as a
bound on a sum of independent random variables. The following claim establishes the
bound.

Claim 4.16. There is a universal constant C > 0 such that for any t > 0,

Pr
( |PV AL | ≥ r(1 − Cr Rin/N

2) − t
) ≥ 1 − 2 exp

(
− 2t2

r

)
.

Proof. For i ∈ {1, . . . , r} let Vi be the indicator variable for the event that (u(i), �(i)) is
S-valid. Since inD(r)(N , L) the (u(i), �(i)) are chosen independently within the disjoint
squares S(i), it follows from the definition of S-valid that the Vi are independent. Using
the bound shown in Lemma 4.11 it follows that for any i ∈ {1, . . . , r},

E[Vi ] = 1 − CRin/M
2, (19)

for some constant C > 0 and where M = �N/
√
r�. We conclude by applying Hoeffd-

ing’s inequality:

Pr
(
|PV AL | ≤ r(1 − CRin/M

2) − t
)

= Pr
( r∑

i=1

Vi ≤ r(1 − CRin/M
2) − t

)

≤ Pr
(1
r

∣
∣∣

r∑

i=1

Vi −
r∑

i=1

E[Vi ]
∣
∣∣ ≥ t/r

)

≤ 2 exp
(
−2t2/r

)
.

��
The proof of the remaining bound (16) is made a little delicate by the fact that the

condition that a pair (u, �) ∈ P is individually-S-causal is a global condition, so that
PCAUS is not directly expressible as a sum of independent random variables. To get
around this, we first make a few definitions.

Let P = {(u(i), �(i))} be an input pattern chosen at random according to the distri-
bution D(r)(M, L). For i ∈ {1, . . . , r} define

bad<i
out =

⋃

k<i s.t.
(u(k),�(k)) is S-valid

(
∪ j L f (u

(k)
j )

)
, bad>i

out =
⋃

k>i s.t.
(u(k),�(k)) is S-valid

(
∪ j L f (u

(k)
j )

)
,

and bad(i)
out = bad<i

out ∪ bad>i
out . From the assumption that the circuit specification S is

(B, Rin, 0)-bounded, and since bad(i)
out is defined as a union of the lightcones of only

the valid pairs (u(k), �(k)), it follows that for all i , |bad(i)
out | ,|bad<i

out |, |bad>i
out | are each

at most r B.
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Recall that in D(r)(M, L) each u(i) is chosen within a square S(i) of side length
M = �N/

√
r�. We identify S(i) with grid(i)

M , and introduce a single-pair pattern P(i) =
{(u(i), �(i))} that we think of as a pattern on grid(i)

M . We further define a specification

S(i) = (L f , badin, bad
(i)
out )

on grid(i)
M .

Let Xi be the indicator variable for the event that the pair (u(i), �(i)) is not individually-
S(i)-causal with respect to PV AL . The following claim relates the Xi to PCAUS .

Claim 4.17. It holds that |PCAUS| ≥ ∑r
i=1 Xi .

Proof. Note that whenever P(i) is individually-S(i)-causal with respect to PV AL , it is
also individually-S-causal with respect to PV AL . This follows by noting that for the
given definition of bad(i)

out , condition (c) of being individually-S(i)-causal with respect
toP implies conditions (b) and (c) of being individually-S-causal with respect toPV AL .
Therefore,

∑
i Xi is an upper bound on the number of P(i) which are not individually-

S-causal with respect to PV AL . ��
The previous claim reduces our task to showing a high-probability lower bound

on
∑

Xi . The random variables Xi are dependent. To obtain a bound, we apply a
Martingale argument to two related sequences of random variables, defined as follows.
First introduce specifications

S(<i) = (L f , badin, bad
<i
out ) and S(>r−i) = (L f , badin, bad

>(r−i)
out )

on grid grid(i)
M , an let Yi (resp. Zi ) as the indicator variable for the event that (u(i), �(i))

is not individually-S(<i)-causal (resp. individually-S(>r−i)-causal) with respect toP(i).
The next claim relates Yi and Zr−i to Xi .

Claim 4.18. For each i ∈ {1, . . . , r}, it holds that Xi = Yi ∨ Zr−i .

Proof. The claim follows by noting that, in Definition 4.9, the conditions (a) for Xi ,Yi
and Zr−i are equivalent. Condition (b) for Xi is equivalent to the event that condition
(c) for both Yi and Zr−i is true. Finally, condition (c) for Xi is vacuous, and conditions
(b) for both Yi and Zr−i are vacuous. ��

The following claim almost finishes the proof.

Claim 4.19. There is a universal constantC ′ > 0 such that if p = C ′r B(r L2/N 2+�/L))

then for any t > 0,

Pr
( r∑

i=1

Yi ≥ t + rp
)

≤ exp

(−t2

2r

)
,

Pr
( r∑

i=1

Zi ≥ t + rp
)

≤ exp

(−t2

2r

)
.
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Proof. The proof is based on a Martingale tail bound. For any i ∈ {1, . . . , r}, let Y<i =
{Yk |k < i} and Z>i = {Zk |k > i}. Note thatYi (resp. Zi ) depends only on the underlying
circuit C together with the selection of pairs in squares S( j) for j ≤ i (resp. j ≥ i). It
follows from the bound shown in Lemma 4.11 that

E[Yi |Y<i ] = O
(
r B(r L2/N 2 + �/L)

)
, (20)

and similarly

E[Zi |Z>i ] = O
(
r B(r L2/N 2 + �/L)

)
. (21)

Let p denote the maximum of the bounds on the right-hand side of (20) and (21),
and assume p ≤ 1. For any n ∈ {1, . . . , r} define Ȳn = ∑n

i=1 Yi − np and Z̄r−n =∑r
i=r−n Zi − np. Then

E[Ȳn|Y<n] = E[Yn − p + Ȳn−1|Y<n] ≤ Ȳn−1,

and
E[Z̄r−n|Z>r−n] = E[Zr−n − p + Z̄r−n+1|Z>r−n] ≤ Z̄r−(n−1).

Additionally, it always holds that

|Ȳn − Ȳn−1| ≤ |Yn − p| ≤ max(1 − p, p) ≤ 1,

where the last inequality follows from the assumption that p ≤ 1. Similarly,

|Z̄r−n − Z̄r−(n−1)| ≤ |Zr−n − p| ≤ max(1 − p, p) ≤ 1.

