
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-03940-3
Commun. Math. Phys. 382, 721–771 (2021) Communications in

Mathematical
Physics

Universal Qudit Hamiltonians

Stephen Piddock1,2 , Ashley Montanaro1

1 School of Mathematics, University of Bristol, Bristol, UK.
E-mail: stephen.piddock@bristol.ac.uk; ashley.montanaro@bristol.ac.uk

2 Heilbronn Institute for Mathematical Research, Bristol, UK.

Received: 13 February 2019 / Accepted: 7 January 2021
Published online: 23 February 2021 – © The Author(s) 2021

Abstract: A family of quantum Hamiltonians is said to be universal if any other finite-
dimensional Hamiltonian can be approximately encoded within the low-energy space of
a Hamiltonian from that family. If the encoding is efficient, universal families of Hamil-
tonians can be used as universal analogue quantum simulators and universal quantum
computers, and the problem of approximately determining the ground-state energy of a
Hamiltonian from a universal family is QMA-complete. One natural way to categorise
Hamiltonians into families is in terms of the interactions they are built from. Here we
prove universality of some important classes of interactions on qudits (d-level systems):

• We completely characterise the k-qudit interactions which are universal, if aug-
mented with arbitrary Hermitian 1-local terms.

We find that, for all k � 2 and all local dimensions d � 2, almost all such interactions
are universal aside from a simple stoquastic class.

• We prove universality of generalisations of the Heisenberg model that are ubiquitous
in condensed-matter physics, even if free 1-local terms are not provided.We show that
the SU (d) and SU (2) Heisenberg interactions are universal for all local dimensions
d � 2 (spin � 1/2), implying that a quantum variant of the Max-d-Cut problem
is QMA-complete. We also show that for d = 3 all bilinear-biquadratic Heisenberg
interactions are universal. One example is the general AKLT model.

• We prove universality of any interaction proportional to the projector onto a pure
entangled state.

1. Introduction

What does it mean to say that a class of (quantum-)physical systems is complex? One
perspective is to look at the physical phenomena displayed by that type of system. If
these phenomena are rich and complex, then the system arguably can be said to be
complex itself. Another perspective is to look at the computational power of the system:
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the ability to build a universal computer using the systemwould serve as strong evidence
that the system is complex.

Interestingly, in some cases these notions of complexity are equivalent. Recent work
by us, together with Cubitt, introduced and characterised the notion of universality in
many-body quantumHamiltonians [17]. A family of Hamiltonians is said to be universal
if any other quantumHamiltonian can be simulated arbitrarily well by someHamiltonian
in that family. By “simulate”, we mean the following (see Sect. 2 below for a formal
definition): Hamiltonian A simulates Hamiltonian B if the low-energy part of A is close
to B in operator norm, up to a local isometry (i.e. a mapwhich associates each subsystem
of the B system with a discrete set of subsystems of the A system).

This notion of simulation is very strong, as it implies that the low-energy part of A
reproduces all physical properties of B (such as eigenvalues, ground states, partition
functions, correlation functions, etc.) in a technical sense made precise in [17]. Univer-
sality is correspondingly a very strong notion. As a universal family F of Hamiltonians
can simulate any other quantum Hamiltonian, any physical phenomenon that can occur
in a quantum system must occur within Hamiltonians picked from F . This implies that
the ability to implement Hamiltonians in F allows universal “analogue” simulation of
arbitrary quantum systems [14,21]. In addition, if one also assumes that the simulation
can be computed efficiently (as is usually the case), universal families of Hamiltonians
are computationally universal, in a number of senses [17]. First, they can be used to per-
form arbitrary quantum computations, either by preparing a simple initial state, evolving
according to H ∈ F for some time and measuring, or via adiabatic evolution. Second,
the problem of approximately computing the ground-state energy of Hamiltonians from
F is QMA-complete, where QMA is the quantum analogue of the complexity class NP
[7,22], and hence expected to be computationally hard.

A natural way to classify physical systems is in terms of the types of interactions that
they are built from. Let S be a set of interactions on up to k qudits (d-level subsystems),
i.e. each element of S is a Hermitian operator on (Cd)⊗l for some l � k. Then we say
that an n-qudit Hamiltonian H is an S-Hamiltonian if

H =
∑

i

αi h
(i), (1)

where for all i , αi ∈ R and the non-trivial part of h(i) is picked from S. That is,
h(i) = h⊗ I for some h ∈ S. H is a so-called k-local Hamiltonian. We stress that the αi
coefficients can (usually) be either positive or negative. IfS contains a 2-local interaction
h that is not symmetric, then a Hamiltonian of terms of the form αhi j +βh ji is also an S-
Hamiltonian.We also say that H is anS-Hamiltonian with local terms if it can be written
in the form (1) by adding arbitrary 1-local operators. The form (1) encompasses a vast
array of the Hamiltonians studied in condensed-matter physics, such as the general Ising
model (S = {Z⊗Z}) and the general Heisenbergmodel (S = {X⊗X +Y ⊗Y +Z⊗Z}).
In the case where S = {h} for some h, we just call H an h-Hamiltonian.

Determining the complexity of S-Hamiltonians is a natural quantum generalisation
of the long-running programme in classical complexity theory of classifying constraint
satisfaction problems (CSPs) according to their complexity. Beginning with Schaefer’s
famous 1978 dichotomy theorem for boolean CSPs [40], which has been extended in
many different directions since (see e.g. [15,42] for references), this project aims to
pinpoint, for each possible set of constraints S, the complexity of a CSP that uses only
constraints fromS (perhaps weighted, to give an optimisation problem). A quantum gen-
eralisation of this question is to determine the complexity of approximately computing
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the ground-state energyofS-Hamiltonians up to 1/ poly(n)precision [22]. This problem,
which we call simply S- Hamiltonian, is a special case of the Local Hamiltonian
problem, which in general is QMA-complete [28,30] when S contains all k-qubit inter-
actions for any fixed k � 2. The classical special case of the S- Hamiltonian problem
corresponds to S containing only diagonal interactions; such problems are known as
“valued” or “generalised” CSPs, and a full complexity classification of these was only
obtained in 2016, by Thapper and Živný [42].

A full classification was given in [16] of the computational complexity of the S-
Hamiltonian problem in the special case where all interactions in S are on at most
2 qubits; this was sharpened by [10], which showed that one complexity class in the
classification was equivalent to the previously studied class StoqMA [8]. It was later
shown in [17] that each of the classes in [16] corresponds to a physical universality
class. These results can be summarised as follows:

Theorem 1 ([10,16–18,26]). Let S be any fixed set of two-qubit and one-qubit interac-
tions such that S contains at least one interaction which is not 1-local. Then:

• If there exists U ∈ SU (2) such that U locally diagonalises S, then S-Hamiltonians
are universal classical Hamiltonian simulators [18] and the S- Hamiltonian prob-
lem is NP-complete [16,26];
• Otherwise, if there exists U ∈ SU (2) such that, for each 2-qubit matrix hi ∈ S,
U⊗2hi (U †)⊗2 = αi Z⊗2 + Ai ⊗ I + I ⊗ Bi , where αi ∈ R and Ai , Bi are arbitrary
single-qubit interactions, then S-Hamiltonians are universal stoquastic Hamiltonian
simulators [17] and the S- Hamiltonian problem is StoqMA-complete [10,16];
• Otherwise, S-Hamiltonians are universal quantum Hamiltonian simulators [17]
and the S- Hamiltonian problem is QMA-complete [16].

AstoquasticHamiltonian is onewhose off-diagonal elements in the standard basis are
all nonpositive. Here we sometimes generalise this terminology slightly by also calling
H stoquastic if there exists a local unitary U such that U⊗nH(U †)⊗n is stoquastic.

1.1. Our results. Here we continue the programme of classifying universality of
Hamiltonians—and hence the computational complexity of the S- Hamiltonian
problem—by generalising from qubit interactions to qudit interactions, i.e. local di-
mension d > 2, or equivalently spin > 1/2. As well as being a natural next step from
the perspective of computational complexity, this framework includes many important
models studied in condensed-matter theory [1,6,25,29,31,33,39]. However, it is sig-
nificantly more difficult than the qubit case. One reason for this is that in the case of
qubits, there was a simple “canonical form” into which any 2-qubit interaction could be
put by applying local unitaries [16], which dramatically reduced the number of types of
interaction that needed to be considered. No comparably simple canonical form seems
to exist for d > 2 [32].

We first consider S-Hamiltonians with local terms. This is a more general setting
than just S-Hamiltonians, and hence easier to prove universality results. From a com-
puter science point of view, allowing free local terms corresponds to allowing arbitrary
constraints or penalties on individual variables in a CSP. For conciseness, we say that S
is LA-universal (“locally assisted universal”) if the family of S-Hamiltonians with local
terms is universal. Similarly, we say that S is LA-stoquastic-universal if it can simulate
any stoquastic Hamiltonian. Then our main result about universality with local terms is
a complete classification theorem:
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Theorem 2. Let S be a set of interactions, which are not all 1-local, between qudits of
dimension d. Then S is:

• LA-stoquastic-universal, if there exists |ψ〉 ∈ C
d such that all interactions in S are,

up to the addition of 1-local terms, given by a linear combination of operators taken
from the set {I, |ψ〉〈ψ |, |ψ〉〈ψ |⊗2, |ψ〉〈ψ |⊗3, . . . }—furthermore, if S is of this form
and H is an S-Hamiltonian with local terms, then H is stoquastic;
• LA-universal, otherwise.

We note some general consequences of this result for Hamiltonians assisted by local
terms. First, we see that any nontrivial k-qudit interaction can be used to simulate an
arbitrary stoquastic Hamiltonian. Second, almost any k-qudit interaction can actually be
used to simulate arbitrary general Hamiltonians. Third, perhaps surprisingly, there exist
Hamiltonians whose 2-local part is diagonal, but which are LA-universal.

We highlight some examples for d = 3. Consider

S1 =

⎧
⎪⎨

⎪⎩

⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠
⊗2
⎫
⎪⎬

⎪⎭
, S2 =

⎧
⎪⎨

⎪⎩

⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠
⊗2
⎫
⎪⎬

⎪⎭
.

The single interaction in S1 is equal to |0〉〈0|⊗2 plus some 1-local terms, so S1 is
stoquastic and LA-stoquastic-universal. On the other hand, the interaction in S2 cannot
be decomposed in this way, so S2 is LA-universal. So, for example, given access to
interactions of the form of S2 and arbitrary local terms, one can perform universal
quantum computation.

Next we consider the more general h-Hamiltonian problem, where the lack of “free”
1-local terms makes it much more challenging to prove universality results. Here we
focus on qudit generalisations of the qubit Heisenberg (exchange) interaction (h ∝
X ⊗ X + Y ⊗ Y + Z ⊗ Z ). Hamiltonians built from this interaction enjoy significant
levels of symmetry, which made it one of the most difficult cases to prove universal
in previous work [16,17]. The most symmetric such generalisation in local dimension
d is the SU (d) Heisenberg model (often known as “SU (N ) Heisenberg model” in the
literature [6,33]), where the interaction is

h =
d2−1∑

a=1

T a ⊗ T a (2)

for some d × d traceless Hermitian matrices T a such that Tr(T aT b) = 1
2δab. Up to

adding an identity term and rescaling, h is just the swap operator, or the projector onto
the symmetric subspace of two qudits,

Psym = 1

4

∑

i, j

(|i j〉 + | j i〉)(〈i j | + 〈 j i |).

h is invariant under conjugation by local unitaries, implying that the eigenspaces of any
Hamiltonian built only from h interactions inherit this property. Nevertheless, we have
the following result:

Theorem 3. For any d � 2, the SU (d)Heisenberg interaction h :=∑a T
a⊗T a, where

{T a} are traceless Hermitian matrices such that Tr(T aT b) = 1
2δab, is universal. This

holds even if the weights αi in the decomposition (1) are restricted to be non-negative.
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The special case d = 2 of Theorem 3 was shown in [17]. As a corollary of Theo-
rem 3, we obtain QMA-hardness of a quantum variant of the Max-d-Cut problem [19]
(equivalently, a quantum generalisation of the (classical) antiferromagnetic Potts model
[44]). In the Max-d-Cut problem, we are given a graph where each edge (i, j) has a
non-negative weight wi j , and are asked to partition the vertices into d sets, such that the
sum of the weights of edges between vertices in different sets is maximised. That is, we
find a map c from each vertex i to an integer c(i) ∈ [d] such that∑i< j wi j (1−δc(i)c( j))

is maximised. The natural “quantum”way of generalising this problem is to replace each
vertex with a d-dimensional qudit, and replace each weighted edge across two vertices
with a weighted projector onto the symmetric subspace across the corresponding qudits
(equivalently, an interaction h). Then the task is to approximate the ground-state energy
of the corresponding Hamiltonian

∑
i< j wi j hi j , up to precision 1/ poly(n). Call this

problem Quantum Max- d- Cut.
To see why this is a suitable (and non-trivial) generalisation, note that Psym gives

an energy penalty to a pair of qudits that are both in the same computational basis
state, similarly to the classical case, but that the behaviour of the quantum variant can
sometimes be quite different. For example, consider the case d = 2, and four vertices
arranged in an unweighted cycle. Classically, the vertices can clearly be partitioned into
two sets such that there are no edges between vertices in the same set.However, there is no
quantum state that is simultaneously in the ground space of all corresponding projectors
Psym. This is because the unique ground state of Psym is maximally entangled, and each
qubit cannot be maximally entangled with both of its neighbours simultaneously.

It is an immediate consequence of Theorem 3 that:

Corollary 4. For any d � 2, Quantum Max- d- Cut is QMA-complete.

The special case d = 2 of Corollary 4 was shown in [38, Theorem 2].
Next, we consider the case where the interactions are of the form P = |ψ〉〈ψ | for an

entangled two qudit state |ψ〉.
Theorem 5. Let P = |ψ〉〈ψ | be the projector onto an entangled two-qudit state |ψ〉 ∈
(Cd)⊗2. Then {P}-Hamiltonians are universal.

In fact, Theorem 5 holds even in the restrictive setting where all the interactions
are required to sit on the edges of a bipartite interaction graph (see Sect. 6 for a precise
statement). Entanglement is a very well studied property of quantum systems, and is well
known to be fundamental to many interesting quantum phenomena. This result can be
viewed as an intriguing and apparently tight link between entanglement and universality.

A perhaps more familiar, and also very well-studied, interaction we consider is an-
other generalisation of the qubit Heisenberg interaction (e.g. [1,34,37]): the SU (2)
Heisenberg interaction in local dimension d (often just called the “spin-s Heisenberg
interaction”, where s = (d − 1)/2). Now the interaction is of the form

h = Sx ⊗ Sx + Sy ⊗ Sy + Sz ⊗ Sz,

where Sx , Sy , Sz generate a d-dimensional irreducible representation of su(2) and
correspond to the familiar Pauli matices X , Y , Z (up to an overall scaling factor). Note
that, although the Lie algebra involved is the same as for the qubit case, the interaction h
may have very different properties for higher d; for example, it has d distinct eigenvalues
(see Eq. (44) below). Nevetheless, this generalisation turns out to be universal too:
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Theorem 6. For any d � 2, the SU (2) Heisenberg interaction h = Sx ⊗ Sx + Sy ⊗
Sy + Sz ⊗ Sz, where Sx , Sy, Sz are representations of the Pauli matrices X, Y , Z, is
universal.

Finally, we consider yet another well-studied generalisation of the Heisenberg model
(see e.g. [2,25,29,31]): the general bilinear-biquadratic Heisenberg model in local di-
mension d = 3 (spin 1). Here the interaction used is

h(θ) := (cos θ)h + (sin θ)h2,

where θ ∈ [0, 2π) is an arbitrary parameter and h is the spin-1 Heisenberg interaction,
which can be written explicitly as

h = X3 ⊗ X3 + Y3 ⊗ Y3 + Z3 ⊗ Z3 (3)

where

X3 = 1√
2

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ , Y3 = i√
2

⎛

⎝
0 −1 0
1 0 −1
0 1 0

⎞

⎠ , Z3 =
⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ .

The special case θ = arctan 1/3 corresponds to the famous Affleck-Kennedy-Lieb-
Tasaki (AKLT) model [2]. Our result here is as follows:

Theorem 7. Let h(θ) := (cos θ)h + (sin θ)h2, where θ ∈ [0, 2π) is an arbitrary param-
eter and h is the spin-1 Heisenberg interaction. For all θ , h(θ) is universal.

We therefore see that, although different values of θ may correspond to very different
physics [31], from a universality point of view they are all of equal power.

The family of S-Hamiltonians allows varying interaction strengths by definition.
The simulations presented here are all efficient in the sense that it is possible to simulate
an O(1)-local Hamiltonian of n qubits with maximum interaction strength Jmax using
a simulator Hamiltonian with interaction strengths that scale at most polynomially in
n, Jmax and �, 1/ε, 1/η, which are the parameters of Definition 1 that describe the
accuracy of the simulation. However since the constructions presented here often consist
of multiple stages of simulations, with the degree of the corresponding polynomials
multiplying together, these interaction strengths canbevery large, andwedonot calculate
what these polynomials are exactly.

We remark that, in common with most previous work in this area [16,17], we usu-
ally allow each interaction weight to be positive or negative. This can lead to physical
systems built from the same interaction having very different physical properties (e.g.
antiferromagnetism vs. ferromagnetism). It is sometimes possible to prove universality-
type results for interactions whose weights all have the same sign [38]; we achieve this in
Theorem 3, but in general leave this extension for future work. Another interesting direc-
tion is to prove universality for systems with simpler interaction patterns [17,36,38,41],
or with less heavily-weighted interactions [13].

