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Abstract: We study the dependence of the spectral gap for the generator of the Ginzburg—
Landau dynamics for all O(n)-models with mean-field interaction and magnetic field,
below and at the critical temperature on the number N of particles. For our analysis
of the Gibbs measure, we use a one-step renormalization approach and semiclassical
methods to study the eigenvalue-spacing of an auxiliary Schrodinger operator.
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1. Introduction and Main Results

1.1. O(n)-model. The model we are concerned with in this article is the generator of
the Ginzburg—Landau dynamics, or Langevin dynamics, of the mean-field O(n)-model
in the critical and supercritical regime 8 > n, as defined precisely in Section 2. Our
objective is to study the scaling of the spectral gap in terms of the system size N, for all the
numbers of components n > 1, and including the cases with or without external magnetic
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field, in the low temperature and critical regime, extending the study of the subcritical

regime B < n in [BB19]. When 8 < n, the spectral gap of the generator remains open

uniformly in N and for any number of components n, in the full temperature range.
The mean-field O(n)-model is defined by the energy function

1
Ho)=3 Y o@)(—Ampo)x) — - Y (ho(x)) (1.1)

X€[N] '8 Xx€[N]

acting on spin configurations o : {1, .., N} — S"~! where Ay is the mean-field Lapla-
cian and & € R" an external magnetic field. For our study of spectral gaps, we consider
the Ginzburg—Landau dynamics associated with the Gibbs measure dp oc e “#H©) with
Hamilton function (1.1). The inverse temperature parameter § is such that lower tem-
peratures (higher 8) favors alignment of spins. The study of mean-field O(n)-models is
motivated by the fact that their behavior approximates that of the full O(n)-model on
high-dimensional tori [ElI85,LLP10].

1.2. State of the art and motivation. The study of spectral gaps in O(n) models is a
popular problem that has received a lot of attention over the last decades. The study of
logarithmic Sobolev (and other functional) inequalities is a classical and very effective
tool to study concentration of measures and to quantify the relaxation rates, i.e. the mixing
properties, of the dynamics. In particular, the spectral gap (the speed of relaxation) is
determined by the constant in the Log-Sobolev inequalities. We define the spectral gap to
be the size of the gap between 0 and the rest of the spectrum of the associated generator
L, defined in (2.3). The gap then can be also characterized by

—(Lf, f)r2@p)

Ag = inf
feL2@pn\oy  Vary(f)

(1.2)

where Var,, is the variance relative to the equilibrium measure p. All these quantities
will be specified for our setting in the following section. For further background on
functional inequalities see [Gro93,BES85,Led99,Led01,GZ03, ABC+00] and references
therein.

There are only few general approaches for the study of spectral gaps of spin sys-
tems, using log-Sobolev inequalities, available and many of them rely on an asymptotic
study of log-Sobolev inequalities [LY93,S792a,S792b,SZ92c] or [MO13] for a more
recent result in that direction. In the article [BB19], a simpler proof for a log-Sobolev
inequality was provided for bounded and unbounded spin systems and sufficiently high
temperatures. The novelty of the approach in [BB19] is the combination of the study
of log-Sobolev inequalities with a simple renormalization group approach to decom-
pose the stationary measure in a way that makes it accessible to simple Bakry-Emery
techniques.

Inspired by the method in [BB19], we invoke the same one-step renormalization group
procedure to reduce the high-dimensional problem to the study of a low-dimensional
renormalized measure and a fluctuation measure. In the subcritical regime f < n,
which is the regime analyzed in [BB19], the renormalization of the equilibrium measure
is particularly efficient, since the renormalized potential is strictly convex such that
the Bakry-Emery criterion can be directly applied to this measure and implies that the
spectral gap remains open. This renormalization group method has recently also been
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successfully applied in the study of the spectral gap for hierarchical spin models [BB]
and for a lattice discretization of a massive Sine-Gordon model [BB20].

The low temperature regime, which is the regime we are concerned about within this
article, has a non-convex renormalized potential. In this regime, after a single renor-
malization step, the renormalized potential is not convex. This makes the asymptotic
analysis much more difficult and requires new methods:

While we analyze the Ising model, n = 1, without magnetic field, directly using
explicit criteria for spectral gap and log-Sobolev inequalities [BG99,BGL14], we heavily
use the equivalence between the generator of the Ginzburg—Landau dynamics and a
Schrodinger operator to analyze multi-component,n > 2, O(n)-models. This analysis
builds heavily upon ideas by Simon [Sim83,CFKS87] and Helffer—Sjostrand [HS85,
HS87] who developed effective semiclassical methods to study the low-lying spectrum of
Schrodinger operators in the semiclassical limit (which in our case corresponds to N —
00). These results are discussed thoroughly in the final chapters of [NHOS5]. In this article
however, we have to study the spectrum of Schrodinger operators beyond the harmonic
approximation. In this case, the limiting operator is not explicitly diagonalizable anymore
and the spacing between eigenvalues is no longer linear in the semiclassical parameter
N, the number of spins.

The mixing time of the Glauber dynamics of the mean-field Ising model (O(1))
without magnetic field has been carefully analyzed in [DLP09a,DLP09b]. There it is
shown-among others- that the mixing time in the subcritical regime 8 < 1 is N log(N),
the scaling at the critical point N3/2 for 8 = 1 and in the supercritical regime g > 1 it
is exponential growing in N. This is to be compared to a spectral gap that remains open
for B < 1, closes like N~!/2 for 8 = 1 and closes exponentially fast also for § > 1.
Thus, the mixing time for the Glauber dynamics are -up to a factor 1/N- comparable to
our findings on the spectral gap, cf. Theorem 1.

Our main result on the mean-field Ising model in the supercritical regime B > n is
stated in the following Theorem:

Theorem 1 (Spectral gap—Supercritical Mean-field Ising models, 8 > 1). Let N be the
number of spins and n the number of components.

For the supercritical mean-field Ising model (n = 1, 8 > 1), the spectral gap Ay of the
generator

e for the case of small magnetic fields |h| < he, closes as N — 00 exponentially fast,
Ay = e NAsmaWU+OW) 1y particular, for magnetic fields h € [0, he)

72(B)

Agman(V) = / B (¢ — tanh(By + h)) dg
1 (B)

where y1(B) < y2(B) € R are the two smallest numbers satisfying the condition

y(B) = tanh(y (B) B +h).

e For critical magnetic fields |h| = he, the spectral gap does not close faster than
@(N’1/3) anymore.

e Finally, for strong magnetic fields |h| > he, it is bounded away from zero uniformly
in N.

where he = \/B(B — 1) — arccosh(y/B).
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In the case of supercritical multi-component systems (n > 2, 8 > n) without mag-
netic fields, it is the rotational invariance of the model that leads to a closing spectral
gap as N tends to infinity. To capture this property, we call a function f : ()Y — R
radial, if it is only a function of the norm of the mean spin |o|. Our main results for
all multi-component systems in the supercritical regime f > n are summarized in the
following Theorem:

Theorem 2 (Spectral gap—Supercritical Mean-field O(n)-models, 8 > n > 2). Let N
be the number of spins and n the number of components.

For the supercritical mean-field O(n)-models(n > 2, 8 > n), the spectral gap \y of the
generator

e closes as Ay = O(N~Y) if there is no external magnetic field h = 0, but remains
open Ly = O(1) for radial functions.
e is bounded away from zero uniformly in the number of spins for all h € R™*\{0}.

We also analyze the behavior of the spectral gap at the critical point 8 = nand h = 0.
Using a discrete Fourier analysis approach implemented in Section 6 for the Ising case
n = 1 and a direct asymptotic analysis for all higher component systemsn > 2, we find a
different asymptotic of the spectral gap from both the supercritical 8 > n (exponentially
fast closing) and subcritical § < n (spectral gap remains open) regimes:

Theorem 3 (Spectral gap—Critical Mean-field O(n) models, § = n). For all critical,
B = n, h = 0 mean-field O(n)-models the spectral gap closes as Ay = O(N~/?). In
particular, the rate N~V/? is attained for the magnetization

M@)=N""*3" o).

x€[N]

We emphasize that at the critical points (8 = n, h = 0), the gap does no longer close
once a non-zero magnetic field is present:

Theorem 4. (Spectral gap—Mean-field O(n) models, 8 = n, h # 0) Forall, B = n and
h # 0, the spectral gap of all mean-field O(n)-models remains open.

The proof of Theorem 4 is along the lines of Theorem 1 in the regime & > h and follows
from Proposition 4.2 in the Ising-case, n = 1, and in the multi-component case, n > 2,
from Proposition 5.4.

1.3. Organization of the article. The article is organized as follows:

e In Section 2 we introduce the mean-field O (n)-model.

e In Section 3 we introduce the renormalized methods.

e In Section 4 we analyze the mean-field Ising model in the supercritical regime 8 > 1
and prove Theorem 1.

e In Section 5 we analyze the higher-component mean-field O(n)-models in the su-
percritical regime > n and prove Theorem 2.

e In Section 6 we study the critical regime and prove both Theorems 3 and 4.

e Our article contains an appendix that contains technical details and further details
on numerical methods.
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Notation We write f(z) = O(g(z)) to indicate that there is C > 0 such that | f(z)| <
Clg(z)| and f(z) = 0(g(2)) for z — z¢ if there is for any ¢ > 0 a neighbourhood U,
of zg such that | f(z)| < € |g(z)|. We say that f(z) = ®(g(z)) if there are k1, k, > 0
and zg such that for all z > zo we have k1g(z) < f(z) < k2g(z). The expectation with
respect to a measure ( is written denoted by [E,, (X). The normalized surface measure
on the n sphere is denoted as dSs:. We write 1 to denote a vector or matrix whose
entries are all equal to one and id for the identity map. Finally, we introduce the notation
[N] := {1, ..., N}. The eigenvalues of a self-adjoint matrix A shall be denoted by
AM(A) = ... < An(A).

