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Abstract: We obtain an asymptotic formula for n×n Toeplitz determinants as n → ∞,
for non-negative symbols with any fixed number of Fisher–Hartwig singularities, which
is uniform with respect to the location of the singularities. As an application, we prove
a conjecture by Fyodorov and Keating (Philos Trans R Soc A 372: 20120503, 2014)
regarding moments of averages of the characteristic polynomial of the Circular Unitary
Ensemble. In addition, we obtain an asymptotic formula regarding the momentum of
impenetrable bosons in one dimension with periodic boundary conditions.

1. Introduction

In this paper, we consider the asymptotics as n → ∞ of Toeplitz determinants

Dn( f ) = det
(

f j−k
)n−1

j,k=0 , f j =
∫ 2π

0
f
(

eiθ
)

e−i jθ dθ

2π
,

where the symbol f is of the form

f (z) = eV (z)ω(z), ω(z) =
m∏

j=1

ωα j ,β j (z/z j ), ωα,β(z) =
( z

eπ i

)β |z − 1|2α , (1)

with arg z ∈ [0, 2π) in the term
(

z
eπ i

)β

in the definition of ωα,β , and where the symbol

satisfies the following conditions:

(a) V (z) is real-valued for |z| = 1 and is analytic on an open set containing |z| = 1,
(b) z j = eit j , where 0 ≤ t1 < t2 < · · · < tm < 2π ,
(c) α j ≥ 0 and Re β j = 0 for j = 1, 2, . . . , m.
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Under these conditions f is a non-negative symbol, and we obtain large n asymptotics
of Dn( f ) (up to a bounded multiplicative term) which are uniform in the parameters z j .

When (α j , β j ) �= (0, 0) for all j , one says the Toeplitz determinant possesses a
Fisher–Hartwig (FH) singularity at each point z j = eit j , and that the singularity at z j is
of root-type if β j = 0 and of jump-type if α j = 0.

The large n asymptotics of Toeplitz determinants were first studied by Szegő in 1915
[61]. They have been intensively studied over the last 70 years, and owe their relevance
to applications to physical models. The most prominent such application is the question
of spontaneous magnetization of the Ising model on the lattice Z2 (see e.g. [7,9,24,52]),
but we also mention questions surrounding the momentum of impenetrable bosons in 1
dimension, which we return to in Sect. 3.

In addition to physical models, a considerable effort has been invested in understand-
ing statistical similarities between the asymptotics of the Riemann zeta function along
the critical line Re z = 1/2 and the statistics of the characteristic polynomial of the
Circular Unitary Ensemble (CUE) over arcs of the unit circle. Toeplitz determinants
appear in this context, and we return to this topic in Sect. 2.

We now turn to known results for the asymptotics of Dn( f ). The simplest case is the
special one where ω(z) ≡ 1 (i.e. α j , β j = 0 for all j), in which case

Dn(eV ) = enV0e
∑∞

k=1 kVk V−k (1 + o(1)),

as n → ∞, where Vk = ∫ 2π
0 V

(
eiθ
)

e−ikθ dθ
2π . This is known as the strong Szegő limit

theorem (see [8,9,11,37,40,43,60,62]), and holds for V satisfying condition (a), but
also more generally for any V such that

∑∞
k=−∞ k|Vk |2 converges.

It was conjectured by Lenard [50] and Fisher and Hartwig [28], and proven in subse-
quent steps by Widom [67] (relying also on work by Lenard [50]) and Basor [4,5], that
if f is a symbol of the form (1) satisfying (a)–(c), then

Dn( f ) = En
∑m

j=1 α2
j −β2

j enV0(1 + o(1)), (2)

as n → ∞, where E is independent of n and given by

E = e
∑∞

k=1 kVk V−k

m∏

j=1

(
G(1 + α j + β j )G(1 + α j − β j )

G(1 + 2α j )
e2Re [(β j −α j )V+(z j )]

)

∏

1≤ j<k≤m

(
|eit j − eitk |2(β j βk−α j αk )ei(tk−t j −π)(α j βk−αkβ j )

)
, (3)

V+(z) = ∑∞
j=1 Vj z j , and G(z) is the Barnes’ G-function (see e.g. [56]). We mention

here that although our focus is on non-negative symbols, the analogue of (2), (3) in
the case of complex symbols f is interesting and exhibits behaviour with additional
subtleties, see [8–10,23,25,27], or [24] for a review.

By the proof in [25], it is clear that the asymptotics (2) hold uniformly for eit j and eitk

bounded away from each other. It is also clear that the asymptotics (2) are discontinuous
if any two points eit j , eitk merge and that the asymptotic formula cannot be correct in
this situation. In [42] and [64], for α = 1/2 and β = 0, a part of the transition was
considered, corresponding to the box |eit j − 1| < C/n for all j = 1, . . . , m and some
fixed, large constantC . More recently, in [16], the authors considered the situationwhere
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m = 2 and obtained the full asymptotics of Dn( f ), uniformly for 0 ≤ t1 < t2 < 2π . It
is easily seen that the results of [16] may be presented in the following manner:

log Dn( f ) = nV0 +
2∑

j=1

(
α2

j − β2
j

)
log n + 2(α1α2 − β1β2)

log

(
1

sin
∣∣ t1−t2

2

∣∣ + n−1

)

+ F̂n(t1, t2) + o(1), (4)

uniformly as n → ∞, where F̂n is an explicit function in t1, t2 which is uniformly
bounded as n → ∞. We mention that F̂n has an interesting and intricate representation
involving a solution to the Painlevé V equation when |t1− t2| = O(1/n)—for the details
we refer the reader to [16] (and additionally to [14] for certain simplifications that occur
in the specific case where α is integer-valued and β = 0).

We also refer the reader to work on a different but related problem, namely the
transition between smooth symbols and those with one singularity, see [15] and [68],
and the transition between a single singularity and two singularities, see [45].

In this paper, we obtain asymptotics for Dn( f ) as n → ∞, uniformly in the param-
eters t1, . . . , tm . Our main result is the following.

Theorem 1.1. Assume that f is of the form (1), satisfying (a)–(c). Then as n → ∞,

log Dn( f ) = nV0 +
m∑

j=1

(
α2

j − β2
j

)
log n

+
∑

1≤ j<k≤m

2(α jαk − β jβk) log

⎛

⎝ 1

sin
∣∣∣

t j −tk
2

∣∣∣ + n−1

⎞

⎠ +O(1),

where the error term is uniform for 0 ≤ t1 < t2 < · · · < tm < 2π .

Remark 1.2. For simplicity of notation we take α j ≥ 0, but it is straightforward to
see that the proof may be applied to negative α j as well, provided any combination of
merging singularities has a total sum of α j ’s strictly greater than −1/2. For example
if there are three singularities and t2 → t1 while t3 remains bounded away from t1 as
n → ∞, one would require α1, α2, α3 > −1/2 and α1 + α2 > −1/2.

2. The Characteristic Polynomial of the CUE

Let Z1, Z2, . . . , Zn be random variables, distributed as the eigenvalues of the n × n
Circular Unitary Ensemble of random matrices, with the following joint probability
density function on the unit circle in the complex plane:

1

n!
∏

1≤i< j≤n

|zi − z j |2
n∏

j=1

dz j

2π i z j
. (5)

Let the characteristic polynomial be denoted by

Pn(eiθ ) =
n∏

j=1

(
Z j − eiθ

)
.
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It has long been believed that the statistical properties of the Riemann zeta function
on the critical line s = 1/2 + i t, t ∈ R, and the statistics of large random matrices
are related—it was Dyson who first spotted this possible connection. More recently,
possible connections between the behaviour of the characteristic polynomial Pn(eiθ )

over the unit circle and the behaviour of the Riemann zeta function along the critical
line have been studied intensively (see e.g. [18–20,34,35,38,39,44,53] and references
therein). In this context the authors of [34,35] were interested in both extreme values
and average values of Pn(eit ) over the unit circle, namely the random variables

Yn = max
t∈[0,2π)

∣∣∣Pn

(
eit
)∣∣∣ , Xn(α) =

∫ 2π

0

∣∣∣Pn(eit )

∣∣∣
2α dt

2π
.

In addition, their work sparked interest in connections between the characteristic poly-
nomial of the CUE and Gaussian Multiplicative Chaos, see [55,66] for results on such
connections.

In [34] it was conjectured that log Yn − log n + 3
4 log log n converges in distribution

to a random variable, and subsequently the asymptotics of Yn have been studied in
[1,13,57]. In these works, the terms log n and 3

4 log log n were confirmed. The full
conjecture, however, remains open.

In [35], Fyodorov and Keating conjectured that for m = 2, 3, . . . ,

logE
[
Xn(α)m] =

{
mα2 log n + Cm(α) + o(1) for 0 < mα2 < 1,[
(mα)2 + 1 − m

]
log n +O(1) for mα2 > 1,

(6)

as n → ∞, where E denotes the expectation with respect to (5), and

Cm(α) = log

[(
G(1 + α)2

G(1 + 2α)�(1 − α2)

)m

�(1 − mα2)

]

.

As a corollary to Theorem 1.1, we will prove (6).
To make the connection between Toeplitz determinants and the moments of Xn(α),

we recall the well-known representation of Toeplitz determinants in terms of multiple
integrals

Dn( f ) = 1

n!
∫

[0,2π)n

∏

1≤ j<k≤n

∣∣∣ei jθ − eikθ
∣∣∣
2 n∏

j=1

f
(

eiθ j
) dθ j

2π
, (7)

from which it follows that

E
[
Xn(α)m] =

∫

[0,2π)m
Dn

(
f (α)
m

) dt1
2π

. . .
dtm
2π

, (8)

where we denote

f (α)
m (z) =

m∏

j=1

∣∣∣z − eit j

∣∣∣
2α

. (9)

Using (8) and (4), Claeys and Krasovsky were able to prove (6) form = 2. They were

furthermore able to prove that E
[

Xn(α = 1/
√
2)2
]

= ĉn log n(1+o(1)) as n → ∞ for
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an explicit constant ĉ. Additionally, for 2α2 > 1, they were able to determine explicitly
the O(1) term in (6) in terms of the Painlevé V equation.

For integer m ≥ 2, the conjecture was proven recently by Bailey and Keating [3]
for integer α = 1, 2, 3, . . . , by representing E

[
Xn(α)m

]
in terms of integrals of Schur

polynomials. A second proof was given byAssiotis and Keating in [2], where a represen-
tation for the constant O(1) term was given in terms of a certain volume of continuous
Gelfand–Tsetlin patterns with constraints.

Relying on Theorem 1.1 and (2), we prove the conjecture (6) for all parameter sets,
and more precisely we have following corollary.

Corollary 2.1. As n → ∞, the asymptotics of logE
[
Xn(α)m

]
are given by (6), both for

0 < mα2 < 1 and for mα2 > 1. Additionally, if mα2 = 1, then

logE
[
Xn(α)m] = log n + log log n +O(1),

as n → ∞.

2.1. Proof of Corollary 2.1.

2.1.1. 0 < mα2 < 1 Denote

Iε(α) =
∫

[0,2π)m

∏

1≤ j<k≤m

(
sin

∣∣∣∣
t j − tk

2

∣∣∣∣ + ε

)−2α2

dt1 . . . dtm, (10)

for ε > 0. If 0 < mα2 < 1, the integral is well defined for ε = 0 and I0(α) is a Selberg
integral [33,59]:

I0(α) = (2π)m �(1 − mα2)

�(1 − α2)m
. (11)

ThusCorollary 2.1 follows (for 0 < mα2 < 1) by combining (2), (8) andTheorem1.1
as follows. Fix δ > 0. We will show that there is an integer N such that for n > N ,

∣
∣∣E
[
Xn(α)m]− nmα2

eCm (α)
∣
∣∣ < δnmα2

, (12)

thus proving the corollary. Given a measurable subset R ⊂ [0, 2π)m , we denote

Iε(α, R) =
∫

R

∏

1≤ j<k≤m

(
sin

∣∣∣∣
t j − tk

2

∣∣∣∣ + ε

)−2α2

dt1 . . . dtm . (13)

We note that Iε(α, R) < I0(α, R) for any ε > 0 for any R ⊂ [0, 2π)m . For η > 0,
divide the integration regime [0, 2π)m into two regions R1(η) and R2(η), where R1(η)

is the region where sin
|ti −t j |

2 > η for all i �= j , and R2(η) is the complement of R1(η).