1.2. Related work. There has been a substantial amount of work characterising the
complexity of various types of qubit Hamiltonians from the perspective of QMA-
completeness; see [7,17,22] for references. In the case of qudits, rather than general
classification results, most work has considered carefully designed special cases where
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Some universal 2-qubit interaction

Diagonal, 2-local rank 2

A ⊗ A, 3 distinct eigenvalues

A ⊗ A, A = a|ψ ψ| + bI

A ⊗ A + B ⊗ B

2-local rank 2

,Lemma 15

,Lemma 16

,Lemma 17

,Lemma 19

,Lemma 19

,Lemma 20

,
Every 2-qudit interaction that is not

of the form α|ψ ψ|⊗2 + 1-local terms
effectively fits into one of these categories

Fig. 1. Sequence of simulations used in the proof of Theorem 2. An arrow from one box to another indicates
that a Hamiltonian of the first type can be simulated by a Hamiltonian of the second type

QMA-completeness can be achieved. Indeed, it is often the case that these results aim to
reduce the local dimension of a QMA-complete construction that achieves some other
desiderata. For example, Aharonov et al. [3] gave a QMA-complete family of local
Hamiltonians on a 1D line with d = 12, later improved to d = 8 by Hallgren, Nagaj
and Narayanaswami [24]; Gottesman and Irani [23] gave a QMAEXP-complete family
of translationally invariant Hamiltonians on a 1D line with d = O(106), later improved
to d ≈ 40 by Bausch, Cubitt and Ozols [4]. The local dimension has been reduced even
further to d = 4, for a translationally invariant Hamiltonian on a 3D lattice [5]. We refer
to [7] for further examples, including the more general case where the local dimension
can vary across the system being considered. In all these cases, one fixes the dimension
and then carefully tunes the types of interactions used to achieve the desired result.
Here, by contrast, we begin with a fixed set of interactions and attempt to determine the
complexity of Hamiltonians based on these interactions.

1.3. Overview of proof of Theorem 2. We now give an informal discussion of our LA-
universality classification result (Fig. 1). The majority of the work to prove Theorem 2
is taken up by the special case of 2-local interactions, and sets S containing only one
interaction. To prove universality of an interaction h, we use simulations: showing that
an interaction known to be universal [16,17] can be implemented using Hamiltonians
consisting of h terms and 1-local terms. Our simulations are all based on perturbative
gadgets, as introduced in [28] and used for example in [10,17,36], to effectively imple-
ment one Hamiltonian within the ground space of another. For example, a type of gadget
we often use is a so-called mediator gadget. In this type of gadget, one or more ancilla
(“mediator”) qudits are added to the system. Strong interactions within the mediator qu-
dits effectively project these qudits into a fixed state. Then weaker interactions between
the mediator and original qudits implement effective interactions between the original
qudits. The interactions produced are determined rigorously via perturbation theory.

First we consider the special case of diagonal interactions with 2-local rank � 2,
where the 2-local rank of an interaction h is informally defined as follows: Writing
h = h′ + 1-local terms, and h′ = ∑a,b MabT a ⊗ T b for some basis T a of Hermitian
matrices, the 2-local rank of h is the rank of M . (For example, h = X ⊗ X + Y ⊗ I has
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2-local rank 1.) We can think of diagonal matrices symmetric under qudit interchange
and with 2-local rank 2 as being of the form D⊗ D + E ⊗ E for some diagonal matrices
D and E . To show that such interactions are universal (a similar argument works for
non-symmetric interactions), we use our free 1-local terms to apply a heavy interaction
to each qudit which effectively projects it into a 2-dimensional subspace. Note that even
though D and E commute, this need not be the case for the corresponding projected
qubit interactions. This allows us to generate a 2-qubit effective interaction within this
subspace which is universal [17].

Remainingwithin the special case of diagonal interactions, the next step is to consider
those with 2-local rank 1, which are of the form A ⊗ A. To deal with this case, we split
into two parts. When A has at least 3 distinct eigenvalues, we design a gadget using
an additional qudit to implement the effective interaction A ⊗ A2 + A2 ⊗ A, which is
universal from the previous case.When A has 2 distinct eigenvalues, but is not of the form
a|ψ〉〈ψ |+bI , we show that another gadget can be used to simulate an interaction B⊗ B
where B has 3 distinct eigenvalues. For the remaining diagonal case—interactions of the
form A ⊗ A for A = a|ψ〉〈ψ | + bI—we show that local unitary rotations can be used
to transform any Hamiltonian built of such interactions into a stoquastic Hamiltonian,
so we cannot expect this case to be universal.

We then move on to non-diagonal interactions. We first consider those of the form
A⊗ A+ B⊗ B for some B that does not commute with A (otherwise we would be in the
diagonal case). For all such interactions, we show there exists a gadget which projects
the interaction onto a 2-qubit subspace on which the resulting interaction is universal.
The non-commutativity makes this task simpler than in the diagonal case. The next step
is interactions with 2-local rank � 2, but not of the form A ⊗ A + B ⊗ B. For these, we
show that one can always produce an effective interaction of the form A ⊗ A + B ⊗ B
using two rounds of simulation.

All 2-qudit interactions h can be handled using one of these lemmas. Considering
the interaction h′ formed by deleting the 1-local parts from h, we know that h is LA-
universal if the 2-local rank of h′ is � 2. If not, then h′ = A ⊗ B for some A and B.
Either A ⊗ B + B ⊗ A has 2-local rank � 2, or B is proportional to A. Either way, we
are in one of the previously considered cases.

The final step to complete the proof of Theorem 2 is to generalise to k-local inter-
actions for k > 2. To do so, we show that our free 1-local terms can be used to extract
2-local “sub-interactions” from the interactions we are given; this is a generalisation to
d > 2 of an analogous argument for qubits in [16]. Then either we can produce a uni-
versal sub-interaction, or all the sub-interactions of all interactions in S are proportional
to |ψ〉〈ψ |⊗2, up to 1-local terms. In the latter case, the overall interactions must all have
been of the form |ψ〉〈ψ |⊗�, so the whole Hamiltonian is stoquastic.

1.4. Overview of proof of Theorems 3, 5, 6 and 7. The techniques required to prove uni-
versality of interactions without free local terms are very different, and in general this
setting is much more challenging. Given the symmetry displayed by the interactions we
consider, we need to consider some notion of encoding in order to implement arbitrary
effective interactions. In the case of the SU (d) Heisenberg interaction, we proceed by
using a perturbative gadget to encode a qubit within the 2-dimensional ground space of a
system of 2d qudits; this generalises a similar (but significantly simpler) gadget used for
the case d = 2 in [17]. Interactions across pairs of qudits within the gadget implement
effective X and Z interactions, while interactions across two gadgets can be used to im-
plement a non-trivial 2-qubit interaction, which is enough to prove universality using the
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results of [17,38]. In order to analyse the gadget’s behaviour, we need to use the repre-
sentation theory of the Lie algebra su(d), and in particular analysis of quadratic Casimir
operators [20],which are operators of the form

∑
a R(T a)R(T a) for some representation

R of the generators T a of su(d). The Hamiltonian corresponding to the SU (d) Heisen-
berg interaction on the complete graph on k qudits turns out to have a close connection
to the Casimir operator corresponding to the representation R(T a) =∑k

i=1 T
a
i , whose

spectral properties are well-understood, and which has beautiful algebraic features that
enable suitable gadget weights to be determined for any d.

Theorem 5 is proven using a gadget that shows that, when P is the projector onto
an entangled state of two qudits, {P}-Hamiltonians can simulate {P ′}-Hamiltonians for
some P ′ = |ψ ′〉〈ψ ′| where either |ψ ′〉 is an entangled state of two qubits, in which
case universality follows from Theorem 1; or |ψ ′〉 = 1√

d

∑
i |i〉|i〉, in which case uni-

versality can be shown to follow from universality of the SU (d)-Heisenberg interaction
(Theorem 3).

The gadget for the SU (2) Heisenberg interaction h also relies on properties of the
corresponding Casimir operator, but is more complicated than the SU (d) case. Here the
key technical step is to give a gadget that allows h2 interactions to be simulated, given
access to h interactions; once this is achieved, it is not too hard to show that for any d, this
allows the SU (2) Heisenberg interaction to be simulated in local dimension 3 (qutrits).
Applying the h 
→ h2 gadget again, we can produce the interaction h+h2, which (in local
dimension 3) is the same as the SU (3) Heisenberg interaction, and hence universal. The
analysis of this gadget depends on fourth-order perturbation theory, for which we need
to prove a new general simulation lemma based on the Schreiffer–Wolff transformation
[9]. Previous work gave general simulation lemmas for up to third-order perturbations
[10], but extending this line of argument to fourth-order is more complex technically;
in particular, there are non-trivial interference effects between different gadgets to take
into account. We thus hope that this result will find other applications elsewhere.

We note that higher order perturbation theory has been considered before in the
literature in slightly different settings, mostly in a frameworkwhere only the ground state
energy is reproduced; for example [27] considers perturbation theory at arbitrary order.
Although the contribution of the fourth order term in a Schreiffer–Wolff perturbative
series has been considered before [12], we are not aware of any explicit demonstration
of how the interactions must be chosen such that this fourth order term dominates as
in Lemma 12. Cross gadget interference has previously been seen before for certain
parameter regimes of low strength Hamiltonians [11], where it can be easily shown to
disappear simply by increasing the strength of the interactions; whereas in Lemma 13,
the cross gadget terms are independent of the strength of the Hamiltonian.

Finally, for the remaining bilinear-biquadratic Heisenberg interactions in dimension
3, we use different gadgets depending on the value of θ , which we can assume is within
the range [0, π ] because we are free to choose the signs of interactions arbitrarily. When
θ ∈ (0, arctan 1/3)∪ (π/4, π) and θ 
= arctan 2, then there exists an entangled state |ψ〉
which is either the unique ground state or the unique highest excited state of h(θ). Using
a perturbative gadget to effectively project some qudits onto |ψ〉, we can obtain a new
interaction h(θ ′) for some θ ′ 
= θ . Taking a linear combination of these two interactions,
we can simulate the SU (3) Heisenberg interaction. When θ ∈ (arctan 1/3, arctan 5),
h(θ) has a 3-dimensional ground space. We encode a qutrit within this subspace of two
physical qutrits, and use h(θ) interactions across pairs of qutrits to simulate the SU (3)
Heisenberg interaction across logical qutrits. These ranges encompass all values of θ

except θ = arctan 1/3. In this last special case, h(θ) corresponds to the well-studied
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AKLT interaction [2]. Here the ground space of h(θ) is 4-dimensional, but we are able
to construct a mediator qutrit gadget which effectively projects 3 qutrits into the unique
ground state of a 3 qutrit AKLTHamiltonian. This again allows us to simulate the SU (3)
Heisenberg interaction.

2. Summary of Techniques

Next, we give the required definitions to state our results formally, describe previous
results that we use, and exemplify our results by giving a simple example of a simulation.
We then proceed to a full technical presentation of the remainder of our results.

2.1. Definitions. We first formally define the notions of simulation and universality
that we will use. For an arbitrary Hamiltonian H ∈ L(Cd), we let P��(H) denote the
orthogonal projector onto the subspace S��(H) := span{|ψ〉 : H |ψ〉 = λ|ψ〉, λ � �}.
We also let H ′|��(H) denote the restriction of some other arbitrary Hamiltonian H ′ to
S��(H), and write H |�� := H |��(H) and H�� := HP��(H). We let L(H) denote
the set of linear operators acting on a Hilbert space H, and use the standard notation
[A, B] := AB − BA and {A, B} := AB + BA for the commutator and anticommutator
of A and B, respectively.

Definition 1 (Special case of definition in [17]; variant of definition in [10]). We say
that H ′ is a (�, η, ε)-simulation of H if there exists a local isometry V =⊗i Vi , where
each isometry Vi acts on at most one qudit, such that:

1. There exists an isometry Ṽ such that Ṽ Ṽ † = P��(H ′) and ‖Ṽ − V ‖ � η;
2. ‖H ′

�� − Ṽ H Ṽ †‖ � ε.

We say that a familyF ′ of Hamiltonians can simulate a familyF of Hamiltonians if, for
any H ∈ F and any η, ε > 0 and � � �0 (for some �0 > 0, that depends only on H ),
there exists H ′ ∈ F ′ such that H ′ is a (�, η, ε)-simulation of H . We say that the simu-
lation is efficient if, in addition, for H acting on n qudits, ‖H ′‖ = poly(n, 1/η, 1/ε,�);
H ′ is efficiently computable given H , �, η and ε; and each isometry Vi maps to O(1)
qudits.

The first part of Definition 1 says that H can be mapped exactly into the ground space
of H ′ by some “encoding” isometry Ṽ which is close to a local isometry V . The second
part says that the low-energy part of H ′ is close to an encoded version of H . In [17] a
more general notion of encoding was used, which allowed for complex Hamiltonians
to be encoded as real Hamiltonians, for example; here we will not need this directly.
(However, as we make use of the results of [17], we do use this notion of encoding
indirectly.)

Definition 2 ([17]). We say that a family of Hamiltonians is universal if any (finite-
dimensional) Hamiltonian can be simulated by a Hamiltonian from the family. We say
that the universal simulator is efficient if the simulation is efficient for all k-local Hamil-
tonians, for constant k.

Here all simulations we develop will be efficient, so whenever we say “universal”,
we mean “efficiently universal” in the above sense.
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2.2. Perturbative gadgets. The main technique we will use to prove universality will
be the remarkably powerful concept of perturbative gadgets [28]. LetHsim be a Hilbert
space decomposed asHsim = H+ ⊕H−, and let 
± denote the projector ontoH±. For
any linear operator O on Hsim, write

O−− = 
−O
−, O−+ = 
−O
+, O+− = 
+O
−, O++ = 
+O
+. (4)

Throughout, let H0 be a Hamiltonian such that H0 is block-diagonal with respect to
the split H+ ⊕ H−, (H0)−− = 0, and λmin((H0)++) � 1, where λmin(H) denotes the
minimal eigenvalue of H . We write H−1 to denote the Moore–Penrose pseudoinverse,
when H is not an invertible matrix.

Slight variants of the following lemmas were shown in [10], building on previous
work [9,36]:

Lemma 8 (First-order simulation [10]). Let H0 and H1 be Hamiltonians acting on the
same space. Suppose there exists a local isometry V such that Im(V ) = H− and

V HtargetV
† = (H1)−−. (5)

Then Hsim = �H0+H1 (�/2, η, ε)-simulates Htarget, provided that� � O(‖H1‖2/ε+
‖H1‖/η).

Lemma 9 (Second-order simulation [10]). Let H0, H1, H2 be Hamiltonians acting on
the same space, such that: max{‖H1‖, ‖H2‖} � �; H1 is block-diagonal with respect
to the split H+ ⊕ H−; and (H2)−− = 0. Suppose there exists a local isometry V such
that Im(V ) = H− and

V HtargetV
† = (H1)−− − (H2)−+H

−1
0 (H2)+−. (6)

Then Hsim = �H0 +�1/2H2 + H1 (�/2, η, ε)-simulates Htarget, provided that � �
O(�6/ε2 + �2/η2).

Lemma 10 (Third-order simulation [10]). Let H0, H1, H ′
1, H2 be Hamiltonians acting

on the same space, such that: max{‖H1‖, ‖H ′
1‖, ‖H2‖} � �; H1 and H ′

1 are block-
diagonal with respect to the split H+ ⊕ H−; (H2)−− = 0. Suppose there exists a local
isometry V such that Im(V ) = H− and

V HtargetV
† = (H1)−− + (H2)−+H

−1
0 (H2)++H

−1
0 (H2)+− (7)

and also that

(H ′
1)−− = (H2)−+H

−1
0 (H2)+−. (8)

Then Hsim = �H0 +�2/3H2 +�1/3H ′
1 + H1 (�/2, η, ε)-simulates Htarget, provided

that � � O(�12/ε3 + �3/η3).
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These lemmas can be used to construct gadgets to simulate desired interactions via
a mixture of design and trial and error. The intuition for first order gadgets is fairly
straightforward: one just restricts to the groundspace of H0. For the higher order gadgets,
there is still the restriction to this subspace, but now the lower strength interactions
(H1, H2, etc.) multiply together, allowing the generation of more complex effective
interactions. The H−1

0 terms appear to complicate this, but in practice H0 can often be
chosen such that they are benign, for example when H0 is a projector.

We will often apply the simulation results in these lemmas to many individual in-
teractions within a larger overall Hamiltonian, in parallel. For the gadgets we will use,
it was shown in [17, Lemma 36] (following similar arguments in previous work, e.g.
[10,36]) that the overall simulation produced is what one would expect (i.e. a sum of the
individual simulated interactions, without unexpected interference between the terms)
at a cost of slightly larger interaction strengths. In addition, the simulations that we use
will either associate a fixed number of ancilla (“mediator”) qudits with each interaction,
or encode each logical qudit within a fixed number of physical qudits. In each such case,
the overall isometry V is easily seen to be a tensor product of local isometries as required
for Definition 1.

Later on, wewill need a new fourth-order simulation lemma.As this ismore technical
to state (and its proof has some additional complications involving interference),we defer
it to Sect. 3.

2.3. Example: the AKLT interaction. To see how the above simulation results can be
used to prove universality, we give a simple example of how the AKLT interaction [2]
can simulate the SU (3) Heisenberg interaction. The AKLT interaction hAKLT is defined
in local dimension d = 3 (spin 1) by hAKLT := 3h+h2, where h is the SU (2)Heisenberg
interaction defined in (3).

Lemma 11. The AKLT interaction hAKLT := 3h + h2 is universal.

Proof. We will use a gadget construction to show that hAKLT can simulate the SU (3)
invariant interaction h + h2, which is shown to be universal in Theorem 3. We will
use Lemma 9 and construct a second-order mediator qutrit gadget involving 3 mediator
qutrits labelled 3, 4, 5 that will result in an effective interaction between qutrits 1 and 2.
Let H0 ∈ L((Cd)⊗5) act trivially on qudits 1 and 2 as H0 = hAKLT34 +hAKLT45 +hAKLT35 +6I .
The projector onto the ground space of H0 is of the form I12 ⊗ |ψ〉〈ψ |345 where

|ψ〉 = 1√
6

(|012〉 + |120〉 + |201〉 − |021〉 − |210〉 − |102〉)

is the completely antisymmetric state on 3 qutrits. Let V = I12 ⊗|ψ〉345 be the isometry
that maps |φ〉 
→ |φ〉12|ψ〉345 and satisfies VV † = 
. Let H2 = α2(
hAKLT13 + hAKLT23 − 8

3 I
)
for some α2 ∈ R. The interaction graph of this gadget is pictured

in Fig. 2.
Then one can check (either by hand or using a computer algebra package) that


H2
 = 0 and

−
H2H
−1
0 H2
 = −2α2

2

27

(
23h12 + h212 +

136

3
I

)

.
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3

4 5

1 2

Fig. 2. Interaction graph of the gadget used in Lemma 11. Thick lines indicate the heavy interactions of H0,
and white circles denote the mediator qutrits (3, 4, 5). The gadget produces an effective interaction between
the remaining qutrits (1, 2)

Let H1 = α1hAKLT12 for some α1 ∈ R so that 
H1
 = α1hAKLT12 
. Then choosing
α1 = 22 and α2 = √

27 we have


H1
 − 
H2H
−1
0 H2
 = V

(
20(h12 + h212) − 272

3
I

)
V †

and so by Lemma 9 (second order), we can simulate the interaction 20(h12 +h212)− 272
3 I ,

which one can check is the SU (3) Heisenberg interaction as desired, up to rescaling
and deletion of an identity term. Note that this can only produce positively-weighted
interactions, but Hamiltonians of this restricted form are indeed proven universal in
Theorem 3. ��

3. Fourth-Order Perturbative Gadgets

We will need the following lemma, which we prove for the first time here (and hence
state a bit more generally than the above simulation lemmas, although we will only need
ε = 0 on the right-hand side of (9)). The proof is technical, and hence (as with the
subsequent lemma) deferred to Appendix A.