2. The Mean-Field O (n)-Model

We study the mean-field O(n)-model with spin configuration o : [N] — S"~! and
introduce the mean-field Laplacian (Apmpo)(x) := % Zye[N] (c(y) —o(x)).

The mean spin is defined aso := % > re[n] O (). The energy of a spin configuration
o is given by the Curie—Weiss Hamiltonian

1
Ho)=14% Y o) (—Aupo)x) — = Y (h,o(x)

x€[N] x€[N]
1
=ay 2l —omP=2 3 thow) 2.1)
x,y€[N] xe[N]

=51 —[a1») — % (h,).

where the constant vector 7 € R” represents an external magnetic field and B is the
inverse temperature of the system. The critical temperature for the O(n)-models is
B = n and we study both regimes: the supercritical regime 8 > n and the critical regime
B =n.

The dynamics we consider is the continuous-time Ginzburg—Landau dynamics

of = Z <Véf),1,/3_lvé)nc),1f + fvéi)le%R” 2.2)
x€[N]

to the invariant distribution of the mean-field O(n)-model which is the Gibbs measure
dp(o) = e PH@) )7 4 SS,IY , (o) with normalizing constant Z. The operators Agf,),l
defined by (f, —Agf,)_ f) = (Vé),f)_ s Vg,:)_ . f) and Vé),f)_ , are the Laplace-Beltrami and
gradient operator on "~ ! acting on spin i, respectively. We recall that for the Ising model
n = Oandafunction F : S° — R, the gradientis given by (VeoF)(o) = F(o)—F(—0).
The L2 ((S”_ LN )-adjoint of the generator of the Kramers—Smoluchowski equation (2.2)
is the generator

(L)) = Y BT AGL00) — (Vg @) (V5L 0@ (93,

X€[N]

Studying the operator L on the weighted space L?> ((S"_I)N , d,o) makes this generator
self-adjoint. The quadratic form of the generator (2.3) is just a rescaled Dirichlet form

L2(dp)

2
—(Lf, fr2ap =B~ Z H Vé:)—] f
xe[N]
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3. Renormalized Measure and Mathematical Preliminaries

We start with the definition of entropy with respect to probability measures:

Definition 3.1 (Entropy). For a probability measure ©« on some Borel set 2 the entropy
Ent,, (F) of a positive measurable function F : 2 — R with fQ F(x)logt(F(x))du(x) <
oo is defined as

Ent,, (F) :=/QF(x)log (F(x)//QF(y) dpL(y)) du(x). 3.1)

Instead of studying the generator of the dynamics directly, we apply a one step
renormalization first [BBS19, Sec. 1.4]:

Definition 3.2 (Renormalized quantities). The renormalized single spin potential V,,
associated with the mean-field O(n)-model for ¢ € R” is defined as

B
Va(p) = —log / e~ 2le—olP+ o) g (o)

Sn—]
2-1
=5 (1 + I|<p||2) — log (r (%) (W+,”)2 1%_1(||,3¢+h||)>

where [ is the modified Bessel function of the first kind. The N-particle renormalized

measure is defined for a normalizing constant 1)1(\',1) by

(3.2)

dvn () = viPe ™V @) dg on R”. (3.3)
Definition 3.3 (Fluctuation measure). For any ¢ € R", there is a probability measure
Iy the fluctuation measure, on (S"~! )N defined as
B o2
By ()= [ | F@eM® ] e 2o rli o) gsioq). 4
(1) xe[N]

A straightforward calculation shows that the stationary measure dp can be decom-
posed into the fluctuation and renormalized measure such that E,(F) = E,, (E, o(F ).

Example 1. In the case of the Ising model (n = 1) the renormalized potential is
Vilg) = %(1 +¢%) — log (cosh(By + h)) . (3.5)
For the XY model (n = 2) the renormalized potential reads

Va(@) = B+ [lgl?) —log (1o (Il B + hll)) (3.6)

where I is the modified Bessel function of the first kind.
For the Heisenberg model (n = 3) one finds

& (1 ol) g (2212 1)
Vi@ =5 (1+101?) log< el )
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For the N-asymptotic study of eigenvalues we observe that the renormalized potential
grows quadratically at infinity such that AV, € L>®°(R").

The Ginzburg-Landau dynamics dynamics for the renormalized measure is then
given by the self-adjoint operator Lyen : D(Lyen) C LZ(R”, dvy) — LZ(R", dvy),
satisfying

(Lren&) (@) = (Arn &) (@) — N (VR Vi (@), Vi (@) - (3.7
The renormalized generator L, satisfies
— (Leen fs P 126wy = IV F 17200, - (3.8)

The renormalized Schrédinger operator with null space spanned by e=V"» is the
operator defined by conjugation — A, = e NVu/2]  eNVa/2

2
Aren = —Are + X |VV,(@)1? = T AV, (9). 3.9)

Definition 3.4 (LSI and SGI). Let 1 be a Borel probability measure on R”. We say that
w satisfies a logarithmic Sobolev inequality LSI(k) iff

Enty, (f) < 21V £ 17204

for all smooth functions f. The LSI(k) implies [Led99, Prop. 2.1] that p satisfies a
spectral gap inequality SGI(k)

Var, (f) < IV A2 -

Thus, in light of the characterisation (1.2), the spectral gap of Ly, is by (3.8) precisely
the constant in the SGI of the renormalized measure.

Remark 1. If f vanishes outside a set €2 of measure ©(2) < 1 and if u satisfies a SGI(k)
then

2 1 2
”f”Lz(d/l,) = k(l——u,(Q)) ”Vf||L2(d,u) . (310)

For Borel probability measures © on R there is an explicit characterization of the
measures satisfying a LSI [BG99, Theorem 5.3]:

Any such measure p satisfies a LSI(k) iff there exist absolute constants Ko = 1/150
and K| = 468 such that the optimal value k in the LSI(k) satisfies Ko(Do + D) <
1/k < K1(Dg + D) for finite Dy and D;. Let m be the median of u and p(¢) dt the
absolutely continuous part of p with respect to Lebesgue measure. The constants Dy
and D, are given by

m-d
Do := sup (_M((—oo, x])log(u((—oo,x]))/ %) and
sup x P 3.11)

xX>m

“d
Dy := sup (—u([x, 00)) log(u([x, 00))/ —s>
m D)

For constants

mods * ds
By := sup <M((—oo,x])/ —> and By := sup <M([x, 00))/ —)
x<m + pGs) x>m m P(s)
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(3.12)

one defines the Muckenhoupt number [Muc72] B := max(By, B1). The measure u
satisfies then a SGI with optimal constant ¢ = 1/k if and only if B is finite in which
case

B/2 <c<4B (3.13)
[BGL14, Theorem 4.5.1].

Remark 2. The proof given in [BG99, Theorem 5.3] shows that the characterization of
LSI constants holds true not only by splitting at the median: Instead, there is & > 0
such that for any ¢ for which p((—o0, ¢1), u([¢, 00)) € (1/2 — ¢, 1/2 + ¢€) the above
characterization (3.11) holds true when the median m is replaced by ¢. The same is,
up to an unimportant adaptation of the lower bound in (3.13), for the SGI as well, cf.
[GRO1, Prop. 3.2 + 3.3].

We continue by observing that the fluctuation measures satisfy a LSI(%) independent of

h or . This follows for n = 1 with y,, = 4 from a simple application of the tensorization
principle to the classical bound on the Bernoulli distribution [ABC+00,Led01,SC97].
For number of components n > 2 one can use the results from [ZQM11].

Proposition 3.5. Let the renormalized measure vy satisfy a LSI()), then the full equi-
librium measure p satisfies a LSI

2
b7 < 2 (145 3 [

L?(dp)

and if the renormalized measure vy satisfies a SGI(A), then the equilibrium measure p
satisfies a SGI

2
Varp(F)<—<1+4N5) Z H éf)l ‘

L2dp)

Proof. The proof of the SGI is as follows: For the SGI we obtain the decomposition
Var,(F) = E\;N (Var,, (F)) + Var,, (E,, (F))

w2 [VSL P+ B (19 (PIF).

To bound the second term in the above estimate, we compute using the Cauchy—Schwarz
inequality and the spectral gap inequality for fluctuation measures (i, on the sphere,
defined by (3.4) such that, see [BB19, Theorem 1, (11)-(15)],

(3.14)

L%(dp)

VB, (F) = NVV(Q)E,, (F) = B Y By, (F(g —oy)). (3.15)
x€[N]

We then use that by the explicit expression (3.2)

fSn e 2”¢ osll® (QO_Ux)dSS" 1 (oy)

VVip) =
Jnr e 20— 455, 1 (o)

= Blp —Ey,(0r)). (3.16)
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Inserting this into (3.15) we find that

VoEu, (F)=8 Y By, (Foy) —E,, (FE,, (00) =B Y covy,(F.oy).
xeIN] xelN]

Thus, we have using Cauchy—Schwarz that

2
|VoEy, (F)|” < NB* Z | covy,, (F, o). (3.17)
x€[N]

We can then use that by Cauchy—Schwarz again
covy, (F,ox) =E,, ((F —Ey, (F)(o — Euw(o)))
< By (F = By (F)2\[ By, (F = Byyy (F)2 /By, (0 — By, (0))2

<2/ Var,, (F).