It follows by Theorem 1.1 that
∫

R2(η)

Dn

(
f (α)
m

) dt1
2π

. . .
dtm
2π

= O
(

nmα2
I0(α, R2(η))

)
,
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as n → ∞, uniformly for 0 < η < η0. In particular, since I0(α, R2(η)) → 0 as η → 0,
it follows that there exists η0 > 0 and N0 ∈ N such that

∫

R2(η)

Dn

(
f (α)
m

) dt1
2π

. . .
dtm
2π

< δnmα2
/2, (14)

for n > N0 and η < η0, which gives the desired bound for the integral over R2(η). We
now evaluate the integral over R1(η). By (2), it follows that

∫

R1(η)

Dn

(
f (α)
m

) dt1
2π

. . .
dtm
2π

= nmα2 G(1 + α)2m

G(1 + 2α)m
∫

R1(η)

∏

1≤ j<k≤m

|eit j − eitk |−2α2
(1 + o(1))

dt1
2π

. . .
dtm
2π

,

where the o(1) tends to zero uniformly over R1(η) for any fixed η as n → ∞. Thus
we may move the error term outside the integral, and since R2(η) is the complement of
R1(η), we have

∫

R1(η)

∏

1≤ j<k≤m

|eit j − eitk |−2α2
(1 + o(1))

dt1
2π

. . .
dtm
2π

=
∫

[0,2π)m

∏

1≤ j<k≤m

|eit j − eitk |−2α2 dt1
2π

. . .
dtm
2π

(1 + o(1))

−
∫

R2(η)

∏

1≤ j<k≤m

|eit j − eitk |−2α2 dt1
2π

. . .
dtm
2π

. (15)

By (11) we obtain

∫

R1(η)

Dn

(
f (α)
m

) dt1
2π

. . .
dtm
2π

= nmα2
eCm (α)(1 + o(1)) − nmα2

I0(α, R2(η))

(
G(1 + α)2

2πG(1 + 2α)

)m

, (16)

where the o(1) tends to zero for any fixed η as n → ∞. Again we use the fact that
I0(α, R2(η)) → 0 as η → 0, from which it follows that we may pick η < η0 such that
the second term on the right hand side of (16) is less than δnmα2

/4.
Thus we may fix η < η0 such that

∣∣∣∣

∫

R1(η)

Dn

(
f (α)
m

) dt1
2π

. . .
dtm
2π

− nmα2
eCm (α)

∣∣∣∣ < δnmα2
/4 + o(nmα2

),

as n → ∞, and combined with (14), this proves (12).
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2.1.2. mα2 > 1 We now study the asymptotics of Iε(α) for mα2 > 1. A lower bound
for Iε(α) is easily obtained by integrating over the box |ti − t j | < ε for all i �= j , it is
easily seen that there is a constant c such that

cεm−1−m(m−1)α2
< Iε(α), (17)

for 0 < ε < ε0.
To prove Corollary 2.1, we need to obtain a corresponding upper bound for Iε(α).

We choose to work with the following integral instead:

Îε(α) =
∫

0<t1<···<tm<1

∏

1≤ j<k≤m

(|t j − tk | + ε
)−2α2

dt1 . . . dtm .

Lemma 2.2. There is a constant 0 < c such that for all sufficiently small ε > 0,

Iε(α) ≤ cÎε(α).

Proof. DenoteU j = [0, 2π( j −1)/(m+1))∪[2π j/(m+1), 2π) for j = 1, 2, . . . , m+1.
Since there are m points t1, . . . , tm and m + 1 sets U j , it follows that there is always a j
such that {t1, . . . , tm} ⊂ U j , thus

Iε(α) ≤
m+1∑

j=1

∫

U m
j

∏

1≤ j<k≤m

(
sin

∣∣∣∣
t j − tk

2

∣∣∣∣ + ε

)−2α2

dt1 . . . dtm .

It follows that

Iε(α) ≤ (m + 1)
∫

[0,2π−2π/(m+1))m

∏

1≤ j<k≤m

(
sin

∣
∣∣∣
t j − tk

2

∣
∣∣∣ + ε

)−2α2

dt1 . . . dtm .

Furthermore, for 0 ≤ x ≤ π − π/(m + 1), one has

x

π
sin

π

m + 1
≤ sin x ≤ x,

and it follows that

Iε(α) ≤ (m + 1)π2α

(
sin π

m+1

)2α

∫

[0,2π−2π/(m+1))m

∏

1≤ j<k≤m

(∣∣∣∣
t j − tk

2

∣∣∣∣ + ε

)−2α2

dt1 . . . dtm .

(18)

The lemma follows easily from (18). �
We now take the change of variables s j = t j+1 − t j for j = 1, . . . , m − 1 and find

that

Îε(α) =
∫ 1

0
dt1

∫ ∏

1≤ j≤k≤m−1

⎛

⎝
k∑

i= j

si + ε

⎞

⎠

−2α2

ds1 . . . dsm−1,
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with integration taken over s1, . . . , sm−1 ≥ 0 such that
∑m

j=1 s j < 1 − t1, from which
it follows that

Îε(α) ≤ I (2)
ε (α), (19)

where

I (2)
ε (α) =

∫

[0,1)m

∏

1≤ j≤k≤m−1

⎛

⎝
k∑

i= j

si + ε

⎞

⎠

−2α2

ds1 . . . dsm−1. (20)

If 2α2 > 1, then I (2)
ε (α) is straightforward to evaluate—one simply notes that

⎛

⎝
k∑

i= j

si + ε

⎞

⎠

−2α2

≤ (si + ε)−2α2
, (21)

for any i = j, . . . , k, and thus

I (2)
ε (α) ≤

∫

[0,1)m

m−1∏

j=1

(
s j + ε

)−2 jα2
ds1 . . . dsm−1.

Separating out the variables, it follows that

I (2)
ε (α) = O

(
ε(m−1)(1−mα2)

)
, (22)

as ε → 0, for 2α2 > 1. However, if 1
m < α2 < 1

2 , this approach fails to yield (22), and
in fact yields a worse error term1. To achieve the optimal error term (22) also in the case
1
m < α2 < 1

2 , we need to consider ordered integrals.
Since the integral (20) is taken over all possible orderings, it follows that

I (2)
ε (α) =

∑

σ∈Sm−1

∫

Wσ

∏

1≤ j≤k≤m−1

⎛

⎝
k∑

i= j

si + ε

⎞

⎠

−2α2

ds1 . . . dsm−1,

where the integral is taken over

Wσ = {
0 < sσ(m−1) < sσ(m−2) < · · · < sσ(1) < 1

}
.

Let

V (�) = {( j, k) : 1 ≤ j ≤ k ≤ m − 1 and j = σ(�) or k = σ(�)}.
1 As an example where the approach fails to provide optimal error terms, consider m = 3 and α2 = 2/5.

Then we obtain

I (α)
ε ≤

∫ 1

0
ds1

∫ 1

0
ds2(s1 + ε)−4/5(s2 + ε)−8/5 = O

(
ε−3/5

)
,

as ε → 0. However the optimal bound we are looking to obtain is of order ε(m−1)(1−mα2) = ε−2/5.
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Let S(�) = V (�)\ ∪�−1
j=1 V ( j). Then S(1), . . . , S(m − 1) are disjoint, and

∏

1≤ j≤k≤m−1

⎛

⎝
k∑

i= j

si + ε

⎞

⎠

−2α2

=
m−1∏

�=1

∏

( j,k)∈S(�)

⎛

⎝
k∑

i= j

si + ε

⎞

⎠

−2α2

.

By (21) it follows that

∏

1≤ j≤k≤m−1

⎛

⎝
k∑

i= j

si + ε

⎞

⎠

−2α2

≤
m−1∏

�=1

∏

( j,k)∈S(�)

(
sσ(�) + ε

)−2α2
.

It is easily seen that |S(�)| = m − �, and it follows that

∏

1≤ j≤k≤m−1

⎛

⎝
k∑

i= j

si + ε

⎞

⎠

−2α2

≤
m−1∏

�=1

(
sσ(�) + ε

)−2α2(m−�)
. (23)

By (23), it follows that

∫

Wσ

∏

1≤ j≤k≤m−1

⎛

⎝
k∑

i= j

si + ε

⎞

⎠

−2α2

ds1 . . . dsm−1

≤
∫

Wσ

m−1∏

�=1

(
sσ(�) + ε

)−2α2(m−�)
dsσ(m−1) . . . dsσ(1). (24)

If m = 2 and mα2 > 1, then the right hand side is of order ε−2α2+1, and we are done. We
assume that m > 2, and integrate in sσ(m−1) on the right hand side of (24). The power
of sσ(m−1) is −2α2, which could very well be equal to −1, so we need to take this into
account. Clearly

∫ sσ(m−2)

0
(sσ(m−1) + ε)x dsσ(m−1) = O

(
log(sσ(m−2)/ε + 3)(εx+1 + (sσ(m−2) + ε)x+1)

)

for any fixed x as ε → 0. Since

log(sσ(m−2)/ε + 3) ≤ log(sσ(1)/ε + 3),

it follows that

∫

Wσ

m−1∏

�=1

(
sσ(�) + ε

)−2α2(m−�)
dsσ(m−1) . . . dsσ(1) = O

(∫
log(sσ(1)/ε + 3)

×
m−2∏

�=1

(
sσ(�) + ε

)−2α2(m−�)
(
ε−2α2+1 +

(
sσ(m−2) + ε

)−2α2+1
)

dsσ(m−2) . . . dsσ(1)

)
, (25)
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hand side is taken over 0 < sσ(m−2) < · · · < sσ(1) < 1. We will next integrate out
sσ(m−2), then sσ(m−3), etc. To do this, we introduce the following notation for v =
1, 2, . . . , m − 2:

Jε(v) =
∫ [

log(sσ(1)/ε + 3)
]v

m−v−1∏

�=1

(
sσ(�) + ε

)−2α2(m−�)

×
[

v∑

r=0

ε
r−2α2∑r

j=1 j (sσ(m−v−1) + ε
)v−r−2α2∑v

j=r+1 j

]

dsσ(m−v−1) . . . dsσ(1),

with integration taken over 0 < sσ(m−v−1) < · · · < sσ(1) < 1, and where we interpret∑0
j=1 j = ∑v

j=v+1 j = 0. We observe that the error term on the right hand side of (25)
is equal to Jε(1). It is easily verified that

Jε(v) = O (Jε(v + 1)) ,

as ε → 0, for v = 1, 2, . . . , m − 3. Iterating, we obtain

∫

Wσ

m−1∏

�=1

(
sσ(�) + ε

)−2α2(m−�)
dsσ(m−1) . . . dsσ(1) = O(Jε(m − 2))

= O
(∫ 1

0

[
log(s/ε + 3)

]m−2
(s + ε)−2α2(m−1)

×
[

m−2∑

r=0

ε
r−2α2∑r

j=1 j
(s + ε)m−2−r−2α2∑m−2

r+1 j

]

ds

)
,

as ε → 0, where we interpret
∑0

j=1 j = ∑m−2
j=m−1 j = 0. Since mα2 > 1, it follows

that the power of s + ε is smaller than −1, namely:

−2α2(m − 1) + m − 2 − r − 2α2
m−2∑

r+1

j < −1,

for any r = 0, 1, 2, . . . , m − 2. If x < −1, then

∫ 1

0
(s + ε)x log(s/ε + 3)m−2ds = O(εx+1),

as ε → 0, and thus it follows that

∫

Wσ

m−1∏

�=1

(
sσ(�) + ε

)−2α2(m−�)
dsσ(m−1) . . . dsσ(1) = O

(
ε(m−1)(1−mα2)

)
,

as ε → 0. Thus by (19) and (24), Iε(α) = O
(
ε(m−1)(1−mα2)

)
, as ε → 0, which

combined with the lower bound (17) and Theorem 1.1 proves Corollary 2.1.



Uniform Asymptotics of Toeplitz Determinants 695

2.1.3. mα2 = 1 We start by finding a lower bound for Iε(α) when mα2 = 1. Let

Dε( j) = {0 < t1 < 1 : t1 < tk < t1 + 2 jε for all k = 2, . . . , m},
and let Bε( j) = Dε( j)\Dε( j − 1). On Bε( j), the integrand in (10) satisfies

(( j + 1)ε)−m(m−1)α2 ≤
∏

1≤ j<k≤m

(
sin

∣∣∣∣
t j − tk

2

∣∣∣∣ + ε

)−2α2

,

for j = 1, 2, . . . , 1/ε, assuming for ease of notation that 1/ε is an integer. Combined
with the fact that Bε( j) are disjoint for j = 1, 2, . . . and the fact that mα2 = 1, it
follows that

1/ε∑

j=1

(( j + 1)ε)−(m−1)
∫

Bε ( j)
dt1 . . . dtm ≤ Iε(α).

Since
∫

Bε ( j)
dt1 . . . dtm = (2ε)m−1

(
jm−1 − ( j − 1)m−1

)
≥ εm−1( j + 1)m−2,

for j sufficiently large, say j > j0, it follows that

log(1/ε) − ĉ0 <

1/ε∑

j0=1

( j + 1)−1 ≤ Iε(α), (26)

for some constant ĉ0. Thus we have a lower bound for Iε(α) and we look to obtain a
corresponding upper bound.

We observe that the upper bounds (19) and (24) hold also for mα2 = 1. If m = 2 and
mα2 = 1, then the right hand side of (24) is of order log ε−1 as ε → 0. We assume that
m > 2 and integrate in the variable sσ(m−1). We have 2α2 = 2/m < 1, and it follows
that

∫ sσ(m−2)

0

(
sσ(m−1) + ε

)−2α2
dsσ(m−1) = O

((
sσ(m−2) + ε

)−2α2+1
)

,

as ε → 0, and thus

∫

Wσ

m−1∏

�=1

(
sσ(�) + ε

)−2α2(m−�)
dsσ(m−1) . . . dsσ(1)

= O
(∫ m−2∏

�=1

(
sσ(�) + ε

)−2α2(m−�) (
sσ(m−2) + ε

)−2α2+1
dsσ(m−2) . . . dsσ(1)

)

,

as ε → 0 where integration on the right hand side is taken over 0 < sσ(m−2) < · · · <

sσ(1) < 1. We redefine Jε(v) as follows

Jε(v) =
∫ m−v−1∏

�=1

(
sσ(�) + ε

)−2α2(m−�) (
sσ(m−v−1) + ε

)v−α2v(v+1)
dsσ(m−v−1) . . . dsσ(1),
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with integration taken over 0 < sσ(m−v−1) < · · · < sσ(1) < 1. Since mα2 = 1, we note
that the power of sσ(m−v−1) is greater than −1 for v = 1, 2, . . . , m − 3, namely:

−2α2(v + 1) + v − α2v(v + 1) > −1,

and it follows that Jε(v) = O (Jε(v + 1)) as ε → 0 for such v. It follows that

∫

Wσ

m−1∏

�=1

(
sσ(�) + ε

)−2α2(m−�)
dsσ(m−1) . . . dsσ(1) = O (Jε(m − 2))

= O
(∫ 1

0
(s + ε)m−2−α2m(m−1) ds

)
,

as ε → 0. Since mα2 = 1, it follows that the right hand side is simply O (log ε−1
)
.