Thus, both Ȳn , and Z̄r−n form super-martingale sequences for increasing n. Defining
Ȳ0 = Z̄r = 0 and applying Azuma’s inequality gives

Pr(Ȳn − Ȳ0 ≥ t) = Pr(Ȳn ≥ t) ≤ exp

( −t2

2nmax(1 − p, p)2

)
≤ exp

(−t2

2n

)
,

and

Pr(Z̄r−n − Z̄r ≥ t) = Pr(Z̄r−n ≥ t) ≤ exp

( −t2

2nmax(1 − p, p)2

)
≤ exp

(−t2

2n

)
.

Setting n = r proves the claim. ��
Using Claim 4.18 it follows that

∑r
i=1 Xi ≤ ∑r

i=1 Yi +
∑r

i=1 Zi . Therefore, for any
t > 0

Pr
( r∑

i=1

Xi ≥ 2t + 2rp
)

≤ Pr
( r∑

i=1

Yi + Zi ≥ 2t + 2rp
)

≤ Pr
( r∑

i=1

Yi ≥ t + rp
)
+ Pr

( r∑

i=1

Zi ≥ t + rp
)

≤ 2 exp

(−t2

2r

)
,

where the last inequality follows from Claim 4.19. Replacing t with t/2 and using
Claim 4.17 proves (16). ��
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4.5. Derandomization. Lemma 4.12 states that if a pattern is chosen according to the
distributionD(r)(M, L), then it is S-causal with probability that is close to 1, regardless
of the choice ofS. The following lemma shows that it is possible to partially derandomize
the distribution, at little loss in the success probability.

Lemma 4.20. Let N ≥ 1 be an integer and η > 0. Let L , B, Rin, r be integer such that

B = O(Nη), L = O(N 4/7+η), and r = O(N 2/7−2η), (22)

Then using O(log2 N ) uniformly random bits it is possible to sample from a distribution
D̃(r) on input patterns P for gridN such that for any circuit specification S that is
(B, Rin, 0)-bounded,P isS-causalwith probability1−O(N−η), and a random (u, �) ∈
P is valid with probability O(Rin/N 2 + N−η).

Proof. The choice of parameters made in the lemma is such that r3BL2/N 2 = O(N−η)

and r2B/L = O(N−η), so Lemma 4.12 gives that P sampled according to D(r) is S-
causal with probability 1− O(N−η), and a random (u, �) ∈ P is valid with probability
O(Rin/N 2).

A pattern in the support ofD(r)(M, L) can be specified using O(r log(N )) uniformly
random bits: for each i ∈ {1, . . . , r}, there are O(log N ) random bits to specify the
locations of the u(i)

j , and O(log N ) additional bits to specify the star that connects the

u(i)
j . (Recallwefixed a small set of possible starswhenwedefined the distribution.)Given

any choice of such random bits, and a fixed circuit specification, by Savitch’s theorem it
is possible to decide whether the pattern isS-causal in O(log2 N ) space, given read-only
access to the circuit graph determiningS. This allows us to apply the INWpseudorandom
generator for small-space circuits [INW94] with O(log2 N ) seed to obtain the claimed
result, with the additional error O(N−η) being due to the pseudorandom generator. ��

5. Circuit Games

Let N ≥ 1 be an integer grid size. Let r ≥ 1 be an integer number of repetitions. Let
G be an (�, k,m) stabilizer game. In this section we design a circuit game G = GG,N ,r
associated with (G, N , r) in a way that the circuit game has similar completeness and
soundness properties as G (more precisely, as a rotated, stretched game obtained from G,
using the stars in an input patternP associated with (G, N , r) that is provided as input to
the circuit to define the length of the stretches; see Sect. 3.2 for the definition of rotated
and stretched games).

We first give a general definition that specifies what we mean by a “circuit game”.

Definition 5.1. (Circuit game) Given input and output sets I, O respectively, a circuit
game is a relation R ⊆ I × O, together with a probability distribution π on I. We
say that a circuit C wins the circuit game (R, π) with probability p if, on average over
an input x ∈ I sampled according to π , the circuit returns an output y ∈ O such that
(x, y) ∈ R with probability p.

To specify the relation associated with the circuit game we will construct from G it is
convenient to first introduce a quantum circuit that succeeds in the game with certainty.
This is done in Sect. 5.1. In Sect. 5.2 we give the definition of the circuit game.
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5.1. Definition and completeness. Informally, the gameGG,N ,r is obtained by “planting
r copies of G in the grid gridN ”. Let P be an input pattern associated with (G, N , r)
(see Definition 4.5). Let k = max j k j be the maximum number of qudits used by a
player in the honest strategy for G, |ψ〉 the (k�)-qubit state used in the strategy (padded
if needed), and D the depth of a circuit that prepares |ψ〉 from |0〉. Assume that D ≥ 2.
We describe a depth (D + 1) quantum circuit Cideal that takes an input from

I = {P : input pattern for G} × {{(x (i)
1 , . . . , x (i)

� )}1≤i≤r : r -tuple of queries in G}
,

(23)
and returns a string in the output set

O =
r∏

i=1

�∏

j=1

(
(Z2k

d )
�

(i)
j × (Z

m j
d )

u(i)
j

)
. (24)

In (24) we have used the vertices in �
(i)
j and the u(i)

j to label indices of the elements of
O. Note that these are always distinct. In Sect. 5.1.2 we show how to modify the format
for the input and the output in a way that the circuit can be made geometrically local on
a 2D grid.

The computation performed by the circuit Cideal proceeds in three stages:
• In the first stage, the circuit initializes a lattice of qudits as follows. Each vertex in
gridN is associated with 4k qudits, organized in 4 groups of k that we call the “left”,
“right”, “top” and “bottom” groups associated with that vertex. Each of these groups
is initialized in a maximally entangled state with the group from the neighboring grid
vertex that is closest to it, i.e. the “top” group at vertex (i, j) is associated with the
“bottom” group at vertex (i, j + 1), etc. In addition, for each center location g(i) of
a star �(i) in P , the circuit creates the state |ψ〉 on the (k�) qudits associated with
the � vertices (g(i)

1 , . . . , g(i)
� ); for each vertex g(i)

j , a group of qudits is used that is

not connected to the next vertex in the path �
(i)
j . (This replaces the creation of the

maximally entangled state, for that group of qudits.) This step can be implemented
in depth max(2, D).

