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Dedicated to Anatole Katok

Abstract: We consider smooth flows preserving a smooth invariant measure, or, equiv-
alently, locally Hamiltonian flows on compact orientable surfaces and show that, when
the genus of the surface is two, almost every such locally Hamiltonian flow with two
non-degenerate isomorphic saddles has singular spectrum. More in general, singularity
of the spectrum holds for special flows over a full measure set of interval exchange
transformations with a hyperelliptic permutation (of any number of exchanged inter-
vals), under a roof with symmetric logarithmic singularities. The result is proved using
a criterion for singularity based on tightness of Birkhoff sums with exponential tails
decay. A key ingredient in the proof, which is of independent interest, is a result on
translation surfaces well approximated by single cylinders. We show that for almost
every translation surface in any connected component of any stratum there exists a full
measure set of directions which can be well approximated by a single cylinder of area
arbitrarily close to one. The result, in the special case of the stratum H(1, 1), yields
rigidity sets needed for the singularity result.

This paper provides a first general result on the nature of the spectrum for typical
smooth area-preserving flows on surfaces of higher genus. Area-preserving flows are
one of the most basic examples of dynamical systems, studied since Poincaré at the
dawn of the study of dynamical systems. We consider the natural class of smooth flows
preserving a smooth invariant measure on surfaces of genus g ≥ 1, also known as locally
Hamiltonian flows (see Sect. 2.1) or equivalently multivalued Hamiltonian flows. The
study of locally Hamiltonian flows has been pushed since the 1990s by Novikov and
his school for its connection with solid state physics and pseudo-periodic topology
(see e.g. [Nov] and [Zor]). Locally Hamiltonian flows arise indeed in the Novikov
model of motion of an electron in a metal under a magnetic field - in this semi-classical
approximation, the (compact) surface which constrains the motion is then the (quotient
of the) periodic Fermi energy level surface of the metal. Basic ergodic properties (such
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as minimality and ergodicity) of such flows can be deduced1 from classical results
(such as [Kea,Mas82,Ve]) on translation flows (which are well understood thanks to
the connection with Teichmüller dynamics, see e.g. [AF,Mas06]). On the other hand,
finer ergodic and spectral properties depend on the nature of the locally Hamiltonian
parametrization and on the type of fixed points of the flow.

In the past decades, there have been many advances in our understanding of finer
ergodic properties of locally Hamiltonian flows, in particular mixing and rigidity prop-
erties, starting from a conjecture by Arnold on mixing in locally Hamiltonian flows
in genus one (see [Arn] and [KS]), which led naturally to the study of mixing (and
weak mixing) in higher genus locally Hamiltonian flows [Ul07,Ul09,Sc,Ul11,Rav],
up to recent results on mixing of all orders [FK,KKU] and disjointness phenomena
[KLU,BK], some of which were achieved adapting to the world of smooth flows with
singularities tools inspired from homogeneous dynamics and the work of Marina Ratner
(a quick review of the known result is presented in Sect. 2.8).

The spectral properties (and in particular what is the spectral type, see Sect. 3.1 for
definitions) of locally Hamiltonian flows is a natural question, which has been lingering
for decades (see e.g. [KT, Section 6] and [L]).2 Results on the spectrum of the operator,
though, are very rare. In an early work by Frączek and Lemańczyk [FL03], spectral
properties of special flows over rotations with single symmetric logarithmic singularity
(see Sect. 2.8) are examined. In [FL03, Theorem 12] it is shown that (for a full measure
set of rotation numbers) such special flows have purely singular continuous spectrum.3

This gives examples of locally Hamiltonian flows on surfaces of any genus ≥ 1 with
singular continuous spectrum (see [FL03, Theorem 1]). This result shows that, when
one can prove absence of mixing and some form of (partial) rigidity, it might be possible
to deduce singularity of the spectrum. A recent spectral breakthrough, which goes in the
opposite direction, was achieved by Fayad, Forni andKanigowski in [FFK], who showed
that a class of smooth flows on surfaces of genus one (which can also be represented
as special flows over rotations, see Sect. 2.8) has countable Lebesgue spectrum. These
flows display a strong form of shearing of nearby trajectories and were proved to be
mixing by Kochergin in the 70’s, see [Ko75].