Lemma 12 (Fourth-order simulation). Let H0, H1, H2, H3, H4 be Hamiltonians acting
on the same space, such that: max{‖H1‖, ‖H2‖, ‖H3‖, ‖H4‖} � �; H2 and H3 are
block-diagonal with respect to the splitH+ ⊕ H−; (H4)−− = 0. Suppose there exists a
local isometry V such that Im(V ) = H− and

‖V HtargetV
† − 
−

(
H1 + H4H

−1
0 H2H

−1
0 H4 − H4H

−1
0 H4H

−1
0 H4H

−1
0 H4

)

−‖ � ε/2

(9)

and also that

(H2)−− = 
−H4H
−1
0 H4
− and (H3)−− = −
−H4H

−1
0 H4H

−1
0 H4
−. (10)

Then Hsim = �H0 + �3/4H4 + �1/4H3 + �1/2H2 + H1 (�/2, η, ε)-simulates Htarget,
provided that � � O(�20/ε4 + �4/η4).

For fourth-order gadgets, unlike the gadgets analysed in previous work, it is unfortu-
nately not the case that one can disregard interference between different gadgets applied
in parallel; there are additional terms generated by interference between gadgets. We
calculate this interference in the following lemma.
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Lemma 13. Consider a Hilbert space H = H0 ⊗⊗i�1Hi with multiple fourth-order

mediator gadgets labelled by i � 1, each with heavy Hamiltonian H (i)
0 which acts

non-trivially only on Hi , and interaction terms H (i)
1 , H (i)

2 , H (i)
3 , H (i)

4 which act non-

trivially only onHi ⊗H0. Let 

(i)
− denote the projector onto the ground space of H (i)

0 ,

and 

(i)
+ = I − 


(i)
− . Suppose that for each i , these terms satisfy the conditions of

Lemma 12; in particular, H (i)
0 


(i)
− = 0, H (i)

2 and H (i)
3 are block diagonal with respect

to the 

(i)
− , 
(i)

+ split, 
(i)
− H (i)

4 

(i)
− = 0 and



(i)
− H (i)

2 

(i)
− = 


(i)
− H (i)

4 (H (i)
0 )−1H (i)

4 

(i)
− and



(i)
− H (i)

3 

(i)
− = −


(i)
− H (i)

4 (H (i)
0 )−1H (i)

4 (H (i)
0 )−1H (i)

4 

(i)
− .

For each j ∈ {0, . . . , 4}, let Hj =∑i H
(i)
j , and let� � max{‖H1‖, ‖H2‖, ‖H3‖, ‖H4‖}.

Suppose there exists a local isometry V such that Im(V ) is the ground space of H0
and also ‖V HtargetV † − M‖ � ε/2, where

M =
∑

i


−
(
H (i)
1 + H (i)

4 (H (i)
0 )−1H (i)

2 (H (i)
0 )−1H (i)

4

−H (i)
4 (H (i)

0 )−1H (i)
4 (H (i)

0 )−1H (i)
4 (H (i)

0 )−1H (i)
4

)

−

+
∑

i 
= j


−
(
H (i)
4 (H (i)

0 )−1H ( j)
4 (H ( j)

0 )−1H ( j)
4 (H (i)

0 )−1H (i)
4

− H (i)
4 (H (i)

0 )−1H ( j)
4 (H (i)

0 + H ( j)
0 )−1H ( j)

4 (H (i)
0 )−1H (i)

4

− H (i)
4 (H (i)

0 )−1H ( j)
4 (H (i)

0 + H ( j)
0 )−1H (i)

4 (H ( j)
0 )−1H ( j)

4

)

−

and 
− is the projector onto the ground space of H0.
Then�H0 +�3/4H4 +�1/4H3 +�1/2H2 +H1 (�/2, η, ε) simulates Htarget, provided

that � � O(�20/ε4 + �4/η4).

Note that the first line of the simulated Hamiltonian is what one would expect when
summing the contributions of each of the gadgets separately. The other terms are in
general not zero and may be thought of as the cross-gadget interference.

We will only need to use Lemma 13 via the following simplified corollary.

Corollary 14. Suppose the conditions of Lemma 13 hold, and in addition H (i)
0 H (i)

4 
− =
H (i)
4 
− for all i . Then the expression for M is given by

M =
∑

i


−
(
H (i)
1 + H (i)

4 H (i)
2 H (i)

4 − H (i)
4 H (i)

4 (H (i)
0 )−1H (i)

4 H (i)
4

)


− − 1

2

∑

i< j


−
[
H (i)
4 , H ( j)

4

]2

−

Proof. Fix a pair i 
= j , and let H ( j)
4 =∑α Aα ⊗ Bα where Aα acts non-trivially only

onH j and Bα acts non-trivially only onH0. By the additional assumption of the present
corollary,
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H (i)
0 H (i)

4 H ( j)
4 
− = H (i)

0 H (i)
4

(
∑

α

Aα ⊗ Bα

)

− =

∑

α

(Aα ⊗ I )H (i)
0 H (i)

4 
−(I ⊗ Bα) (11)

=
∑

α

(Aα ⊗ I )H (i)
4 
−(I ⊗ Bα) = H (i)

4

(
∑

α

Aα ⊗ Bα

)

− (12)

= H (i)
4 H ( j)

4 
− (13)

where it is possible to commute Aα and Bα to the front and back respectively because
H (i)
0 ,H (i)

4 act trivially onH j and
− acts trivially onH0.WealsohaveH ( j)
0 H (i)

4 H ( j)
4 
− =

H (i)
4 H ( j)

0 H ( j)
4 
− = H (i)

4 H ( j)
4 
− since [H ( j)

0 , H (i)
4 ] = 0.

Therefore (H (i)
0 + H ( j)

0 )−1H (i)
4 H ( j)

4 
− = 1
2H

(i)
4 H ( j)

4 
−, so the expression for the
cross-gadget interference from Lemma 13 simplifies to

∑

i 
= j


−
(
H (i)
4 H ( j)

4 H ( j)
4 H (i)

4 − 1

2

(
H (i)
4 H ( j)

4 H ( j)
4 H (i)

4 + H (i)
4 H ( j)

4 H (i)
4 H ( j)

4

))

−

= 1

2

∑

i 
= j


−
(
H (i)
4 H ( j)

4 H ( j)
4 H (i)

4 − H (i)
4 H ( j)

4 H (i)
4 H ( j)

4

)

−

= −1

2

∑

i< j


−
[
H (i)
4 , H ( j)

4

]2

−

where we note that the sum over i 
= j includes both cases i < j and i > j . ��
An example of the condition H (i)

0 H (i)
4 
− = H (i)

4 
− holding is when H (i)
0 is a

projector. In this case the condition (from Lemma 13) that 

(i)
− H (i)

4 

(i)
− = 0 ensures

that H (i)
4 maps out of the ground space of H (i)

0 and into the +1 eigenspace of H (i)
0 .

4. LA-Universal Hamiltonians

We first prove LA-universality (or otherwise) of various classes of interactions, before
bringing these results together into a full classification theorem by showing that every
interaction fits into one of these classes. Before embarking on the proof, we observe that
for any interaction h, we can delete its 1-local part by using our free 1-local terms. This
corresponds to replacing h with

h′ = h − I

d
⊗ Tr1(h) − Tr2(h) ⊗ I

d
+ Tr(h)

I ⊗ I

d2
. (14)

We call h′ the 2-local part of h.

Definition 3. Let {T a}d2a=1 be a basis of Hermitian d × d matrices, and let the 2-local
part of h be h′ = ∑a,b MabT a ⊗ T b for some real d2 × d2 matrix M . We define the
2-local rank of h to be the rank of M .

Note that this definition is independent of the choice of basis T a . Suppose we instead
write h′ =∑a,b M̃abSa ⊗ S′b for two other bases {Sa}a and {S′b}b of Hermitian d × d
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matrices. Since these are bases there must exist invertible matrices R and R′ such that
T a =∑b RabSa =∑b R

′
abS

′b. Then

h′ =
∑

a,b

M̃abS
a ⊗ S′b

=
∑

c,d

McdT
c ⊗ T d =

∑

a,b

(
∑

c,d

RcaMcd Rdb)S
a ⊗ S′b

and thus rank(M̃) = rank(RT MR′) = rank(M) since R and R′ are both full rank.
We comment on our use of subscript notation. For a local operator such as a 2-local

interaction h, the subscript notation denotes which subsystem the interaction acts on, so
hi j denotes the interaction h acting on qudits i and j . However for amatrix of coefficients
such as the matrix M above, the subscript notation is used to index the entries of the
matrix, so Mab denotes the entry in the ath row and bth column of the matrix M .

We now move on to the first case of the proof, diagonal interactions.

4.1. Interactions diagonalisable by local unitaries.

Lemma 15. Let h be a nonzero diagonal 2-qudit interaction. If the 2-local rank of h is
� 2, then h is LA-universal; otherwise, h is LA-stoquastic-universal.

Proof. First note that we can use 1-local terms to replace h with its 2-local part, as in
(14). This still results in a diagonal interaction and allows us to assume that Tr1(h) =
0 = Tr2(h). Let h be given by h =∑d

i, j=1 Ai j |i〉〈i | ⊗ | j〉〈 j | for some d × d matrix A.
Then the 2-local rank of h is given by rank(A). Next observe that we can assume that the
interaction h is either symmetric or antisymmetric with respect to permuting the qudits
on which it acts, because we can apply it in either direction, with positive or negative
weights. So we obtain either hi j + h ji or hi j − h ji , corresponding to mapping A either
to A + AT or A − AT . This cannot affect the condition on the rank of A, because

rank(A) = rank((A + AT ) + (A − AT )) � rank(A + AT ) + rank(A − AT );
if rank(A) � 2, then either max{rank(A+ AT ), rank(A− AT )} � 2, or rank(A+ AT ) =
rank(A − AT ) = 1; but this latter possibility cannot occur because A − AT is skew-
symmetric, so rank(A − AT ) 
= 1.

We will apply the first order perturbation theory Lemma 8 by using heavily-weighted
local terms to effectively project each subsystem on which h acts into a 2-dimensional
subspace, whichwill encode a qubit. Such a projection can be described by a 2×d matrix
P . We aim to produce an effective 2-qubit interaction h′ which is universal. As we can
apply arbitrary local terms, we can project each qudit onto an arbitrary 2-dimensional
subspace S by choosing a “heavy” Hamiltonian H0 = ∑i H

P
i in Lemma 8 such that

HP has S as its ground space. The local isometry V in the lemma is just given by P†.
The result of projecting h is the 2-qubit interaction

h′ =
d∑

i, j=1

Ai j

(
P|i〉〈i |P†

)
⊗
(
P| j〉〈 j |P†

)
=

d∑

i, j=1

Ai j

(
3∑

k=0

βikσ
k

)
⊗
(

3∑

�=0

β j�σ
�

)
,

for some real coefficients βik such that

βik = 1

2
Tr[P|i〉〈i |P†σ k].
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Reordering the sums, we obtain

h′ =
3∑

k,�=0

⎛

⎝
d∑

i, j=1

βik Ai jβ j�

⎞

⎠ σ k ⊗ σ� =
3∑

k,�=0

〈βk |A|β�〉σ k ⊗ σ�,

where we define the unnormalised vector |βk〉 = ∑d
i=1 βik |i〉. We can write down

explicit expressions for these vectors as

βi1 = Re(P∗
1i P2i ), βi2 = Im(P∗

1i P2i ), βi3 = 1

2

(
|P1i |2 − |P2i |2

)
.

It was shown in [16,17, Theorem 44] that an interaction of the form
∑3

k,�=1 Mk�σ
k ⊗σ�

is universal if the 3 × 3 matrix M has rank at least 2. Our goal will be to choose the
vectors |βk〉 to achieve this.

If A is symmetric, we can expand it as a weighted sum of projectors onto real,
orthonormal eigenvectors |ηi 〉; as rank(A) � 2, there exist |η1〉, |η2〉 with nonzero
eigenvalues. If A is skew-symmetric, there exist real, orthonormal vectors |ηi 〉 such that
〈ηi |A|ηi 〉 = 0 for all i , and 〈η1|A|η2〉 = −〈η2|A|η1〉 
= 0 (see e.g. [43]). Hence, in
either the symmetric or skew-symmetric case, in order to achieve that M has rank at
least 2, it is sufficient to have |β1〉 = |η1〉 and |β3〉 = |η2〉. This fixes a 2×2 submatrix of
M to be either diagonal (and rank 2), or proportional to

(
0 1−1 0

)
. So we want to produce

a matrix P that achieves βi1 = 〈i |η1〉, βi3 = 〈i |η2〉 for all i .
Ifwe canfind a realmatrix P that achieves this, it will automatically have orthonormal

rows (up to an overall normalising constant), and also the entries of M outside a 2 × 2
submatrix will be zero. To see this, first note that |η1〉 and |η2〉 are orthogonal to |+〉 =
∑d

i=1 |i〉. This holds because Tr1(h) =∑d
j=1

(∑d
i=1 Ai j

)
| j〉〈 j | = 0, and similarly for

Tr2(h), so A|+〉 = AT |+〉 = 0. So as |β1〉 = |η1〉 and |β3〉 = |η2〉,∑i βi1 =∑i βi3 = 0,
implying that

∑
i P1i P2i = 0 and

∑
i P

2
1i =∑i P

2
2i . We can find an explicit expression

for each element of P by solving the simultaneous equations

P1i P2i = γi ,
1

2

(
P2
1i − P2

2i

)
= δi ,

where we write γi = 〈i |η1〉, δi = 〈i |η2〉. It can readily be verified that the following is
a valid solution:

⎧
⎪⎪⎨

⎪⎪⎩

P1i = 0, P2i = √−2δi if γi = 0 and δi � 0

P1i =
√

δi +
√

γ 2
i + δ2i , P2i = γi√

δi+
√

γ 2
i +δ2i

otherwise.

Thus h is LA-universal. This completes the proof of the case rank(A) � 2. If rank(A) =
1, we know that there exists an eigenvector |η1〉 with nonzero eigenvalue, and can take
|η2〉 to be an arbitrary orthogonal vector. Almost all the above steps go through, but
we end up producing a matrix M such that rank(M) � 1. This case is known to be
stoquastic-universal [10,17]. ��
Lemma 16. Let h = A ⊗ A be a 2-qudit interaction such that A has three distinct
eigenvalues. Then h is LA-universal.
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3
1 2

Fig. 3. Interaction graph of the gadget used in Lemma 16. H0 acts on the mediator qudit 3, which results in
an effective interaction between the qudits 1 and 2

Proof. We work in the eigenbasis of A, so that A = ∑i λi |i〉〈i | . With the addition of
1-local terms of the form μA⊗ I +μI ⊗ A +μ2 I ⊗ I in order to complete the square to
make (A+μI )⊗(A+μI ), it is possible to shift the spectrumof A by a constantμ. Since A
has three distinct eigenvalues, we may therefore assume wlog (relabelling eigenvectors
if necessary) that A has eigenvalues λ0 < 0 and λ1 > 0 such that λ0 + λ1 > 0.

We will use a third order mediator qudit gadget involving a mediator qudit labelled
3, which will simulate an interaction between two other qudits 1 and 2. The resulting
effective interaction will be of the form shown to be universal in Lemma 15. Let H2 =
A1A3 + A2A3 and let H0 = I ⊗ (I − |ψ〉〈ψ |) in L((Cd)⊗3) act non-trivially only on
the mediator qudit 3, where |ψ〉 = √

λ1|0〉 + √−λ0|1〉 . The interaction graph of this
gadget is pictured in Fig. 3.

Note that |ψ〉 has been chosen so that

〈ψ |A|ψ〉 = 0, 〈ψ |A2|ψ〉 > 0, 〈ψ |A3|ψ〉 > 0, (15)

which implies that (H2)−− = 〈ψ |A|ψ〉(A1 + A2) ⊗ |ψ〉〈ψ | = 0.
Let H ′

1 = 〈ψ |A2|ψ〉(2A1A2 + A2
1 + A2

2) so that

(H2)−+H
−1
0 (H2)+− = 〈ψ |A2|ψ〉(A1 + A2)

2 ⊗ |ψ〉〈ψ | = (H ′
1)−−

as required, where we have used the fact that H−1
0 = H0 (since H0 is a projector)

and H0A|ψ〉 = A|ψ〉 (since A|ψ〉 and |ψ〉 are orthogonal as shown in (15)). Finally
we calculate the third order term: (H2)−+H

−1
0 (H2)++H

−1
0 (H2)+− = 〈ψ |A3|ψ〉(A1 +

A2)
3 ⊗ |ψ〉〈ψ |.
Let H1 = −(A3

1 + A3
2)〈ψ |A3|ψ〉 and let V : |φ〉 → |φ〉12 ⊗ |ψ〉3 so that

(H2)−+H
−1
0 (H2)+− + (H1)−− = V

(
〈ψ |A3|ψ〉(A1 ⊗ A2

2 + A2
1 ⊗ A2)

)
V †

Therefore by Lemma 10 (third order) we can simulate an interaction proportional to
A ⊗ A2 + A2 ⊗ A which is universal by Lemma 15 unless A2 = λA + μI for some
λ,μ ∈ R. But if A has three distinct eigenvalues, then it cannot be a root of any
polynomial of degree 2. ��
Lemma 17. Let h = A ⊗ A be a 2-qudit interaction such that A is not of the form
a|ψ〉〈ψ | + bI for any |ψ〉 ∈ C

d , and a, b ∈ R. Then h is LA-universal.