• In the second stage, the circuit implements an entanglement transfer protocol as
described in Sect. 5.1.1, using each of the � simple paths that form a star �(i) from P
to route the qudits of |ψ〉. Themeasurement outcomes in (Zd )

2k from the teleportation
measurements obtained at each vertex in �(i) are recorded at the location at which
they are obtained, and will eventually form part of the output of the circuit. This step
can be completed in depth 1.

• In the last stage, the circuit implements the honest quantum strategy for the game
G, using locations u(i)

j indicated in P to specify the k qudits to be used by the j th

player (the group used is the one closest to the endpoint of the path �
(i)
j ), and x (i)

j as
the player’s question. The outcomes obtained are returned as part of the output. This
step can be completed in depth 1, and can be executed in parallel with the previous
step.

The following lemma states that outputs generated by this circuit satisfy the win
condition for an associated rotated, stretched game.

Lemma 5.2. Let G be an (�, k,m) stabilizer game, 1 ≤ r ≤ N, and P an input pattern
associated with (G, N , r). Let x (1), . . . , x (r) be an arbitrary tuple of r queries for G.
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For all i ∈ {1, . . . , r} and j ∈ {1, . . . , �} let (r (i)
j , a(i)

j ) ∈ (Z2k
d )

�
(i)
j × Z

m j
d be the

outputs generated by an execution of Cideal on input P and (x (1), . . . , x (r)). Then for
any i ∈ {1, . . . , r}, {(r (i)

j , a(i)
j )} j∈{1,...,�} is a valid �-tuple of answers for the players in

the rotated stretched game GS,R
�(i) , on query x (i).

Proof. The lemma follows from the definition of Cideal , the properties of the entangle-
ment transfer protocol stated in Lemma 5.6, and the definition of the rotated, stretched
game. ��

5.1.1. Entanglement transfer. We introduce a simple procedure for routing entangle-
ment along a path, such that nearest neighbors on the path have been initialized in a
maximally entangled state. This is a standard calculation; for completeness we include
the details.

Lemma 5.3. (Entanglement transfer I)Let d ≥ 2 and |EPRd〉 = 1√
d

∑
i |i i〉amaximally

entangled state on d-dimensional qudits. Let a, b ∈ Zd and

|ψ〉ABCD = (
Xa
A ⊗ Zb

B |EPRd〉AB
) ⊗ |EPRd〉CD

a maximally entangled state on four qudits. Then upon measuring the qudits in registers
B and C in the Bell basis { Xx ⊗ Z y | EPRd〉 : x, y ≤ d }, the post-measurement state
is equal (up to global phase) to

(
Xa+x
A ⊗ Zb−y

D |EPRd〉
)
AD ⊗ (

Xx
B ⊗ Z y

C |EPRd〉
)
BC. (25)

Proof. We evaluate the post-measurement state by computing the result of applying the
measurement projector onto the state Xx ⊗ Z y |EPRd〉. Let ω = e2π i/d .

(
Xx ⊗ Z y |EPRd〉〈EPRd |BC X−x ⊗ Z−y) Xa

A ⊗ Zb
B |EPRd〉AB ⊗ |EPRd〉CD

= Xx
B ⊗ Z y

C

⎛

⎝ 1

d

∑

k,l

|kk〉〈ll|
⎞

⎠ X−x
B ⊗ Z−y

C Xa
A ⊗ Zb

B
1

d

∑

i, j

|i〉 |i〉 | j〉 | j〉

= Xx
B ⊗ Z y

C

⎛

⎝ 1

d

∑

k,l

|kk〉〈ll|
⎞

⎠ X−x
B ⊗ Z−y

C
1

d

∑

i, j

ωbi |i + a〉 |i〉 | j〉 | j〉

= Xx
B ⊗ Z y

C

⎛

⎝ 1

d

∑

k,l

|kk〉〈ll|
⎞

⎠ 1

d

∑

i, j

ωbi−y j |i + a〉 |i − x〉 | j〉 | j〉

= Xx
B ⊗ Z y

C
1

d2
∑

i, j,k

ωbi−y jδi−x, j |i + a〉 |k〉 |k〉 | j〉

= Xx
B ⊗ Z y

C
1

d2
∑

j,k

ωb( j+x)−y j | j + x + a〉 |k〉 |k〉 | j〉

= ωbx Xa+x
A ⊗ Zb−y

D |EPRd〉AD ⊗ Xx
B ⊗ Z y

C |EPRd〉BC .

��
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Lemma 5.4. (Entanglement transfer II) Let n ≥ 1, and L1, . . . ,Ln,R1, . . . ,Rn qudit
registers such that each Li is maximally entangled with Ri . Suppose one performs (n −
1) Bell basis measurements on qudit pairs (R1, L2), . . . , (Rn−1, Ln), so that the post
measurement state of the i th pair is Xxi ⊗ Z yi |EPRd〉. Let x = ∑

i xi and z = ∑
i zi .

Then the post measurement state of the remaining pair (L1, Rn) is X x ⊗ Z−z |EPRd〉.
Proof. The (n − 1) Bell basis measurements commute, so we can think of them as
being performed in sequence, performing the measurement on (Rk, Lk+1) at the kth
step. Using Lemma 5.3 and induction, one can check that after the kth measurement, the

qudits (L1, Rk+1) are in post-measurement state X
∑k

i=1 xi ⊗ Z−∑k
i=1 zi |EPRd〉. ��

Suppose that we have prepared a state |φ〉 of k qudits in one part of the grid and we
would like to teleport it to another part of the grid. We show how to design a depth-2
circuit that accomplishes the teleportation.

Definition 5.5. (Low-depth state teleportation protocol) Let N ≥ 1 and A and B be
ordered lists of vertices in gridN with |A| = |B| = k. Pick { � j }1≤ j≤k a set of k vertex-
disjoint, even-length paths on the grid, each with one endpoint in A and one endpoint
in B. For any j ∈ {1, . . . , k} denote the vertices of � j as v0, · · · , vl , with endpoints
v0 ∈ A, vl ∈ B.

From this set of paths define a depth-2 measurement circuit as follows: In the first
layer, to each of the “odd-even” qudit pairs (v1, v2), (v3, v4), . . . , (vl−1, vl) apply a gate
taking the two-qudit state |00〉 to |EPRd〉 In the second layer, measure each of the “even-
odd” qudit pairs (v0, v1), (v2, v3), . . . , (vl−2, vl−1) in the Bell basis nd return the 2�-bit
string of outcomes.