Finally, inserting this into (3.17) and using the LSI for the fluctuation measure, we find

(3.18)

Evy <|V¢EH‘P(F)|2) < 4NBEyy Vary, (F)

4NB?
FRALE S Ve F

sn 1
Vn x€[N]

’2 (3.19)

which after inserting this bound into (3.14) implies the claim. To prove the LSI we follow
[BB19] and write

Ent,(F%) = E,, (Entuw(Fz)) +Ent,, (E,Lq,(Fz))

2 2
v 2 2
= o ),n E ” -1 ‘Lz(dp)"'xEvN <’V¢\/EM¢(F )‘ >

For the second term we have from applying the Cauchy—Schwarz inequality:

2
? covy, (F?, 0y) cov,, (F?, 0,)?
‘V(p ]Eﬂw(Fz)) zﬂz er[N] Ko X - ,BZNZXE[N]l Uy ¥ | .

[E,., (F?) B E,., (F?)

By doubling the variables oy, o, we write

0w, (200,001 = 5 By, (200 = Fo) o — o))

1
< ,/Varw,(m\/ Epyon, (F0) + F(a))2 0y — 0))?)

< \/Varﬂw(F)\/ 8E,,, (F2)

where in the last two lines we applied CS inequality and used that |ox — o | < 2. Then

|covy, (F2,0)|* < 8 Vary, (F)E,, (F?).
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This gives

A2 /IEW(FZ)’Z < 8NB? Var,,, (F).

Overall we have

Ent,(F) < 2 Z [Vl F|

2 2
lﬁﬂ N (x)
Lz(dp) )\]/n Z H Sn— 1

=5 (1+352) 3 [ogr],

L2(dp)

L?(dp)

4. The Mean-Field Ising Model

Without loss of generality, we assume 4 > 0 when studying the Ising model. We define
the critical magnetic field strength in the Ising model

he(B) :=v/B(B — 1) — arccosh(/B)

for temperatures § > 1 as the supremum of all # > 0 such that x = tanh(Bx + &) has
three distinct solutions for x € [—1, 1]. In particular s.(8) is monotone with respect to
the inverse temperature f.

The critical magnetic field strength is chosen in such a way that for fields 7 < h.(8)
there are two potential wells in the renormalized potential landscape, see Figure 1,
whereas for i > h () there is only one, see Figure 2 in subsection 4.3 where this case
is discussed.

4.1. Lower bound on spectral gap in weak field h < h.(B) regime. We start by showing
that the inverse spectral gap in the Ising model in the case of subcritical magnetic fields,
i.e. h < h.(B), converges at most exponentially fast to zero as the number of spins, N,
increases.

We start by showing a LSI with exponential constant for the renormalized measure.
This implies by Prop. 3.5 that such an LSI must also hold for the full many-particle
measure dp.

Proposition 4.1. (LSI for vy)
Let B > 1 and h < h(B) such that V1 is a double well potential where the depth of

the smaller well is denoted by Asman(V), cf. Fig. 1. The mean-field Ising model satisfies
a LSI(e—NAsmau(V)(1+O(1)))1

Ent,, (F2) < eNAsmau(V)uw(l))/ PP dvy.
R

1 If the magnetic field is zero, i.e. h = 0, both wells are of equal size.
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h=0 h=0.5

7 ‘ : 8 : : ‘

6l 7
_ _ 6l
855 ®
c c
-9 9 5,
Qaf 2
? ®
g N4
T 3l T
£ st
o [e]
c c
Q2+ o

2,
1 AoV
1r
0 0
4 2 0 2 4 -3 2 1 0 1 2 3

Fig. 1. Weak magnetic fields: Renormalized potentials for the Ising model with 8 = 3 and zero 7 = 0 or weak
h = 0.5 magnetic fields form a double well

Proof. The renormalized potential V; has on [0, co) a global minimum with positive
second derivative at some @iy satisfying @min = tanh(B¢min + k). This follows since
the renormalized potential (3.2) reduces to

Vi(p) = ng — log(cosh(B¢ + h))

and the critical points of this potential are easily found to satisfy ¢ = tanh(B¢ + h),
see also [BBS19, Lemma 1.4.6]. For small temperatures, i.e. 8 — 00, one has ¢min =
1+0().

We first consider h = 0: In this case, the median of the renormalized measure is
located precisely at ¢ = 0 and @i, > 0 is one of the two non-degenerate global minima
of the renormalized potential (the other minimum is located at —@mi, by axisymmetry).

An application of Laplace’s principle, see [WonO1, Ch. I, Theorem 1], shows that for
allx > 0:

eNVi(e)
Nh_r)n w log | —vn ([x, 00)) log(vy ([x, 00))) (1) dy

= Nlim %<log / e V1@ 4o +1og (— log(vy ([x, 00))))
X

—>00

X
+10g/ N1 @) dgz))
0

= _ 1nf V1(I)+ sup Vi(1).

relx, 1€[0,x]

4.1)

The supremum of (4.1) is attained at x = @iy such that

— inf Vi) + sup Vi(t) = Agman(V) > 0.

te[x,00) tef0,x]
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Here, we used that for x > @i, we get by Laplace’s principle

—log (vy[x, 00)) = N(V(x) = V(¢min)) (1 + O(1))

and thus llmN_> w 0

Onthe otherhand, if x € (0, ¢pmin) then, again by Laplace’s principle, — log (vy [x, 00)) =
— log(z) + O(1) and thus limy_, o log(log(w = 0 as well. The case x = @i
can be treated analogously. Hence, we obtain for the constant Dj as in (3.11)

eNVilp)
i = sup | (s conlogluy(Lx, oo 1= dy

x>0

(4.2)
— N Ama(V)(1+0(D)

The symmetry of the distribution for # = 0 implies then that Dy = D;.

We now consider h > 0: The renormalized potential possesses a unique global
minimum at some @ni, and the median of the renormalized measure converges to this
point @iy, see Fig. 1, as Laplace’s principle implies

[ e NG® g
X e N dg 2 +OU/N).

Hence, it suffices to verify the LSI bounds (3.11) for m = ¢, as argued in Remark 2.
Arguing as in (4.2) yields for 4 > 0 and x < @mip :

eNVi(e)
lim 4 log [ —vy ((—o0, x]log(vy ((—o0, x)) (1) dy

N—>oo

~ lim %(log [ e g+ t0g (- togum ix. c0))
—00

N—o0

m
+10g/ N1 @) d(p)
X

=— inf Vi@®)+ sup Vi(r)

1€(—00,x] te[x,m)

(4.3)

which shows Dy = eV Asma(V)I+0(D) by taking x to be the minimum of the smaller
well of the renormalized potential. For the constant D we get on the other hand for
X > @min, since the renormalized potential is monotonically increasing on [¢@min, 00),

N eNVilp)
Jim b 1og ( —v (Lx, 00)) log(vy (1x, o0) / T

o0
= ngnoo & (logfx e NV o 4+ log/m eNV1@) g (4.4)

+log (—log(vy ([x, 00)))))
=— inf Vi(®)+ sup V(1) =0

t€[x,00) telm,x]

such that Dy is negligible compared with Dy. O
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4.2. Upper bound on spectral gap in weak field h < h.(B) regime. The upper bound
on the spectral gap is obtained by finding an explicit trial function saturating the SGI.
For this construction, we use the notation and results of Lemma B.1.

In order to fix ideas first, we assume 7 = 0. We start by observing that the mean
spin @ can only take values in the set M := {—1, —1+2/N, ..., 1}. The weights of the
stationary measure dp are given by functions ny : M — R

N NB .\ _
_ —BH(0) _ (1=i%)
(@) = E e (N/Z(l . z)) 2 4.5)

where we used (2.1).
We also introduce trial functions fy : {£1}¥ — R for the spectral gap inequality
given by

Li<y58))
fn(o) = —_— (4.6)
ieM%;Ka N @)

with indicator function 1 and y3() is the largest solution to ¢ = tanh(B¢ + h). Since
fn depends only on the mean spin, we can identify them with functions gy : M — R

1
gn(m) = Z {ZLE()M such that fy (o) = gn(0).
ieM;0<i<m N

For the L? norm of the fy we find

(l)|2 Z nn (i) Z 1

nn(Jj)

77N()

12 = D =

ieM ieM;i>y3(B) z JeM;0=j=<y3(B)
4.7)

where Z is the normalization constant of the full measure dp. For the gradient of f we
find

V8 )| = 1ax@) — en@ £ 2/N)P < @)

Hence, for some C > 0
2 CN 1
3 H v s ’ = ¥ . 4.8)
L2(dp) V4 nn (@)

ie[N] ieM;0<i<y3(B)

IA

Using (3.10) with u(2) = % implies by comparing (4.7) with (4.8) that the constant y
in the SGI is bounded from below by

1 1 1
— ] < —. 4.9
Ne 2 mD DL s sa 42
ieM:i>y3(B) ieM:0<i<y3(B)

We recall from the discussion in Lemma B.1 that the continuous approximation nn (@)
attains its maximum in the limit at i = y3(8) and the summand ( ; in the second sum
attains its maximum in the limit ati = 0.
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Thus it suffices to study the asymptotic of the logarithm of the leading order sum-
mands in (4.9) using the asymptotic behaviour of {y := d5 log(nn (s)) given in (B.1)

73(B) v3(B)
log (M) =N ty(s)ds = N (Bs — arctanh(s)) ds (1 +O(1))
) A A

_N (ﬂ)’S(ﬂ)z B /V3(’3)ﬂ arctanh(x /p)
0

> 8 dx) (1+0())

73(B)
= —N/ B(x — tanh(Bx)) dx (1 + 0(1))
0
= NAsman(V)(1+0(1)).
Here, we used integration of the inverse function to obtain the last line and (3.5) in the

last one. In the case of a positive weak magnetic field & € (0, h.(8)) we choose a trial
function fy , : =1}V > R given by