Proof. By assumption A is not proportional to the identity so has at least two distinct
eigenvalues. If A has three distinct eigenvalues then h is LA-universal by Lemma 16.
It remains to consider the case where A has exactly two eigenvalues λ1 
= λ2. Since
A 
= a|ψ〉〈ψ | + bI , there must be at least two orthonormal eigenvectors for each of
the two eigenvalues of A, and it must be the case that d � 4. Let |ψi 〉 and |φi 〉 be
orthonormal eigenvectors with eigenvalue λi for i ∈ {1, 2}.

Wewill use Lemma 8 (first order) to effectively project into a 3-dimensional subspace
of each qudit, such that the effective 2-qutrit interaction is universal by Lemma 16.
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Let P be the projector onto S = span{|ψ1〉, |ψ2〉, |φ1〉+|φ2〉√
2

}, and let H0 = 2I −
P1 − P2 ∈ L((Cd)⊗2) be a Hamiltonian on two qudits with groundspace S⊗2. Let
V : (C3)⊗2 → (Cd)⊗2 be the isometry that maps onto the groundspace of H0,

V =
(

|ψ1〉〈0| + |ψ2〉〈1| +
( |φ1〉 + |φ2〉√

2

)
〈2|
)⊗2

.

Let H1 = A ⊗ A so that

(H1)−− = (PAP)⊗2 = λ1|ψ1〉〈ψ1| + λ2|ψ2〉〈ψ2| + λ1 + λ2

2

( |φ1〉 + |φ2〉√
2

)( 〈φ1| + 〈φ2|√
2

)

= V

(
λ1|0〉〈0| + λ2|1〉〈1| + λ1 + λ2

2
|2〉〈2|

)⊗2

V †.

Therefore by Lemma 8 (first order), we can simulate an interaction B ⊗ B, where B is a
qutrit operatorwith three distinct eigenvaluesλ1, λ2,

λ1+λ2
2 ; and so B⊗B is LA-universal

by Lemma 16. ��
We next show that the one remaining case that is not covered by Lemma 17 corre-

sponds to stoquastic Hamiltonians, so is unlikely to be universal.

Lemma 18. Let h = A ⊗ A be a 2-qudit interaction where A is of the form A =
a|ψ〉〈ψ | for some |ψ〉 ∈ C

d and a 
= 0. Then any Hamiltonian of the form
∑

i M
(i) +∑

j 
=k α jkh jk—where M (i) are arbitrary single qudit operators acting only on qudit i ,
h jk refers to the interaction h applied to qudits j and k, and α jk ∈ R—is equivalent to
a stoquastic Hamiltonian under conjugation by a local unitary operation.

Proof. By conjugating h by a local unitaryU⊗U and rescaling, wemay assumewithout
loss of generality that A = |0〉〈0|. For each qudit, we demonstrate the existence of a local
unitary acting on that qudit which leaves |0〉 unchanged, but rotates the 1-local termM (i)

acting on that qudit into a stoquastic term (i.e. non-positive off-diagonal entries). First we
conjugate by a unitaryU1 = |0〉〈0|+Ũ where Ũ acts only on S = span{|1〉, . . . |d − 1〉},
such that U1M (i)U †

1 is diagonal on the space S; that is,

U1M
(i)U †

1 =
d−1∑

j=0

w j | j〉〈 j | +
d−1∑

j−1

a j |0〉〈 j | + a∗
j | j〉〈0|.

Write a j = |a j |eiθ j and define U2 = |0〉〈0| +∑d−1
j=1 −eiθ j | j〉〈 j | so that

U2U1M
(i)U †

1U
†
2 =

d−1∑

j=0

w j | j〉〈 j | +
d−1∑

j=1

−|a j |
(|0〉〈 j | + | j〉〈0|).

This operator is clearly stoquastic. ��
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4.2. Interactions not necessarily diagonalisable by local unitaries. Having dealt with
the diagonal case, we now need to consider other types of interactions. The first is
interactions of the form A ⊗ A + B ⊗ B.

Lemma 19. Let A and B be single-qudit Hermitian operators such that the operators
A′ = A − Tr(A)I/d and B ′ = B − Tr(B)I/d are linearly independent, and write
h = A ⊗ A + B ⊗ B. Then h is LA-universal.

Proof. If A and B commute, then A and B are simultaneously diagonalisable by the same
unitary U . Conjugating h by U ⊗ U , we have a diagonal 2-local interaction with Pauli
rank 2 (since A′ and B ′ are linearly independent), so the result follows from Lemma 15.
So suppose A and B do not commute. Then there must exist an eigenstate |ψ〉 of A with
eigenvalue λ such that AB|ψ〉 
= BA|ψ〉 = λB|ψ〉. So B|ψ〉 is not in the eigenspace
of A corresponding to eigenvalue λ, and there must exist an orthogonal eigenstate |φ〉
of A with distinct eigenvalue μ 
= λ, such that 〈φ|B|ψ〉 
= 0. By multiplying |φ〉 by a
phase eiθ , we may assume 〈φ|B|ψ〉 is real.

Wewill apply a heavy term I −P to each of the qudits on which h acts, where P is the
projector onto the space S = span{|ψ〉, |φ〉} . Then we can use first-order perturbation
theory (Lemma 8) to produce a logical 2-qubit interaction within the S⊗2 subspace.

Let V : C2 → C
d be the isometry V = |ψ〉〈0|+ |φ〉〈1|, which maps onto S such that

PAP = V (λ|0〉〈0| + μ|1〉〈1|) V † = V

(
λ − μ

2
Z +

λ + μ

2
I

)
V †,

PBP = V

(
aZ + 〈φ|B|ψ〉X +

〈ψ |B|ψ〉 + 〈φ|B|φ〉
2

I

)
V †,

where a = (〈ψ |B|ψ〉 − 〈φ|B|φ〉)/2.
Let H0 = I ⊗ (I − P) + (I − P) ⊗ I ∈ L((Cd)⊗2) be a Hamiltonian on two qudits,

with ground space S⊗2. Let H1 = h so that

(H1)−− = PAP ⊗ PAP + PBP ⊗ PBP = V⊗2h′(V⊗2)†

for some two-local qubit interaction h′ = ∑Mi jσ
i ⊗ σ j + 1-local terms, where M is

the matrix defined by

M =
⎛

⎝
〈φ|B|ψ〉2 0 a〈φ|B|ψ〉

0 0 0
a〈φ|B|ψ〉 0 a2 + (λ − μ)2/4

⎞

⎠ ,

which has rank 2 whenever 〈φ|B|ψ〉(λ −μ) 
= 0, which holds here due to the choice of
|φ〉 and |ψ〉. As shown in [16,17, Theorem 44], any 2-local qubit interaction with Pauli
rank 2 is universal. Hence h is LA-universal. ��

Next we use Lemma 19 to deal with almost all other types of interactions.

Lemma 20. Let h be a 2-qudit interaction with 2-local rank� 2. Then h is LA-universal.

Proof. This proof consists of two gadgets. We use a first order gadget to project into a
two-dimensional subspace of a qudit to produce an effective interaction F between a
qudit and a qubit. Second we use the interaction F in a mediator qubit gadget, pictured
in Fig. 4, to produce an effective 2 qudit interaction of the form shown to be universal
in Lemma 19.
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3
1 2

Fig. 4. Interaction graph of one of the gadgets in the proof of Lemma 20. H0 acts non-trivially only on the
mediator qubit 3, and the gadget results in an effective interaction between the qudits 1 and 2

Let h′ be the 2-local part of h, given by h′ =∑a,b MabT a ⊗ T b where rank(M) �
2 and {T a}a is a basis for the space of of traceless Hermitian matrices. Let S be a
two-dimensional subspace of Cd spanned by orthonormal vectors |ψ〉 and |φ〉 to be
chosen later. Let P be the projector onto S and let V : C

2 → C
d map onto S by

V = |ψ〉〈0| + |φ〉〈1|, so that VV † = P .
Let H0 = I ⊗ (I − P) ∈ L((Cd)⊗2) and let H1 = h, then

(H1)−− = (I ⊗ V )

⎛

⎝
∑

a,b

MabT
a ⊗ V †T bV

⎞

⎠ (I ⊗ V )†

Then by Lemma 8 (first order), we can simulate an interaction F between a qudit and a
qubit, where F =∑a,b MabT a ⊗ V †T bV .

Now we can assume we have access to F interactions, and we design another gadget,
this time using a second-order mediator gadget involving two qudits 1, 2 and a mediator
qubit 3 (of local dimension 2). We choose H0 = I12 ⊗ |1〉〈1| to act non-trivially only
on the mediator qubit, and H2 = F13 + F23; the interaction graph is pictured in Fig. 4.
The second-order term is given by

− (H2)−+H
−1
0 (H2)+− = −(I ⊗ |0〉〈0|)(F13 + F23)(I ⊗ |1〉〈1|)(F13 + F23)(I ⊗ |0〉〈0|)

= −
∑

a,b,c,d

Mab(T
a
1 + T a

2 )Mcd(T
c
1 + T c

2 ) ⊗
(
|0〉〈0|V †T bV |1〉〈1|V †T dV |0〉〈0|

)

= −
∑

a,b,c,d

MabMcd〈ψ |T b|φ〉〈φ|T d |ψ〉(T a
1 + T a

2 )(T c
1 + T c

2 ) ⊗ |0〉〈0|

= −V ′
[
∑

a,c

(Rac + Rca)T
a
1 T

c
2 + 1-local terms

]
(V ′)†

where V ′ = I12 ⊗ |0〉 and R is a (d2 − 1) × (d2 − 1) matrix with entries Rac =∑
b,d MabMcd〈ψ |T b|φ〉〈φ|T d |ψ〉. By Lemma 9 (second order), and choosing H1 to

cancel out the unwanted 1-local terms (and add additional 1-local terms if desired), we
can simulate the interaction −∑a,c(Rac + Rca)T a ⊗ T c.

Note that Rac = 〈ψ |Ka |φ〉〈φ|Kc|ψ〉where Ka =∑b MabT b, so R is positive semi-
definite and rank 1. Since R + RT is symmetric, if we can choose |ψ〉 and |φ〉 such that
rank(R+ RT ) = 2, then the simulated interaction must be of the form−(A⊗ A+B⊗B)

and so is LA-universal by Lemma 19.
Suppose for a contradiction that rank(R + RT ) 
= 2 for any choice of |ψ〉 and |φ〉.

Since rank(R) = 1 = rank(RT ), this can only happen if R = RT . That is, for any a
and c and any choice of orthogonal normalised states |ψ〉 and |φ〉,

〈ψ |Ka |φ〉〈φ|Kc|ψ〉 = 〈ψ |Kc|φ〉〈φ|Ka |ψ〉. (16)

By the definition of Ka and the fact that M has rank at least 2, there must be a choice of
a and c such that Ka and Kc are linearly independent. Fix this choice of a and c for the
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remainder of the proof. The contradiction we will show is that Eq. (16) implies that Ka

and Kc are not linearly independent.
Fix |ψ〉 and extend it to an orthonormal basis Bψ = {|ψ〉, |e1〉, . . . , |ed−1〉}. Then tak-

ing |φ〉 = |ei 〉 for any i , Eq. (16) holds. Taking the sumover all i wehave 〈ψ |KaKc|ψ〉 =
〈ψ |KcKa |ψ〉. Since |ψ〉 was arbitrary, we conclude that [Ka, Kc] = 0. So Ka and Kc

are simultaneously diagonalisable. Let |�〉 = 1√
d

∑
i |i〉, where {|i〉} is an eigenbasis

for both Ka and Kc. We can decompose an arbitrary state |ψ〉 as |ψ〉 = |ψ ′〉 + b|�〉
where |ψ ′〉 is an unnormalised vector orthogonal to |�〉. Then

〈�|Ka |ψ〉 = 〈�|Ka |ψ ′〉 + b〈�|Ka |�〉 = 〈�|Ka |ψ ′〉 + b
1

d
Tr(Ka) = 〈�|Ka |ψ ′〉

and similarly for Kc. So, setting |φ〉 = |�〉, as |ψ ′〉 is orthogonal to |�〉 Eq. (16) holds
for any choice of |ψ〉, and hence Ka |�〉〈�|Kc = Kc|�〉〈�|Ka . Multiplying on the left
by 〈i | and on the right by | j〉 this gives λiμ j = μiλ j where λi andμi are the eigenvalues
corresponding to |i〉 of Ka and Kc respectively. This implies there exists C ∈ R such
that λi = Cμi for all i , and hence that Ka = CKc which is the contradiction we
desired. ��

We have now proven all the ingredients we need to show the following theorem,
which is the 2-local, single-interaction special case of Theorem 2:

Theorem 21. Let h be a 2-qudit interaction which is not 1-local. If, up to addition of
1-local terms, h = α|ψ〉〈ψ |⊗2 for some state |ψ〉 and some α 
= 0, then h is LA-
stoquastic-universal. Otherwise h is LA-universal.

Proof. Let h′ be the interaction obtained from h by deleting its 1-local part. Then, by
Lemma 20 h is LA-universal unless h′ = A ⊗ B for some A and B. If A and B are
linearly independent, then A ⊗ B + B ⊗ A has 2-local rank 2 and so is LA-universal
by Lemma 20. Otherwise, B = βA for some β 
= 0, so h′ = βA ⊗ A. Diagonalising
h using a local unitary U ⊗ U and using Lemma 15, h is LA-stoquastic-universal.
In addition, if A 
= a|ψ〉〈ψ | + bI for some |ψ〉 ∈ C

d , then h is LA-universal by
Lemma 17. ��

We do not expect any larger class of two-local interactions to be LA-universal than
in Theorem 21, as shown by Lemma 18.

4.3. Extension to k-local interactions. In order to extend our results to interaction terms
that act on more than 2 qudits, we first show how 1-local terms can be used to extract
(k − 1)-local interactions from k-local interactions.

Lemma 22. Let h be a k-local interaction with a decomposition h = ∑l
i=1 Ai ⊗ Bi

where the Ai operators act on k−1 qudits and the Bi operators are linearly independent.
Then using h interactions and additional 1-local terms we can simulate any interaction
in span{Ai }li=1.

Proof. Fix a single qudit state |ψ〉 ∈ C
d , and let H0 = I ⊗ (I − |ψ〉〈ψ |) ∈ L((Cd)⊗k)

which acts non-trivially only on the kth qudit. Let H1 = h and V = I ⊗ |ψ〉 be the
isometry V : (Cd)⊗k−1 → (Cd)⊗k onto the groundspace of H0. Then (H1)−− =
V
(∑l

i=1 Ai 〈ψ |Bi |ψ〉
)
V †.
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So by Lemma 8 (first order), we can simulate
∑l

i=1 Ai 〈ψ |Bi |ψ〉. Using different
ancilla qudits projected into different states |ψ〉 we can produce a linear combination of
such interactions. It therefore suffices to prove that span{x (ψ) : |ψ〉 ∈ C

d} = R
l , where

x (ψ) is the vector in Rl with coefficients given by x (ψ)
i = 〈ψ |Bi |ψ〉.

Suppose for a contradiction that the x (ψ) do not span the whole ofRl , then there must
exist some non-zero λ ∈ R

l which is orthogonal to x (ψ) for all |ψ〉, so

0 =
l∑

i=1

λi x
(ψ)
i = 〈ψ |

(
∑

i

λi Bi

)
|ψ〉 ∀|ψ〉 ⇒

∑

i

λi Bi = 0

contradicting the assumption that the Bi are linearly independent. ��
Let h be a k-qudit Hamiltonian and S be a subset of those k qudits. Define hS to

be the part of h which acts non-trivially only on S but does not have any part in its
decomposition which acts trivially on any subset of S. More precisely, take a basis
{I, Bi } of Hermitian matrices on C

d , where the Bi are traceless, and decompose h as a
linear combination of tensor products of terms from these bases; then hS is the sum of
all terms which are non-identity on S and identity elsewhere. Note that h =∑S hS and
Tri (hS) = 0 for any i ∈ S.

The following corollary is an easy consequence of Lemma 22.

Corollary 23. Let h be a k-qudit interaction, with a decomposition h = ∑S hS where
hS is defined as above. Then, using h and additional 1-local terms, it is possible to
simulate the interaction hS for any subset S.

Proof. Let h have a decomposition h = A0 ⊗ I +
∑

i Ai ⊗ Bi where the Bi are traceless
Hermitian matrices acting nontrivially on a single qudit. Then, by Lemma 22, we can
simulate A0. This is the part of h which acts trivially on the last qudit and can hence
be expressed as A0 ⊗ I =∑S′⊆{1,...k−1} hS′ . By applying Lemma 22 repeatedly in this
way, we can simulate any interaction of the form h(S) =∑S′⊆S hS′ for an arbitrary set
S.

We now prove the corollary by induction on |S|, noting that the base case |S| = 1 is
trivial since we have access to all 1-local terms. Assume the claim for all subsets of size
l and let S be a subset of size l + 1. By the induction hypothesis, we can simulate hS′ for
all subsets S′ ⊂ S. Taking these away from h(S) we are left with hS as desired. ��

We are now ready to generalise Theorem 21 to k-local interactions.
Theorem 2 (restated) Let S be a set of interactions, which are not all 1-local, between
qudits of dimension d. Then S is:

• LA-stoquastic-universal, if there exists |ψ〉 ∈ C
d such that all interactions in S are,

up to the addition of 1-local terms, given by a linear combination of operators taken
from the set {I, |ψ〉〈ψ |, |ψ〉〈ψ |⊗2, |ψ〉〈ψ |⊗3, . . . }—furthermore, ifS is of this form
and H is an S-Hamiltonian with local terms, then H is stoquastic;

• LA-universal, otherwise.

Proof. First note that by the same argument as Lemma 18, the Hamiltonians given in the
first case are stoquastic. Since not all interactions are 1-local, Lemma 22 can be used to
extract a 2-local interaction with non-zero 2-local part, which is LA-stoquastic-universal
by Theorem 21.