Thus, combined with (26) and Theorem 1.1, we have proven Corollary 2.1 for mα2 = 1.

3. Statistics of Impenetrable Bosons in 1 Dimension

Consider

ψ(x1, . . . , xn) = 1√
n!Ln

∏

1≤ j<k≤n

∣∣∣e2π i x j /L − e2π i xk/L
∣∣∣ .

It was proven by Girardeau [36] that it has the following properties:

• ψ is the ground-state solution to the general time-independent Schrödinger equation
in one-dimension with n particles.

• ψ is symmetric with respect to interchange of xi and x j for i �= j (Bose–Einstein
statistics).

• ψ is translationally invariant with period L .
• ψ vanishes when xi = x j for i �= j (mutual impenetrabililty of particles).

In fact Girardeau only proved the above for odd n, but as noted by Lieb and Liniger
[51] (footnote 6), it is equally valid for even n. When the system is in ground state,
the wave function ψ gives rise to a probability distribution for both the position and
momentum. The position of the particles on [0, L) has joint probability density function
ψ(x1, . . . , xn)2. Following the footsteps of Girardeau, we take as our starting point that
the wave function for the momentum is given by the Fourier transform of the wave
function of the position:

φ(M1, . . . ,Mn)

= 1√
Ln

∫

(0,L)n
dx1 . . . dxnψ(x1, . . . , xn)e−2π i

∑n
j=1 x jM j /L

, M j ∈ Z.

Thus the probability of the j’th particle having momentum 2πM j/L for each j =
1, . . . , n is given by

|φ(M1, . . . ,Mn)|2. (27)

It is easily verified that φ(M1, . . . ,Mn) is independent of L , and that
∑

M1,...,Mn∈Z
|φ(M1, . . . ,Mn)|2 = 1. (28)
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Thus |φ|2 may simply be viewed as a probability distribution on Zn , which is the view-
pointwewill take inCorollary 3.1 below,wherewefix L = 2π without loss of generality.

Since the particles are indistinguishable from one another, it is preferable to charac-
terize the distribution as a point process, which we do as follows. Let NM(n) denote
the number of particles with momentum 2πM/L . Then ifM1, . . . ,Mk are distinct, it
follows from (27) by a straightforward calculation that

E

⎡

⎣
k∏

j=1

NM j (n)

⎤

⎦ = πk,n(M1, . . . ,Mk),

where

πk,n(M1, . . . ,Mk) = n!
(n − k)!

∑

Mk+1,...,Mn∈Z
|φ(M1, . . . ,Mn)|2. (29)

The above is only valid for distinct particles, for moments of NM we have

πk,n(M, . . . ,M) = E [NM(NM − 1) . . . (NM − k + 1)] , (30)

where NM = NM(n). Then the expected number of particleswith 0momentum is given
by π1,n(0). In 1963, Schultz [58] proved that π1,n(0) = O(n−π/4) as n → ∞, which
shows that there is no Bose–Einstein condensation according to the Penrose-Onsager
criterion (the criterion states that if the proportion of the particles expected to have 0
momentum tends to 0 as n → ∞, then there is no Bose–Einstein condensation). The
upper bound obtained by Schultz was not optimal. In 1964 Lenard [49] was able to
improve on this, and obtained that E(N0(n)) = O(n1/2) as n → ∞. Lenard’s approach
was to make a connection to Toeplitz determinants with Fisher–Hartwig singularities by
observing that if we denote the k particle reduced density matrix by

ρk,n(x1, . . . , xk, y1, . . . , yk)

=
∫

dxk+1 . . . dxnψ(x1, . . . , xn)ψ(y1, . . . , yk, xk+1, . . . , xn), (31)

then ρk,n is a Toeplitz determinant with 2k FH singularities. This observation relies on
the multiple integral formula (7). By (29) and (31) it is easily verified that

πk,n(M1, . . . ,Mk) = n!
(n − k)!Lk

∫

(0,L)2k
dx1 . . . dxk dy1 . . . dyk

e2π i
∑k

j=1(x j −y j )M j /L
ρk,n(x1, . . . , xk, y1, . . . , yk). (32)

Thus, to obtain the asymptotics of πk,n onemust obtain those of ρk,n . The asymptotics of
ρk,n(x1, . . . , xk, y1, . . . , yk) was studied in the limit n → ∞ with L = n and for fixed
x j , y j independent of n in [42,64]. This is equivalent to studying Toeplitz determinants
with 2k FH singularities with α j = 1/2 for j = 1, . . . , 2k, in the double scaling limit
where the singularities are all at a distance of lengthO(1/n) from each other. This gave
rise to some of the first connections to Painlevé V in the study of Toeplitz determinants.
To obtain more detailed asymptotics for πk,n however, uniform asymptotics of ρk,n are
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required. Asmentioned in the introduction, Claeys andKrasovsky [16] obtained uniform
asymptotics for ρ1,n , and they relied on (4) to prove that

E

[
N0(n)√

n

]
→

√
2

π
G(3/2)4

∫ π/2

0
(sin t)−1/2dx,

as n → ∞ (see formula (1.53) of [16]).
We are interested in not just the expectation of N0(n)/

√
n, but also the variance and

higher moments. By combining (2)–(3) with Theorem 1.1, we obtain the following.

Corollary 3.1. Fix L = 2π and let M1, . . . ,Mn ∈ Z be random variables with the
probability distribution

Prob(M1, . . . ,Mn) = |φ(M1, . . . ,Mn)|2.
Then, as n → ∞,

E

[(
N0(n)√

n

)k
]

→ G(3/2)4k

(2π)2k

∫

(0,2π)2k

∏
1≤r<s≤k

∣∣eitr − eits
∣∣∏

k+1≤r<s≤2k

∣∣eitr − eits
∣∣

√∏
1≤r<s≤2k

∣∣eitr − eits
∣∣

dt1 . . . dt2k,

where

N0(n) = #{ j : M j = 0, }n
j=1.

Proof. To study higher moments of N0 = N0(n), we have by (30) that

E

[
N k
0

]
= πk,n(0, . . . , 0) +O

(
max

j=1,...,k−1
π j,n(0, . . . , 0)

)
, (33)

for any fixed k.
We note that πk,n(0, . . . , 0) is independent of L , and so we set L = 2π . Thus, by

(31)–(32),

πk,n(0, . . . , 0) = 1

(2π)2k

∫

(0,2π)2k
Dn−k

(
f (1/2)
2k

) ∏

1≤r<s≤k

∣
∣∣eitr − eits

∣
∣∣

∏

k+1≤r<s≤2k

∣∣∣eitr − eits
∣∣∣ dt1 . . . dt2k,

where we recall the notation (9). Thus πk,n(0, . . . , 0) is evaluated by combining (2)–(3)
and Theorem 1.1 as n → ∞ by using similar types of arguments as in Sect. 2.1.1, and
we obtain

πk,n(0, . . . , 0) = nk/2 G(3/2)4k

(2π)2k

×
∫

(0,2π)2k

∏
1≤r<s≤k

∣∣eitr − eits
∣∣∏

k+1≤r<s≤2k

∣∣eitr − eits
∣∣

√∏
1≤r<s≤2k

∣∣eitr − eits
∣∣

dt1 . . . dt2k(1 + o(1)).

Thus the corollary follows from (33). �
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4. Method of Proof of Theorem 1.1

Denote ψ0(z) = χ0 = 1/
√

D1( f ) and define the polynomials ψ j for j = 1, 2, . . . by

ψ j (z) = 1
√

D j ( f )D j+1( f )
det

⎛

⎜
⎜⎜⎜
⎝

f0 f−1 . . . f− j+1 f− j
f1 f0 . . . f− j+2 f− j+1

. . .

f j−1 f j−2 . . . f0 f−1
1 z . . . z j−1 z j

⎞

⎟
⎟⎟⎟
⎠

= χ j z
j + . . . ,

where the leading coefficient χ j is given by

χ j =
√

D j ( f )

D j+1( f )
. (34)

By the representation (7), it follows that D j ( f ) > 0 and we fix χ j > 0. It is easily seen
that ψ j are orthonormal on the unit circle:

∫ 2π

0
ψk

(
eiθ
)

ψ j
(
eiθ
)

f
(

eiθ
) dθ

2π
= δ jk =

{
0 for j �= k,

1 for j = k,
(35)

for j, k = 0, 1, 2, . . . . By (34) and the definition χ0 = 1/
√

D1( f ),

Dn( f ) =
n−1∏

j=0

χ−2
j . (36)

In order to obtain asymptotics for log Dn( f ) as n → ∞, we will obtain the asymp-
totics of logχN as N → ∞ in Proposition 4.1 below, and take the sum of these contri-
butions. The asymptotics of logχN will depend on the locations of the singularities, and
our strategy to systemetize the different asymptotic behaviour that occurs for different
constellations of singularities is to classify singularities that are close together as being
in the same cluster, a notion which we will formalize shortly. Very roughly speaking, our
goal is to prove that if all the singularities in a cluster are of distance o(1/N ) apart then
they behave as a single point, and if all the clusters are sufficiently well separated by a
distance at leastU/N for some sufficiently largeU , then for our purposes the interaction
between the clusters is small. This is the content of Proposition 4.1 (b) below. For con-
figurations which do not fit into this setting, i.e. where there exists two singularities such
that N

∣∣eit j − eit j+1
∣∣ is neither small nor large, we still divide the points into clusters,

but the division into clusters is somewhat more arbitrary in this situation and we obtain
less detailed asymptotics. This is the content of Proposition 4.1 (a) below, which covers
all possible configurations.

We now formalize the notion of the clusters. Given U > ε > 0, we say that the
parameters t1, . . . , tm satisfy condition (ε, U, n) if t1, . . . , tm ∈ St , where

St = {t1, . . . , tm : 0 ≤ t1 < · · · < tm < 2π − π/m}, (37)

and for each 1 ≤ j < k ≤ m, either tk − t j < ε/n or tk − t j ≥ U/n. The assumption
that tm < 2π − π/m one can make without loss of generality when studying Toeplitz
determinants, since the Toeplitz determinant is rotationally invariant (i.e. Dn( f (eiθ )) =
Dn( f (ei(θ+x))) for all x ∈ [0, 2π)).
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If t1, . . . , tm satisfies condition (ε, U, n), the points {t1, . . . , tm} partition naturally
into clusters Cl1(ε, U, n), . . . ,Clr (ε, U, n), where r = r(ε, U, n), satisfying the fol-
lowing conditions.

• The radius of each cluster is less than ε/n. Namely, εn < ε, where

εn = n max
j=1,...,r

max
x,y∈Cl j (ε,U,n)

|x − y|.

• The distance between any two clusters is greater thanU/n. Namely, ûn > U , where

ûn = n min
1≤ j<k≤r

min
x∈Cl j
y∈Clk

|x − y|. (38)

If there is only one singularity in each cluster we take εn = 0. If all the singularities
are in a single cluster, we take ûn = k̂n for some sufficiently small constant k̂ > 0 (the
meaning of "sufficiently small" will be determined in the Riemann-Hilbert analysis of
Sect. 6).

In Sects. 5–6, we prove the following proposition.

Proposition 4.1. (a) As n → ∞,

logχn = −V0/2 +O(1/n),

uniformly for t1, . . . , tm ∈ St .
(b) There exists U1 > U0 > 0, C > 0 and n0 > 0, such that if the parameters t1, . . . , tm

satisfy condition (U0, U1, n) and n > n0, then
∣∣∣logχn + V0/2 + Hn(α j , β j , t j )

m
j=1

∣∣∣ < C

(
1

nûn
+

εn

n

)
,

where

Hn(α j , β j , t j )
m
j=1 = 1

2n

m∑

j=1

(
α2

j − β2
j

)
+
1

n

∑

1≤ j<k≤m

(α j αk − β j βk)1U0/n(|tk − t j |),

where

1U0/n(x) =
{
1 0 < x < U0/n,

0 U0/n < x .

Using Proposition 4.1, we now compute the asymptotics of Dn( f ) as n → ∞, for
a specific configuration 0 ≤ t1 < t2 < · · · < tm < 2π − π/m, but with error terms
which are uniform over all configurations. Let n0 be a fixed positive integer such that
the asymptotics of Proposition 4.1 are valid for n ≥ n0. Then Dn0( f ) is a continuous
function in terms of t j on the compact set t1, . . . , tm ∈ [0, 2π ], and is thus uniformly
bounded as t j vary. Thus by (36)

log Dn = −2
n−1∑

N=n0

logχN +O(1), (39)

as n → ∞, uniformly over St . Denote N0 = N\{0, 1, 2, . . . , n0}, and let

Jt = {N ∈ N0 : t1, . . . , tm satisfy condition (U0, U1, N )},
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with complement J c
t = N0\Jt . Then

J c
t = ∪m−1

j=1 I j,t , I j,t = {N ∈ N0 : (t j+1 − t j )N ∈ [U0, U1)}.