1 .
fyn(o) = Z M where fori e M
ieM:z<i<y3(B) N () 4.10)
(i) = N oL (-2 nni
M=\ N+ :

Proceeding as above in (4.7) we obtain for the L? norm the lower bound

2

2 1 ) 1

Iviliean = 22 mva® > ol
ieMii<yi(8) jeMipBr=izn@) ™Y
For the Dirichlet form we find, as for (4.8), for some C > 0
2 CN 1
(x)

v ‘ < =X . 4.12
Z] H g0 SN L2dp) ~ Z Z nn.n(Jj) 12

x€[N JeEMy3(B)>j=y1(B)

We can apply (3.10) with u(2) = lng for some & > 0 since the trial function (4.10)
vanishes to the right of the global maximum such that by comparing (4.11) with (4.12)
the constant y in the SGI is bounded from below by

% Yo ) > L L 4.13)

i) T ¢
ieMii<y1(B) jeMipiprezpep W) &Y

The weight ny 5 (i) in the first sum attain their maximum (in the limit) at i = y;(8) and

the summands m in the second sum attain their maximum at i = y»(g8).
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140 Renormalized potential V3 3 Second derivative of
120 27
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Fig. 2. Strong magnetic fields: The renormalized potential and its second derivative for 4 = 5 for 8 = 3. The
potential is non-convex even though it is a single well potential. However, it is convex in a neighbourhood of
the global minimum

To explicitly state an upper bound on the spectral gap it suffices to study the asymptotic
of the logarithm of the leading order summands

loq (mena@n _ [P as— [ h(s)) ds (1 + 0(1
°8 (m)_ 2(8) fvals)ds = 2(8) (i ey i (o)
2 2 1(B)B
_ v [En® = n®?) fy arctanh(xr/8) ;N 1 4 oy
2 n(B)p B

1 (B)
= —N/ B(x — tanh(Bx)) dx (1 +O(1))
y2(8)

= NAsmall(V)(l + O(l))-

4.3. Spectral gap in strong magnetic field regime h > h.(f). Next, we study the case
of strong magnetic fields for the Ising model, that is V| has at most one root, for g > 1.
We also include the case § = 1 and & # 0. Unlike in the case of weak magnetic fields,
in which case the constant in the LSI for the renormalized measure is exponentially
increasing in the number of spins, the spectral gap of the renormalized measure is now
linearly increasing in the number of spins. Responsible for this uniform gap is the local
uniform convexity at the minimum of the renormalized potential. More precisely, we
have

Vi(p) = B(p — tanh(Bp + h)) and V{'(¢) = (1 — Bsech(By +h)*).  (4.14)

Thus, V{'(¢) = 0 yields ¢+ = w Inserting this into V{(¢+) = 0 implies
that he = Farccosh(/B) T /B(B — 1) with sign sgn(h+) = F1 and thus ¢+ =
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Renormalized potential - critical magn.field

¢

20 L Inflection point
151
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Fig. 3. Critical magnetic field for n = 1: Renormalized potential of the Ising model with 8 = 2 possesses
two critical points, one inflection point and a global minimum

£,/ % In particular, in the subcritical regime 8 > 1 all global minima ¢, have sign

sgn(p,) = sgn(h), such that the renormalized potential satisfies Vl/ "(¢4) > 0. Moreover,
for B = 1 and h # O there are no points at which both the first and second derivative
vanish. The third derivative at this point however is always non-zero and given by

VP (ps) = T2V/B(B - DB.

Proposition 4.2 (Ising model, strong field). Let B > 1 and h > h.(B), i.e. V| is a single
well potential. We obtain for the Ising model a SGI(y)

1 2
VarvN(F)fy'/R|F’| dvy

where % is uniformly bounded in N .

Proof. Since the renormalized Schrodinger operator and renormalized generator are
unitarily equivalent up to a factor, see (3.9), the semiclassical eigenvalue distribution
stated in [Sim83, Theo. 1.1] implies the statement of the Proposition:

It follows immediately from the renormalized Schrédinger operator (3.9)

2 2
Aren = — s + L IVI@P = 3V () (4.15)

that the low-lying eigenfunction of A, accumulate at the unique non-degenerate (the
second derivative is non-zero) potential well and the spectral gap of the renormalized
measure grows linearly in N. The result then follows from Prop. 3.5. O
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4.4. Critical magnetic fields inn = 1.

Proposition 4.3. Let h = hy and 8 > 1. The spectral gap of the radial renormalized
Schridinger operator grows as ®(N?/3) and in particular, the spectral gap of the full
measure does not close faster than ® (N -/ 3).

Proof. Let X := N /2 and consider the Schrodinger operator, defined in (3.9),
H o= =32+ 22|V (x)]* — AV (x) (4.16)

for the renormalized potential and auxiliary Schrodinger operators, which are obtained
as the Taylor expansion of (4.16)

Hy, = =82+ 22|V](@0)*(x — ) — V] (¢,) and
Hy, = =32+ 22838 — D(x — )" £22/B(B — DB(x — ¢1)

on L*(R) localized to the two critical points, the inflection point ¢4 and the global
minimum ¢,.. We then define j € C°((—2, 2); [0, 1]) such that j(x) = I for |x] <1
and from this functions

4.17)

Joo (X) = JOPx — @), Jpu (x) = jA1x — @) and

) 2= 1= Jp (002 = Ty, (x)? with 4.18)

[V = OOH). |V [ = 0GP

Invoking then unitary maps Uy, , U,, € L(L%(R)) defined as
Uy, £)x) := 27"V FO.72 (x + @) and (U, f)(x) == 270713 (0 + 91))
4.19)

shows that the two Schrodinger operators in (4.17) are in fact unitarily equivalent, up to
multiplication by powers of A, to the A-independent Schrodinger operators
S = =33 + Vi (@) Px? = V{'(9)
Spr = =32+ 838 — Dx* £2/B(B — 1)Bx,

respectively. Both operators have discrete spectrum and that inf(Spec(Sy,)) > 0 is
shown in Section C. We illustrate the behaviour of the smallest eigenvalues of Sy, in
Figure 4. More precisely, we have that

(4.20)

©U, ' Sy, Uy, = Hy, and 3*PU, Y S, Uy, = H, . (4.21)

Taylor expansion of the potential at the respective critical point and the estimate on
the gradient (4.18) imply that

| J‘ﬂ* (H - H(ﬂ* ) J(p*

= O and also |J,, (H — Hy)Jp, | = OG). (422)

Let 0 = e; < ey < .. be the eigenvalues (counting multiplicities) of Sy, and 0 < f1 <
f2 < ... the ones of Sy, and choose 7 such that Ae,41 > 7 > Ae, and A2/3ﬁn+1 > T >

A%/3 f,, with P; being the projection onto the eigenspace to all eigenvalues of S; below
7.
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Low-lying spectrum of S,

Eigenvalues
N N w w S
o (6] o (§)] o

—_
()]

10+

1 1.2 1.4 1.6 1.8 2
Inverse temperature 8

Fig. 4. The five smallest eigenvalues of the operator Sy as a function of 8. The smallest eigenvalue is strictly
positive

The IMS formula, see [CFKS87, (11.37)] for a version on manifolds, implies that

H=JHI—|VIP+ Y
i€{gs 9}

(J,- HiJi + Ji(H — H)) J; — |V J; |2) . (4.23)
On the other hand, it follows that

JW*HW* ‘]‘/7* = ‘IW*HW* P‘/’* J‘P* + ]¢*H§0* (ld _P(ﬂ*)] s

= J(/)* H‘/’* P‘/’* J‘ﬂ* + )“e" J(/%*
and also
JorHpoJo, = Jo Hyp, Py, Jop, +Jp, Hy, (id =Py, )]y,
= J‘PiHSﬂiP¢ﬂ:J¢i +)‘2/3fm‘]§§i'

In particular, we find

||V1’||H2{,, > ¢A 7% on J for some ¢ > 0.
and

IV{llgn = ex™3/1% on J for some ¢ > 0.
This implies for large X that

JHJ > 3B f, 72, (4.24)
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Fig. 5. Heisenberg model, (n = 3): The renormalized potential of the Heisenberg model forh =0Oand 8 =5

From (4.23) we then conclude that for some C > 0

H=a2Pf 02— Ca¥0+ > H P =3P f+ Y JiHi P — o(Vh).
ie{pr, o} ic{p+, @i}

This implies the claim of the Proposition, since
rank (JoH+L P Jy) < n.
More precisely, for the eigenvalues E1(A) < E>(X) < .. of H we have shown that

li)Lm inf A"23E, (%) > f,_1 > Oforn > 2.
— 00

In particular, the lowest possible eigenvalue e; = 0 of the renormalized Schrodinger
operator is of course attained as the nullspace of the renormalized Schrodinger operator
Hy, is non-trivial. This shows that the spectral gap of the renormalized Schrodinger
operator grows at least proportional to A%/3. 0

5. Multi-component O (n)-Models

5.1. n > 2: Zero magnetic field, h = 0. Let h = 0 then the renormalized potential for
n > 2 is radially symmetric and possesses a critical point at ¢ = 0. In the supercritical
case, i.e. § > n, the renormalized potential possesses another critical radius r = ||¢|| €
(0, 1), see Fig. 6. To see this, we differentiate the renormalized potential

Iy
O Va(r) = Pr (1 - rln//zszs(;gr)) '
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Fig. 6. XY-model: The renormalized potential of the XY-model for 2 =0 and g = 10

It is now obvious that r = 0 is a critical point of the renormalized potential at which

Irl
1%#% =24 > 1 such that 92V, (0) = B (1= £) <0 5.1)

where we used that 8 > n is supercritical. To conclude the existence of precisely one
other critical radius rpyj, at which the renormalized potential attains its global minimum

it suffices therefore to show that —22") decays monotonically to zero. We prove this
rlp2—1(Br)
in Lemma B.2 in the appendix. This implies that also the factor (1 - %) has

precisely one root, i.e. the second critical radius.
In the next proposition we show that the radial part of the measure dvy (¢) which we

denote by dry := vl(\'f)r”_]e_N Va() dr in the sequel satisfies a SGI with a constant that

is uniformly bounded in the number of spins.