Now we prove that, up to local corrections, and with a technical condition on |φ〉,
our “teleportation circuit” in fact brings |φ〉 from region A on the grid to region B.

Lemma 5.6. Suppose that a grid gridN of qudits is initialized in a state that is in tensor
product between the qudits of A and gridN\A and equals |ψ〉 = |φ〉A ⊗ |0〉gridN \A.
Furthermore suppose that |φ〉 is locally maximally mixed in the sense that the marginal
density matrix on any individual qudit in A is the maximally mixed state.

Suppose we execute the low-depth teleportation described in Definition 5.5. For

j ∈ {1, . . . , k} and i ∈ {1, . . . , �} let Xa j
i ⊗ Zb j

i |EPRd〉 be the post-measurement state
of the i th pair along the j th path of the teleportation circuit.

Then there is a unitary operator P such that the post-measurement state |ψ ′〉 of the
grid is |ψ ′〉 = (P |φ〉)B ⊗ |aux〉gridN \B. Furthermore, P is a tensor product of k Pauli

operators such that P acts on the j th qudit of B as Xa j
Z−b j

, where a j = ∑
i a

j
i and

b j is defined similarly.

Proof. We analyze the circuit one path at a time. Fix i ∈ {1, . . . , k}. Let xi ∈ A be
one endpoint of Pi and yi the other. Suppose that |φ〉 is any locally maximally mixed
state on a set C of qubits with xi ∈ C . Let C ′ = C \ { xi }. Then there is a unitary
V : C ′ → C ′

1 ⊗ C ′
2 such that

I ⊗ V |φ〉xiC = |EPRd〉xiC ′
1
⊗ |φ′〉C ′

2
. (26)

Now suppose we apply V and then apply the entangling gates and measurements along
�i . By Lemma 5.4, the state of qudits yi and C ′

1 is

Xai ⊗ Z−bi |EPRd〉yiC ′
1

= Xai Z−bi ⊗ I |EPRd〉yiC ′
1
. (27)
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The equality in (27) can be verified by noticing that Z ⊗ Z† stabilizes |EPRd〉. Applying
V † gives

(I ⊗ V †)(Xai Z−bi ⊗ I ) |EPRd〉yiC ′
1
⊗ |φ′〉C ′

2
= (Xai Z−bi ⊗ I ) |φ〉yiC ′ . (28)

Notice that the operation along the path commutes with V . Therefore, applying V , ap-
plying that operation, and then applying V † is equivalent to just applying that operation.

Notice that the resulting state continues to be locally maximally mixed. Therefore,
we can apply the above repeatedly until all of the path circuits have been applied. Then
the final state is as desired. ��

5.1.2. Geometric locality. We explain how to modify the input and outputs sets I and
O specified in (23) and (24) respectively in a way that both input and output are Boolean
strings of the same length that can be organized in a 2-dimensional pattern and such that
the circuit described in Sect. 5.1 can be implemented in the same depth (D + 1) using
only geometrically local gates.

Recall that the input to the circuit consists of an input patternP = {(�(i), u(i))}1≤i≤r

together with an r -tuple of queries {(x (i)
1 , . . . , x (i)

� )}1≤i≤r in G. Recall also that we think
of the circuit as being organized on an N × N grid of vertices, such that each vertex
contains 4 groups of k qudits, each group facing one of the vertex’ nearest neighbors on
the grid. We index the input and output sets by grid vertices, with each vertex associated
with an element taken from a constant-size alphabet � that is defined in (29) below.

Each star �(i) specifies � paths �
(i)
j from the central box to the noncentral boxes.

Assign to one point in each noncentral box the label u(i)
j . Also assign to � points inside

the central box the labels g(i)
j . Extend the paths �

(i)
j so that their endpoints are u(i)

j and

g(i)
j . We naturally distribute each question x (i)

j at the grid vertex indicated by u(i)
j .

For each edge (v,w) in the path, at vertex v (resp. w) we include a symbol that
indicates that a teleportation measurement is to be performed between the group of k
qudits nearest to vertex w (resp. v). For any grid vertex v, the output of the circuit at
vertex v is either an answer inG, a(i)

j ∈ (Zd)
m j , or a teleportationmeasurement outcome,

which is an element of (Zd)
2k . A question x (i)

j is an element of (Zk
d)

m j . This leads us to
a circuit specification that considers the input and output sets

I = O = �gridN , where � = {0, 1}2mk�log d�, (29)

wherem = max j m j andwe fixed an arbitrary embedding of the natural input and output
alphabets in�. Note that not all input strings are used; since we consider the parameters
d,m, k to be constants (depending only on the type of stabilizer game chosen), the
cardinality of the alphabet � is constant.

5.2. Circuit game definition. Having specified the ideal (or, “honest”) quantum circuit
that we have in mind, we are ready to give a formal definition of the circuit game
associated with r copies of a stabilizer game G. Recall the definition of the distribution
D(r) on input patterns given in Definition 4.10. (For clarity, we omit the arguments N , L ,
for which we will eventually make an appropriate choice.)
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Definition 5.7. Let G be an (�, k,m) stabilizer game and 1 ≤ r ≤ N integer. The circuit
gameGG,N ,r is a game on the input and output sets defined in (29). The input distribution
π is obtained by independently sampling an input pattern P according to D(r) and a
tuple of r independent queries (x (1), . . . , x (r)) for G, and encoding them as an element
of I as described in Sect. 5.1.2. The relationR ⊆ I ×O is defined as the support of the
output distribution of the circuit described in Sect. 5.1, when it is provided an input in
the support of π .

Skipping ahead, we note that in Sect. 6.2 we consider a slight variation of the circuit
gameGG,N ,r fromDefinition 5.7,where the r query tuples toG are no longer independent
and the win condition is relaxed to allow failure in some of the game instances. These
modifications allow us to obtain a circuit game whose inputs can be sampled using few
random bits (polylogarithmic in N ), and that can be won with high probability by a
circuit whose gates are subject to a limited amount of noise.

5.3. Soundness. We describe a reduction from circuit strategies (i.e. circuits with con-
stant fan-in and bounded depth) in the circuit game introduced in Definition 5.7 to
strategies for the players in the game G. The next lemma refers to the notions of light-
cone, input pattern, and circuit specification introduced in Sects. 4.1 and 4.2, and of
rotated, stretched and repeated game introduced in Sects. 3.2 and 3.3.