Written differently,

I j,t =
{

N ∈ N0 : U0

t j+1 − t j
≤ N <

U1

t j+1 − t j

}
,

and it follows that

∑

N∈I j,t

1

N
= log(U1/U0) +O(1),

uniformly for t j+1 − t j > 0. Since U0 and U1 are fixed, it follows that the right hand
side is uniformly bounded, and by Proposition 4.1 (a) and the fact that HN = O(1/N ),

∑

N∈J c
t

(
logχn + V0/2 + HN (α j , β j , t j )

m
j=1

)
= O(1), (40)

uniformly for t1, . . . , tm ∈ [0, 2π − π/m).
Suppose that t1, . . . , tm satisfy condition (U0, U1, N ) for N in an interval N1, N1 +

1, . . . , N2. By Proposition 4.1 (b),

N2∑

N1

(
logχn + V0/2 + HN (α j , β j , t j )

m
j=1

)
< C

N2∑

N=N1

(
1

NûN
+

εN

N

)
, (41)

Since ûN = N (ti − ti−1) for some i ∈ {2, 3, . . . , m} (where i is fixed for N ∈ [N1, N2]),
it follows that ûN

N = ûN1
N1

, and as a consequence (bearing in mind that ûN1 > U1) we

have ûN > NU1
N1

. Thus,

N2∑

N=N1

1

NûN
≤ 1

U1
. (42)

Similarly, εN /N = εN2/N2, and

N2∑

N=N1

εN

N
≤ εN2 ≤ U0. (43)

Since J c
t is composed of at most m − 1 disjoint intervals, it follows that Jt is composed

of at most m disjoint intervals, and it follows by (41)–(43) that

∑

N∈Jt
N≤n

(
logχn + V0/2 + HN (α j , β j , t j )

m
j=1

)
≤ Cm

(
1

U1
+ U0

)
. (44)
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Since U0, U1, n0 are just arbitrary constants, the right hand side is bounded uniformly
over St . Thus, by (39), (40), (44), it follows that

log Dn( f ) = nV0 + 2
n∑

N=1

HN (α j , β j , t j )
m
j=1 +O(1),

uniformly over St . Since

n∑

N=1

1

N
1U0/N (t j − ti ) = log

1

t j − ti + 1/n
+O(1),

as n → ∞, with the implicit constant depending only on U0 which is fixed,

log Dn( f ) = nV0 +
m∑

j=1

(
α2

j − β2
j

)
log n

+
∑

1≤ j<k≤m

2(α jαk − β jβk) log

(
1

∣
∣t j − tk

∣
∣ + n−1

)

+O(1),

as n → ∞, uniformly over St . For such t1, . . . , tm ,

log

(
1

∣∣t j − tk
∣∣ + n−1

)

= log

⎛

⎝ 1

sin |t j −tk |
2 + n−1

⎞

⎠ +O(1) (45)

with uniform error terms, which yields Theorem 1.1 for t1, . . . , tm ∈ St , and the full
theorem follows from the aforementioned rotational invariance of the Toeplitz determi-
nant.

Structure of the proof of Proposition 4.1. Wewill prove the following proposition, which
holds if and only Proposition 4.1 (a) holds.

Proposition 4.2. Given u > 0, there exists Ũ > u, C̃ > 0, and Ñ0 > 0 such that if the
parameters t1, . . . , tm satisfy condition (u, Ũ , n) and n > Ñ0, then

|logχn + V0/2| < C̃/n.

We now show that Proposition 4.2 implies Proposition 4.1 (a). It will be useful make
the dependence of the implicit constants in Proposition 4.2 more explicit, so we denote
Ũ = Ũ (u), C̃ = C̃(u), and Ñ0 = Ñ0(u). Let U0, U1 be two constants for which
Proposition 4.1 (b) holds. For j = 1, 2, . . . , m − 1, we define U j+1 = Ũ (U j ) (meaning
that given u = U j , Proposition 4.2 holds with Ũ = Ũ (U j ), which we define to be equal
to U j+1). For each N = 1, 2, . . . , n, we have a sequence of conditions

(U0, U1, N ), (U1, U2, N ), (U2, U3, N ), . . . , (Um−1, Um, N ). (46)

Then the configuration t1, . . . , tm will satisfy one of the conditions in the sequence
(46), because otherwise, for each k = 1, 2, . . . , m, one would have a corresponding
j = j (k) = 2, 3, . . . , m such that Uk−1/N ≤ t j − t j−1 < Uk/N , meaning that there
are at least m + 1 distinct points in {t j }m

j=1, which is a contradiction. Thus, if we denote
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the maximum of the implicit constants C̃(U j ) and Ñ0(U j ) over j = 1, . . . , m − 1 by
C̃max and Ñ0,max we obtain

|logχn + V0/2| < C̃max/n,

for any n ≥ Ñ0,max, which proves Proposition 4.1 (a).
We will prove Proposition 4.1 (b) and Proposition 4.2 by applying the Deift–Zhou

steepest descent analysis [26] to a Riemann–Hilbert (RH) problem associated to the
orthogonal polynomials ψ j . Under the Deift–Zhou steepest descent framework, there
are several standard ingredients, including the opening of the lens, and the construction
of a main parametrix and local parametrices. Among these ingredients, the opening of
the lense and the construction of a local parametrix is the most involved. Each local
parametrix contains a cluster Cl j (u, Ũ , n), and we map a model RH problem to a
shrinking disc containingCl j (u, Ũ , n).We construct and analyze themodel RHproblem
in the next section, Sect. 5, and use these results in Sect. 6 to prove Propositions 4.1(b)
and 4.2.

5. Model RH Problem

In this section we introduce and analyze a model Riemann–Hilbert problem, which will
be an important tool in the analysis of the asymptotics of the leading coefficient χN
defined in (34). While specialists in the field will be well aware of the significance
of the model problem in the analysis of Riemann–Hilbert problems, we have not yet
demonstrated its utility, and the reader may find it illuminating to first have a glance at
Sect. 6 to see how we rely on the model problem to prove Propositions 4.1(b) and 4.2 in
Sect. 6. A good reference to Riemann–Hilbert problems in random matrix theory is the
book by Deift [21], and the author also recommends two sets of lecture notes by Deift
[22] and Kuijlaars [48].

We pose a Riemann–Hilbert problem for � = �
(
ζ ; (w j , α j , β j )

μ
j=1

)
with param-

eters

• μ = 1, 2, 3, . . . ,
• −u/2 ≤ wμ < wμ−1 < · · · < w2 < w1 ≤ u/2, where w1 ≥ 0,
• α j ≥ 0 and Re β j = 0, with (α j , β j ) �= (0, 0) for j = 1, 2, . . . , μ,

where u > 0 is some fixed constant.
The model RH problem will later be used to construct a local parametrix at each

cluster of points, where μ will be the number of points in the cluster. In particular it
means that the ordering of the α j , β j here do not necessarily correspond with those in
the definition of the Toeplitz determinant, we again refer to Sect. 6 for details on the
manner in which the model RH problem is utilized.
RH problem for �

(a) � is analytic onC\��, where �� is described by Fig. 1 forμ = 4, and is in general
given by

�� = ∪5
j=0� j , �0 = [−iu, iu],

�1 = iu + eπ i/4
R+, �2 = iu + e3π i/4

R+, �3 = −iu + e5π i/4
R+

�4 = −iu + e7π i/4
R+, �5 = ∪μ

j=1{z : Im z = w j },
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eπi(α4+β4)σ3

eπi(α3+β3)σ3

eπi(α2+β2)σ3

eπi(α1+β1)σ3

eπi(α4−β4)σ3

eπi(α3−β3)σ3

eπi(α2−β2)σ3

eπi(α1−β1)σ3

1 0

−1 1

Γ2

1 1

0 1

Γ1

1 0

−1 1

Γ3

1 1

0 1

Γ4

J0

J0

J0

J0

J0

J0 =
0 1

−1 1

iw1

iw4

iw2

iw3

iu

−iu

Fig. 1. Jumps of � for 4 singularities

where iu + eπ i j/4
R+ = {z : arg(z − iu) = π j/4}, with the orientation of �5 taken

to the right, and the orientation of � j taken upwards for j = 0, . . . , 4. On each line
segment of the contour, we denote the left hand and right hand side by the + and
- side respectively, where left and right are with respect to the orientation of the
curve.

(b) � has continuous boundary values �+(ζ ) and �−(ζ ) as ζ ∈ ��\{iw1, . . . , iwμ,

iu,−iu} is approached nontangentially from the + and− side respectively. Further-
more, �+ and �− are related by the following jumps on ��:
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�+(ζ ) = �−(ζ )eπ i(α j+β j ) for Im ζ = w j and Re ζ > 0,

�+(ζ ) = �−(ζ )eπ i(α j −β j ) for Im ζ = w j and Re ζ < 0,

�+(ζ ) = �−(ζ )

(
1 1
0 1

)
for ζ ∈ �1, �4,

�+(ζ ) = �−(ζ )

(
1 0

−1 1

)
for ζ ∈ �2, �3,

�+(ζ ) = �−(ζ )J0 for ζ ∈ �0\{−iu, iu, iw1, . . . , iwμ},

where J0 =
(

0 1
−1 1

)
.

(c) As ζ → ∞,

�(ζ) =
(

I +
�1

ζ
+O(ζ−2)

)
e− ζ

2 σ3

μ∏

j=1

(ζ − iw j )
−β j σ3

exp
[
π i(β j − α j )χw j (ζ )σ3

]
,

χw(ζ ) =
{
0 for Im ζ > w,

1 for Im ζ < w,

where the branches are chosen such that arg(ζ − iw j ) ∈ [0, 2π) for j = 1, . . . , μ,

and where �1 = �1

(
μ; (w j , α j , β j )

μ
j=1

)
is independent of ζ .

(d) �(ζ) is bounded as ζ → ±iu. As ζ → iw j for j = 1, . . . , k in the sector
arg(ζ − iw j ) ∈ (π/2, π),

�(ζ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fj (ζ )(ζ − iw j )
α j σ3

(
1 g(α j , β j )

0 1

)

for 2α j /∈ N = {0, 1, 2, . . . },

Fj (ζ )(ζ − iw j )
α j σ3

(
1 g(α j , β j ) log(ζ − iw j )

0 1

)

for 2α j ∈ N,

for some function Fj which is analytic on a neighbourhood of iw j , and

g(α, β) =
⎧
⎨

⎩

− e2π iβ−e−2π iα

2i sin 2πα
for 2α /∈ N,

i
2π

(
(−1)2αe2π iβ − 1

)
for 2α ∈ N.

(47)

Furthermore, as ζ→iw j , fromany sector,�(ζ) = O (|ζ − iw j |−α j | log(ζ−iw j )|
)
.

Remark 5.1. The RH problem for � gives rise to an RH problem for the determinant of
� as follows. Since the jump matrices of the RH problem for � have determinant 1,
it follows that det� extends to a meromorphic functions in the complex plane. Since
det�(ζ) → 1 as ζ → ∞ and as ζ → iw j for j = 1, . . . , μ, we obtain det�(ζ) = 1
for all ζ ∈ C by Liouville’s theorem, and in particular � is invertible. Furthermore, if a
solution exists to the RH problem for �, then it is unique, because if �̃ were a second
solution, then �̃(ζ )�(ζ )−1 extends to a meromorphic function in the complex plane by
condition (b) for the RH problem for �, and by condition (c) and (d) and Liouville’s
theorem it is in fact the identity. It is not clear a priori that a solution does exist, this is
the content of Proposition 5.3 below.
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Remark 5.2. We use the standard notation

σ3 =
(
1 0
0 −1

)
, exσ3 =

(
ex 0
0 e−x

)
.

Note that ±iu are not special points, and therefore the values of u are not significant,
aside from the fact that |w j | < u for j = 1, . . . , μ. We present the RH problem in this
manner for notational convenience and to make it clear that the local behaviour at each
singularity can be presented in the same form, also for the top and bottom singularity.

We also note that g was chosen such that the local behaviour of � at the point iw j
is consistent with the jumps.

5.0.1 The case of a single singularity μ = 1
When there is only one singularity μ = 1 and w1, u = 0, the RH problem for �

(and equivalent versions of it) has been studied by many authors. It was first solved
by Kuijlaars and Vanlessen in [47,65] for β = 0 in terms of Bessel functions, and
brought to the setting of determinants by Krasovsky in [46] (the topic in [46] was Hankel
determinants, see also [12]). For α = 0 it was solved by Its and Krasovsky in [41], and
a solution for general α, β was found in terms of confluent hypergeometric functions by
Deift, Its, Krasovsky in [23,25] and Moreno in [54].

Claeys, Its and Krasovsky [15] brought the above solution to the form which we will
refer to. In [15] the RH problem is denoted by M , which we will denote by MCIK, and
by comparison of RH problems it follows that

MCIK(ζ ) = e
π i
2 (α−β)σ3�(ζ ;μ = 1, w = 0, α, β)eπ i(α−β)χ0(ζ )σ3e

π i
2 (β−α)σ3 ,

when one takes u = 0. The solution to MCIK may also be found in [16], Section 4, where
we find the following formula

�1(μ = 1 =, w = 0, α, β) =
(

α2 − β2 −e−π i(α+β) �(1+α−β)
�(α+β)

eπ i(α+β) �(1+α+β)
�(α−β)

β2 − α2

)

, (48)

where � is Euler’s � function.

5.0.2 The case of multiple singularities μ > 1
In the case of 2 singularities μ = 2, an equivalent version of the RH problem for �

was proven to have a unique solution by Claeys and Krasovsky [16], and to be connected
to the Painlevé V equation. See also [30] for a reference on Riemann–Hilbert problems
connected to the Painlevé equations. The proof of a unique solution by [16] generalizes
easily to our situation of μ = 1, 2, 3, . . . singularities, and we have included a proof of
the following proposition in the Appendix for the reader’s convenience.

Proposition 5.3. Let α j ≥ 0 and Re β j = 0 for j = 1, 2, . . . μ. There exists a unique
solution to the Riemann–Hilbert problem for �.