5.2. Zero magnetic field—a lower bound on the spectral gap. When h = 0 and n >
2, then the renormalized Schrédinger operator (3.9) for A := N /2 is the self-adjoint
operator

Aren = —Apn + A2 |V V2 — AARn V.

This operator is also rotationally symmetric such that by separating (spherical coordi-
nates) the angular part from the radial part, the remaining radial component Ai‘gﬂ" of
the renormalized Schrodinger operator on L?((0, 00), r"~ldr) for £ € Ny reads

Apet = — (83 + =15, — u) 3210, Vu (PP = 282V (r).  (5.2)
Here, the term £(¢ + n — 2) accounts for the eigenvalues of the angular part of the
Laplacian. The renormalized potential possesses, when 7 = 0 and n > 2, exactly two
critical radii at which |0, V), (r)|2 = 0. The radii are r = 0 and r = rpin, see the
beginning of this Section 5.1. However, V,,(r) is strictly concave at 0, i.e. Brz V,(0) <0,
and by Lemma B.2 strictly convex at 7, such that 8,2 Vi (rmin) > 0. This follows from

Iy
O2Va(rimin) = Brimind =y (1 = 7225055 ) = O,

see the beginning of Section 5.

By the tensorization principle we already know that the rotational invariance of
the renormalized measure implies that the spectral gap inequality for the renormalized
measure is at least uniform in N. In our next Proposition we therefore study the low-lying

spectrum of the radial component, A0 as 4 — oo.
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Proposition 5.1. Let h = 0, n > 2 and B > n. The spectral gap of the radial renormal-

ized Schrodinger operator Aﬁg’j’o grows linearly in N.

Proof. To study the low-lying spectrum of the radial component of the renormalized
Schrodinger operator, let A := N /2 and consider Schrodinger operators

HO.() = — (33 + ;18) + 32102V, (0) %% — 2 92V,,(0) and 53
HJn (1) = =33 + A2 107 Vo (i) P (8 = rinin)”> = A 87 Vi (i)

where we use the variable x rather than r to emphasize that the last operator is defined
on L%(R), unlike the first one which is an operator on L2((0, 00), "1 dr). Observe
that in (5.3) we replaced the gradient term of the Schrodinger operator by its Taylor
approximation at the critical point. This explains the occurrence of the second derivative
at the critical point in (5.3). Invoking the unitary maps Uy € L(L?((0, 00), r"~1 dr))
and Uy, € L(L*(R)) defined as

(UofH(x) = 27" F2x) and (Upy, /)(0) = 274 FOT2(x + i) (5:4)

shows that the two Schrédinger operators in (5.3) are in fact unitarily equivalent, up to
multiplication by A, to the A-independent Schrédinger operators

SO = (33 + "T—la,) +192V,a ()22 = 82V, (0) 55
Semin = —32 + 182V, (rmin) 2% — 82 Vi (Fmin)»
respectively. More precisely, we have that
Uy'a SQUo = Hoe(V) and U, L A SpminU,, = Himn (). (5.6)

Since the bottom of the spectrum of the operator Sgsc is strictly positive Sgsc > — 8r2 V, (0)
> 0, we conclude from (5.6) that the bottom of the spectrum of HY, (1) increases linearly
to infinity as A — oo.

To connect the low-energy spectrum of the renormalized Schrodinger operator with
the above auxiliary operators, take j € C2°(—o00, 2) such that j(x) = 1 for x| < L.
Then, we define

Jo(x) = FAX 1xD), T () = J O |x = rininl) with [V [lge = O(*) (5.7)

fori € {0, rmin} and J := /1 —J2 —J3.

Without loss of generality we can assume that A is large enough such that Jy and
Jrmin are disjoint.

Taylor expansion of the potential at 0 and rpy;, respectively and the estimate on the
gradient (5.7) imply that

Ji(ARYO g g | = OG5 for i € {0, rmin) -

ren

Let 0 = e; < ey < .. be the eigenvalues (counting multiplicities) of S, @ S’. and

choose 7 such that ¢,41 > T > ¢, with P; being the projection onto the eigenspace
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to all eigenvalues of H’ . below TA. The IMS (Ismagilov, Morgan, and Simon/Sigal)
formula, see [CFKS87, (11.37)] for a version on manifolds, implies that

Al‘ad,o — JArad’OJ _ |8r.l|2 + Z (Jl Arad,OJi _ |8rJi|2)

ren ren ren
i€{0,rmin}

such that

ren osc ren

ARLO — JARSOT 3, 0P+ Y (J,Hf i+ Ji(AT0 _ iy g |a,J,-|2) .

i€{0,rmin}

(5.8)
On the other hand, it follows that

JiH! J; = J;H! PiJ; + henJ?.

oscYl 0sc

PiJ; + JiH. (id —P;)J; > J; H!

0osc

By construction, since V'V, vanishes linearly on the support of J;, we have

||VVn||]§,, > c(A2%)? = cA*5 on J for some ¢ > 0.
Since AV, is globally bounded anyway, this implies for large A that
JARLO 7 > J2(cp 85 — ) > re, s (5.9)
From (5.8) we then conclude that for some C > 0

AR > pey — CoP 4 N LHL P =den+ Y JiHLPiJ; —o(0).

ren —
i€{0,rmin} i€{0,rmin}

This implies the claim of the Proposition, since

rank Z JiH. P J; | <n.
i€{0,7min}

More precisely, for the eigenvalues E1(A) < E>(A) < ..of Ai‘;ﬂ*o we have shown that

liminf A" E, (V) > ey,
A—>00

In particular, the lowest possible eigenvalue e; = 0 of the renormalized Schrédinger
operator is of course attained as the nullspace of the renormalized Schrodinger operator
is non-trivial. This shows that the spectral gap of the renormalized Schrédinger operator
grows at least linearly in A in the angular sector £ = 0. O

Corollary 5.2. Leth = 0, n > 2 and B > n. The spectral gap of the full Gibbs measure
p does not close faster than ®(1/N). In particular, for radial functions, i.e. [ only
depends on |c |, the spectral gap remains open.
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Proof. Since the spectral gap of the radial component of the renormalized measure
grows linearly in N and the spectral gap of the angular component is uniform in N, the
tensorization principle implies that the full renormalized measure satisfies a SGI that is
uniform in N. Due to Proposition 3.5, the spectral gap of the full measure does therefore
not close faster than of order 1/N.

For radial functions f, the R" 5 ¢ — E, (f) maps also into radial functions and
therefore the spectral gap of the renormalized measure is only determined by the radial
renormalized Schrodinger operator in Prop. 5.1. Using Proposition 3.5 and (3.14), this
implies that for radial functions, the gap remains open. O

In the next Proposition we show that the rate N ! in this case is in fact optimal:

Proposition 5.3. Let h = 0, n > 2 and B > n. The spectral gap of the full measure p of
the dynamics decays at least as fast as N~

Proof. We consider the mean-spin & : (S")Y — R™*! defined by

5(0) = %Zm = (61(0), ..., Gpp1(0)) € R™1, (5.10)

In analogy to the spherical harmonics which in cartesian coordinates reads x1/||x]|,
we consider the function:

a1(o)
o (@)

where n € C*°(R; [0, 1]) is a cut-off function such that for fixed 1 > § > 0:

flo) =

n(llo (@) (5.11)

1, whent > § and
n() = {0’ when 1 < 8/2. (5.12)
As we want to compute the covariant derivative V,, f (o), we consider the parametrisation
y1(t) so that y1(0) = o1. Then we define y(t) := (y1(¢),02,...,0n) and s(¢) =
o (y(1)). It is then clear that for v := y{(0) we have s'(0) = v/N, the first coordinate
of which is 57(0) = (e, v)/N. We define then

s1(1) == 01(y (1)) = (e1, s(1)). (5.13)

Thus, since f(y(t)) = HZ‘((;))” , we find for the derivative

s(0) - s7(0)

"0) =
7O s (0)]

1
SO <|s<0>|s1(0> —51(0)

51(0) 5(0) - s"(0)
o FOVTG (5.14)

~ i N CICO R A
= S F@lenv) = 16N === )5 @)D

o ()]
o1(0) (6(0),v)
NECI Ay )DNI_( )|

)n(IS(O)I)
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Therefore, we see that in terms of

S B S 5 (o)
u(o) : <|g(6)|2 <|o(0)|el 01(0)|G( )|>n(|a(a)|)
|(-71((C;T2 n (Ia(a)l)cr(a)>

the derivative is just

Vo f(0) = (o) — (o), o1)o1

The cut-off function n ensures that |6 (o) | is not small. Therefore we canbound | Z (o) | =
O(1) which implies that E, (|V,5(0)[?) < 1/N? or that

Y Ep(IVe5(0)1)) S 1/N.
i€[N]

By rotational symmetry we also know that E,(f) = 0. For the second moment
E,(f (6)?), we have by rotational invariance again

n+l &i (0)2 n+l & (0)2
1ZEH‘Zp(W(O)IZ) ZEE’)<|5(0)|2> (5.15)

— (n+DE, (|_1(( ))|2n (15 (a)|)) +(n+ DRy

where R is the error

Ry =E, (|(fl(("))|2 (1—y (|o<o>|))>

Our aim is now to argue that Ry is small as N is large.