It remains to prove that any other set of interactions is universal. Define Tl to be
the space of l-local interactions that have no m-local part in their decomposition for
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m < l, and which can be generated by repeated applications of Lemma 22 to interactions
h ∈ S (and taking linear combinations of such interactions). Given an interaction h in
S, and a decomposition h = ∑S hS , Tl includes all interactions hS such that |S| = l
by Corollary 23. It will therefore suffice to prove that there exists |ψ〉 such that Tl =
span{(d|ψ〉〈ψ | − I )⊗l} for all l, as then H =∑S HS will be of the desired form.

We prove this claim by induction on l. Note that T2 is non-empty unless all interac-
tions in S are 1-local. By Theorem 21, each interaction in T2 must be proportional to
(d|ψ〉〈ψ | − I )⊗2 for some state |ψ〉. Moreover, the state |ψ〉 must be the same for all
interactions in T2, or we could simulate (d|ψ〉〈ψ | − I )⊗2 + (d|ψ ′〉〈ψ ′| − I )⊗2 for some
|ψ〉 
= |ψ ′〉, which is LA-universal by Lemma 19.

Assume now that the claim holds for Tl and consider an interaction F in Tl+1. Write
F = ∑i Ai ⊗ Bi , where Bi are traceless single-qudit operators. Then, by Lemma 22,
span{Ai } ⊆ Tl . Therefore, by the induction hypothesis, F = (d|ψ〉〈ψ | − I )⊗l ⊗ B for
some single-qudit operator B. By applying Lemma 22 to a different qudit, we conclude
that B must also be proportional to (d|ψ〉〈ψ | − I ) as required. ��

5. SU(d) Heisenberg Interaction

In the remainder of the paper we prove universality for some families of interactions
where we are not assisted by free 1-local terms. We consider interactions that generalise
the familiar Heisenberg interaction h = X ⊗ X + Y ⊗ Y + Z ⊗ Z for qubits. The
Pauli matrices X , Y , Z correspond to generators for the fundamental (2-dimensional)
representation of the Lie algebra su(2). So two natural ways to generalise the interaction
h are to consider su(d) for d > 2, or to consider higher-dimensional representations of
su(2). We study both of these generalisations, beginning with the former.

We first review the mathematical aspects of these generalised Heisenberg models
that will be important for us, and in particular the required concepts from representa-
tion theory. Throughout this section, [20] will be a useful reference. The fundamental
representation of the Lie algebra su(d) is given by the space of traceless antiHermitian
d × d matrices. We will follow the physics convention of considering a set of traceless
Hermitian operators {T a} such that the real linear span of {iT a} gives the fundamental
representation of su(d). The basis can be chosen such that Tr(T aT b) = 1

2δab so that the
structure constants fabc, defined by [T a, T b] = ∑c i fabcT

c, are completely antisym-
metric. For example the Pauli spin matrices i X/2, iY/2, i Z/2 are such a basis of su(2).
The SU (d) Heisenberg interaction h is given by

h :=
d2−1∑

a=1

T a ⊗ T a . (17)

which (up to rescaling and adding an identity term) is the only two-qudit operator which
is invariant under conjugation by the unitary U ⊗U for any matrix U in SU (d).

5.1. Notes on the representation theory of su(d). A representation of a Lie algebra g is
a vector space � and a linear map R : g → L(�) from g to the space of linear maps
on �, such that [R(x), R(y)] = R([x, y]) for all x, y ∈ g. The Lie algebra su(d) is
semi-simple, which means that any representation R has a direct sum decomposition
such that:
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R =
⊕

i

Ri and � =
⊕

i

�i (18)

where each Ri : g → �i is an irreducible representation.
The irreducible representations of su(d) can be labeled with a Young diagram of

at most d rows. The fundamental representation has a Young diagram of a single box.
The antifundamental representation or conjugate representation has Young diagram of
a single column of d − 1 boxes, and is given by Rconj(T a) = −(T a)∗ where ∗ denotes
complex conjugation. The trivial representation is a one dimensional representation in
which Rtrivial(T a) = 0, with Young diagram consisting of a single column of d boxes.
The adjoint representation is an d2 −1 dimensional representation in which Radjoint acts
on the Lie algebra itself with the action of the Lie bracket, Radjoint(T a)T b = [T a, T b].
The adjoint representation has a Young diagram of one column of d − 1 boxes and a
second column of a single box.

For a given representation R of su(d), the quadratic Casimir operator CR is defined
by CR =∑a R(T a)R(T a). Note that CR commutes with all elements R(T b):

[CR, R(T b)] =
∑

a

[R(T a)R(T a), R(T b)]

=
∑

a

(
R(T a)[R(T a), R(T b)] + [R(T a), R(T b)]R(T a)

)

=
∑

a,c

i fabc
(
R(T a)R(T c) + R(T c)R(T a)

) = 0

since fabc is antisymmetric in a, c and R(T a)R(T c)+R(T c)R(T a) is clearly symmetric
in a, c.

When R is an irreducible representation, Schur’s Lemma implies that CR = cR I for
some cR ∈ R known as the Casimir eigenvalue. For an irreducible representation R of
su(d) with corresponding Young diagram of nrow rows of length b1, b2, . . . , bnrow and
ncol columns of length a1, a2, . . . ancol and l boxes in total, the Casimir eigenvalue cR is
[20, equation (19.14)]

cR = 1

2

[
l(d − l/d) +

nrow∑

i=1

b2i −
ncol∑

i=1

a2i

]
. (19)

For a representation R with a decomposition as in (18), CR = ⊕i CRi and so each
eigenspaces of CR corresponds to a space �i with corresponding Casimir eigenvalue
cRi .

Given two representations R1 and R2, we can define a new representation R1 ⊗ R2
called the tensor product representation on the space �1 ⊗ �2 by

(R1 ⊗ R2)(T
a) = R1(T

a) ⊗ I2 + I1 ⊗ R2(T
a)

Even when R1 and R2 are irreducible representations, the tensor product representation
is not in general irreducible. The irreducible representations Ri in the decomposition
(18) of R1 ⊗ R2 can be calculated using the Young diagrams of R1 and R2. This process
is described in detail in, for example, [20, Section 19.3]. If R1 and R2 have Young
diagrams of l1 and l2 boxes respectively, then every irreducible representation in the
decomposition of R1 ⊗ R2 has a Young diagram of l1 + l2 boxes.
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3

4
1 2

Fig. 5. Interaction graph of the gadget used in Sect. 5.2. H0 acts on the mediator qudits 3 and 4, which results
in an effective interaction between the qudits 1 and 2

5.2. Alternative SU (d) invariant interaction. We briefly note that an alternative gener-
alisation of the Heisenberg model has also been studied in the condensed-matter theory
literature [6,33,39]. The qudits of the system are partitioned into two subsets A and B,
and the interaction graph is bipartite, with no interactions acting within A or B. The total
Hamiltonian H is of the form

H =
∑

i∈A,
j∈B

h̃i j where h̃ =
∑

a

T a ⊗ (−T a)∗

where ∗ denotes complex conjugation. Since
∑

a T
aT a = d2−1

2d I by Eq. (19), we have

h̃ +
d2 − 1

2d
I =
∑

a

T a ⊗ (−T a)∗ + 1

2

(
T aT a ⊗ I + I ⊗ (−T a)∗(−T a)∗

)

= 1

2

∑

a

T̃ a T̃ a

where T̃ a = T a ⊗ I + I ⊗(−T a)∗. Thus h̃ is, up to a multiple of the identity, the Casimir
operator in the T̃ a representation and so commutes with T̃ a for all a. This implies that
the total Hamiltonian H is now no longer invariant under conjugation by the unitary
U⊗n , but is invariant when conjugated by U⊗|A| ⊗ (U∗)⊗|B|.

Note that T̃ a is the tensor product of the fundamental and antifundamental represen-
tation which decomposes into a direct sum of the trivial representation and the adjoint
representations (this can be seen using the Young diagram method, as described for ex-
ample in [20, Section 19.3]). Therefore, as T̃ a annihilates the state |φ〉 = 1√

d

∑
i |i〉|i〉,

h̃ + d2−1
2d I = 1

2

∑
a T̃

a T̃ a also annihilates |φ〉, and has eigenvalue 1
2cadjoint = d/2 on

the rest of the space. Therefore h̃ is just a linear combination of the identity I and the
projector onto |φ〉:

h̃ = 1

2d
I − d

2
|φ〉〈φ| (20)

We will show that this Hamiltonian can simulate an arbitrarily weighted SU (d)

invariant interaction h = ∑a T
a ⊗ T a on the A qudits using a second-order mediator

gadget. Consider a system of four qudits with qudits 1, 2, 3 ∈ A and qudit 4 ∈ B as in
Fig. 5. Let V = I12 ⊗ |φ〉34 and let 
 = VV † be the projector onto the state |φ〉34. Let
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H0 = I − 
 = 2
d (̃h34 + d2−1

2d I ), H1 = 0 and H2 = h̃14 + μh̃24 for some μ ∈ R. Since

M4
 = (Tr M)
 for any M and the T a’s are traceless, 
H2
 = 0, and so


H1
 − 
H2H
−1
0 H2
 = −
H2(I − 
)H2


= −
∑

a,b

(T a
1 + μT a

2 )
1

d
Tr(T aT b)(T b

1 + μT b
2 )


= −(1 + μ2)
d2 − 1

4d2
I − μ

d

∑

a

T a
1 T

a
2 


= V

(
−(1 + μ2)

d2 − 1

4d2
I − μ

d
h

)
V †

where we used that
∑

a(T
a)2 = d2−1

2d I in the third equality. Therefore by Lemma 9
(second order), and by adjusting μ accordingly, we can simulate an arbitrarily weighted
h interaction up to the identity term.

In order to show that h̃ is universal, it will therefore suffice to consider only h. We
will do this for the rest of the paper.

5.3. Encoding a logical qubit in a 2d-qudit gadget. We now consider a system of k
qudits each of dimension d, and will use subscript notation to denote which qudit an
operator acts on, so T a

i denotes the action of T a on qudit i and the identity elsewhere.
For a non-empty set S ⊆ {1, . . . , k} we use the shorthand T a

S =∑i∈S T a
i . For any such

S, the operators {T a
S }a form a representation of su(d); it is the representation given by

the tensor product of the fundamental representation l = |S| times.
Consider the following Hamiltonian, given by the quadratic Casimir operator in the

{T a
S }a representation:

C(S) :=
∑

a

T a
S T

a
S =
∑

a

⎛

⎝
∑

i 
= j

T a
i T

a
j +
∑

i

T a
i T

a
i

⎞

⎠ (21)

=
∑

i 
= j

hi j +
l(d2 − 1)

2d
I (22)

where we have used Eq (19), the formula for the Casimir value. As discussed above, to
understand the eigenspaces of C(S), it suffices to know the irreducible representations
contained in the decomposition of {T a

S }a . In particular we note that C(S) is a sum
of squares of Hermitian matrices so is positive semidefinite, and the Young diagram
consisting of a single column of d boxes is a one dimensional irrep, with Casimir
eigenvalue zero, corresponding to the state |�〉, the completely antisymmetric state on d
qudits. The 1-dimensional irrep is known as the trivial representation because T a

S |�〉 = 0
for all a.

In [16], the representation theory of su(2) was used to understand the ground space
of the qubit Heisenberg model on the complete (bipartite) graph. This was important
as each gadget in their construction contained two logical qubits: one with which an
interesting simulation could be implemented, and onewhich could only implement qubit
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1

2

A B

Fig. 6. Interaction graph of H0 = C(E) + C(A) + C(B) − (d2−1)
d I for d = 4

Heisenberg interactions. The analysis of the complete bipartite Heisenberg model made
it possible to project the second logical qubit of each gadget into the non-degenerate
n-qubit ground state of this model. Here, we similarly use the representation theory of
su(d) to understand the ground space of the SU (d) Heisenberg model on the complete
graph, but our motivation is quite different.Wewill use a gadget construction to encode a
single logical qubit within a gadget of 2d (constant, independent of system size) physical
qudits. The construction here is more closely related to the construction in [17, Theorem
42].

The gadget construction, which encodes a logical qubit within 2d physical qudits,
is a second-order perturbative gadget which via Lemma 9 will implement effective
interactions across pairs of logical qubits. We consider a system of 2d qudits, each of
dimension d, and each with a label in E = {1, 2, . . . , 2d}. Let A = {3, 4, . . . , d + 1}
and B = {d + 2, . . . 2d} and consider the Hamiltonian H0 ∈ L((Cd)⊗2d)

H0 = C(E) + C(A) + C(B) − (d2 − 1)

d
I, (23)

whose interaction graph is pictured in Fig. 6. The − (d2−1)
d I term will simply ensure

that the ground state energy of H0 is zero, so that the requirements of Lemma 9 (second
order) are met.

First we will show that the ground space of H0—which will form our logical qubit—
is indeed two-dimensional. In fact the two states in the ground space of H0 sit in the
respective ground spaces of C(E), C(A) and C(B). The eigenvalues of C(A) are the
Casimir values of the representations corresponding to Young diagrams of d − 1 boxes
with values as given in Eq. (19). The lowest eigenvalue occurs when these boxes are
arranged in a single column. The ground space of C(A) is therefore the d-dimensional
space Hantisym(d − 1) of antisymmetric states on the d − 1 qudits in A, correspond-
ing to the Young diagram of a single column of d − 1 boxes. Let {|i〉}di=1 be an or-
thonormal basis for Cd , then there is a unique (up to a phase) antisymmetric state |ψi 〉
in span{|1〉, . . . , |i − 1〉, |i + 1〉, . . . |d〉}⊗d−1. These states are clearly orthonormal and
form a basis for Hantisym(d − 1).
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⊗ ⊗ ⊗ = 2× ⊕ 4× ⊕ ⊕ ⊕ ⊕
d

Fig. 7. Irreducible representations in the decomposition of the ground space of C(A) + C(B). The rules for
taking the tensor product of representations given as Young diagrams can be found for example in [20, Section
19.3]

Then the groundspace of H0 contains

|φ1〉 = |�〉1A|�〉2B and |φ2〉 = |�〉1B |�〉2A,

where |�〉 is the completely antisymmetric state on d qudits,

|�〉 = 1√
d!
∑

σ∈Sd
sgn(σ )|σ(1)〉|σ(2)〉 . . . |σ(d)〉 (24)

= 1√
d

∑

i

|i〉|ψi 〉 (25)

and {|i〉}i and {|ψi 〉}i are the orthonormal bases for Cd and Hantisym(d − 1) as defined
above. Clearly, these states are in the ground space of C(A) and C(B), and |�〉 is the
antisymmetric state on d qudits so T a

E annihilates |φ1〉 and |φ2〉, implying that these
states are also in the ground space of C(E). To see that these are the only two states
in the ground space of H0, we note that the ground space of C(A) + C(B) is spanned
by states in the representations given in Fig. 7. The C(E) term forces the ground space
of H0 to be the two dimensional space corresponding to the two copies of the Young
diagram of two columns of d boxes.

It is important to note that |φ1〉 and |φ2〉 are not orthogonal:

〈φ1|φ2〉 = 1

d2
∑

i, j,k,l

(〈i |〈ψi |〈 j |〈ψ j |
)
(|k〉|ψl〉|l〉|ψk〉) (26)

= 1

d2
∑

i, j,k,l

δikδilδ jlδ jk = 1

d2
∑

i

δi i = 1

d
. (27)

In order to calculate perturbative gadgets we want to understand the action of the
physical interaction h defined in (17) in this logical qubit space. First we calculate
Mi j (T a

k T
b
l ) := 〈φi |T a

k T
b
l |φ j 〉 for all a, b, i, j and any k, l ∈ {1, 2, A, B}, and then we

will convert to an orthogonal basis later. We only show the calculations for three of these
values, as all others can be calculated by symmetric arguments, and recalling that (T a

1 +
T a
A )|�〉1A = 0. For example, we can calculate 〈φ1|T a

1 T
b
2 |φ2〉 = −〈φ1|T a

1 T
b
A |φ2〉 =

〈φ1|T b
1 T

a
1 |φ2〉.

〈φ1|T a
1 T

b
1 |φ1〉 = 1

d2
∑

i, j,k,l

(〈i |〈ψi |〈 j |〈ψ j |
)
T a
1 T

b
1 (|k〉|ψk〉|l〉|ψl〉) (28)

= 1

d2
∑

i, j,k,l

〈i |T aT b|k〉δikδ jlδ jl (29)
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= 1

d
Tr(T aT b) (30)

〈φ1|T a
1 T

b
1 |φ2〉 = 1

d2
∑

i, j,k,l

(〈i |〈ψi |〈 j |〈ψ j |
)
T a
1 T

b
1 (|k〉|ψl〉|l〉|ψk〉) (31)

= 1

d2
∑

i, j,k,l

〈i |T aT b|k〉δilδ jlδ jk (32)

= 1

d2
Tr(T aT b) (33)

〈φ1|T a
1 T

b
2 |φ1〉 = 1

d2
∑

i, j,k,l

(〈i |〈ψi |〈 j |〈ψ j |
)
T a
1 T

b
2 (|k〉|ψk〉|l〉|ψl〉) (34)

= 1

d2
∑

i, j,k,l

〈i |T a |k〉δik〈 j |T a |l〉δ jl (35)

= 1

d2
Tr(T a)Tr(T b) = 0. (36)

We then have

M(T a
1 T

b
1 ) = Tr(T aT b)

d2

(
d 1
1 d

)
M(T a

1 T
b
A) = Tr(T aT b)

d2

(−d −1
−1 0

)
(37)

M(T a
1 T

b
B ) = Tr(T aT b)

d2

(
0 −1

−1 −d

)
M(T a

1 T
b
2 ) = Tr(T aT b)

d2

(
0 1
1 0

)
(38)

Now let V : C2 → (Cd)⊗2d be an isometry that maps onto the ground space of H0,
span{|φ1〉, |φ2〉}, defined by its action on the basis states:

V |0〉 =
√

d

2(d + 1)
(|φ1〉 + |φ2〉) (39)

V |1〉 =
√

d

2(d − 1)
(|φ1〉 − |φ2〉) (40)

Then the action of T a
i T

a
j in the ground space of H0 is given by V †T a

i T
a
j V in Table 1.

Therefore by Lemma 8 (first-order), choosing H1 = αh1A + βh12 for α, β ∈ R, we can
simulate any logical 1-local interaction in span{X, Z}, up to an identity term.