Lemma 5.8. (Circuit locality implies local simulation) Let G = GG,N ,r be a circuit
game as in Definition 5.7. Let P = {(u(i), �(i))}1≤i≤r be an input pattern in the support
of the input distribution for G. Let C be a circuit with fan-in K and depth D that wins
with probability p in GG,N ,r , for some 0 ≤ p ≤ 1, conditioned on the input pattern
being P .

Let η > 0. Let L f be the lightcone function obtained from the circuit graph, and
S = (L f , badin,∅) an associated circuit specification. Assume that P is S-causal and
that a fraction at least 1−δ of all input pairs (u, �) ∈ P areS-valid, for some δ ∈ [0, 1].

Then there exists an (r�)-player strategy in the r-repeated rotated stretched game
G′ = ((Gr )S�)R, for some � depending on C that is defined in the proof, such that with
probability at least p the strategy succeeds in a fraction at least 1 − δ of the game
instances.

Proof. An input to the circuit C consist of two parts: the patternP = {(u(i), �(i))}1≤i≤r ,
and the queries {(x (i)

1 , . . . , x (i)
� )}1≤i≤r , that are embedded in the input to the circuit as

described in Sect. 5.1.2. By assumption there is a fraction at most δ of (u(i), �(i)) that are
S-valid. For the remainder of the argument, ignore those vertices (equivalently, relabel r
to (1−δ)r ).When designing a strategy for the players in the game, the players associated
to ignored vertices ignore their question and return a random answer.

The assumption that P is S-causal implies that for each i ∈ {1, . . . , r} each of the
vertices v ∈ �(i) has a backwards lightcone that includes at most one of the input
locations u(i)

j . Moreover, all vertices in �(i) ∩Box(u(i)
j ) have a backwards lightcone that

includes no other input location than u(i)
j .

We define an (r�)-player strategy in the rotated, stretched game G′. For each i ∈
{1, . . . , r}, partition �(i) into sets �̃

(i)
j , j ∈ {1, . . . , �}, such that the only input location

in the backwards lightcone of any vertex in �̃
(i)
j is u(i)

j . Note that the lightcones may
intersect at other grid vertices.
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Fig. 2. Illustration of the construction in the proof of Lemma 5.8. A circuit with two input locations u1, u2
(case r = 1 and � = 2). The star � has two simple paths linking the center vertices gi with ui , for i = 1, 2.
The forward lightcones of u1 and u2 do not intersect at any vertex in �. The output vertices along � are
partitioned into �̃1 and �̃2 in a way that all vertices within a lightcone of an input location ui are associated
with the index i

Recall that by definition each wire of C is associated with the space Cd ′
, where d ′ =

|�| with � the input alphabet for the circuit game. We now describe an unambiguous
way to generate a density matrix σ on (Cd ′

)⊗r�, together with an assignment of each
qudit of σ to a player (i, j), using the circuit C and the fixed input pattern P .

We define σ as the output of the circuit C, when certain inputs have been fixed, and
certain wires have been traced out. For all input grid vertices that are not an input location
u(i)
j , hard-wire the input to |0〉. Execute the circuit until a vertex v of the circuit graph

that is in the forward lightcone of an input vertex associated with location u(i)
j has to

be considered. Since no input has been hard-wired for that vertex, the circuit cannot
proceed. There are two cases:

• If the forward lightcone of v intersects the forward lightcone of two different input
locations u(i)

j , then no vertex in the forward lightcone of that location can be on any

of the stars �(i ′) for i ′ �= i (as otherwise the vertex would be a vertex of � whose
backwards lightcone contains two distinct input locations). In that case, trace out the
vertex.

• In all other cases, vertex v is in the forward lightcone of a single input location
u(i)
j . In this case, give the circuit wire associated with that vertex (in the state that it

currently is) to player (i, j).

Finally, split the unassigned vertices on any path �
(i)
j in an arbitrary way among the

players; the set �̃(i)
j is defined as the set of vertices from the star �(i) assigned to the j th

player. All remaining unassigned vertices are traced out.
This procedures specifies the state σ shared by the players (see Fig. 2 for an illus-

tration). It remains to define their observables. Once the game starts, each player uses
its input x (i)

j in location u(i)
j (encoded as an input to the circuit game, as specified in
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Sect. 5.1.2), and proceeds to complete the execution of the circuit on the qudits that
it holds. If a gate has an output wire that points to a qudit that is not in the player’s
possession, the player measures the qudit and ignores the outcome. Finally, the player
measures all qudits in the locations �

(i)
j in the computational basis, and returns them as

its answer (decoded as an answer in G, as specified in Sect. 5.1.2).
The fact that this strategy for the players has the same success probability in G′ as the

circuit C in the circuit game GG,N ,r follows from the fact that the success criterion in
GG,N ,r only involves output vertices that are along the stars �(i), and it can be verified
that the joint operations performed by the players in the above-defined strategy correctly
compute the reduced density matrix computed by the circuit on all those output vertices.
Finally, using Lemma 5.6 it can be verified that the success criterion in the circuit game
matches the win condition for the rotated stretched game. ��
Remark 5.9. The proof of Lemma 5.8 establishes a stronger statement than claimed in
the lemma, that will be useful later. Specifically, the reduction from a circuit to a strategy
for the players inG′ constructed in the proof applies whenever the input patternP chosen
in the circuit game is S-causal for S the circuit specification derived from C. Moreover,
whenever this is the case the reduction yields a strategy for the players that exactly
reproduces the (suitably decoded) output distribution of the circuit, on any choice of
queries x (i).

We end this section with the proof of Theorem 1.2, that specifies a circuit game
for which there is a very large separation between the optimal winning probabilities of
classical low-depth and quantum circuits.

Theorem 1.2. (Exponential Soundness, restated). There exists universal constants c, c′ >

0, a family of distributions {DN }N∈N such that for every N ≥ 1, DN is a distribution
on {0, 1}N2

, and a family of efficiently verifiable relations {RN }N∈N such that for every
N ≥ 1, RN ⊆ {0, 1}N2 × {0, 1}N2

, such that the following holds:
• (Completeness) There exists a family of depth-3 geometrically local (in 2D) quan-
tum circuits {CN }N∈N such that for any N ≥ 1 and any input x in the support of DN
it holds that (x, CN (x)) ∈ RN with probability 1.

• (Soundness) For any family of classical circuits {CN }N∈N such that for every N ≥ 1,
DN has depth at most c log N , the probability that (x, CN (x)) ∈ R for x ∼ DN is
O(exp(−Nc′

)).