5.1. Continuity of � for varying w j ’s. The main result of Sect. 5 is the following.

Lemma 5.4. Let α j ≥ 0 and Re β j = 0 for j = 1, 2, . . . , μ. Then the following two
statements hold.
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(a) Given u > 0,

�(ζ)e
ζ
2 σ3

μ∏

j=1

(ζ − iw j )
β j σ3 exp

[
π i(−β j + α j )χw j (ζ )σ3

] = I +O
(
1

ζ

)
, (49)

as ζ → ∞, uniformly for −u/2 ≤ wμ < · · · < w1 ≤ u/2.
(b) As w1 − wμ → 0,

�1

(
μ; (w j , α j , β j )

μ
j=1

)
=
(

A2 − B2 −e−π i(A+B) �(1+A−B)
�(A+B)

eπ i(A+B) �(1+A+B)
�(A−B)

B2 − A2

)

+O(w1 − wμ), (50)

where A = ∑μ
j=1 α j and B = ∑μ

j=1 β j .

The first step in the proof of Lemma 5.4 is to transform the RH problem for� to a RH
problem for �̂which is analytic except on the imaginary axis Re z = 0, and in particular
the jump contour is independent of the locations of the singularities w j (though the
jumps themselves will vary with the location of the singularities).

5.2. Transformation of RH problem. Let

�(ζ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

I for ζ ∈ I, I V,
(
1 −1
0 1

)

for ζ ∈ I I, V I,

(
1 0

−1 1

)

for ζ ∈ I I I, V,

where I-VI are regions in the complex plane given in Fig. 2.
Let �̂ be defined in terms of � as follows.

�̂(ζ ) =
{

�(ζ)�(ζ )
∏μ

j=1 exp
[
π i(α j − β j )χw j (ζ )σ3

]
for Re ζ < 0,

�(ζ )�(ζ )
∏μ

j=1 exp
[
π i(α j + β j )χw j (ζ )σ3

]
for Re ζ > 0,

(51)

where χw j was defined in condition (c) of the RH problem for �.
Then �̂ solves the following RH problem.

RH problem for �̂

(a) �̂ is analytic on C\(−i∞, i∞), with the orientiation of (−i∞, i∞) upwards.
(b) Let w0 = +∞ and wμ+1 = −∞. On (iw j+1, iw j ),

�̂+ = �̂− J j ,

for j = 0, 1, . . . , μ, where J0 was defined in condition (b) of the RH problem for
�, and

J j =
⎛

⎜
⎝

0 exp
[
−2π i

∑ j
ν=1 αν

]

− exp
[
2π i

∑ j
ν=1 αν

]
exp

[
2π i

∑ j
ν=1 βν

]

⎞

⎟
⎠

for j = 1, 2, . . . , μ.
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Γ2 Γ1

Γ3 Γ4

iu

−iu

I

IIIII

IV

V VI

iw1

iw2

iw3

J0

J1

J2

J3

Fig. 2. On the left we display Regions I-VI. On the right we display the jumps of RH problem for �̂ when
μ = 3, which are all on the imaginary axis Re z = 0, and we have not displayed ± iu because these points
are not relevant for �̂

(c) The behaviour of �̂(ζ ) as ζ → ∞ is inherited from conditions (c) of theRHproblem
for �.

(d) As ζ → iw j for j = 1, . . . , k in the sector arg ζ ∈ (π/2, 3π/2),

�̂(ζ ) = Fj (ζ )(ζ − iw j )
α j σ3

(
1 g(α j , β j )

0 1

) j−1∏

ν=1

exp
[
π i(α j − β j )σ3

]
,

for 2α j /∈ N = {0, 1, 2, . . . }, while for 2α j ∈ N,

�̂(ζ ) = Fj (ζ )(ζ − iw j )
α j σ3

(
1 g(α j , β j ) log(ζ − iw j )

0 1

) j−1∏

ν=1

exp
[
π i(α j − β j )σ3

]
,

for some function Fj analytic in a neighbourhood of iw j , and where g(α, β) was
defined in condition (d) of the RH problem for �.

5.3. Steepest descent analysis of �̂. Wewill consider the asymptotics of �̂(ζ ) as ε → 0,
with the goal of proving Lemma 5.4, and on the way we will prove that �̂ is continuous
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with respect to the parameters w1, . . . , wμ (we describe what we mean by continuity
below equation (58)).

Partition {w1, . . . , wμ} into τ disjoint sets

C̃ j (ε) = {w( j)
ν }M j

ν=1, j = 1, 2, . . . , τ, (52)

such that

|w( j)
ν − W j | < ε, for all ν = 1, 2, . . . , M j , (53)

where W1, . . . , Wτ are distinct fixed points.
We order the points so that

w
( j)
1 > · · · > w

( j)
M j

, W1 > · · · > Wτ . (54)

Denote

A( j) =
M j∑

ν=1

α( j)
ν , B( j) =

M j∑

ν=1

β( j)
ν ,

for j = 1, 2, . . . , τ .
We plan to approximate the RH problem associated with thew j ’s by the RH problem

associatedwith theW j ’s, and so for increased claritywe label themas different functions.
Let the RH problem associated with w1, . . . , wμ be denoted by

�(ζ) = �̂
(
ζ ;μ, (wi , αi , βi )

μ
i=1

)
, (55)

and the RH problem associated withW1, . . . ,Wτ by

N (ζ ) = �̂
(
ζ ; τ, (W j ,A( j),B( j))τj=1

)
. (56)

We aim to analyze the RH problem for � in terms of the RH problem for N . We note
that N has the same jumps as � except on neighbourhoods containing W1, . . . ,Wτ ,

and that �(ζ)N (ζ )−1 → I as ζ → ∞ by condition (c) for the RH problem for � and
the definition of �̂, and thus N will be used as a main parametrix.

We will additionally need to show that there exists a local parametrix Q(ζ ) on fixed
neighbourhoods UW j of iW j , such that �(ζ)Q(ζ )−1 is analytic on UW j , and

Q(ζ )N−1(ζ ) = I +O(ε), (57)

as ε → 0, uniformly for ζ ∈ ∂UW j . Although we only need existence of such a local
parametrix, we prove the existence by construction, andwe do this in the next subsection,
Sect. 5.3.1. By standard theory of small norm problems, see e.g. [21], we will obtain that
N approximates� well outside of the neighbourhoods∪τ

j=1UW j , and more specifically
that

�(ζ)N (ζ )−1 = I +O
(

ε

|ζ | + 1

)
(58)

uniformly for ζ bounded away fromW1, . . . ,Wτ , as ε → 0, which is what we referred
to as continuity of �̂ with respect to w1, . . . , wμ in the first sentence of the present
section.

We will subsequently rely on (58) in Sect. 5.4 to prove Lemma 5.4.
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5.3.1. Local parametrix We construct a local parametrix at the point iW j which will

contain the points iw( j)
1 , . . . , iw( j)

M j
, for j = 1, . . . , τ , and are inspired here by a similar

construction in [16] in the special case of two singularities. Thus, letting UW j be a fixed
open disc centered at iW j with a fixed radius R > 0, we aim to construct an explicit
function Q(z) on ∪τ

j=1UW j with the same jumps as � on each of these discs such that

�(ζ)Q(ζ )−1 is analytic on ∪τ
j=1UW j , satisfying (57) uniformly on ∂UW j .

Throughout the Sect. 5.3.1, j will be fixed, and to reduce the number of superscripts,
we denote throughout the section

yν = w( j)
ν , α̃ν = α( j)

ν , β̃ν = β( j)
ν , (59)

for ν = 1, 2, . . . , M j .
We first take a transformation � → � j , where � j is analytic for all

{
ζ ∈ UW j : arg(ζ − iy1) �= 3π/2

}
, (60)

and similarly a transformation N → N j such that N j is analytic for all
{
ζ ∈ UW j : arg (ζ − iW j

) �= 3π/2
}

. (61)

On UW j , we define

� j (ζ ) =
{

�(ζ)J ( j)
L for Re ζ < 0,

�(ζ )J ( j)
R for Re ζ > 0,

N j (ζ ) =
{

N (ζ )J ( j)
L for Re ζ < 0,

N (ζ )J ( j)
R for Re ζ > 0,

where

J ( j)
L =

j−1∏

s=1

exp
[
−π i

(
A(s) − B(s)

)
σ3

]
,

J ( j)
R =

⎛

⎝
j−1∏

s=1

exp
[
−π i

(
A(s) + B(s)

)
σ3

]
⎞

⎠ J0, (62)

for j = 2, 3, . . . , τ , where J0 was defined in condition (b) of the RH problem for �,
and

J (1)
L = I, J (1)

R = J0.

Denote

Aν = A( j)
ν =

ν∑

s=1

α̃s, Bν = B( j)
ν =

ν∑

s=1

β̃s, ν = 1, . . . , M j . (63)

On (iyν+1, iyν), � j has the jumps

� j,+(ζ ) = � j,−(ζ )J−1
0 exp [−π i (Aν + Bν) σ3] J0 exp [π i (Aν − Bν) σ3]

= � j,−(ζ )

(
exp (2π iAν) exp (−2π iAν) − exp (2π iBν)

0 exp (−2π iAν) ,

)
,

(64)
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for ν = 1, . . . , M j−1 where orientation of the contour is taken upwards, where J0 was
defined in condition (b) of the RH problem for �, and on arg(ζ − yM j ) = 3π/2,

� j,+(ζ ) = � j,−(ζ )

(
exp

(
2π iAM j

)
exp

(−2π iAM j

)− exp
(
2π iBM j

)

0 exp
(−2π iAM j

)
)

. (65)

We search for a local parametrix Q j such that Q j has the same jumps as � j on UW j

and such that Q j N−1
j = I + O(ε) as ε → 0, uniformly on the boundary ∂UW j for

j = 1, 2, . . . , τ . By defining Q on ∪τ
j=1UW j by

Q(ζ ) =

⎧
⎪⎨

⎪⎩

Q j (ζ )
(

J ( j)
L

)−1
for ζ in UW j and Re ζ < 0,

Q j (ζ )
(

J ( j)
R

)−1
for ζ in UW j and Re ζ > 0,

(66)

where J ( j)
L and J ( j)

R were defined in (62), we thus obtain the function Q we were
aiming for, satisfying the conditions that�(ζ)Q(ζ )−1 is analytic on∪τ

j=1UW j , and that

Q(ζ )N (ζ )−1 = I +O(ε) as ε → 0 uniformly on ∪τ
j=1∂UW j .

The approach depends on whether or not 2AM j ∈ N.
Local parametrix for 2AM j /∈ N

Assume that 2AM j /∈ N, and define

Q j (ζ ) = E j (ζ )Q̂ j (ζ )

M j∏

ν=1

(ζ − iyν)
α̃νσ3

(
1 g

(AM j ,BM j

)

0 1

)
,

Q̂ j (ζ ) =
(
1
∑M j −1

ν=1 cν

∫ iyν

iyν+1

∏M j
s=1 |λ − iys |2α̃s dλ

π i(λ−ζ )

0 1

) (67)

where g was defined in (47), yν were defined in (59), E j is an analytic function given
below in (70), arg(ζ − iyν) ∈ (−π/2, 3π/2), and

cν = c( j)
ν =

{
i sin (2πAν) eπ iAM j

(
g (Aν,Bν) − g

(AM j ,BM j

))
for 2Aν /∈ N,

exp
[
π iAM j

]
(exp [−2π iAν] − exp [2π iBν]) /2 for 2Aν ∈ N,

and we recall that Aν and Bν were defined in (63).
We first consider the jumps of Q j on UW j , and aim to show that they are the same

as the jumps of � j . If

F(ζ ) = 1

π i

∫ ib

ia
h(λ)

dλ

λ − ζ
,

for a < b and h ∈ L2([ia, ib]), then F is analytic on C\[ia, ib]. It follows that Q̂ j
is analytic on UW j \[iyM j , iy1], and it is easily verified by comparison with (65) that

Q−1
j,−Q j,+ = �−1

j,−� j,+ for ζ with arg
(
ζ − iyM j

) = 3π/2. If in addition h(λ) extends
to an analytic function on a an open set containing (ia, ib), then

F+(ζ ) = F−(ζ ) + 2h(ζ ),
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for all ζ ∈ (ia, ib), with upward orientation, so

Q̂ j (ζ )+ = Q̂ j (ζ )−
(
1 2cν

∏M j
s=1 |ζ − iys |2α̃s

0 1

)

for ζ ∈ (iyν+1, iyν), ν = 1, 2, . . . , M j − 1, and it follows that

Q j (ζ )+ = Q j (ζ )−
(
1 −g

(AM j ,BM j

)

0 1

)(
e2π iAν 2cνe−π iAν

0 e−2π iAν

)

×
(
1 g

(AM j ,BM j

)

0 1

)
.

By comparison with (64) and the definition of cν , it follows that Q−1
j,−Q j,+ = �−1

j,−� j,+

on (iyν+1, iyν), ν = 1, 2, . . . , M j − 1. Since the jumps match, and neither � j nor Q j

have essential singularities, it follows that� j Q−1
j is meromorphic onUW j . To prove, in

addition, that � j Q−1
j is analytic on UW j , it thus remains to prove boundedness on UW j

as functions of ζ . Since E j and Q̂ j are bounded on UW j , it follows by the definition of
Q j that

Q j (ζ )

(
1 −g(AM j ,BM j )

0 1

) M j∏

ν=1

(ζ − iyν)
−α̃νσ3 (68)

is bounded on UW j as a function of ζ . By the definition of � in (55) and condition (d)
for the RH problem for �̂,

� j (ζ )

(
1 −g(AM j ,BM j )

0 1

) M j∏

ν=1

(ζ − iyν)
−α̃νσ3 (69)

is bounded on UW j as a function of ζ .

Since � j (ζ )Q j (ζ )−1 is meromorphic on UW j and by the boundedness of (68) and
(69) it follows that � j (ζ )Q j (ζ )−1 is analytic on UW j .