5.4. Second-order terms. We now want to simulate interactions between two logical
qubits using a second-order gadget, via Lemma 9. Consider two copies of the gadget
above with qudit labels {1, 2, . . . , 2d} and {1′, 2′, . . . , 2d ′} respectively; so now the
heavy term is H̃0 = I ⊗ H0 + H0 ⊗ I ∈ L((Cd)⊗4d) and V ⊗ V maps onto the ground
space of H̃0. Let 
̃ = 
 ⊗ 
 be the projector onto the ground space of H0. H1 is
chosen as in the previous section to simulate any 1-local terms desired. We will choose
H2 =∑i, j αi j hi j ′ , so we need to calculate


̃H2(H̃0)
−1H2
̃ =

∑

i, j,k,l

αi jαkl
̃hi j ′(H̃0)
−1hkl ′
̃.
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Table 1. Action of T a
i T a

j in the ground space of H0 = C(E) + C(A) + C(B) − (d2−1)
d I

(i, j) V †T a
i T a

j V

(1, 1), (2, 2), (A, A), (B, B) 1
2d I

(1, A), (2, B) − 1
4
√
d2−1

X − 1
4(d2−1)

Z − d2−2
4d(d2−1)

I

(1, B), (2, A) 1
4
√
d2−1

X − 1
4(d2−1)

Z − d2−2
4d(d2−1)

I

(1, 2), (A, B) 1
2(d2−1)

Z − 1
2d(d2−1)

I

The difficult part of this calculation is to understand how the (H̃0)
−1 term acts. We

consider just a single gadget first: for any state |ψ〉 in the ground space of H0, we will
show that H0T b

i |ψ〉 = dT b
i |ψ〉 for any i ∈ {1, 2, A, B}. We provide a proof for the case

i = 1, but the other cases are similar.
It is easy to check that the states {T b

1 |ψ〉}b are orthogonal and that T a
E acts on this

space as the adjoint representation:

T a
E T

b
1 |ψ〉 =

⎛

⎝T a
1 T

b
1 +
∑

i 
=1

T b
1 T

a
i

⎞

⎠ |ψ〉 =
(
T a
1 T

b
1 − T b

1 T
a
1

)
|ψ〉 = [T a

1 , T b
1 ]|ψ〉

where the second equality holds because T a
E |ψ〉 = 0 and so

∑
i 
=1 T

a
i |ψ〉 = −T a

1 |ψ〉.
Therefore T b

1 |ψ〉 is an eigenvector of C(E) with the Casimir eigenvalue correspond-
ing to the adjoint representation, which has Young diagram consisting of one column of
length d − 1 and a second column of length 1. By Eq. (19), this eigenvalue is given by
cadjoint = d, which we can also check directly:

C(E)T b
1 |ψ〉 =

∑

a

T a
E T

a
E T

b
1 |ψ〉 =

∑

a

[
T a
1 , [T a

1 , T b
1 ]
]
|ψ〉 (41)

= −
∑

a,c,e

fabc faceT
e
1 |ψ〉 = −

∑

e

κbeT
e
1 |ψ〉 = dT b

1 |ψ〉 (42)

where we have used the antisymmetry of the structure constants fabc and the definition
of the Killing form κab =∑c,e face fbec = −2d Tr(T aT b).

Furthermore, the operator T b
1 does not act on A or B so the state T b

1 |ψ〉 is still
antisymmetric with respect to permutations within A and B and so is in the zero-energy
ground space of C(A) + C(B) − d2−1

d I , and so H0T b
1 |ψ〉 = dT b

1 |ψ〉 as claimed.

Thus H̃0hkl ′
̃ = 2dhkl ′
̃ for k, l ∈ {1, 2, A, B} and so


̃hi j ′(H̃0)
−1hkl ′
̃ = 1

2d

̃hi j ′hkl ′
̃ = 1

2d

∑

a,b


T a
i T

b
k 
 ⊗ 
T a

j ′T
b
l ′ 


= 1

2d

∑

a


T a
i T

a
k 
 ⊗ 
T a

j ′T
a
l ′ 
,

which corresponds to a logical operator that can be read off from Table 1. We choose
αi j = 1 if (i, j) ∈ {(1, A), (2, B), (A, 1), (B, A), (B, B)} and αi j = 0 otherwise. Then

−
̃H2(H̃0)
−1H2
̃ = 1

8d(d2 − 1)
(V ⊗ V )

(
XX +

3

d2 − 1
Z Z + 1-local terms

)
(V ⊗ V )†,
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which can be checked either by hand or using a computer algebra package. Therefore
by Lemma 9 (second order), we can choose H1 to cancel out the unwanted 1-local terms
(as described in the previous section), and simulate the interaction α(XX + 3

d2−1
Z Z) for

an arbitrary positive weight α. This family of Hamiltonians was shown to be universal1

in [38, Theorem 2]. This completes the proof of the following theorem:
Theorem 3 (restated). For any d � 2, the SU (d)Heisenberg interaction h :=∑a T

a⊗
T a , where {T a} are traceless Hermitian matrices such that Tr(T aT b) = 1

2δab, is univer-
sal.

The following corollary is an immediate consequence of Theorem 3 and the discus-
sion in Sect. 5.2.

Corollary 24. For any d � 2, the alternative SU (d) Heisenberg interaction h̃ :=
−∑a T

a ⊗ (T a)�, where {T a} are traceless Hermitian matrices such that Tr(T aT b) =
1
2δab, is universal even on a bipartite interaction graph.

6. Rank 1 Projectors

In this section we consider the family of S-Hamiltonians where S contains a single
rank 1 projector P onto a two qudit state |ψ〉 ∈ (Cd)⊗2. We prove universality even in
the restricted setting where interactions are only allowed between qudits on a bipartite
interaction graph. We note that this also trivially implies universality without such a
restriction.
Theorem 5 (restated). Let P = |ψ〉〈ψ | be the projector onto the two-qudit state |ψ〉 ∈
(Cd)⊗2. Then Hamiltonians of the form

H =
∑

i∈A, j∈B
αi j Pi j

where A and B are disjoint subsets of qubits andαi j ∈ R, are universal if |ψ〉 is entangled.
Otherwise, if |ψ〉 is a product state, then this family of Hamiltonians is classical.

We observe that we have already shown that the alternative SU (d) Heisenberg in-
teraction is universal in Corollary 24, which is the special case of Theorem 5 where
|ψ〉 = 1√

d

∑
i |i〉|i〉.

Proof. We first conjugate the entire Hamiltonian by a total unitary(⊗
i∈A U

) ⊗
(⊗

j∈B V
)
. This allows us to perform a change of basis of the form

(U ⊗ V )Pi j (U ⊗ V )† for each projector Pi j . Therefore, by the Schmidt decomposition,
we may assume without loss of generality that |ψ〉 = ∑d

i=1 λi |i〉|i〉, where λi � 0
and the λi are in non-increasing order. If |ψ〉 is a product state, then the Hamiltonian is
clearly classical, since P is diagonal in this basis - it is the projector onto |1〉|1〉.

So assume that |ψ〉 is entangled; we first show how to simulate some 1-local operators
using mediator qudit gadgets. For three qudits 1, 3 ∈ A and 2 ∈ B, let H0 = I − P32
and H1 = P12 be operators in L((Cd)⊗3). The interaction graph is pictured in Fig. 8.
Let 
 be the projector onto the ground space of H0 and let V = I ⊗|ψ〉32 (which maps
onto the ground space of H0), so that

1 Note that the results of [38] are stated in terms of QMA-completeness, but it is easy to check that, in
combination with [17], they imply that universality holds for this interaction.
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2
31

Fig. 8. Interaction graph of the gadgets used in the proof of Theorem 5. H0 acts on the mediator qudits 2 and
3. An effective 1-local interaction is produced on qudit 1


H1
 = P32P12P32 =
⎛

⎝
∑

i, j

λiλ j I ⊗ |i〉〈 j | ⊗ |i〉〈 j |
⎞

⎠

⎛

⎝
∑

k,l

λkλl |k〉〈l| ⊗ |k〉〈l| ⊗ I

⎞

⎠ P32

=
⎛

⎝
∑

i, j,l

λiλ
2
jλl | j〉〈l| ⊗ |i〉〈l| ⊗ |i〉〈 j |

⎞

⎠
(
∑

m,n

λmλn I ⊗ |m〉〈n| ⊗ |m〉〈n|
)

=
⎛

⎝
∑

i, j,n

λiλ
4
jλn | j〉〈 j | ⊗ |i〉〈n| ⊗ |i〉〈n|

⎞

⎠ = R1P32 = V RV †

where R is the single qudit operator R =∑ j λ
4
j | j〉〈 j |. Then by Lemma 8 (first order)

we can simulate R.
We can now therefore assume we also have access to the 1-local interaction R on

any qudit in A, and we will construct another gadget of the same form, see Fig. 8.
Let H1 = (α + β2)P12 and H2 = β(P12 − R1) for some arbitrary α, β ∈ R, with
H0 = I − P32, V = I ⊗ |ψ〉32 and 
 as before. We note that 
H2
 = 0, so



[
H1 − H2(H0)

−1H2
]

 = P32

[
(α + β2)P12 − β2P12(I − P32)P12

]
P32

= αP32P12P32 + β2(P32P12P32)
2 = (αR1 + β2R2

1)P32

= V (αR + β2R2)V †.

So by Lemma 8 (first order), we can simulate the 1-local interaction αR + β2R2 on any
qudit in A. By a symmetric argument, we can also simulate αR + β2R2 on any qudit in
B.

To complete the proof, we consider the following two separate cases:

(i) R has a degenerate eigenspace with non-zero eigenvalue.
Suppose there exists μ > 0 such that J = {i | λi = μ} ⊆ {1, 2, . . . , d} has two or more
elements. Then R̃ = R2 − 2μ4R + μ8 I = (R − μ4 I )2 is positive semidefinite with
ground space projector 
 =∑i∈J |i〉〈i |. Let d ′ = |J | and let V : Cd ′ → C

d map onto
spani∈J {|i〉}.
Let H0 = I ⊗ R̃ + R̃ ⊗ I and let H1 = P so that

(H1)−− = (
 ⊗ 
)P(
 ⊗ 
) = μ2
∑

i, j∈J

|i〉〈 j | ⊗ |i〉〈 j | = μ2(V ⊗ V )̃h(V ⊗ V )†

where h̃ is the alternative SU (d ′) Heisenberg interaction (see Eq. 20). Therefore by
Lemma 8 (first order), we can simulate a Hamiltonian of alternative SU (d ′) Heisenberg
interactions on a bipartite lattice, which is universal by Corollary 24.
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(ii) The eigenspaces of R with non-zero eigenvalue are non-degenerate.
Without loss of generality, assume that the λi are ordered in non-increasing order. The
assumption that |ψ〉 is entangled implies that λ1, λ2 > 0. Since we are not in case (i),
we know that λ1 > λ2 and λ2 > λi for all i 
= 1, 2. Then the operator R̃ = R2 − (λ41 +
λ42)R + λ41λ

4
2 I has two-dimensional ground space span{|1〉, |2〉}. Let V : C2 → C

d be
the isometry which acts on the qubit basis states as V |0〉 = |1〉 and V |1〉 = |2〉.
Let H0 = I ⊗ R̃ + R̃ ⊗ I and let H1 = P , so that

(H1)−− =
∑

i, j∈{1,2}
λiλ j |i〉〈 j | ⊗ |i〉〈 j |

= (V ⊗ V )

(
λ1λ2

2
(XX − YY ) +

λ21 + λ22

4
(Z Z + I ) +

λ21 − λ22

4
(Z I + I Z)

)
(V ⊗ V )†

So by Lemma 8 (first order), we can simulate a Hamiltonian of interactions of the form
λ1λ2
2 (XX − YY ) +

λ21+λ22
4 (Z Z + I ) +

λ21−λ22
4 (Z I + I Z).

The 2-local part of this interaction was shown to be universal in [38, Theorem 3], even
when the interactions are restricted to a bipartite interaction graph. It remains to note
that the gadget for removing the 1-local part of an interaction presented in [16] takes
place on a bipartite interaction graph. ��

We remark on the efficiency of this simulation in the case when P projects onto a
state |ψ〉 that is almost a product state. In this case λ1 ≈ 1 and λ2 � 1 so the size of
the effective interactions (in both case i and ii) is small unless we scale up all the terms
in the gadget. This means that the interactions strengths of the terms in the simulator
Hamiltonian scale as poly(1/λ2).

7. SU(2) Heisenberg Interaction on Qudits of Dimension d

Next we consider the SU (2)Heisenberg interaction in local dimension d. Let Sx , Sy, Sz

form a d-dimensional irreducible representation of su(2) corresponding to the qubit
operators σ x = X/2, σ y = Y/2, σ z = Z/2. As a representation they must satisfy
[Sa, Sb] =∑c iεabcS

c, where εabc is the completely antisymmetric Levi-Civita symbol
which satisfies the following standard identities:

∑

a

εabcεae f = δbeδc f − δb f δce ⇒
∑

a,b

εabcεab f = 2δc f . (43)

Then the SU (2) Heisenberg interaction on qudits of dimension d is defined by

h =
∑

a

Sa ⊗ Sa .

We first prove some preliminary technical results that will be useful later on.
The irreducible representations of su(2) can be labelled by their dimension. Let R(d)

be the unique d-dimensional irreducible representation whichmaps R(d)(σ a) = Sa . The
Young diagram corresponding to R(d) has a single row of d − 1 boxes and the Casimir
eigenvalue of this representation is λ := (d2 − 1)/4 by Eq. (19), so

∑
a S

a Sa = λI .
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The tensor product of two d-dimensional representations has a direct sum decom-
position into all odd-dimensional representations of sizes 1, 3, . . . , 2d − 1 (this can be
seen using the Young diagram method, as described for example in [20, Section 19.3]):

R(d) ⊗ R(d) = R(1) ⊕ R(3) ⊕ · · · ⊕ R(2d−1) (44)

Letting s = (d−1)/2, this is the familiar decomposition of the total spin of two particles
of spin s.

For two qudits of dimension d labelled E and F , let H0 = hEF + λI = 1
2

∑
a(S

a
E +

SaF )(SaE + SaF ), which up to a multiplicative factor of 1/2 is the Casimir operator in the
representation {SaE + SaF }a , so has eigenspace decomposition as given in Eq. (44), with
eigenvalues half of the corresponding Casimir eigenvalue for that representation.

Let |ψEF 〉 be the state corresponding to the trivial one dimensional representation in
the decomposition, for which (SaE + SaF )|ψEF 〉 = 0 for all a. In the standard choice of
basis this is given by

|ψEF 〉 = 1√
d

d−1∑

i=0

(−1)i |i〉E |d − i〉F .

The following identities involving |ψEF 〉 can be derived from the fact that
〈ψEF |ME |ψEF 〉 = 1

d Tr(M) for any single qudit interaction M and the trace formulas
from [35]; we include the proofs in Appendix B.

〈ψEF |SaE |ψEF 〉 = 0, 〈ψEF |SaE SbE |ψEF 〉 = λ

3
δab, 〈ψEF |SaE SbE ScE |ψEF 〉 = iλ

6
εabc

(45)

〈ψEF |SaE SbE ScE SeE |ψEF 〉 = λ

15

(
(λ − 2)δacδbe + (λ + 1

2 )(δabδce + δaeδbc)
)

(46)

In particular the second equation of (45) shows that the states {SaE |ψEF 〉}3a=1 are orthog-
onal; in fact they span the space onwhich SaE +S

a
F acts as the 3 dimensional adjoint repre-

sentation in the decomposition, since (SaE +S
a
F )|ψEF 〉 = 0 implies (SaE +S

a
F )SbE |ψEF 〉 =

[SaE , SbE ]|ψEF 〉. We can check that H0 has eigenvalue 1 on this space:

H0S
b
E |ψEF 〉 = 1

2

∑

a

[SaE , [SaE , SbE ]]|ψEF 〉 = 1

2

∑

a,c,e

−εaceεabcS
e
E |ψEF 〉 = SbE |ψEF 〉.

Finallywewish to show that the states
( 1
2 {SbE , ScE } − λ

3 δbc
) |ψEF 〉 are in the5-dimensional

eigenspace of H0 with eigenvalue 3.

H0S
b
E S

c
E |ψEF 〉 = 1

2

∑

a

(SaE + SaF )(SaE + SaF )SbE S
c
E |ψEF 〉 = 1

2

∑

a

[SaE , [SaE , SbE S
c
E ]]|ψEF 〉

= 1

2

∑

a

(
[SaE , [SaE , SbE ]]ScE + 2[SaE , SbE ][SaE , ScE ] + SbE [SaE [SaE , ScE ]]

)
|ψEF 〉

= −1

2

∑

a,e, f

(
εabeεae f S

f
E S

c
E + 2εabeεac f S

e
E S

f
E + εaceεae f S

b
E S

f
E

)
|ψEF 〉
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=
⎛

⎝2SbE S
c
E −
∑

e, f

(δbcδe f − δb f δce)S
e
E S

f
E

⎞

⎠ |ψEF 〉

=
(
2SbE S

c
E − δbcλI + ScE S

b
E

)
|ψEF 〉

where we have used Eq. (43) and
∑

e S
eSe = λI . This implies that H0( 1

2 {SbE , ScE } − λ
3 δbc I

) |ψEF 〉 = 3
( 1
2 {SbE , ScE } − λ

3 δbc I
) |ψEF 〉 as desired.

7.1. Simulating h2 with h.

Lemma 25. A Hamiltonian consisting entirely of SU (2) Heisenberg interactions h can
simulate a Hamiltonian of the form

∑
i j αi j hi j + βi j h2i j for arbitrary αi j , βi j ∈ R and

βi j � 0.

Proof. To apply an arbitrary interaction of the form αh + βh2 across qudits 1 and 2,
we will use a mediator gadget with a pair of mediator qudits labelled E, F under the
heavy interaction H0 = I12 ⊗ (hEF +λI ) ∈ L((Cd)⊗4) for λ = d2−1

4 as in the previous
section. Let 
 = I ⊗ |ψEF 〉〈ψEF | be the projector onto the ground space of H0.