Proof. Let GN = GG,N ,r be the circuit game introduced in Definition 5.7, where the
stabilizer game G is instantiated as the GHZ game from Definition 3.14, and let π and
P be the input distribution and input pattern introduced in Definition 5.7 respectively.

Completeness: By Lemma 5.2 the circuit Cideal , as defined from the game GN at
the beginning of Sect. 5.1, wins the game GN with probability at least (ω∗(G))r , where
ω∗(G) is the optimal entangled winning probability for the stabilizer game G. Since
ω∗(G) = 1 it follows that Cideal succeeds at GN with probability 1. As noted after
Definition 3.14, the shared state |ψ〉GHZ in the optimal strategy for the GHZ game can
be prepared starting from |000〉 by a circuit of depth 3. It follows by definition that Cideal
has depth at most 4. This establishes the completeness part of the corollary.

Soundness:Fix an η ∈ (0, 1
7 ). Let C be a classical circuit with fan-in K and depth D ≤

c log N (for c a sufficiently small constant dependingonη) thatwinswith probability pwin
inGG,N ,r . We show that if pwin is too large, then there is a good classical strategy for the
players in the gameGHZ�r/2�, the �r/2�-repeatedGHZ game defined in Definition 3.10.
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For an input patternP in the support ofD(r), say thatP has a large S-causal subpattern
if there exists a subpattern P ′ ⊆ P such that P ′ is S-causal and ∣∣P ′∣∣ ≥ �r/2�. Define q
as

q = 1 − Pr (P has a large S-causal subpattern) . (30)

We first show an upper bound on q. For any pattern P let Pcore = PV AL ∩ PCAUS ,
where as in Lemma 4.15,

PV AL = {
(u, �) ∈ P|(u, �) is S-valid},

PCAUS = {
(u, �) ∈ P|(u, �) is individually-S-causal with respect to PV AL

}
.

By construction Pcore is S-causal. To prove an upper bound on q it suffices to place
a lower bound on the probability that |Pcore| ≥ �r/2�. Recall that the classical circuit
C has fan-in K , depth D ≤ c log N , and circuit specification S = (L f , badin,∅). By
Lemma 4.3, we may choose c as a function of η such that S is (B, Rin, 0)-bounded,
where B = O(Nη) and Rin = O(N 2−η). By (18) we get

Pr
(
|Pcore| ≥ r(1 − Cr Rin/N

2 − 2p − 3t/r)
)

≥ 1 − 4 exp
(
−t2/8r

)
, (31)

where p = C ′r B(r L2/N 2 + �/L). Here � = 3, and the other parameters depend on N .
To set parameters, first recall that B = O(Nη) and Rin = O(N 2−η). Set t = r/10,
r = �(Nη), and L such that L = O(N 1−3η) and L = �(N 4η), which is possible as
long as η < 1/7. Then p = O(1) and r Rin/N 2 = O(1). By choosing the constants
appropriately, we can ensure that

1 − Cr Rin/N
2 − 2p − 3t/r > 1/2.

With this choice of parameters, (31) implies that |Pcore| ≥ r/2 with probability at least
1 − 4 exp

(−C ′′r
)
, for some constant C ′′ > 0. To conclude, note that whenever P

contains a S-causal subpattern P ′ ⊆ P such that |P ′| ≥ r/2 it follows from Lemma
5.8 and Remark 5.9 that the circuit C implies a strategy for (r�/2) classical players in
the repeated game GHZ�r/2�. Using that the maximum success probability of classical
players in GHZ is 3/4 and that the classical value multiplies under repetition (since the
players are distinct) it follows that the implied strategy has success probability at most
(3/4)�r/2�. ��

6. Randomness Generation

In this section we give the construction of a circuit game such that any low-depth circuit
that succeeds in the game with non-negligible probability must generate outputs that
have large min-entropy, even conditioned on the inputs and side information that may
be correlated with the initial state of the circuit.

The main idea for the construction is to embed a large number of copies of a sim-
ple stabilizer game G in a circuit game, as described in Sect. 5. (We use the Mermin
3-player GHZ game [Mer90a], though a similar reduction could be performed starting
from any stabilizer game whose quantum value is larger than its classical value.) Using
the reduction from Lemma 5.8, it follows from Remark 5.9 that the output distribution
of any circuit that wins with non-negligible probability in the circuit game can be de-
terministically mapped to a (stretched, rotated) variant of the r -fold parallel repetition,
with r independent groups of players, of G. This reduction implies that, to bound the
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output entropy of the circuit, it suffices to place a lower bound on the output entropy of
any strategy in the parallel repeated game.

To accomplish this last stepwe employ the framework based on the EntropyAccumu-
lation Theorem (EAT) [DFR16] introduced in [AFDF+18], including the improvements
from [DF18]. This framework allows to place a linear (in the number of repetitions)
lower bound on the amount of min-entropy generated in the sequential repetition of a
nonlocal game, using a lower bound on the function that measures the von Neumann
entropy generated in a single instantiation of the game as a function of the success prob-
ability. Our setting of parallel repetition is more constrained (thus in principle easier to
analyze) than the sequential setting, but the results from [AFDF+18,DF18] still give the
best rates for both settings.

In Sect. 6.1 we start by establishing a bound on the single-round randomness for
the three-player GHZ game that takes the form required to apply the framework from
[AFDF+18]. In Sect. 6.2 we combine this bound with the reduction from circuit games
to nonlocal games shown in Sect. 5 to deduce a family of randomness-generating circuit
games.

6.1. Randomness generation from the GHZ game. We briefly recall the formalism
from [AFDF+18], when tailored to our setting (in particular, we focus on processes
specified by quantum strategies in a nonlocal game, instead of arbitrary quantum chan-
nels in [AFDF+18]). The main definition that is needed is that of amin-tradeoff function,
which specifies a lower bound on the amount of randomness generated in a single ex-
ecution of a nonlocal game, as a function of the players’ probability of winning in the
game. We give the definition for stabilizer games, as introduced in Definition 3.1.