We define E j by

E j (ζ ) = N j (ζ )

(
1 −g

(AM j ,BM j

)

0 1

) (
ζ − iW j

)−AM j σ3 . (70)

We recall that AM j = A( j). Thus, by the definition of N j and condition (d) for

the RH problem for �, it follows that N j (ζ ) = �
(
ζ ; (Wi ,A(i),B(i)

)τ
i=1

)
for

arg(ζ ) ∈ (π/2, π), and one verifies that the singularity of N j cancels with that of

(ζ − iW j )
−AM j σ3 . It is easily seen that E j has no jumps on UW j , and thus it is analytic.

For ζ ∈ ∂UW j , define

� j (ζ ) = E j (ζ )Q̂ j (ζ )

M j∏

ν=1

(ζ − iyν)
α̃νσ3

(
ζ − iW j

)−AM j σ3 E−1
j (ζ ).
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We first note that E j are analytic functions on UW j , and since they are independent of
ε, they are uniformly bounded on ∂UW j . Since

∫ iyν

iyν+1

M j∏

j=1

|λ − iys |2α̃s
dλ

λ − ζ
= O(ε),

∏M j
ν=1 (ζ − iyν)

α̃ν

(
ζ − iW j

)AM j
= O(ε)

as ε → 0, uniformly for ζ ∈ ∂UW j , it follows by (67) and the boundedness of E j on
∂UW j , that

� j (ζ ) = I +O(ε) (71)

as ε → 0, uniformly for ζ ∈ ∂UW j .
Local parametrix for 2AM j ∈ N

Assume that 2AM j ∈ N, and define

Q j (ζ ) = E j (ζ )Q̂ j (ζ )

M j∏

ν=1

(ζ − iyν)
α̃νσ3

(
1 g

(AM j ,BM j

)
log
(
ζ − iyM j

)

0 1

)
,

Q̂ j (ζ ) =
(
1
∑M j −1

ν=1

∫ iyν

iyν+1

(
dν + eν log

(
λ − iyM j

))∏M j
s=1 |λ − iys |2α̃s dλ

π i(λ−ζ )

0 1

)

where g was defined in (47), yν were defined in (59), E j is an analytic function given
below in (72), the argument arg (ζ − iyν) ∈ (−π/2, 3π/2), and

dν = d( j)
ν = eπ iAM j

2

(
e−2π iAν − e2π iBν

)
,

eν = e( j)
ν = −ieπ iAM j g

(AM j ,BM j

)
sin 2πAν,

andwe recall thatAν andBν were defined in (63).As in the case for 2AM j /∈ N, it is easily

seen that Q̂ j is analytic onUW j \
[
iyM j , iy1

]
, and it follows that Q−1

j,−Q j,+ = �−1
j,−� j,+

on arg(ζ − iyM j ) = 3π/2. On (iyν+1, iyν), ν = 1, 2, . . . , M j − 1,

Q̂ j (ζ )+ = Q̂ j (ζ )−
(
1 2

(
dν + eν log

(
ζ − iyM j

))∏M j
s=1 |ζ − iys |2α̃s

0 1

)
,

and it follows that

Q j (ζ )+ = Q j (ζ )−
(
1 −g

(AM j ,BM j

)
log
(
ζ − iyM j

)

0 1

)

×
(

e2π iAν 2
(
dν + eν log

(
ζ − iyM j

))
e−π iAM j

0 e−2π iAν

)

×
(
1 g

(AM j ,BM j

)
log
(
ζ − iyM j

)

0 1

)
.

By comparison with (64) and the definition of dν , eν , it follows that Q−1
j,−Q j,+ =

�−1
j,−� j,+ on (iyν+1, iyν), ν = 1, 2, . . . , M j −1. Thus� j Q−1

j is meromorphic onUW j ,
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and in a similar manner to the case 2AM j /∈ N, one verifies that� j Q−1
j is also bounded,

and thus analytic on UW j .
We define E j by

E j (ζ ) = N j (ζ )

(
1 −g

(AM j ,BM j

)
log(ζ − iW j )

0 1

) (
ζ − iW j

)−AM j , (72)

and in a similar manner to the case 2AM j /∈ N, it follows that E j is analytic on UW j ,
and that

Q j (ζ )N j (ζ )−1 = I +O(ε) (73)

as ε → 0, uniformly for ζ ∈ ∂UW j .

5.3.2. Small norm matrix Recall Q defined by (66), and � and N defined in (55) and
(56) respectively. Let R̂ be given by

R̂(ζ ) =
{

�(ζ)N (ζ )−1 for z ∈ C\
(
∪r

j=1UW j

)
,

�(ζ )Q(ζ )−1 for z ∈ UW j , j = 1, . . . , r.

In Sect. 5.3.1 we proved that�Q−1 was analytic onUW j and that Q satisfied (57), from
which it follows that R̂ satsisfies the following RH problem.
RH problem for R̂

(a) R̂ is analytic on C\ ∪τ
j=1 ∂UW j , with the orientation of ∂UW j taken in a clockwise

direction.
(b) As ε → 0,

R̂+(ζ ) = R̂−(ζ )(I +O(ε)),

uniformly on ∪τ
j=1UW j .

(c) R̂(ζ ) = I +O(ζ−1) as z → ∞.

By standard small norm analysis, see e.g. [21],

R̂(ζ ) = I +O
(

ε

(|ζ | + 1)

)
, (74)

as ε → 0 uniformly for the parameters

|w( j)
ν − W j | < ε,

for fixedW1, . . . ,Wτ , and uniformly for ζ ∈ C\∪τ
j=1 ∂UW j , with the implicit constant

depending only on u, and the parameters α j , β j .
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5.4. Proof of Lemma 5.4. We prove (a) of Lemma 5.4 by contradiction. Denote the left
hand side of (49) by F�(ζ ;w1, . . . , wμ). Assume that there is a sequence of points
−u/2 ≤ wμ(k) < · · · < w1(k) ≤ u/2 for k = 1, 2, . . . and corresponding ζk such that
ζk → ∞ as k → ∞, satisfying

|ζk |
∣
∣F�

(
ζk;w1(k), . . . , wμ(k)

)− I
∣
∣ → ∞, (75)

as k → ∞. Then there would be a subsequence ki such that w j (ki ) → w j for j =
1, 2, . . . , μ, for some points

−u/2 ≤ wμ ≤ wμ−1 ≤ · · · ≤ w1 ≤ u/2.

We denote {w1, . . . , wμ} = {W1, . . . ,Wτ }, where the points Wτ < · · · < W1 are
distinct. Let

εki = max
j=1,...,μ

min
s=1,...,τ

∣∣w j (ki ) − Ws
∣∣ ,

By (74), it follows that

�̂
(
ζki ; (w j (ki ), α j (ki ), β j (ki ))

μ
j=1

)

=
(

I +O
(

εki

(|ζki | + 1)

))
�̂
(
ζki ; (W j ,A j ,B j )

τ
j=1

)
,

as ki → ∞. By condition (c) for the RH problem for �
(
ζ ; (W j ,A j ,B j )

τ
j=1

)
, and the

definition of �̂ in (51), it follows that

F�

(
ζki ;w1(ki ), . . . , wμ(ki )

) =
(

I +O
(

εki

(|ζki | + 1)

))

�
(
ζki ; (W j ,A j ,B j )

τ
j=1

)
e

ζki
2 σ3

τ∏

j=1

(ζki − iW j )
B j σ3

× exp
[
π i(−B j +A j )χW j (ζki )σ3

]
r(ζki ), (76)

where r(ζ ) is given by

r(ζ ) =
∏μ

j=1(ζ − iw j (ki ))
β j σ3

∏τ
j=1(ζ − iW j )

B j σ3
,

where the branch cuts of r are a subset of [−iu/2, iu/2] and r(ζ ) → I as ζ → ∞.

By condition (c) of the RH problem for �
(
ζki ; (W j ,A j ,B j )

τ
j=1

)
, and the fact that

r(ζ ) = I +O(1/ζ ) uniformly in ki as ζ → ∞, it follows that

|F�

(
ζki ;w1(ki ), . . . , wμ(ki )

)− I | = O(ζ−1
ki

),

as ki → ∞. Thus the left hand side of (75) is bounded as ki → ∞, which is a contra-
diction, concluding the proof of Lemma 5.4 (a).
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To prove (b), we note that if |w1|, . . . , |wμ| < ε and ε → 0, then similarly to (76)
we have

�(ζ)e
ζ
2 σ3

μ∏

j=1

(ζ − iw j )
β j σ3 exp

[
π i(−β j + α j )χw j (ζ )σ3

]

=
(

I +O
(

ε

(|ζ | + 1)

))
�(ζ ; 0,A,B) e

ζ
2 σ3ζBσ3 exp [π i(−B +A)χ0(ζ )σ3] r0(ζ ),

as ζ → ∞ and ε → 0, where r0(ζ ) is given by

r0(ζ ) =
∏μ

j=1(ζ − iw j (ki ))
β j σ3

ζB1σ3
,

where the branch cuts of r0 are a subset of [−iu/2, iu/2] and r0(ζ ) → I as ζ → ∞.

Then part (b) of the lemma follows by (48) and noting that r0(ζ ) = I + O
(

ε
|ζ |
)
as

ζ → ∞ and ε → 0.

6. Asymptotics of the Orthogonal Polynomials

Define Y = Y (z) in terms of the orthogonal polynomials ψn satisfying (35):

Y (z) =
(

χ−1
n ψn(z) χ−1

n

∫
C

ψn(λ)
λ−z

f (λ)dλ
2π iλn

−χn−1zn−1ψn−1(z
−1) −χn−1

∫
C

ψn−1(λ)
λ−z

f (λ)dλ
2π iλ

)

, (77)

where we recall that χn is the leading coefficient of ψn , with the integration taken in
counter-clockwise direction on the unit circle C, and where ψn−1(z) = ψn−1(z). The
function Y uniquely solves the following Riemann–Hilbert Problem

(a) Y : C\C → C
2×2 is analytic;

(b) Y+(z) = Y−(z)

(
1 f (z)z−n

0 1

)
for |z| = 1, arg z �= t1, t2, . . . , tm ;

(c) Y (z) = (I +O(1/z))

(
zn 0
0 z−n

)
as z → ∞.

That Y defined in (77) solves the RH problem for Y is easily verified, and is a result
due to Baik, Deift, Johansson [6], who were inspired by a similar observation by Fokas,
Its, Kitaev [29] concerning orthogonal polynomials on the real line. See e.g. [21] for an
introduction to analysis of RH problems in random matrix theory, and also two sets of
lecture notes [22,48]. Similarly to the RH problem for �, standard theory dictates that
the determinant of Y is 1, and that (77) is the unique solution to the RH problem for Y .

It is immediate from (77) that

χ2
n−1 = −Y21(0). (78)

We rely on the Deift-Zhou [26] steepest descent analysis for RH problems to obtain the
asymptotics of Y (0) as n → ∞, which will provide the asymptotics of χn−1 necessary
for the proof of Proposition 4.1 (b) and Proposition 4.2
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The Szegő function D(z) = exp 1
2π i

∫
C

log f (s)
s−z ds plays an important role. Define

Din(z) = e
∑∞

j=0 Vj z j
m∏

j=1

(
z − eit j

ei t j eπ i

)α j+β j

for z ∈ C\{z : arg z = arg t j , |z| ≥ 1},

Dout(z) = e−∑−1
j=−∞ Vj z j

m∏

j=1

(
z − eit j

z

)−α j+β j

for z ∈ C\ ({0} ∪ {z : arg z = arg t j , |z| ≤ 1}) ,

(79)

analytic on C\{z : arg z = arg t j }. In [23], it was noted that for |z| < 1, we have
D(z) = Din(z) and for |z| > 1 we have D(z) = Dout(z).

Furthermore,

f (z) = Din(z)Dout(z)
−1 (80)

for z ∈ C\
(
∪m

j=1eit j

)
, and we extend the definition of f by letting f be defined by (80)

on C\ ({0} ∪ {z : arg z = arg t j }
)
. It follows that on {z : arg z = arg t j },

f+(z) = f−(z)

{
e2π i(α j −β j ) for 0 < |z| < 1,
e−2π i(α j+β j ) for |z| > 1,

(81)

with the orientation taken away from 0 and toward ∞.

6.1. Transformation of the RH problem for Y , and opening of the lens. Define

T (z) =
{

Y (z) for |z| < 1,
Y (z)z−nσ3 for |z| > 1.

(82)

As z → ∞, we have that T (z) → I , and on the unit circle in the complex plane C,

T+(z) = T−(z)

(
zn f (z)
0 z−n

)
. (83)

We observe that zn and z−n oscillate on the unit circle, and our goal in this section is,
roughly speaking, to define a function S in terms of T , with a modified jump contour,
such that the jumps of S have no oscillations on the unit circle. This procedure is known
as the opening of the lens. The shape of the lens is depicted in Fig. 3, and outside the lens
we let S = T , while inside each region of the lens T −1S will be analytic. Thus Fig. 3
also depicts the jump contour of S, and the jumps of S will be close to the identity on the
edges of the lenses as n → ∞. The requirement that T −1S is analytic on each region of
the lens is the reason why the shape of the lens cannot contain any of the singularities,
and we do not open the lens between singularities in the same cluster.