This will be a fourth-order gadget so wemust define Hamiltonians H1, H2, H3, H4 ∈
L((Cd)⊗4) in order to apply Lemma 12 (Fig. 9). Let

H4 = μ2(h1E + h2E ) = μ2

∑

a

(Sa1 + Sa2 )SaE = μ2

∑

a

S̃a SaE ,

where S̃a = Sa1 + Sa2 , and let H1 = μ1h12, H2 = 2μ2
2λ

3 (h12 + λI ), and H3 =
−μ3

2λ

3 (h12+λI ), whereμ1,μ2 are real coefficients to be chosen later. Note that h12+λI =
1
2

∑
a S̃

a S̃a . H1, H2, H3 all commute with 
, so are block diagonal with respect to the
splitH− ⊕H+. We can use Eq. (45) to check that the remaining condition of Lemma 12
is satisfied,


H4
 = μ2

∑

a

(Sa1 + Sa2 )〈ψEF |SaE |ψEF 〉
 = 0.

F

E

1 2
Fig. 9. Interaction graph of the gadget used in the proof of Lemma 25. H0 acts on the mediator qudits E and
F. An effective interaction is produced between the qudits 1 and 2
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Since SbE |ψEF 〉 is an eigenvector of hEF +λI with eigenvalue 1 , we have H0H4
 =
H4
. This significantly simplifies the calculations required to determine the effective
interaction produced using Lemma 12:


H4H
−1
0 H4
 = 
(H4)

2
 = μ2
2

∑

a,b

(Sa1 + Sa2 )(Sb1 + Sb2 )〈ψEF |SaE SbE |ψEF 〉


= μ2
2λ

3

∑

a,b

δab S̃
a S̃b
 = 2μ2

2λ

3
(h12 + λI )
 = 
H2
;


H4H
−1
0 H4H

−1
0 H4
 = 
(H4)

3


= μ3
2

∑

a,b,c

(Sa1 + Sa2 )(Sb1 + Sb2 )(Sc1 + Sc2)〈ψEF |SaE SbE ScE |ψEF 〉


= μ3
2λ

6

∑

a,b,c

iεabc S̃
a S̃b S̃c


 = μ3
2λ

6

∑

c

S̃c S̃c
 = μ3
2λ

3
(h12 + λI )


= −
H3
.

In the final set of equations we have used the following useful identity which holds
for any operators S̃a which form a representation of su(2) and thus satisfy [S̃a, S̃b] =∑

c iεabc S̃
c:

∑

a,b

iεabc S̃
a S̃b =

∑

a,b

i

2

(
εabc S̃

a S̃b + εbac S̃
b S̃a
)

= i

2

∑

a,b

εabc[S̃a, S̃b] (47)

= −1

2

∑

a,b

εabcεabe S̃
e = −δce S̃

e = −S̃c. (48)

To use Lemma 12 (fourth order), we need to calculate (H1)−− + A − B where
A = 
H4H

−1
0 H2H

−1
0 H4
 and B = 
H4H

−1
0 H4H

−1
0 H4H

−1
0 H4
. First we calculate

A using Eq. (45) to find

A = 
H4H2H4
 = μ4
2λ

3

∑

a,b,c

S̃a S̃b S̃b S̃c〈ψEF |SaE ScE |ψEF 〉
 = μ4
2λ

2

9

∑

a,b

S̃a S̃b S̃b S̃a
.

Calculating B is more complicated:

B = 
(H4)
2H−1

0 (H4)
2
 = μ4

2

∑

a,b,c,e

S̃a S̃b S̃c S̃e〈ψEF |SaE SbE H−1
0 ScE S

e
E |ψEF 〉
.

We therefore need to calculate 〈ψEF |SaE SbE H−1
0 ScE S

e
E |ψEF 〉, which can be done by

recalling from above that
( 1
2 {SbE , ScE } − λ

3 δbc I
) |ψEF 〉 is in the eigenspace of H0 with

eigenvalue 3, and [SbE , ScE ] =∑e fbceSeE for some coefficients fbce, so [SbE , ScE ]|ψEF 〉
is in the eigenspace of H0 with eigenvalue 1. Then we have

〈ψEF |SaE SbE H−1
0 ScE S

e
E |ψEF 〉
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= 〈ψEF |SaE SbE H−1
0

(
1

2
{ScE , SeE } − λ

3
δce I +

1

2
[ScE , SeE ] + λ

3
δce I

)
|ψEF 〉

= 〈ψEF |SaE SbE
(
1

3

(
1

2
{ScE , SeE } − λ

3
δce I

)
+
1

2
[ScE , SeE ]

)
|ψEF 〉

= 〈ψEF |SaE SbE
(
2

3
ScE S

e
E − 1

3
SeE S

c
E − λ

9
δce I

)
|ψEF 〉

= λ

45

(
(λ − 9

2 )δacδbe + (λ + 3)δaeδbc + ( 12 − 2
3λ)δabδce

)

where we have used Eqs. (45) and (46) in the last equality. And so we have

A − B = μ4
2λ

45

∑

a,b

(
( 92 − λ)S̃a S̃b S̃a S̃b + (4λ − 3)S̃a S̃b S̃b S̃a + ( 23λ − 1

2 )S̃
a S̃a S̃b S̃b

)
.

Then we substitute in the following relations which are an easy consequence of Eq. (47):

∑

a,b

S̃a S̃b S̃a S̃b

=
∑

a,b

(
S̃a S̃a S̃b S̃b + S̃a[S̃b, S̃a]S̃b

)
=
∑

a,b

(
S̃a S̃a S̃b S̃b +

∑

c

iεbac S̃
a S̃c S̃b

)

=
∑

a,b

S̃a S̃a S̃b S̃b −
∑

c

S̃c S̃c,

∑

a,b

S̃a S̃b S̃b S̃a =
∑

a,b

(
S̃a S̃b S̃a S̃b + S̃a S̃b[S̃b, S̃a]

)
=
∑

a,b

(
S̃a S̃b S̃a S̃b +

∑

c

iεbac S̃
a S̃b S̃c

)

=
∑

a,b

S̃a S̃b S̃a S̃b +
∑

c

S̃c S̃c =
∑

a,b

S̃a S̃a S̃b S̃b

to get

A − B = μ4
2λ

45

⎛

⎝
(
11

3
λ + 1

)∑

a,b

S̃a S̃a S̃b S̃b +

(
λ − 9

2

)∑

c

S̃c S̃c

⎞

⎠

= μ4
2

λ
135

(
4(11λ + 3)h212 + (88λ2 + 30λ − 27)h12 + (44λ2 + 18λ − 27)λI

)



where we have used
∑

c S̃
c S̃c = 2(h12 + λI ).

Let μ1 = α − μ4
2

λ
135 (88λ

2 + 30λ − 27) and μ2 = (135β/4(11λ2 + 3λ))1/4, noting
that 11λ2 + 3λ is positive for all d � 2. Then


H1
 + A − B = (αh12 + βh212 + cI )
 = V (αh + βh2 + cI )V †

for some c ∈ R, and where V = I12 ⊗ |ψEF 〉. So by Lemma 12 (fourth order) we can
simulate αh + βh2 + cI .

Finally, since this is a fourth-order gadget, we must check if there is any cross-gadget
interference when we use multiple gadgets in parallel. Let 
tot be the projector onto the



Universal Qudit Hamiltonians 759

ground space of all gadgets being applied in parallel. By Corollary 14, the interference
between gadgets i and j is given by

−1

2

tot

[
H (i)
4 , H ( j)

4

]2

tot.

If H (i)
4 and H ( j)

4 commute then clearly there is no interference. Assume without loss

of generality that gadget i simulates an interaction between qudits 1 and 2 with H (i)
4 =

μ
(i)
2 (h1Ei + h2Ei ) and gadget j simulates an interaction between qudits 1 and 3 with

H ( j)
4 = μ

( j)
2 (h1E j + h3E j ). Normalising by a factor of (μ

(i)
2 )2(μ

( j)
2 )2 for convenience,

the cross-gadget interference is proportional to

− 1

2(μ(i)
2 )2(μ

( j)
2 )2


tot

[
H (i)
4 , H ( j)

4

]2

tot

= −1

2

tot

[
∑

a

(Sa1 + Sa2 )SaEi
,
∑

b

(Sb1 + Sb3 )S
b
E j

]2

tot

= −1

2

∑

a,b,c,e

[Sa1 , Sb1 ][Sc1, Se1]
totS
a
Ei
ScEi

SbE j
SeE j


tot

= −1

2

λ2

9

∑

a,b

[Sa1 , Sb1 ][Sa1 , Sb1 ] = λ2

18

∑

a,b,c,e

εabcεabeS
c
1S

e
1

= λ2

9

∑

c

Sc1S
c
1 = λ3

9
I

wherewe have usedEq. (45) in the third equality. Therefore the cross-gadget interference
is proportional to the identity, which corresponds only to an unimportant energy shift,
and so can be ignored. ��

7.2. h and h2 simulate qutrit SU(3) Heisenberg interaction. Let C be the Casimir op-
erator corresponding to the {Sa1 + Sa2 }a representation of su(2). Given access to h2 and
h interactions, we can produce the two-qudit interaction

H0 = (C − 2I )2 =
(
∑

a

(Sa1 + Sa2 )(Sa1 + Sa2 ) − 2I

)2
= (2h12 + 2λI − 2I )2

= 4
(
h212 + 2(λ − 1)h12 + (λ − 1)2 I

)
,

where as before λ = (d2 − 1)/4. This operator is clearly positive semidefinite and has
eigenvalue zero only on the 3-dimensional representation in the decomposition (44),
since the 3-dimensional representation has Casimir eigenvalue 2. We will use this 3-
dimensional space to encode a logical qutrit. For any 4 qudits (1, 2), (3, 4), where each
pair is restricted to this space, the operator

H1 = h13 + h14 + h23 + h24 =
∑

a

(Sa1 + Sa2 )(Sa3 + Sa4 )
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3

4

1

2
Fig. 10. Interaction graph of the gadget used in Sect. 7.2. A logical qutrit is encoded into each pair of qudits
(1, 2) and (3, 4)

acts as a logical qutrit SU (2) Heisenberg interaction. So by Lemma 8 (first order) we
can use the interactions h and h2 to simulate a Hamiltonian of h′ interactions between
qutrits, where h′ is the SU (2) Heisenberg qutrit interaction (Fig. 10).

Then by Lemma 25, it is possible to simulate any Hamiltonian H = ∑i j αi j h′
i j +

βi j (h′
i j )

2, where βi j � 0. In particular one can set αi j = βi j and simulate
∑

i j βi j (h′
i j +

(h′
i j )

2). Then h′ + (h′)2 is the SU (3) Heisenberg interaction, which is universal by
Theorem 3 (even with non-negative weights). This completes the proof of the following
theorem:
Theorem 6 (restated). For any d � 2, the SU (2)Heisenberg interaction h = Sx ⊗ Sx +
Sy ⊗ Sy + Sz ⊗ Sz , where Sx , Sy , Sz are representations of the Pauli matrices X , Y , Z ,
is universal.

8. Bilinear-Biquadratic Interaction in Dimension 3

We finally consider an important variant of the SU (2) Heisenberg model: the bilinear-
biquadratic spin-1 Heisenberg model (i.e. in local dimension 3). Write X3, Y3, Z3 for
matrices such that {i X3, iY3, i Z3} generate a 3-dimensional irreducible representation
of su(2). For example, we can take

X3 = 1√
2

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ , Y3 = i√
2

⎛

⎝
0 −1 0
1 0 −1
0 1 0

⎞

⎠ , Z3 =
⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ ;

note that these obey the same commutation relations as the Pauli matrices (up to a scaling
constant). Then the Heisenberg interaction is

h = X3 ⊗ X3 + Y3 ⊗ Y3 + Z3 ⊗ Z3.

Consider the algebra generated by h. We have h3 = h − 2h2 + 2I , so up to scaling
and an identity term any nontrivial interaction in this algebra can be written as h(θ) :=
(cos θ)h + (sin θ)h2 for some θ . Let α = cos θ and β = sin θ . Because of our freedom
to choose the signs of interactions, we can further assume that 0 � θ � π , and thus
β � 0. Then any Hamiltonian produced from such interactions can be written, up to an
overall identity term, as

H =
∑

i< j

ai j h
(θ)
i j .
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This model is known as the (general) bilinear-biquadratic Heisenberg model and has
been a popular object of study [1,25,29,31]. The special case θ = arctan 1/3 is the
interaction proportional to h + 1

3h
2 occurring in the famous AKLTmodel [2], which was

handled in Lemma 11. We also already showed that the cases θ ∈ {0, π/4} are universal
in the previous section (π/4 corresponds to the SU (3) Heisenberg interaction); here we
prove universality for all other values of θ .

It is easy to check that h has three eigenspaces with eigenvalues −2, −1, 1 and
dimensions 1, 3, 5 respectively. Therefore h(θ) has eigenvalues 4β − 2α, β − α, β + α

with respect to the same eigenspaces. In addition, h2 is proportional to the projector onto
|ψ〉 = |02〉 − |11〉 + |20〉 plus a multiple of the identity. Depending on θ , h(θ) has the
following properties:

• θ = 0: h(θ) = h. The Heisenberg model.
• 0 < θ < arctan 1/3: ground state nondegenerate and equal to |02〉 − |11〉 + |20〉.
• θ = arctan 1/3: ground space 4-fold degenerate (the AKLT model).
• arctan 1/3 < θ < π/2: ground space 3-fold degenerate and spanned by

{|01〉 − |10〉, |12〉 − |21〉, |02〉 − |20〉}. (49)

• θ = π/2: ground space 8-fold degenerate and the orthogonal complement of |02〉−
|11〉 + |20〉. The case h(θ) = h2.

• π/2 < θ < π : ground space 5-fold degenerate.

The special case θ = π/4 gives the qutrit swap operator (up to rescaling and subtract-
ing an identity term), which is in addition SU (3)-invariant. For θ > π/4, the highest
energy state is nondegenerate and is |02〉 − |11〉 + |20〉.

8.1. Mediator gadget. Wefirst consider the case where the state |ψ〉 = |02〉−|11〉+|20〉
is either the unique ground state or highest excited state of h(θ).

Lemma 26. Let θ ∈ (0, arctan 1/3) ∪ (π/4, π) \ {arctan 2}. Then h(θ) is universal.

Proof. Our strategy will be to use a second-order gadget via Lemma 9 to implement the
effective interaction h(θ ′) for any choice of θ ′. In particular this allows us to simulate
the interaction h(π/4) which is the qutrit swap operator—the unique SU (3) invariant
interaction shown to be universal in Theorem 3. To use this approach, we need to define
Hamiltonians H0, H1, H2 on a system of 4 qutrits. We label these qutrits 1, 2, 3, 4 where
qutrits 3 and 4 are mediator qutrits, and the effective interaction h(θ ′) is simulated on
qutrits 1 and 2 (Fig. 11).

The condition on θ implies that β > 0 and α > 3β or α < β. Consider the operator
h(θ)+(2α−4β)I , which annihilates |ψ〉 = |02〉−|11〉+|20〉, and has eigenvalues α−3β
and 3α − 3β on the two eigenspaces of h with dimension 3 and 5 respectively, which in
turn correspond to eigenvalues −1 and +1. If α > 3β then both of these eigenvalues are
positive andwe set H0 = h(θ)

34 +(2α−4β)I , while ifα < β then both of these eigenvalues

are negative and the proof will continue analogously with H0 = −(h(θ)
34 + (2α − 4β)I ).

In either case, 
 = I ⊗ |ψ34〉〈ψ34| is the projector onto the ground space of H0. Let
H1 = λ1h

(θ)
12 for some λ1 ∈ R, so that H1 commutes with 
, and 
H1
 = λ1h

(θ)
12 
.

Then we choose

H2 = λ2

(
h(θ)
13 + h(θ)

23 − 8β

3
I

)
= λ2(α − β/2)A + λ2βB
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4

3
1 2

Fig. 11. Interaction graph of the mediator gadget used in the proof of Lemma 26. H0 acts on the mediator
qutrits 3 and 4, and there is an effective interaction between the qutrits 1 and 2

where A = h13 + h23, B = h213 +
1
2h13 + h223 +

1
2h23 − 8

3 I , and λ2 ∈ R. It is easy to
check that for any |φ12〉, h13|φ12〉|ψ34〉 and h23|φ12〉|ψ34〉 are in the eigenspace of h34
with eigenvalue −1, and therefore that A
 has support only on the eigenspace of H0
with eigenvalue α − 3β. Similarly, one can check that (h213 +

1
2h13 − 4

3 I )|φ12〉|ψ34〉 and
(h223 +

1
2h23 − 4

3 I )|φ12〉|ψ34〉 are in the eigenspace of h34 with eigenvalue +1, which
implies that B
 has support only on the eigenspace of H0 with eigenvalue 3α − 3β.

Therefore neither A
 or B
 have support on the eigenspace of H0 with eigenvalue
0, and so 
H2
 = 0 as required to apply Lemma 9. The second-order term is given by


H2H
−1
0 H2
 = λ22

(α − β/2)2

α − 3β

A2
 + λ22

β2

3α − 3β

B2
.

Calculating 
A2
 and 
B2
 separately we find that


A2
 = 
(h213 + h13h23 + h23h13 + h223)
 = 4

3
(2I + h12)



B2
 =
(
2

3
h212 +

1

3
h12 +

2

9
I

)

.

Let V = I12 ⊗ |ψ34〉 so that VV † = 
 and


H1
 − 
H2H
−1
0 H2
 = V

(
λ1h

(θ) + λ22h̃(θ)
)
V †

where

h̃(θ) = 2

9(α − β)

(
β2h2 +

6α3 − 12α2β + 8αβ2 − 3β3

α − 3β
h +

2(18α3 − 36α2β + 23αβ2 − 6β3)

3(α − 3β)
I

)
.

Therefore by Lemma 9 (second order), we can simulate λ1h(θ) + λ22h̃(θ). By repeating

the same calculation with H2 = λ2(h
(θ)
13 −h(θ)

23 ), it is possible to simulate the interaction

λ1h
(θ)
12 − λ22h̃12(θ) instead. For all θ satisfying the conditions in the lemma, it is easy to

check that the 2-local part of h̃12(θ) is linearly independent of h(θ)
12 . So, by choosing λ1,

λ2 appropriately, we can use this gadget to simulate any desired interaction h(θ ′) (with
an arbitrary weight), and in particular the case θ ′ = π/4. ��
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3

4

1

2
Fig. 12. Interaction graph of the gadget used in the proof of Lemma 27. A logical qutrit is encoded into each
pair of qutrits (1, 2) and (3, 4)

8.1.1. Logical qutrit gadget In the next case we consider, h(θ) has a 3-dimensional
ground space.

Lemma 27. Let θ ∈ (arctan 1/3, arctan 5). Then h(θ) is universal.