Definition 6.1. (Min-tradeoff function) Let G be an (�, k,m) stabilizer game. Fix a set
of measurements {Mx j } for the � players in the game. For any ω ∈ [0, 1], let �(ω)

denote the set of states ρP1···PkR such that when the players’ state is initialized to ρ (with
player i being given register Pi ), the players’ strategy wins the game with probability at
leastω.6

Then a real affine function f on [0, 1] is called an (affine) min-tradeoff function for
G and {Mx j } if it satisfies

f (ω) ≤ min
ρ∈�(ω)

H(A|QR)M(ρ),

where the entropy is evaluated on the post-measurement state M(ρ) obtained after ap-
plication of the players’ measurements, and Q and A are random variables that represent
inputs (distributed according to π ) and outputs for the players in G. If f is a min-tradeoff
function for a game G and every possible set of measurements {Mx j } for the players,
then we simply say that f is a min-tradeoff function for G.

To illustrate the definition we apply results from [WBA18] to give a min-tradeoff
function for the Mermin GHZ game introduced in Definition 3.14. It is well-known (and
easily verified) that the best classical strategy for this game succeeds with probability 3

4 .
This in particular implies that any strategy that wins with probability strictly larger than
3
4 cannot be deterministic, hence generates randomness. The following bound shown

6 We may without loss of generality assume that the dimension of R is no more than the sum of the
dimensions of the players’ private registers P j , themselves fixed by the measurements {Mx j }. Therefore, the
set �(ω) can be taken to be a compact set.
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in [WBA18] provides a tight lower bound on the conditional entropy present in the
outputs of any strategy that succeeds with sufficiently large probability.7

Lemma 6.2. [WBA18] Let τ = (ρ, {Mx j }) be a strategy with success probabilityω ≥ 7
8

in the game GHZ, where ρ is a density matrix on the provers’ registers P1 · · ·P� and an
arbitrary auxiliary register R. Then

H
(
A1A2|RQ

) ≥ fGHZ(ω) = − log
(5
4

− ω +
√
3

√
(
ω − 1

2

)(
1 − ω

))
, (32)

where Q is a random variable that denotes the query to the players, and A1, A2 are
random variables that denote the answers a1, a2 ∈ Z2 from the first two players.

Note that for ω = 1, the bound (32) gives 2 bits of entropy, which is clearly optimal.
If ω = 1 − ε for small ε, the bound degrades as 2 − O(

√
ε).

Following the framework from [AFDF+18], the bound provided in Lemma 6.2 al-
ready implies a linear lower bound on the entropy generated by the sequential repetition
of the GHZ game. For our purposes it will be convenient to have a bound on the entropy
generated by the stretched, rotated variant of the GHZ game, as introduced in Sect. 3.2.

Corollary 6.3. (Min-tradeoff function for GHZ) Let 7
8 < ps < 1. Let � be a tuple of

sets as in Definition 3.9. Then the function gps : [0, 1] → R defined by

gps (q) = fGHZ(ps) + (q − ps)
d fGHZ
dω

(ps)

is a min-tradeoff function for the rotated stretched game GHZS,R
� .

Proof. First we observe that the bound (32) from Lemma 6.2 applies equally to the the
rotated stretched game GHZS,R

� , for any fixed �. Indeed, fix a strategy (ρ, {Mx j }) in
GHZS,R

� . Using Lemma 3.8 we obtain a strategy τ ′ = (ρ, {M ′
x j }) for GHZ that has

the same success probability. Furthermore, in the coarse-graining of the strategy the
answers A1, A2, A3 ∈ Z2 in τ ′ are a deterministic function of the answers A1, A2, A3 ∈
Z2 × (Z2

2)
|�1| in GHZS,R

� , where the second factor is for the stretched rotation string.
Therefore the same bound on randomness generation that applies to GHZ applies to
GHZS,R

� (as long as all outputs in the game are included, which is the case for the
definition of a min-tradeoff function).

To conclude, note that the right-hand side of (32) is a convex function of ω, hence it
is at least its tangent at any point. ��

Recall that our goal is to generate a large amount of randomness by requiring a
circuit to play multiple copies of the game GHZ in parallel. Towards this, we introduce
a partially derandomized variant of the repeated game, where the inputs are chosen
according to a very biased distribution in order to save on the randomness required to
generate them. The resulting game is a direct analogue of the protocol for randomness
expansion from the CHSH game given in [DF18].

Definition 6.4. Let r ≥ 1 be an integer. Let p, γ ∈ [0, 1]. Let � be a tuple of sets as in
Definition 3.9. Let GHZS,R

r,�,p,γ denote the r -fold repetition, as in Definition 3.10, of the
rotated, stretched game GHZ with the following two modifications:

7 See (18) in [WBA18]. The authors prove a stronger bound, that applies to the min-entropy and extends to
all success probabilities in the range [3/4, 1]. We only state the weaker bound that will be sufficient for us. To
see how the bound stated in Lemma 6.2 is obtained from (18) in [WBA18], use the replacement ω = 1

2 + M
8 .
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• The r queries, instead of being sampled independently, are chosen according to the
following distribution: first, select a subset S ⊆ {1, . . . , r} by including each element
independently with probability p; second, select queries x (1), . . . , x (r) ∈ X such that
x (i) is sampled as inGHZwhen i ∈ S, and x (i) ← x for i /∈ S, where x is an arbitrary,
but fixed, query in GHZ;
• It is only required that the win condition is satisfied for a fraction at least (1 − γ )

of the tuples of answers a(i) such that i ∈ S (there is no requirement for i /∈ S).

Corollary 6.3 shows that any sufficiently successful strategy in the (rotated, stretched)
game GHZ must generate outputs that contain a constant amount of entropy. It is there-
fore natural to expect that a strategy for the repeated game from Definition 6.4 should
generate a linear (in the number of repetitions) amount of entropy. The difficulty is to
obtain a bound on the entropy generated, conditioned on having produced outputs that
satisfy the win condition of the game, but without placing an implicit assumption on
the intrinsic winning probability of the strategy (which would be difficult to estimate).
Moreover, the fact that the strategy involves all players simultaneously measuring parts
of the same entangled state introduces correlations that prevent a direct treatment us-
ing techniques appropriate for the simpler case of i.i.d. (identically and independently
distributed) outputs.

The Entropy Accumulation Theorem, as applied in [AFDF+18], is designed specif-
ically to address these difficulties, and indeed guarantees that the repeated game in-
troduced in Definition 6.4 generates a linear amount of min-entropy. Here we use the
improved results from [DF18],8 that give good bounds even when the “test probability”
p from Definition 6.4 can be very small.