For B > n we know that the renormalized potential attains its minimum at hy-
perspheres d Bgrn (0, rmin). This implies that the renormalized measure concentrates at
such ¢ € dB(0, rmin) With exponential tail bounds, i.e. the probability of ¢ away from
0B (0, rmin) is exponentially small in N. The fluctuation measure then enforces that also
the mean spin ¢ has to be outside of a ball of radius § > 0 with high probability. To see
this recall that the fluctuation measure can be rewritten as

B () — Jeor- I)NF(o)eﬂN*” dSn (@) fgrnyy Flo)ePM ) ds3’ ()

f(Snfl)N e'BN (p,a Sn—l (0) N(w)N

(5.16)

Here, the radial normalizing function

n_

o n !
N = /S 0 sy 1) =T (3) ()" 13-, (1Bl

is a strictly monotonically increasing function of |¢| that satisfies N (¢) > 1 and N (¢) =
1 if and only if ¢ = 0. This follows directly from the Taylor series of the modified Bessel
function.
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Hence, we can pick § such that ePleo) — (1 +N(p))/2 for all ¢ € 9B(0, ryjn) and
|o| < 4. Hence, we see that for such ¢

E,, (15 =0 ! AN
;LV,( \0\58)— <W+§) .

N
This shows that E,(1)5<s) = O ((W]«T) + %) ) and hence that R tends exponen-

tially fast to zero as well, as N tends to infinity, under the condition that
B>n. 0O

5.3. Nonzero magnetic fields for n > 2. The situation & # 0 and n > 2 cannot be
reduced to a one-dimensional model due to lack of symmetries. Yet, the renormalized
Schrodinger operator provides a very elegant tool to show that the spectral gap of the
full generator of the Ginzburg-Landau dynamics dynamics remains open as N — 00.

In fact, whereas the global minimum for 4 = 0 of the renormalized potential is at-
tained on a hypersphere, the global minimum for 4 # 0 is attained at a single point, only.
This allows us to identify the asymptotic of the low-energy spectrum of the renormalized
Schrodinger operator directly with the spectrum of a quantum harmonic oscillator.

Let o € R”" be a critical point of the renormalized potential (3.2). We define the set

n
%=1 " (mildil + 5 (14 = 1)) . withn; € No, &; € 0(D*V,y ()

i=1

where A, ..., A, comprise the entire spectrum of DV, (@c).
Let ex be the k-th smallest element counting multiplicity in X we then have the
following Proposition:

Proposition 5.4. Let h # 0, 8 > n, and n > 2. Let Ex()) denote the k-th lowest
eigenvalue of the renormalized generator then this eigenvalue satisfies the asymptotic
law limy _, o E")f)") = ek. In particular, the ground state of the renormalized generator
in the limit as A — o0 is unique and the spectral gap of the renormalized Schrodinger

operator remains open and linearly in A.

Proof. When h # 0 then the renormalized potential has a unique non-degenerate mini-
mum. To see this recall that the renormalized potential reads

Vao. ) = § (1+ lpl1?) — log (r (%) (em)” I%_l(llﬂ<p+hll)> :

Introducing the new variable ¢ := B¢ + h implies that

% (B2 + g — 1) — log (F &) ()" I%_l(ncn))

a5 (B2+ 12+ 112 = 2(c. 1) (5.17)

~log <r () (&) 1%_1<||;||)> :

Va(@(2), h)
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Fig. 7. XY-model: The renormalized potential of the XY-model for # = (-2, 0) and 8 = 10. The rotational
symmetry is broken

Computing the gradient of that expression yields
1 .
VeVa(p(£), h) = —Eh+gﬂ(||§||)e; (5.18)

where we introduced the auxiliary function gg(r) := (% — %) Thus for the

gradient to vanish the vectors & and ¢ have to be linearly dependent.
Assuming thus thate;, = +e, we obtain from setting the gradient to zero the following
equation
Blap(liglh
Lnjp-1(1IC1D

Thus, when & and ¢ are aligned, there is precisely one solution, the global minimum of
the renormalized potential, satisfying

Blu2(lC1D
Lnjp—1 (11D

with gg(|I¢]) = B~ Yk|l > 0. That the aligned scenario corresponds to the global
minimum is evident from the expression of the renormalized potential (5.17).

The simplicity of the solution follows since the left hand side %

= (I =F lIalD).

= (g1 = NlAlD

is a concave,

monotonically increasing function from 0 to 8 as || || — oo.
When h and ¢ point in opposite directions, there can, by concavity of the left-hand
side, be between zero and two solutions to the equation

B2

SRS = (gl + ikl

Lipa—1(lg1D
with gg(lI¢]) = — B~ YIh|l < 0. In particular, for sufficiently low temperatures there
exists a local maximum and a saddle point of the renormalized potential as shown in
Figure 7.

From differentiating (5.18), the Hessian is given by
ce” id ¢’
DiVu(p(¢), h) = g'(lléll)w +gplgID (m ) (5.19)

We note that the Hessian has full rank unless at critical points unless g,/s(|| i +gpizh
Azl =1en=Y = o, since gs(I¢1) # 0 by (5.18) for non-zero magnetic fields.
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In addition, there can be only a saddle point which can only happen at one fixed
temperature depending on n.

Finally, if the temperature is sufficiently high, yet still such that 8 > n, there may
be no critical point if 4 and ¢ point in opposite directions. This is in particular the case
when 8 = n and h # 0: Taylor expansion at zero yields

BlupdiCl) — BI'(n/2)

= Iz + O I
Lijp—1(lCl) 2T (1 +n/2)
where for 8 = n we find % = 1 and concavity of the function ||| > %

show.

Thus ||V V,, || vanishes at not more than three critical points ¢, on the span of 4. In
particular, all eigenvalues of D?V,, are non-negative only at the global minimum of V,,
by (5.19), since we already established that g’(||¢]|) < O at the other two. To see that

they are strictly positive there, it suffices to analyze for r = || ||
I/
gpllech = (B~ —Zaie™") + ||;||I(fl'5|')'§
, (5.20)
_ gzl | NEIZ°Ci 1D
lIq Zlg?
Hence, we find that
I/
<l + gDl — 1217 = gptieiel + LEAED 551

ZigIn?

In particular, this expression is strictly positive at the global minimum, since gg (|| ||) > 0
and Z'(||¢]|) > 0 by general principles, see Lemma B.2.

The asymptotic behaviour of the spectrum of the renormalized Schrédinger operator
has been computed in [Sim83] and our above representation of ¥ follows by noticing
that $ D2 [VV,,2 (o) = (DV,(g0)) > 0.

Since the renormalized Schrodinger operator and renormalized generator are unitarily
equivalent up to a factor, the semiclassical eigenvalue distribution stated in [Sim83,
Theorem 1.1] implies the statement of the Proposition. O

6. The Critical Regime, Proof of Theo. 3

We conclude our analysis by investigating the critical case 8 = n and prove Theorem 3.
As before, we distinguish between n = 1 and multi-component systems n > 2:

6.1. Critical Ising model. It follows from (4.1), which always vanishes for all x > 0,
that the spectral gap, at the critical point 8 = n = 1, does not close exponentially
fast in the number of spins. We want to show in this subsection that it closes at least
polynomially, though. For a refined analysis in dimension n = 1, we recall some basic
ideas from discrete Fourier analysis:

Let f : {1} — C be an arbitrary function on the hypercube. The L>({£1}",
2-Ng Ucount) inner product on the hypercube is defined as

<f’ g){:t]}N = Z 2_Nf(x],..,)CN)g(x],..,.XN).

xe{+1}Y
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Critical regime, n=1
5000 | ) ) '«

4000 ]
3000 .

2000 ]

renormalized potential

1000 ]

Fig. 8. The renormalized potential V| for § = 1, h = 0 is a symmetric convex function

Second derivative - Critical regime, n=1

— T —T

0.8 4

041 B

0.2 B

Second derivative-renormalized potential

0.0 B

Fig. 9. Strong convexity of the renormalized potential V| fails at the origin, ¢ = 0.

The characteristic function xg for § C [N] is defined as xs(x) := ]_[l- cs 0i and the

family (xs)scn] forms an orthonormal basis of L2({£1}"). In particular, x5 = 1. We

also define indicator vectors 1 € R such that 1g(x) = 1if x € S and 0 otherwise.
Every function f € L2({£1}") admits a unique Fourier decomposition

f=> FSxs 6.1)

SC[N]
where .)/‘\(S ) := (f, xs). The variance of the stationary measure is given as the sum of

Var, (f) = Ey, (Vary, () + Var, (E,, (). (6.2)

Since the first term on the right-hand side of this equation is always uniformly bounded
by the Dirichlet form, as shown in the proof of Proposition 3.5, it suffices to study
the behaviour of the second term. Thus, applying the expectation with respect to the
fluctuation measure yields by the Fourier decomposition (6.1)

B, ()= Y FOE, (xs). (6.3)

SC[N]
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In particular, using the explicit form of Vj (¢), a direct computation yields forall x € [N]

( —Blo—1724n _em —LBlo+112- h)
Vi(p)

Ey, (oc(x) =e = tanh(B¢ + h).