Proof. In this case, the condition on θ implies that 0 < β/5 < α < 3β and that h(θ)’s
ground space is the 3-dimensional space with basis (49). Let V : C3 → (C3)⊗2 be the
isometry defined by

V = |01〉 − |10〉√
2

〈0| + |12〉 − |21〉√
2

〈1| + |02〉 − |20〉√
2

〈2|,

which maps onto the ground space of h(θ).
We will construct a second-order gadget that encodes each logical qutrit into one of

these 3-dimensional ground spaces of two physical qutrits (Fig. 12). Using Lemma 9,
we choose H0, H1 and H2 such that the effective interaction between logical qutrits is
proprtional to h + h2, the SU(3) invariant SWAP interaction shown to be universal in
Theorem 3.

By the anti-interference discussion presented in [17, Lemma 36], it will suffice to
consider just two logical qutrits encoded in 4 physical qutrits. Let one logical qutrit
be encoded into the ground space of h(θ)

12 in a pair of physical qutrits labelled 1, 2 and

a second logical qutrit be encoded into the ground space of h(θ)
34 in a pair of physical

qutrits labelled 3, 4. The overall heavy Hamiltonian H0, with an appropriate multiple of
the identity to ensure the ground state energy is zero, is given by

H0 = h(θ)
12 + h(θ)

34 + 2(α − β)I.

Let 
 be the projector onto the 9 dimensional ground space of H0, in which the two
logical qutrits are encoded. One can check that for i ∈ {1, 2} and j ∈ {3, 4},


h(θ)
i j 
 = (V ⊗ V )

(
1

4
h(θ) + β I

)
(V ⊗ V )†

Let H2 = λ2(h
(θ)
13 − h(θ)

24 ) so that 
H2
 = 0. Using a computer algebra package we
can calculate the second-order term, remembering that H0 has zero energy on its ground
space, and that the H−1

0 denotes the inverse computed on the higher energy space only:

−
H2H
−1
0 H2
 = λ22

2α(α − 3β)
(V ⊗ V )

(
(−3α3 + 6α2β − 8αβ2 + β3)h
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− 1

2
(5α3 − 7α2β + 9αβ2 + β3)h2 + cI

)
(V ⊗ V )†

for some c ∈ R.
Let H1 = 4λ1h13 so that 
H1
 = λ1(h

(θ)
L + 4β I )
 = λ1(αhL + βh2L + 4β I )
.

Then by Lemma 9 (second order), choosing H0 and H2 as above and setting λ1 = α−β,
λ2 = 2

√
α will simulate

5α3 − 8α2β + 13αβ2 − 2β3

3β − α

(
h + h2

)
+ c̃ I

for some c̃ ∈ R, which is the SU (3) Heisenberg interaction as desired, up to rescaling
and deletion of an identity term. We note that 3β − α > 0 and

5α3 − 8α2β + 13αβ2 − 2β3 = (5α − β)(α − √
2β)2 + (10

√
2 − 7)α2β + (3 − 2

√
2)αβ2 > 0

since α, β > 0 and 5α − β > 0. Therefore this gadget can only produce positively-
weighted interactions, but this restriction is allowed in Theorem 3. ��

Combining Theorem 6, Lemma 11, Lemma 26 and Lemma 27 yields our final result:
Theorem 7 (restated).Let h(θ) := (cos θ)h+(sin θ)h2, where θ ∈ [0, 2π) is an arbitrary
parameter and h is the spin-1 Heisenberg interaction. For any θ , h(θ) is universal.
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A. Proofs for Fourth-Order Perturbative Gadgets

In this appendix, we prove Lemmas 12 and 13.
Lemma 12 (restated) (Fourth-order simulation). Let H0, H1, H2, H3, H4 be Hamiltoni-
ans acting on the same space, such that: max{‖H1‖, ‖H2‖, ‖H3‖, ‖H4‖} � �; H2 and
H3 are block-diagonal with respect to the split H+ ⊕ H−; (H4)−− = 0. Suppose there
exists a local isometry V such that Im(V ) = H− and

http://creativecommons.org/licenses/by/4.0/
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‖V HtargetV
† − 
−

(
H1 + H4H

−1
0 H2H

−1
0 H4 − H4H

−1
0 H4H

−1
0 H4H

−1
0 H4

)

−‖ � ε/2

(50)

and also that

(H2)−− = 
−H4H
−1
0 H4
− and (H3)−− = −
−H4H

−1
0 H4H

−1
0 H4
−. (51)

Then Hsim = �H0 + �3/4H4 + �1/4H3 + �1/2H2 + H1 (�/2, η, ε)-simulates Htarget,
provided that � � O(�20/ε4 + �4/η4).

Proof. We will follow the presentation of the Schreiffer–Wolff transformation provided
in [9,10]. Let A = �3/4H4 + �1/4H3 + �1/2H2 + H1, so that Hsim = �H0 + A. The
Schreiffer–Wolff transformation is a unitary operator eS which maps the low-energy
space of Hsim onto H−, the ground space of H0. Define Ṽ = e−SV , which therefore
maps exactly onto the low energy space of Hsim. And, using equation (22) of [10], we
have ‖V − Ṽ ‖ = ‖I − e−S‖ = O(‖S‖) = O(‖A‖/�) = O(�/�1/4) � η, so Ṽ
satisfies condition 1 of Definition 1.

To check condition 2 of Definition 1, it is necessary to bound

‖Hsim|�� − Ṽ Htarget Ṽ
†‖ = ‖V Ṽ †Hsim Ṽ V † − V HtargetV

†‖ = ‖Heff − V HtargetV
†‖

where Heff = (eSHsime−S)−−, which is in general a very complicated operator. To deal
with this, we expand Heff as a Taylor series in 1/�. The first three terms are given in
[10] as

Heff,1 = A−− and Heff,2 = − 1

�
A−+H

−1
0 A+−

Heff,3 = 1

�2 A−+H
−1
0 A++H

−1
0 A+− − 1

2�2 (A−+H
−2
0 A+−A−− + h. c.)

The fourth-order term in the Taylor series can be derived using the techniques of [9],
where they consider the more general situation where H0 acts non-trivially on its low
energy space. Let Aod = 
−A
+ + 
+A
− and Ad = 
−A
− + 
+A
+ and
S1 = �−1[H−1

0 , Aod]. In the special case we are considering where (H0)−− = 0, the
fourth-order term is given according to equation (3.22) of [9] as

Heff,4 = 
−
(
1

8
[S1, [S1, [S1, Aod]]] − 1

2
[Aod, [�−1H−1

0 , [Ad, [�−1H−1
0 , [Ad, S1]]]]]

)

−

= 1

2�3 
−
(
AH−2

0 A
−AH−1
0 A − AH−1

0 AH−1
0 AH−1

0 A + AH−2
0 AH−1

0 A
−A

+ AH−1
0 AH−2

0 A
−A − AH−3
0 A
−A
−A + h. c.

)

−

where the h. c. refers to the Hermitian conjugate of all terms contained in the brackets,
where the second equality follows from some tedious algebra or the use of a computer
algebra package.

Next we substitute in A = �3/4H4 + �1/4H3 + �1/2H2 + H1 to get

Heff,1 = �1/4(H3)−− + �1/2(H2)−− + (H1)−−
Heff,2 = −�1/2
−H4H

−1
0 H4
− + O(�2/�)
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Heff,3 = �1/4
−H4H
−1
0 H4H

−1
0 H4
− + 
−H4H

−1
0 H2H

−1
0 H4
−

−1

2

(

−H4H

−2
0 H4
−H2
− + h. c.

)
+ O(�3/�1/4)

Heff,4 = 1

2

−
(
H4H

−2
0 H4
−H4H

−1
0 H4 − H4H

−1
0 H4H

−1
0 H4H

−1
0 H4 + h. c.

)

− + O(�4/�1/4)

Combining these expressions with Eqs. (50) and (51), and noting that some terms cancel
because 
−H2
− = 
−H4H

−1
0 H4
−, we have

‖Heff − V HtargetV
†‖ � ‖Heff −

4∑

i=1

Heff,i‖ + ε/2 + O(�2/�) + O(�3/�1/4) + O(�4/�1/4).

Given � > O(�20/ε4), we may assume that the sum of the last three terms is less
than ε/4. By equation (23) of [10], we have ‖Heff −∑4

i=1 Heff,i‖ = O(�−4‖A‖5) =
O(�5/�1/4) < ε/4. ��
Lemma 13 (restated). Consider a Hilbert space H = H0 ⊗⊗i�1Hi with multiple

fourth-order mediator gadgets labelled by i � 1, each with heavy Hamiltonian H (i)
0

which acts non-trivially only onHi , and interaction terms H (i)
1 , H (i)

2 , H (i)
3 , H (i)

4 which

act non-trivially only onHi ⊗ H0. Let 

(i)
− denote the projector onto the ground space

of H (i)
0 , and 


(i)
+ = I − 


(i)
− . Suppose that for each i , these terms satisfy the conditions

of Lemma 12; in particular, H (i)
0 


(i)
− = 0, H (i)

2 and H (i)
3 are block diagonal with respect

to the 

(i)
− , 
(i)

+ split, 
(i)
− H (i)

4 

(i)
− = 0 and



(i)
− H (i)

2 

(i)
− = 


(i)
− H (i)

4 (H (i)
0 )−1H (i)

4 

(i)
− and



(i)
− H (i)

3 

(i)
− = −


(i)
− H (i)

4 (H (i)
0 )−1H (i)

4 (H (i)
0 )−1H (i)

4 

(i)
− .

For each j ∈ {0, . . . , 4}, letHj =∑i H
(i)
j , and let� � max{‖H1‖, ‖H2‖, ‖H3‖, ‖H4‖}.

Suppose there exists a local isometry V such that Im(V ) is the ground space of H0
and ‖V HtargetV † − M‖ � ε/2 where M is equal to

M =
∑

i


−
(
H (i)
1 + H (i)

4 (H (i)
0 )−1H (i)

2 (H (i)
0 )−1H (i)

4

− H (i)
4 (H (i)

0 )−1H (i)
4 (H (i)

0 )−1H (i)
4 (H (i)

0 )−1H (i)
4

)

−

+
∑

i 
= j


−
(
H (i)
4 (H (i)

0 )−1H ( j)
4 (H ( j)

0 )−1H ( j)
4 (H (i)

0 )−1H (i)
4

− H (i)
4 (H (i)

0 )−1H ( j)
4 (H (i)

0 + H ( j)
0 )−1H ( j)

4 (H (i)
0 )−1H (i)

4

− H (i)
4 (H (i)

0 )−1H ( j)
4 (H (i)

0 + H ( j)
0 )−1H (i)

4 (H ( j)
0 )−1H ( j)

4

)

−

where 
− is the projector onto the ground space of H0.
Then�H0+�3/4H4+�1/4H3+�1/2H2+H1 (�/2, η, ε) simulates Htarget, provided

that � � O(�20/ε4 + �4/η4)
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Proof. First we note that since the H (i)
0 operators act on different subsystems for each

i , all the 

(i)
− operators commute and 
 =∏i 


(i)
− . For a set S, let 
S be the projector

onto the excited (i.e. not ground) space of all gadgets with label i ∈ S and onto the
ground space of all other gadgets. This is defined by


S =
(
∏

i∈S



(i)
+

)⎛

⎝
∏

j /∈S



( j)
−

⎞

⎠ .

These projectors are orthogonal in the sense that
S
T = 0 unless S = T . By definition,

S commutes with H0, and the following relation holds:

H−1
0 
S =

(
∑

i∈S
H (i)
0

)−1


S = 
SH−1
0 . (52)

Since 

(i)
− H (i)

4 

(i)
− = 0, we have H (i)

4 

(i)
− = 


(i)
+ H (i)

4 

(i)
− for all i . This implies the

following relations:

H (i)
4 
− = 
{i}H (i)

4 
− and (I − 
−)H (i)
4 
{ j} = 
{i, j}H (i)

4 
{ j} for all i, j.(53)

We will now use Eqs. (52) and (53) to check that the conditions of Lemma 12 hold.


−H4H
−1
0 H4
− =

∑

i, j


−H (i)
4 H−1

0 H ( j)
4 
−

=
∑

i, j


−H (i)
4 
{i}H−1

0 
{ j}H ( j)
4 
−

=
∑

i, j


−H (i)
4 (H (i)

0 )−1
{i}
{ j}H ( j)
4 
−

=
∑

i


−H (i)
4 (H (i)

0 )−1H (i)
4 
−

=
∑

i


−H (i)
2 
− = 
−H2
−;


−H4H
−1
0 H4H

−1
0 H4
− =

∑

i, j,k


−H (i)
4 H−1

0 H ( j)
4 H−1

0 H (k)
4 
−

=
∑

i, j,k


−H (i)
4 
{i}H−1

0 H ( j)
4 H−1

0 
{k}H (k)
4 
−

=
∑

i, j,k


−H (i)
4 (H (i)

0 )−1
{i}H ( j)
4 
{k}(H (k)

0 )−1H (k)
4 
−

=
∑

i


−H (i)
4 (H (i)

0 )−1H (i)
4 (H (i)

0 )−1H (i)
4 
−

= −
∑

i


−H (i)
3 
− = −
−H3
−,
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where in the fourth equality we have used the fact that 
{i}H ( j)
4 
{k} = 0 unless i =

j = k, which again follows from 
(i)H (i)
4 
(i) = 0.

Finally we use Eqs. (52) and (53) to calculate the fourth-order terms from Lemma 12:


−H4H
−1
0 H2H

−1
0 H4
− =

∑

i, j,k


−H (i)
4 H−1

0 H ( j)
2 H−1

0 H (k)
4 
−

=
∑

i, j,k


−H (i)
4 (H (i)

0 )−1
{i}H ( j)
2 
{k}(H (k)

0 )−1H (k)
4 
−

=
∑

i, j


−H (i)
4 (H (i)

0 )−1
{i}H ( j)
2 
{i}(H (i)

0 )−1H (i)
4 
−

=
∑

i


−H (i)
4 (H (i)

0 )−1H (i)
2 (H (i)

0 )−1H (i)
4 
−

+
∑

i 
= j


−H (i)
4 (H (i)

0 )−1H ( j)
4 (H ( j)

0 )−1H ( j)
4 (H (i)

0 )−1H (i)
4 
−,

where in the third equality we note that [H ( j)
2 ,
(k)] = 0 for all j, k since H ( j)

2 is

block diagonal with respect to the 

( j)
− , 
( j)

+ split, which implies that 
{i}H ( j)
2 
{k} =


{i}
{k}H ( j)
2 = δik
{i}H ( j)

2 
{k}; and in the final equality we used the fact that for

i 
= j , 
{i}H ( j)
2 
{i} = 
{i}
( j)

− H ( j)
2 


( j)
− 
{i} = 
{i}H ( j)

4 (H ( j)
0 )−1H ( j)

4 
{i}. Next,


−H4H
−1
0 H4H

−1
0 H4H

−1
0 H4
−

=
∑

i, j,k,l


−H (i)
4 H−1

0 H ( j)
4 H−1

0 H (k)
4 H−1

0 H (l)
4 
−

=
∑

i, j,k,l


−H (i)
4 
{i}H−1

0 H ( j)
4 H−1

0 H (k)
4 H−1

0 
{l}
−

=
∑

i, j,k,l


−H (i)
4 (H (i)

0 )−1
{i}H ( j)
4 H−1

0 H (k)
4 
{l}(H (l)

0 )−1H (l)
4 
−

=
∑

i, j,k,l


−H (i)
4 (H (i)

0 )−1H ( j)
4 
{i, j}H−1

0 
{k,l}H (k)
4 (H (l)

0 )−1H (l)
4 
−

Note that H−1
0 commutes with 
{i, j}, and so there is a factor 
{i, j}
{k,l} which is zero

unless {i, j} = {k, l}. There are three such possibilities:


{i, j}H−1
0 
{k,l} =

⎧
⎪⎨

⎪⎩

(H (i)
0 )−1 i = j = k = l

(H (i)
0 + H ( j)

0 )−1 i = k 
= j = l

(H (i)
0 + H ( j)

0 )−1 i = l 
= j = k

Substituting these three possibilities back into the previous expression above, and sum-
ming over i, j, k, l, we find that 
−H4H

−1
0 H2H

−1
0 H4
− −
−H4H

−1
0 H4H

−1
0

H4H
−1
0 H4
− is equal to the terms given in the statement of the lemma. ��
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B. Trace Formulas

Here we state, in the notation of this paper, the trace formulas from [35], and show how
they can be used to prove (45) and (46). Equations (2.28) and (2.31b) from [35] state
that

Tr(SaSb) = dλ

3
δab, (54)

Tr({Sa, Sb}Sc) = 0. (55)

The first two equations in (45) follow from (54). For the third, (55) implies that

Tr(SaSbSc) = 1

2
Tr([Sa, Sb]Sc) + 1

2
Tr({Sa, Sb}Sc)

= 1

2

∑

e

iεabe Tr(S
eSc) + 0 = idλ

6
εabc.

Finally, to prove (46), equations (2.26) and (2.32) of [35] state that

Tr(Sa SbScSe) = B

3
(δabδce + δacδbe + δaeδbc) +

1

6

∑

f,g

(−εab f εceg + εae f εbcg)Tr(S
f Sg)

(56)

where B = dλ
30 (6λ − 2) = dλ

15 (3λ − 1).
Looking at the second half of (56), we can substitute in (54) and use the fact that∑
f εab f εce f = δacδbe − δaeδbc to show that

∑

f,g

(−εab f εceg + εae f εbcg)Tr(S
f Sg) = dλ

3

∑

f

(−εab f εce f + εae f εbc f )

= dλ

3
(δaeδbc + δabδec − 2δacδbe).

Substituting this back into (56) gives the desired result:

Tr(SaSbScSe) = dλ(3λ − 1)

45
(δabδce + δacδbe + δaeδbc) +

dλ

18
(δaeδbc + δabδec − 2δacδbe)

= dλ

15

(
δacδbe(λ − 2) + (δaeδbc + δabδec)(λ +

1

2
)

)
.
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