We now formalize the above discussion regarding the opening of the lens, and intro-
duce some notation. Given u, let Û > 0 be such that the asymptotics of Lemma 5.4 (a)
hold for |ζ | > Û/3, for any μ = 1, 2, . . . , m. Recall the notation from Sect. 4, namely
that t1, . . . , tm satisfies condition (u, Û , n) if t1, . . . , tm partition into clusters where the
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Λ1

Λ2

z1

z2

z3

Fig. 3. Opening of lenses and jump contour �S in the case of 3 singularities z1, z2, z3 partitioned into two
clusters

radius of each cluster is less than u/n, while the distance between any two clusters is
greater than U/n. We denote the clusters by Cl j = Cl j (u, Û , n). Denote the number of
points in each set Cl j by μ j for j = 1, 2, . . . , r , and let

t̂ j = 1

μ j

∑

x∈Cl j

x . (84)

We denote the elements of Cl j = {t ( j)
1 , . . . , t ( j)

μ j } for j = 1, 2, . . . , r , and denote the

parameters associated with t ( j)
i by α

( j)
i , β

( j)
i , and order the points so that t ( j)

1 > · · · >

t ( j)
μ j . In this way we have a natural partition

{(t j , α j , β j )}m
j=1 = ∪r

j=1

{(
t ( j)
i , α

( j)
i , β

( j)
i

)}μ j

i=1
. (85)

We let

� j = {
z : |z| = 1, −u ≤ n

(
arg(z) − t̂ j

) ≤ u
}
,

so that {eit : t ∈ Cl j } ⊂ � j and so that eit ( j)
1 , eit ( j)

μ j are not the endpoints of the arc � j ,
and define � = ∪ j� j . We open a lens around each arc comprising C\�, where C is the
unit circle, as in Fig. 3.
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In the lenses, f is given by (80), and we define

S(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

T (z) outside the lens,

T (z)

(
1 0

z−n f (z)−1 1

)

inside the lenses and outside the unit disc,

T (z)

(
1 0

−zn f (z)−1 1

)

inside the lenses and inside the unit disc.

(86)

By the jumps of T in (83) and using the factorisation
(

zn f (z)
0 z−n

)
=
(

1 0
z−n f (z)−1 1

)(
0 f (z)

− f (z)−1 0

)(
1 0

zn f (z)−1 1

)
,

it is easily verified that S uniquely solves the following RH problem.
RH problem for S

(a) S is analytic on C\�S , where �S is the union of the unit circle and the contours of
the lenses.

(b) S has the following jumps on �S :

S+(z) = S−
(

1 0
z−n f (z)−1 1

)
on the edge of the lenses, |z| > 1,

S+(z) = S−
(

1 0
zn f (z)−1 1

)
on the edge of the lenses, |z| < 1,

S+(z) = S−(z)

(
0 f (z)

− f (z)−1 0

)
for z ∈ C\�,

S+(z) = S−(z)

(
zn f (z)
0 z−n

)
for z ∈ �.

(c) As z → ∞,

S(z) = I +O(1/z).

(d) As z → eit j , j = 1, . . . , m, in the region outside the lens,

S(z) = O(| log |z − eit j ||).

6.2. Main parametrix. Recall Din and Dout from (79), and define M by

M(z) =

⎧
⎪⎨

⎪⎩

(
0 1

−1 0

)

Din(z)−σ3 for |z| < 1

Dout(z)σ3 for |z| > 1.

(87)

We observe that M is analytic on C\C, that M(z) → I as z → ∞, and that M same
jumps as S on the unit circle, namely:

M+(z) = M−(z)

(
0 f (z)

− f (z)−1 0

)
, z ∈ C. (88)
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Thus SM−1 solves anRHproblemwith jumps that converge pointwise to I as n → ∞
except on the shrinking contour �, and SM−1(z) → I as z → ∞, so we take M to be
our main parametrix, and will prove in Lemma 6.1 below that M(z) approximates S(z)
for z bounded away from the clusters.

6.3. Local parametrix. We define open sets U1, . . . ,Ur containing each cluster
Cl1, . . . ,Clr respectively by

U j = {
z : ∣∣log z − i t̂ j

∣∣ < ûn/3n
}
,

where we recall t̂ j from (84) is the average of all the points in a cluster, and ûn from
(38) is defined so that nûn is the minimal distance between any two clusters, which
implies that if t1, . . . , tm satisfy condition (u, Û , n) then ûn > Û . In the case where
there is only a single cluster, we recall that ûn = k̂n for some sufficiently small k̂, and
we require that k̂ is small enough so that V (z) is analytic on U1. The asymptotics we
take in this section will be valid in the limit ûn → ∞, which should be interpreted as
the clusters separating, and our goal is to construct local parametrices on U j : namely
to find functions Pj on U j with the same jumps as S with S(z)Pj (z)−1 analytic on U j ,
such that Pj (z)M(z)−1 → I for z ∈ ∂U j as ûn → ∞.

Let

ζ j (z) = n
(
log z − i t̂ j

)
, (89)

for z ∈ U j .
Recall the notation (85). We define

w( j)
ν = −iζ

(
eit ( j)

ν

)
= n

(
t ( j)
ν − t̂ j

)
(90)

for ν = 1, . . . , μ j . Then ζ j is a conformal map on U j mapping � j to [−iu, iu]. For
z ∈ ∂U j ,

|ζ j (z)| = ûn/3.

Recall the model RH problem � from Sect. 5. On U j , we define

Pj (z) = E j (z)�
(
ζ j (z);

(
w( j)

ν , α( j)
ν , β( j)

ν

)μ j

ν=1

)
z

n
2 σ3W (z),

where, recalling the definition of f below (80),

W (z) =

⎧
⎪⎨

⎪⎩

−σ3 f (z)− 1
2 σ3 for |z| < 1,(

0 1
1 0

)

f (z)− 1
2 σ3 for |z| > 1,

(91)

and where

E j (z) = M(z)W (z)−1
μ j∏

ν=1

(
ζ j (z) − iw( j)

ν

)β
( j)
ν σ3

exp
[
π i
(
α( j)

ν − β( j)
ν

)
χ

w
( j)
ν

(
ζ j (z)

)
σ3

]
e− i n̂t j

2 σ3 ,



Uniform Asymptotics of Toeplitz Determinants 721

recalling that χw(ζ ) was defined in condition (c) of the RH problem for �, and the

branches of ζ j (z) − iw( j)
ν are such that arg

(
ζ j (z) − iw( j)

ν

)
∈ (0, 2π), and M was

defined in (87). By the jumps of f in (81), the definition of M , and the definition of W ,
it follows that E j has no jumps on U j . By the definitions of Din and Dout in (79), of f
in (80), and of M in (87), it is easily seen that M(z)W (z)−1 is bounded on U j . Thus E j
is analytic on U j , and uniformly bounded on ∂U j as n → ∞.

By the jumps of f in (81) and condition (b) for the RH problem for �, it follows that
Pj and S have the same jumps on U j , and thus S P−1

j is meromorphic. By condition (d)
for the RH problem for �, the definition of W , and condition (d) for the RH problem for
S, the singularities of S P−1

j at eit j are removable, and thus S P−1
j is analytic on U j . By

condition (c) for the RH problem for �, and the boundedness of E j (z) on ∂U j , given
u > 0, there exists Û > u such that

Pj (z)M−1(z) = I +O
(

û−1
n

)
, (92)

as n → ∞, uniformly for z ∈ ∂U j , and by (49) the error term is also uniform for
t1, . . . , tm satisfying condition (u, Û , n), which completes the construction of the local
parametrix.

6.4. Small norm matrix. Let R be given by

R(z) =
{

S(z)M(z)−1 for z ∈ C\
(
∪r

j=1U j

)
,

S(z)Pj (z)−1 for z ∈ U j , j = 1, . . . , r.
(93)

R satisfies the following RH problem.
RH problem for R

(a) R is analytic on C\�R , where �R is the union of the edges of the lenses and
∪r

j=1∂U j .
(b) On �R ,

R+(z) = R−(z)(I + �(z)),

with orientiation taken clockwise, and by (92) and condition (b) for the RH problem
for S we have that given u > 0, there exists Û > u, such that

�(z) =

⎧
⎪⎨

⎪⎩

O(̂u−1
n ) for z ∈ ∂U j and j = 1, . . . , r,

O(|z|n) for z on the edge of the lenses and|z| < 1,
O(|z|−n) for z on the edge of the lenses and |z| > 1,

(94)

as n → ∞, uniformly for t1, . . . , tm satisfying condition (u, Û , n).
(c) R(z) = I +O(z−1) as z → ∞.

Lemma 6.1. Let α j ≥ 0 and Re β j = 0 for j = 1, . . . , m. Then given u, there exists
Ũ > u such that R(z) = I +O(̂u−1

n ), as n → ∞, uniformly for z ∈ C\�R and t1, . . . , tm
satisfying condition (u, Ũ , n).
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Proof. Small-norm analysis of RH—problems with fixed contours is standard material,
see e.g. [21], but for RH—problemswith shrinking contours the theory is less developed.
In the following, we follow [17], where a slightlymore detailed descriptionmay be found
for a similar problem.

It is easily verified that

R(z) = I +
1

2π i

∫

�R

R−(s)�(s)

s − z
ds. (95)

Consider

Rmax = sup
z∈C, j,k∈{1,2}

|R j,k(z)|,

and assume this maximum is achieved at a point zmax ∈ C ∪ {∞} (or that R+ or R−
achieves this supremum at zmax). We piecewise analytically continue R− and� to strips
of width of order 2cûn/n containing �R , for some fixed but sufficiently small c > 0.
On these strips the bounds on � from (94) still hold. Furthermore, on these strips R is
either equal to R− or R−(I + �), either way it follows by (94) that

max
j,k∈{1,2} |R−(z)| j,k ≤ 2Rmax, (96)

for n sufficiently large, for all z in the strips. By deforming the contour of integration
�R , but keeping it in the strips, we may assume that zmax is of distance greater than
cûn/n from�R . Crucially, (96) still holds on this deformed contour, and combined with
(95), it follows that

Rmax ≤ 1 + Rmax max
j,k={1,2}

∣∣∣
∣

∫

�R

∣∣∣
∣

�(s)

s − zmax

∣∣∣
∣ ds

∣∣∣
∣

j,k

,

where we now assume that zmax is of distance greater than cûn/n from �R . Thus

Rmax ≤ 1

1 − max j,k={1,2}
∣∣∣
∫
�R

∣∣∣ �(s)
s−zmax

∣∣∣ ds
∣∣∣

j,k

. (97)

By the fact that zmax is of at least distance cûn/n from �R for some c > 0, by (94), and
by the fact that ∂U j is of length of order ûn/n, it follows that given u > 0, there exists
Û > u such that

∣∣∣∣∣
∣

r∑

j=1

∫

∂U j

∣∣∣∣
�(s)

s − zmax

∣∣∣∣ ds

∣∣∣∣∣
∣
= O

(
1

ûn

)
, (98)

as n → ∞, uniformly for t1, . . . , tm satisfying condition (u, Û , n). Let �out
Edge denote

the edges of the lenses in the exterior of the unit disc in the complex plane. Then
∣∣
∣∣∣

∫

�out
Edge

∣∣
∣∣

�(s)

s − zmax

∣∣
∣∣ ds

∣∣
∣∣∣
= O

(
n

ûn

∣∣
∣∣∣

∫

�out
Edge

∣
∣s−n

∣
∣ ds

∣∣
∣∣∣

)

= O (e−ûn
)
, (99)
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as n → ∞ in the same limit. We pick Ũ > Û such that the right hand side of (98)
and (99) are less than 1/4 for all t1, . . . , tm satisfying condition (u, Ũ , n) (if t1, . . . , tm
satisfy condition (u, Ũ , n) then ûn > Ũ so this is indeed possible). Then

Rmax < 2 (100)

for all t1, . . . , tm satisfying condition (u, Ũ , n). Now consider

(R − I )max = sup
z∈C, j,k∈{1,2}

|R(z) − I | j,k,

and assume this supremum is achieved at a point zmax,2 ∈ C ∪ {∞}. By deforming the
contour of integration, we may assume that zmax,2 is of distance greater than cûn/n from
�R , for some constant c > 0. Thus, by (100), (96), (95), it follows that

(R − I )max ≤ 2

π
max

j,k={1,2}

∣∣∣∣

∫

�R

�(s)

s − zmax,2
ds

∣∣∣∣
j,k

.

The lemma follows upon integration, by similar arguments to (98) and (99). �
Lemma 6.2. Let α j ≥ 0 and Re β j = 0. Then given u, there exists Ũ such that the
following two statements hold.

(a) As n → ∞,

R(0) = I +O(1/n),

uniformly for t1, . . . , tm satisfying condition (u, Ũ , n).
(b) As n → ∞

R(0) = I +
r∑

j=1

∫

∂U j

�1(s)

s

ds

2π i
+O

(
1

nûn

)
,

uniformly for t1, . . . , tm satisfying condition (u, Ũ , n), where

�1,22(z) =
�1,11

(
μ j ;

(
w

( j)
ν , α

( j)
ν , β

( j)
ν

)μ j

ν=1

)

ζ j (z)
,

for z ∈ ∂U j , with �1 as in condition (c) for the RH problem for �.

Part (a) of Lemma 6.2 will be relied on to prove Proposition 4.2, while part (b) of
Lemma 6.2 will be relied on to prove Proposition 4.1 (b).