Lemma 6.5. Let r ≥ 1, p, γ ∈ [0, 1], and ε > 0. Let (ρ, {Mx j }), where ρ is a density
matrix on the player’s private registers together with an ancilla register E, be a strategy
for the (3r) players in GHZS,R

r,�,p,γ that succeeds with probability at least ε. Let Q =
(Q(1), . . . , Q(r)) (resp. A = (A(1), . . . , A(r))) be random variables associated with the
players’ answers in each copy ofGHZ; note that each Q(i) (resp. A(i)) is itself a 3-tuple.
Let ρs

AQE denote the state of AQE conditioned on the players succeeding in the game
(the players’ private registers are traced out). Then

H ε
min(A|QE)ρs ≥ fGHZ(1 − γ )r − O

( r√
p

(
ln

1

εTr(ρs)

)1/2)
. (33)

Note that the lower bound provided in (33) is non-trivial as soon as p = �(log N/r)
and ε is at least inverse-polynomially large (smaller ε is also possible, but requires a
larger p).

Proof. The proof is identical to the proof of [DF18, Theorem 6.1], that applies to the
CHSH game. The only change needed is to use the min-tradeoff function from Corol-
lary 6.3 instead of the min-tradeoff function g∗ for the CHSH game used in [DF18].
The bound (33) follows from the bound stated in [DF18, Theorem 6.1] by noting that
d f
dω

(1 − γ ) is bounded by a universal constant. ��
8 The results in [AFDF+18,DF18] apply to a much more general scenario, and in particular allow one

to prove bounds on the entropy generated by an arbitrary sequential process, as long as it satisfies a certain
Markov condition. Our setting, which considers parallel repetition, is easier, and trivially satisfies the required
Markov condition.
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6.2. Randomness generation from low-depth circuits. Using the technique to embed a
stabilizer game into a circuit game described in Sect. 5 we can leverage the random-
ness generation results from the previous section to obtain a family of circuit games for
certified randomness expansion. First we define the circuit games that we consider by
introducing a randomness-efficient, noise-tolerant modification of the game from Defi-
nition 5.7. Even though we will eventually instantiate the definition with G = GHZ, we
give the definition for a general stabilizer game.

Definition 6.6. LetG be an (�, k,m) stabilizer gameand N ≥ 1an integer. Let L , B, Rin, r
be parameters that satisfy the constraints (22) for some constant η > 0. Let p, γ ∈ [0, 1].
The circuit game G̃G,N ,r,p,γ is defined as the game GG,N ,r with the following modifi-
cations:

1. The input pattern P is sampled according to the distribution D̃(r) from Lemma 4.20;
2. The tuple of queries (x (1), . . . , x (r)) for G is sampled by first, selecting a subset

S ⊆ {1, . . . , r} by including each element independently with probability p; second,
selecting queries x (1), . . . , x (r) ∈ X such that x (i) is sampled as in G when i ∈ S,
and x (i) ← x for i /∈ S, where x is an arbitrary, but fixed, query in G;

3. It is only required that the win condition is satisfied for a fraction at least (1− γ ) of
the tuples of answers a(i) such that i ∈ S (there is no requirement for i /∈ S).

As shown in Lemma 4.20, it is possible to sample an input pattern from D̃(r) using
O(log2 N ) random bits. In addition, it is possible to sample inputs as in Definition 6.6
using O(H(p)r) randombits. So, if p = �(log N/r), then it is possible to sample inputs
in G̃G,N ,r,p,γ using O(log2 N ) random bits. (To this count, one may add O(log3 N ) ran-
dom bits, sufficient to extract near-uniform random bits from the output of the circuit by
using a seed-efficient randomness extractor [DPVR12].) The following theorem places
a lower bound on the amount of randomness generated by a circuit that succeeds with
non-negligible probability in the circuit game from Definition 6.6, when the stabilizer
game G is instantiated as theGHZ game from Definition 3.14. Together with the preced-
ing comments, the theorem establishes the randomness certification part of Theorem 1.1
(the soundness part follows immediately since classical circuits cannot increase entropy
present in their input distribution).

Theorem 6.7. Let r, p, γ, N be as in Definition 6.6, for some η > 0. Let η′ > 0. Let
D be such that D ≤ c log N, for some sufficiently small constant c > 0, depending on
η, η′. Let C be a (classical or quantum) circuit with gates of constant fan-in and depth
at most D. Assume that C succeeds in the game G̃GHZ,N ,r,p,γ with probability at least
δ, for some δ = �(N−η′

). Suppose the circuit is executed on its input, described by
random variable I , as well as a an auxiliary state |ψ〉CE such that the circuit acts on
register C, and the register E is available to an adversary. Let O be a random variable
that represents the circuit output, O = C(I ). Let ρs

OIE denote the state of the inputs,
outputs, and side information, conditioned on the circuit winning in the circuit game.
Then there exists an η′′′ > 0 such that for any ε = �(N−η′′′

), it holds that

H ε
min(O|I E)ρs ≥ (

κ − f (γ )
)
r − O

( r√
p

(
ln

1

εTr(ρs)

)1/2)
, (34)

where the implicit constant depends on η, η′, η′′.
Proof. Let S be the circuit specification obtained from the circuit C. It follows from
Lemma 4.3 that by choosing the constant c small enough, we force S to be (B, Rin, 0)-
bounded where Rin = O(N 2−η) and B = O(Nη). With this choice of parameters,
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it follows from Lemma 4.20 and Lemma 4.12 that a pattern P sampled from D̃(r) is
S-causal with probability at least 1 − O(N−c′

), for some c′ > 0. Since C succeeds in
G̃ = G̃GHZ,N ,r,p,γ with probability δ, it follows that conditioned on success of C, the
patternP chosen as part of the input isS-causalwith probability at least 1−O(N−c′

δ−1).
Let δ′ > 0 and let P be a pattern which is S-causal on which C succeeds with

probability at least δ′ when the pattern P is fixed. For any such pattern, Lemma 5.8
together with Remark 5.9 imply that the circuit’s behavior can be simulated by a strategy
for the players in the stretched rotated game GHZS,R

r,�,p,γ , for some collection of sets �

that is determined from S. Using Lemma 6.5 it follows that, conditioned on the input
I to the circuit being of the form (P, x) for some query x ∈ X , the lower bound (33)
holds.

If P is such that C succeeds with probability less than δ′, then there is no bound on
the min-entropy. However, the probability that this happens, conditioned on winning, is
at most δ′/δ. (To see this, apply Bayes’ rule directly.) Choosing δ′ = √

δ we get an η′′′,
depending on η′, such that (34) holds. ��
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