2

Using that j4, is a product measure, this implies that the full expression for (6.3) is
given by

B, (f)= Y F(S)(tanh(Bp +h))'S!. 6.4)

SC[N]
Hence, we find for the variance

N
Vary By, (M) = Y FSDFS)(Euy (tanh(Bp+1)lS115)
51.5C[N] (6.5)

—E,, (tanh(,B(p + h)'S”) E,, (tanh(ﬂw + h)|52|) )

For the Dirichlet form, we find, with S;AS> denoting the symmetric difference of sets
S] and Sz,

E, \vm\ Yo D TODTSIENVE x5 Ve x5)

x€[N] x€[N] 81,5 C[N]

=4 D Sresidres; F(SDF(SDE, (xs, xs,)

x€[N] 81,85 C[N]
=4 Z f(Sl)f(Sz)Ep(XslAsz)

S1,5C[N] xeS1NS (66)
=4 Y (Is,. Iy F(SD F(SDE, (X585,

$1,82C[N]

2
=E, |2 Y 1sf(S)xs
SC[N] RN

Proposition 6.1. For zero magnetic fields, i.e. h = 0, and f > 1,all functions with
Fourier support on sets of fixed cardinality k € N, i.e. for f given as

f= Y Fuxs

[N];IS|=k

satisfy the inequality Var, (E, (f)) < z er [N] ’ é)::) W

In particular, for the magnetization

M= ﬁ Z o(x) (6.7)

xe[N]

L2(dp)
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we obtain an inequality

vyl

vy (tanh(B)?)
Var,, (B, (M)) = M Z M

xe[N]

L2(dp)

Moreover, the spectral gap for critical B = 1 closes at least like O(N~1/?).

Proof. When h = 0, it suffices to estimate the variance by Jensen’s inequality as

Varyy By, (f)) < Euy > TS F(SDEL, (x5)Ew, (Xs)
S1,52CINLIS11=1S21=k
2

= ]EUN]E/LW Z f(S)XS

SCINEISt=IS21=k

. 2 (6.8)
= =B < Yoo F® s xs, Iy >
SCINL;IS11=I821=k RN
2
N by
<o E Yo T lsxs
NI:|S11=I[82|=k RN
Using (6.6) we then obtain the spectral gap inequality
2
N _
Varyy (B, () = 75 By > FS) Is xs
sC[N]-|sl|—|Sz|=k RN (6.9)
(X)
4k2 Z ‘ Lz(d,o) '
x€[N]

Turning to the magnetization (6.7), we can write the variance of the magnetization M
in terms of the expectation value [E,,, (tanh(ﬂgo)z)

Varyy (B, (M) = " By (tanh(8¢)?) = NEyy (1anh(89)?) . (610,

x,y€[N]
We now recall that tanh(8¢)? = B2¢? + O(¢*) and for = 1

L2

6
]2+0(¢ )

Vilp) =

l\)l>—-

by Taylor expanding around 0. It therefore follows from Laplace’s principle [WonO1,
Ch. II,Theorem 1] that
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E,, (tanh(ﬂcp)2> ~ NVANT3A Z N2, 6.11)

On the other hand, we can compute the Dirichlet form of the magnetization using
(6.6)

2

2
3 Ep‘vé’g)M‘ — 4B, | Y Isxs| =4E,() =4 (6.12)
xe[N] xe[N]

Thus, comparing (6.10) with (6.12) implies the claim together with the asymptotic
(6.11). O

While Proposition 6.1 shows that the magnetization leads for critical 8 = 1 to a spectral
gap that closes at least like ~ N~!/2, when h = 0, the next Proposition shows that the

magnetization does not imply a vanishing spectral gap when & > 0.

Proposition 6.2. Let h > 0, § > 1, and f a function with Fourier transform supported
on sets of cardinality < k for some fixed k € Ny independent of N, i.e.

f= Y FSixs

SCINT:|SI<k

Then such functions satisfy an improved inequality with ¢uin = argmin, V1(¢)

B csch? (2(B@min + ) Z E, ‘V(X)

2
Varuy (5, (/) = =7 e W1 aro) 613

X€[N]

with a constant 2V min)
the limit N — oo. In particular, V' (¢min) > 0 by the discussion in the beginning of

Section 4.3.

(1 + o(1)) that strictly bounded away from zero in

Proof. Using (D.2), which applies since V|'(¢min) > 0 by the discussion in Subsec-
tion 4.3, we conclude that

Eu, (f)= Y F(S)(tanh(Bp +h)!! 6.14)

SC[N]

implies since
d
o tanh(Bg + h) = Bsech’>(By + h) = B esch(By + h)* tanh(By + h)?
@

that
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VarvN (Eﬂ(p f)
2
1
|S|+1
—2NV1”(<pmm) Scz;v]f(S)ﬁlSItanh(ﬁqomlﬁh) csch(Bgmin + )% (1 +0(1))
B tanh(Beiin + h)? csch(Bmin + h)*
B 2N V{(¢min)
2
> F(S) tanh(Bgmin + 1SN (Ls, Iy | (1+0(1))
SC[N]
2 2 2
< s CPOmin £ 1) | 5™ 35, tanh (B + W)/S! 1s| (1+ (1))
Vi (¢min) SCIN]
2
282 csch?(2(Bemin + 1 ~
- e Pt D) g, S F$)xsks| (1+0())
1 (¥min) SCIN]
2
2 2 .
< e BBt D | 5™ Fisyxs 15| (1+001)
1 (@min) SCIN]
B csch? (2(B@min + 1)) )
_ - VO£ 1 +o(1)
2V1 (¥min) xeX[I:V] ‘ ’
(6.15)
where we used (D.2) in the first line, |S| = (ls, Ij5;) in the second line, Cauchy—

Schwarz and csch(x)* tanh(x)? = 4 csch(2x)? in the third line, (D.1) and (6.14) in the
fourth line, Jensen’s inequality in the fifth line and finally (6.6) in the last line. O

6.2. Critical multi-component systems. Inthis subsection, we prove the multi-component
part of Theorem 3:

Proof of Theorem 3. The magnetization M = N~!/2 > xefn] 0 (%) has in the multi-
component case always unit Dirichlet norm

Y E, ‘véi?lM‘Z - Y EwH=1 (6.16)

x€[N] X€[N]

On the other hand, we can explicitly calculate using the derivative of the modified Bessel
function of the first kind, d.1,,(z) = %IU (z) + I,4+1(2), and (3.2), the expectation value
E,, (o (x)) that is independent of x € [N] for ¢ # 0

E,,, (0(x)) = V@)= §0s101P) l—[ f Blea O g (x) dS(o ()

(6.17)
L2(lBel) ¢

= Lo (iBelD Nl
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Taylor expansion at zero then yields

I, 2 r(2)?
/z<||ﬁ<o||>> _ TGS s oupel.

2
E, (c(x))) = < =
(Ex, ) Lnja—1(llBelD) 4T (1+3%)
For the renormalized potential we find by Taylor expansion, which we shall already
specialize to critical temperatures 8 = n, at zero

3

n n
Vn(‘p) ==+

4 5
> v an lell™ + Odlell”).

For the magnetization M (6.7), we can write

LadlBel) \?
Var, (E,, (M)) = % Z Evy ((m> )

x,y€[N]
2
_ NE,, ( L2l Bl ) .
Inpp—1 (1Bl

We then have by radial symmetry of both the renormalized potential and the integrand
that at critical temperatures 8 = n

2

00 NV, () .n—1 [ _Inp(nr) )
. (( L2 (lngl) >2> Jo e r (—zn/zf.mr) dr
VN = .

Lija—1(lnel) Jo e NVupn=1 gr

(6.18)

Applying Laplace’s principle, cf. [WonO1, Ch. I, Theorem 1], with constants u = 4 and
o =3+ (n — 1) implies that

2

. < Lip(lngl) >  NPAN—@R/4 _ 12

) = .
YA\ 2-1(lngl)

Combining this asymptotic behavior with (6.16) and (6.18) then yields the multi-
component claim of Theorem 3, i.e. the rate N'/? is caught for the trial (mean spin)
function M and thus the spectral gap is decaying at least with speed N~1/2. O

The following Proposition shows that the upper bound N ~!/2 on the spectral gap in

the critical regime = n for all dimensions n > 1, is in fact sharp:

Proposition 6.3. Leth = 0 and § = n > 1. The spectral gap of the radial renormalized
Schridinger operator grows as ®(N'/?) and in particular, the spectral gap of the full
measure does not close faster than ® (N ~1/2).

Proof. Let A := N/2, we then consider the equivalent Schrddinger operators to the
renormalized generator

Hy = —08%+ 22 V{(x)|> — AV (x) and for n > 2
B (6.19)
HE = — (3,2 + ”,;‘8r) ¢ HBD) 52V, 2 WAV, € e N,
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Spectrum of H1

Eigenvalues
© o o o o
ST R ¢ I )
)
°
)
°
)
o
)
)
°

o
e
(]
[ ]

Fig. 10. The five smallest eigenvalues of the operator Hy as a function of A. The smallest eigenvalue stays at
zero

where we used that by rotational symmetry of the renormalized potential, for n > 2, we
can decompose the Schrodinger operator into individual angular sectors parametrized
by ¢ € Ny. We then introduce auxiliary Schrodinger operators

H = —8§+A2§ — Ax2 and for n >2

_ 6
Hf = — (a} + ”r;la,) $ LD 52 63 ey

(6.20)

on L*(R) and L?((0, oo), r"~! dr), respectively. The five first eigenvalues of H; are
shown in Fig. 10.
We then define j € CZ°(—2, 2) such that j(x) = 1 for |x| < I and from this

Jo(x) = j(* |x]) and J := /1 — JZ with [V Jollgn = OQY°). (6.21)

Invoking the unitary maps U; € £(L*(R)) and U, € L(L?((0, 00), r"~! dr)) defined
as

(U1 H)x) =277 400y and (U, £)(r) := 2B 074y (6.22)

shows that the two Schrodinger operators in (6.20) are in fact unitarily equivalent, up to
multiplication by /4, to the A-independent Schrédinger operators

S1 = —3} + 3x° —x?and forn > 2
1 2, n—l £(l+n—2 6 6_3 (6.23)
[ (a, +"Ta,) pUbnD 6 22 e
respectively. That inf (Spec(S,?)) = 0 is shown in Section C. Since W‘;*z) > 0 we

have consequently that for £ > 0 by monotonicity inf (Spec(Sﬁ)) > inf (Spec(S,})) > 0.
More precisely, we have that

A2uststu, = HE. (6.24)
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More precisely, since (U, f)(x) := A™"/3 f(A~1/4x), it follows that

(SaUnf) () = = A—"/"( (127G ey a7 ) )

+ {22 A (6.25)

6 _ 3 _
+ G f O ) = I F O 1/4r)).
Then, applying (Un_lf)(r) = /8 £(21/4r) shows that

(U, S ) = A—W( () + )+ U
(6.26)

6 3
+12 EmE o rr) — A%rzf(r)).