Proof. We choose Ũ as in Lemma 6.1, and evaluate (95) as n → ∞. The integration
contour �R partitions naturally into two parts, ∪r

j=1∂U j and the edges of the lenses

�edge. Denote the edges of the lenses on the inside of the unit disc by �in
Edge. Then by

Lemma 6.1 and (94),

∣∣
∣∣∣

∫

�in
Edge

R−(s)�(s)

s
ds

∣∣
∣∣∣

jk

≤ C1

∣∣
∣∣∣

∫

�in
Edge

sn

s
ds

∣∣
∣∣∣
≤ C2

(
1 − C3

ûn
n

)n

n
≤ C4

neC3ûn
, (101)
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for some constants Ci > 0, i = 1, . . . , 4, and sufficiently large ûn , for j, k ∈ {1, 2}.
A similar statement can be made for the edges of the lense outside the unit disc. We
note that the length of the contour ∪r

j=1∂U j is of order ûn/n as n → ∞, and so since
�(s) = O(1/ûn) for s ∈ ∪r

j=1∂U j , it follows by Lemma 6.1 and (94), that

∫

∪r
j=1∂U j

R−(s)�(s)

s
ds = O(1/n), (102)

as n → ∞. Part (a) of the lemma follows from (101)–(102). By the definition of R in
(93) and condition (c) of the RH problem for �, we have that �(z) = �1(z) +O(̂u−2

n )

as n → ∞, where

�1(z) = E j (z)�1E−1
j (z)

ζ j (z)
, (103)

for z ∈ ∂U j . By (101) it follows that as n → ∞,

R(0) = I +
r∑

j=1

∫

∂U j

�1(s)

s

ds

2π i
+O

(
n−2

)
+O

(
1

nûn

)
, (104)

where the orientation of the integral is clockwise. Since

E j (z) =
(
0 1
1 0

)
gσ3

E, j (z),

for some analytic function gE, j , it follows by (103) that

�1,22(z) = �1,11/ζ j (z),

and thus we have proven part (b) of the lemma. �

6.5. Proof of Proposition 4.1. By (78), and the definition of T, S, R in (82), (86), (93),
it follows that

χ2
n−1 = −(R(0)M(0))21. (105)

By (87),

M(0) =
(

0 eV0

−e−V0 0

)
. (106)

From Lemma 6.2 it follows that, given u > 0, there exists Ũ > u such that R(0) =
I +O(n−1) uniformly for all t1, . . . , tm satisfying condition (u, Ũ , n) as n → ∞. Thus,
substituting these asymptotics and (106) into (105), we obtain

|logχn + V0/2| = O
(

n−1
)

,

in the same limit, which proves Proposition 4.2. This in turn proves Proposition 4.1(a)
by the discussion following Proposition 4.2.
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Substituting (106) and the asymptoticss of Lemma 6.2(b) into (105), we obtain that
given u > 0 there exists Ũ > u such that

χ2
n−1 = e−V0

⎛

⎝1 +
r∑

j=1

�1,11

(
μ j ;

(
w( j)

ν , α( j)
ν , β( j)

ν

)μ j

ν=1

) ∫

∂U j

ds

2π isζ j (s)

⎞

⎠

+O
(

1

nûn

)
, (107)

as n → ∞, uniformly for t1, . . . , tm satisfying condition (u, Ũ , n), with the integral
taken with clockwise orientation. By (50),

�1,11

(
μ j ;

(
w( j)

ν , α( j)
ν , β( j)

ν

)μ j

ν=1

)

=
( μ j∑

ν=1

α( j)
ν

)2

−
( μ j∑

ν=1

β( j)
ν

)2

+O
(
w( j)

μ j
− w

( j)
1

)
, (108)

as w
( j)
μ j − w

( j)
1 → 0. By the definition of ζ j in (89) and the fact that the orientation of

the integral is clockwise, it follows that

∫

∂U j

ds

2π isζ j (s)
= −1/n. (109)

Substituting (107) and (108) into (109) proves Proposition 4.1 (b).

Acknowledgements. The author is grateful to Igor Krasovsky and Maurice Duits for useful discussions and
suggestions, and also to two anonymous referees for further good suggestions. The author was supported
by the Göran Gustafsson Foundation (UU/KTH) and by the Leverhulme Trust research programme grant
RPG-2018-260.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Appendix

Proof of Proposition 5.3. It is well known that the existence of a unique solution to the
RH problem for � may be proven by proving a vanishing lemma for the solution to the
homogeneous RH problem. We give a very brief overview of the manner in which the
vanishing lemma provides the existence of a unique solution to the RH problem for �,
for details see [69] and [30–32], and also [22] for an introduction to the topic.

http://creativecommons.org/licenses/by/4.0/
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Let D1, . . . , Dμ be discs centered at iw1, . . . , iwμ respectively, with a fixed radius
chosen such that the discs do not intersect. Define

V (ζ ) = �(ζ)e
ζ
2 σ3

μ∏

j=1

(ζ − iw j )
β j σ3 exp

[−π i(β j − α j )χw j (ζ )σ3
]
,

for ζ ∈ C\∪μ
j=1, and

V (ζ ) = Fj (ζ ), (110)

for ζ in D j , with Fj determined by condition (d) in the RH problem for �.

Then V is analytic on C\�V , where �V = ∪μ
j=1∂ D j ∪

(
∪4

j=0� j\D j

)
, where we

recall that �0 = (−iu, iu) and � j were given in Fig. 1 for j = 1, 2, 3, 4.
On �V , we have V+(ζ ) = V−(ζ )JV (ζ ) a.e. on �V for some bounded function JV ,

with V± ∈ L2(�V ), and it is easy to verify that the jump matrix of V factorizes into

JV = J−1
V,− JV,+,

where JV,− is upper triangular and piecewise analytic, and JV,+ is lower triangular and
piecewise analytic, and

|JV,+(ζ ) − I |, |JV,−(ζ ) − I | = O(e−|ζ |/2)
as ζ → ∞. Furthermore, as ζ → ∞,

V (ζ ) = I +O(ζ−1).

For RH problems of the form V , it is well known (see [69] and [30–32], or [22] for an
introduction to the topic) that the RH problem for V is intimately related to an operator
on L2(�V ). Namely, if

Ch(ζ ) =
∫

�V

h(x)dx

(x − ζ )2π i
(111)

and C±h(ζ ) are the limiting values of Ch(ζ ) from the + and − side for ζ ∈ �V , and Cω

is defined by

Cωh = C+(hω−) + C−(hω+), (112)

whereω± = ±(JV,±− I ), then I −Cω is invertible if and only if V has a unique solution
if and only if I − Cω is an invertible operator on L2(�V ).

It is also well known that I − Cω is a Fredholm operator of index zero on L2(�V ),
which means that the dimension of the kernel and cokernel are equal. Thus, in order to
prove that I − Cω is injective, it is sufficient to prove that the kernel of I − Cω is zero.

Finally the kernel of I − Cω is zero if and only if zero is the unique solution to the
following homogenous RH problem VHom:

(a) VHom is analytic on C\�V .
(b) VHom,+ satisfies the jumps, VHom,+(ζ ) = VHom,−(ζ )JV (ζ ) for ζ ∈ �V .
(c) As ζ → ∞,

VHom(ζ ) = O(ζ−1).

Thus we need to prove that 0 is the unique solution to the RH problem for VHom. We
will find it easier to work with �̂Hom which we define below. It is easily verified that if
�̂Hom has the zero solution as its unique solution, then the same holds for VHom.
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Vanishing lemma. We consider the homogenous RH problem for �̂. Namely, we search
for a function �̂Hom satisfying conditions (a), (b), and (d) in the RH problem for �̂, and
as ζ → ∞,

�̂Hom(ζ )e
ζ
2 σ3 = O

(
ζ−1

)
.

Lemma. (Vanishing Lemma) 0 is the unique solution to the RH problem for �̂Hom.

By the above discussion, it follows from the vanishing lemma that the RH problem for
� has a unique solution.

Proof. Let U (ζ ) = �̂Hom(ζ )e
ζ
2 σ3 and let

W (ζ ) = U (ζ )U∗(−ζ ),

where ∗ denotes the conjugate transpose. Then W is analytic on C\(−i∞, i∞), and we
take the orientation of (−i∞, i∞) upwards. We note that if x ∈ R, then as ζ → i x
from the "+" side, it follows that −ζ → i x from the "-" side. Thus, by conditions (b)
and (d) of the RH problem for � and the definitions of �̂, U , W , as ζ → iw j from the
+ side,

W (ζ ) = Fj (ζ )(ζ − iw j )
α j σ3

(O (| log(ζ − iw j )|2
) O (| log(ζ − iw j )|2

)

O (| log(ζ − iw j )|2
)

0

)

(
−ζ − iw j

)α j σ3
F∗

j (−ζ ).

Thus W+(ζ ) is integrable for ζ ∈ (−i∞, i∞), and since W (ζ ) = O (|ζ |−2
)
as ζ → ∞,

it follows from Cauchy’s theorem that

∫ i∞

−i∞
W+(ζ )dζ = 0.

For ζ ∈ (−i∞, i∞), we have W+(ζ ) = U+(ζ )U∗−(ζ ), and so by the jump conditions
for �̂,

μ∑

j=0

∫ iw j

iw j+1

U−(ζ )e− ζ
2 σ3 J j e

ζ
2 σ3U∗−(ζ )dζ =

∫ i∞

−i∞
W+(ζ )dζ = 0, (113)

where again we take the convention w0 = +∞ and wμ+1 = −∞. For purely imaginary
ζ , and with α j ≥ 0 and Re β j = 0, we have

e− ζ
2 σ3 J j e

ζ
2 σ3 + (e− ζ

2 σ3 J j e
ζ
2 σ3)∗ =

(
0 0

0 2 exp
[
2π i

∑ j
ν=1 βν

]
)

,

for j = 1, . . . , μ, and for j = 0 the 22 entry of the right hand side is taken to be 1. Thus,
summing (113) with its conjugate transpose, it follows that there is a strictly positive
function g such that

∫ i∞

−i∞
U−(ζ )

(
0 0
0 g(ζ )

)
U∗−(ζ )dζ = 0,
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and thus U12,−(ζ ), U22,−(ζ ) = 0 for ζ ∈ (−i∞, i∞). From the jump conditions of �̂,
it follows that U11,+(ζ ), U21,+(ζ ) = 0 for ζ ∈ (−i∞, i∞). From the identity theorem
it follows that the first column of U (ζ ) = 0 for Re ζ < 0 and the second column of
U (ζ ) = 0 for Re ζ > 0.

For j = 1, 2, let

g j (ζ ) =

⎧
⎪⎨

⎪⎩

U j2(ζ ) for Re ζ < 0
U j1(ζ )e−ζ for Re ζ > 0, Im ζ > w1

U j1(ζ )e−ζ exp
[−2π i

∑μ
ν=1 αν

]
for Re ζ > 0, Im ζ < wμ.

By the definitions of g j and U , and condition (b) of the RH problem for �̂, it follows
that g j is analytic on C\{z : Re z ≥ 0, Im z ∈ [wμ,w1]}. Furthermore, if

h j (ζ ) = g j (−(ζ + u)3/2),

then h j is analytic and bounded for Re ζ > 0, and h j (ζ ) = O (e−|ζ |/2) as ζ → ±i∞.
Thus it follows by Carlson’s theorem (see e.g. [63]), that h j (ζ ) = 0 for Re ζ > 0, and
by analytic continuation it follows that g j (ζ ) = 0 for ζ in the domain of g j . It follows
that �̂Hom = 0. �
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43. Johansson, K.: On Szegő’s asymptotic formula for Toeplitz determinants and generalizations. Bull. Sci.

Math. (2) 112(3), 257–304 (1988)
44. Keating, J.P., Snaith, N.C.: Random Matrix Theory and ζ(1/2 + i t). Commun. Math. Phys. 214, 57–89

(2000)
45. Kozlowska, K., Virtanen, J.A.: Transition asymptotics of Toeplitz determinants and emergence of Fisher–

Hartwig representations. Nonlinearity 32(10), 3593–3645 (2019)
46. Krasovsky, I.: Correlations of the characteristic polynomials in the Gaussian Unitary Ensemble or a

singular Hankel determinant. Duke Math J. 139, 581–619 (2007)
47. Kuijlaars, A.B.J., Vanlessen, M.: Universality for eigenvalue correlations at the origin of the spectrum.

Commun. Math. Phys. 243, 163–191 (2003)
48. Kuijlaars, A.: Lecture notes on Riemann–Hilbert Problems and Multiple Orthogonal Polynomials, Con-

structive functions 2014, in honour of Ed Saff’s 70’th birthday. Nashville, Tenessee (2014)
49. Lenard, A.: Momentum distribution in the ground state of the one-dimensional system of impenetrable

bosons. J. Math. Phys 5(7), 930–943 (1964)
50. Lenard, A.: Some remarks on large Toeplitz determinants. Pacific J. Math. 42(1), 137–145 (1972)
51. Lieb, E., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the Ground

State. Phys. Rev. 130(4), 1605–1616 (1963)

http://arxiv.org/abs/1903.08304v1


730 B. Fahs

52. McCoy, B.M., Wu, T.T.: The two-dimensional ising model, Harvard Univ. Press, Cambridge, MA (1973)
53. Montgomery, H.L.: The pair correlation of zeros of the zeta funtion, Analytic number theory (Proc.

Sympos. Pure Math., Vol.XXIV, St. Louis Univ., St. Louis, Mo.,), 181–193 (1972)
54. Foulquie Moreno, A., Martinez-Finkelshtein, A., Sousa, V.L.: On a conjecture of A. Magnus concerning

the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials. J. Approx.
Theory 162, 807–831 (2010)

55. Nikula, M., Saksman, E., Webb, C.: Multiplicative chaos and the characteristic polynomial of the CUE:
the L1-phase. Trans. AMS. preprint: arXiv:1806.01831

56. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions,
National Institute of Standards and Technology (2010)

57. Paquette, E., Zeitouni, O.: The maximum of the CUE field. Int. Math. Res. Notices 16, 5028–5119 (2018)
58. Schultz, T.D.: Note on the one-dimensional gas of impenetrable point-particle bosons. J. Math. Phys 4,

666–671 (1963)
59. Selberg, A.: Bemerkninger om et multipelt integral. Norsk. Mat. Tidsskr. 24, 71–78 (1944)
60. Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory, AMS (2004)
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