Taylor expansion of the potential at 0 and the estimate on the gradient (6.21) imply
that

Jo(HS — HY Jo| = O,

Let0 = e; < ex < .. be the eigenvalues (counting multiplicities) of S, (over all angular
sectors £) and choose 7 such that e,41 > T > ¢, with P being the projection onto
the eigenspace to all eigenvalues of H below 7+/A. The IMS formula, see [CFKS87,
(11.37)] for a version on manifolds, implies that

Ho = JHad =199+ (JHaJo = 1950l

such that

Ho = IH,d = VI + (JoHodo + Jo(Hy = H)do = IV ) . (627)
On the other hand, it follows that

JoHyJo = JoH, PJo + JoH,(id —P)Jo = JoH, P, Jo + \/XenJOz.
By construction, since VV,, vanishes to third order on the support of Jo, we have
||VV,,||]12{,7 > c()fz/g)6 = cA™*3 on J for some ¢ > 0.
Since AV,, vanishes to second order
AV, ||rn > cx=%% on J for some ¢ > 0.
This implies for large A that
JHI > VkeyJ?. (6.28)

From (6.27) we then conclude that for some C > 0

Hy > Vend? — CA¥° + JoH, P Jy = N hen + JoH, PJy — o(V/1).
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This implies the claim of the Proposition, since
rank (JoH, P Jy) < n.
More precisely, for the eigenvalues E1(A) < E3(A) < .. of H, we have shown that

liknliogf)ﬁl/zEn()\) > e,

In particular, the lowest possible eigenvalue e; = 0 of the renormalized Schrodinger
operator is of course attained as the nullspace of the renormalized Schrodinger operator
is non-trivial. This shows that the spectral gap of the renormalized Schrédinger operator
grows at least proportional to v/A. O
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Appendix A. Numerical results
Recall that the eigenfunctions of the operator

R A e’
Hose = _ﬂﬁ + TX (A.1)

are given for n € Ny by

) 1 Ha\ /4 pox? )
Yp(x) == Tl (E) e 2 Hn< —x).

Then, it follows that

Mo op +1), itn =m
o = 12U 2y = | =42 /ntn— D), ifn=m+2
e S D +2), ifn=m -2

and

—~@2n+1), ifn=m
Mw«/n(n—l), ifn=m+2 .
miw«/(n+l)(n+2), ifn=m-—2.

O
iy

Vs X2 Vm) 12m) =

O
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Using the annihilation operator a = 271/ 2(8q +¢q) where g = ./ %x and its adjoint

we can explicitly compute the matrix elements of all ((y,, x"v,,)) by writing ¢" =
V2(a+a*)" and using the well-known action of the annihilation operator on eigenstates

of (A.1). Using a finite-basis truncation of the above matrices allowed us then to obtain
Figs. 4 and 10.

Appendix B. Asymptotic properties of the Ising model
Lemma B.1. Let 8 > 1andh € [0, h.). The three critical pointsof ny , : (—1,1) = R

(N +1) _NB (1—s2)+Nhs

NN ,h(s) = T(N2(0+5)+ DI(N2(1 =)+ D¢ i

are given by s, = y(B)(1 + O(1)) where y(B) satisfies the critical equation for the
continuous renormalized potential

y(B) = tanh(By (B) + h).

Let us order the solutions y (B) to that equation by y1(8) < y2(B) < v3(B). Forh =0
the function ny o attains (in the limit N — 00) its maximum at y1(f) = —y3(8) <0
and minimum at y>(B) = 0.

Let h > 0, then the function ny j attains (in the limit N — 00) its unique global
maximum at y3(B) > 0 whereas both y1(B8), y2(B) < 0 and y1(B), v2(B) are local
maxima and minima respectively.

The logarithmic derivative ¢y (s) = 95 log(nn, 1 (s)) satisfies

¢n.n(s) = N (Bs — arctanh (s) + h) (1 + O(1)). (B.1)

Proof. For h = 0 we note that ny ¢ is even and for & > 0 the global maxima of ny j
must be attained at some s > 0. Direct computations show by the logarithmic scaling
of the digamma function v, (s) = log(I")'(s) = log(s) + O(1/s) that the logarithmic
derivative ¢y 5 (s) = 05 log(nn,(s)) is given by (B.1). Thus, for all critical values s, of
1NN, h» 1.€. those values that satisfy &y 5 (s5,) = 0, there exists y(8) € [—1, 1] such that
y(B) :=limy_ 00 slc\, and y (B) is any solution to y (8) = tanh(y (8)8 + h).

We then obtain (B.1) directly by differentiating log(ny ) and using the identity

—aslog(r(MH)F(WH))

_ N <log (—1 F N0 )) (1+0(1)

2 1+N/2(1—s)
1 N/2

= —% (10g (”—xv/j)) (1+0(1)) (B.2)
1_S1+_N/2

N 1
=-2 (log (%)) (1+0(1))

= —N artanh(s)(1 + O(1)).
Moreover, we read off from (B.1) that

li k) = — d li k) = oo.
lim £ (k) = —o0 andlim £y, (8) = 00
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In particular, y (B8) solves the implicit equation y (8) = tanh(By (8) +h). For the second
derivative of ¢y , which is #-independent, we find the closed-form expression using the
derivative of the trigamma function 3

N3
Enn(s) = e (Y31 + N/2(1+5)) — P51+ N/2(1 — 5)))

N3 /oo 26—1(1+N/2(1+s)) _ 24N /2(1=5)) (B.3)
= — Z
0

8 1—e dz.

This implies that ¢y is strictly convex on [—1, 0) and strictly concave on (0, 1]. Using
the asymptotic of the trigamma function ¥3(s) = 1/s + 1/ (25%) + O(1/s%) we find that
{n.p 1s strictly monotone increasing at zero, independent of £,

2
N3 +N/2) (ﬂ _ NP2

¢y(0) = NB — > 1+N/2)(1+O(1))>0’

sincef > 1. 0O

Lemma B.2. The function Z(r) := r% is strictly monotonically increasing on
(0, 00). In particular T'(r) > 0.

Proof. By differentiating and using that I} (r) = 2 1,(r) + I,41(r) we find

L2 1(r) Iy o1 (1) )
L(r)? ‘

T(r)y=r (1 -
Thus, it suffices to record that the product of Bessel functions satisfies I, /z(z)2 >
(Inj2—11nj2+1)(2) :

R (n +k + De@?/4)*
(njp=1ln2e1)(2) = (2/2) k;) KTn/2—1+k+ DL(/2+ 1+k+1)

(B.4)
IRV (n+k+ 122/
(Inj2In2)@) = (2/2) 1; KC(/2+k+ DL(/2+k+1)

Hence, the identity follows from
F(n/2+k+1)2 <T'n/2—1+k+DI'n/2+1+k+1)

which follows itself from logarithmic convexity of the gamma function. 0O

Appendix C. SUSY Quantum Mechanics

We use ideas from supersymmetric quantum mechanics, to show positivity and analyze
the ground state of several Schrodinger operators appearing in this article:
In one dimension, we recall that using operators

A=0,+W(x)and A" = -0, + W(x)
with real-valued and smooth superpotential W, we can write

A*A = =32 — W (x)+ W(x)? and AA* = =32 + W (x) + W(x)>.
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In particular, W (x) := /B(B — l)ﬁx2 yields operator Sy, defined in (4.20).

However, solving Ay = 0 or A*y = 0 shows that ¢y = Ce*vAF=D X ¢ L*(R).
This shows that inf (Spec(AA™*)), inf(Spec(A*A)) > 0.

We now analyze operators in (6.23). Choosing W (x) := "3—3, yields A*A = §j in
(6.23), and we find by solving Ay (x) = 0 that ¥ (x) o e*/12 which implies that
inf (Spec(A*A)) = 0.

For radial operators on L>((0, o0), "~ ! dr), a similar argument applies:

We define operators

A=8, + W) and A* = 3, + —— + W(r).

r

Choosing then W(r) := O”T;)ﬁ, such that A*A = S, with S, in (6.23), we find by
solving

n3
AV = 0= ¥ (r) e T e L2((0, 00), F"~ ! dr).

Appendix D. Asymptotic properties

Lemma D.1 [BBS19, Theo 1.4.10]. Let V : R — R be smooth with unique global
minimum at @pin € R and V" (@min) > 0. Assume that [ e V@ dy is finite and
that {¢ € R; V(¢) < V(@min) + 1} is compact. We also define the probability measure
dien (@) = e NV@ dyp/ f]R e~ NV @O dy. Then for any bounded smooth functiong : R —
R

Jr g@e NV Wdg

E¢y(8) =

Y Joe V@ dg .

8" (@min) 3V (Omin) &' (@rmin) 2

= in) + + +O(1/N
8min) NV iy * ANV g
and for the variance
g/((ﬂmin)2 2
Varg, () = ——— + O(1/N?) (D.2)
v = NV gy + O
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