The main result of this paper concerns the nature of the spectrum of locally Hamilto-
nian flows on genus two surfaces, and, to the best of our knowledge, is the first general
spectral result for surfaces of higher genus (g ≥ 2).

1. Main Results

We now state the main result on the spectrum of locally Hamiltonian flows on genus two
surfaces (see Sect. 1.1), as well as a result in the language of special flows from which
it is deduced, see Sect. 1.2. The singularity criterion which is used to prove the first two
results is stated (and proved) later in the paper, in Sect. 3 (as Theorem 3.1). In Sect. 1.3
we state a result on translation surfaces being well approximated by a single cylinder
which is used as a key technical tool in the proof, but is also of independent interest,

1 Locally Hamiltonian flows (when minimal, or restricted to a minimal component) can indeed be seen as
singular time-reparametrizations of translation flows (see Remark 2.1) and properties such as ergodicity and
minimality depend only on the flow orbits and not on the time-reparametrization.

2 The result on the singular nature of the spectrum proved in this paper was furthermore explicitly suggested
by A. Katok to A. Kanigowski in private communication.

3 The authors in [FL03] show that special flows over rotations under a symmetric logarithm, for a full
measure set of frequencies, are spectrally disjoint from all mixing flows (see Theorem 12, from which it
follows in particular that the spectrum is purely singular).
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Fig. 1. Trajectories of a locally Hamiltonian flow with two simple saddles on a surface of genus two

since it concerns Diophantine approximation-type questions for cylinders on translation
surfaces in any genus (more precisely, any connected component of any stratum, see
Sect. 1.3).

1.1. Singularity of the spectrum of locally Hamiltonian flows in genus two. Throughout
the paper let M denote a smooth, compact, connected, orientable surface and let (ϕt )

be a smooth flow preserving a smooth invariant measure (i.e. a measure with smooth
positive density with respect to the area form on M). Equivalently, (ϕt ) is a locally
Hamiltonian flow, see (Sect. 2.1). We assume that (ϕt ) has non-degenerate fixed points
and is minimal. When the surface has genus g = 2, this implies that there are two fixed
points, both of which are simple saddles (i.e. four-pronged saddles, with two incoming
and two outgoing separatrices), see Fig. 1. We will assume furthermore that the two
saddles are isomorphic (in a sense specified in Sect. 2.3, see Definition 2.1).

Theorem 1.1 (Singular spectrum in genus two). A typical locally Hamiltonian flow on
a surface M of genus two with two isomorphic saddles has purely singular spectrum.

Basic spectral notions, and in particular the definition of singular spectrum, are recalled
in Sect. 3.1. The notion of typical used here is in a measure theoretic sense and it refers
to a full measure set with respect to a natural measure class on locally Hamiltonian flows
with given singularity types (sometimes referred to as the Katok fundamental class). For
the definition of the measure class and the notion of typical used in the statement of
Theorem 1.1, see Sect. 2.4 (and also more in general Sect. 2.2).

Theorem1.1 is the first result on singularity of the spectrumof typicalminimal locally
Hamiltonian flows with non-degenerate singularities on surfaces in higher genus (and, to
the best of our knowledge, the first general spectral result for smooth flows on surfaces
of genus g ≥ 2). We believe that the result is not only true in genus two, but in any
genus g ≥ 2. The importance of considering the case of genus two (to deal with some of
key difficulties arising when passing from genus one to higher genus, or, in other words,
from Poincaré sections which are rotations to interval exchange transformations), as
well as the importance of the assumption that saddles are isomorphic for the strategy
and techniques of proof will be explained in Sect. 1.4 below.

Singularity of the spectrum is in stark contrast with the recent result in [FFK] on
flows on tori with a degenerated singularity (or stopping point), which are shown to
have absolutely continuous (and actually countable Lebesgue) spectrum. It might be
conjectured, from their result, that also in higher genus, in presence of sufficiently
strong degenerate singular points, the spectrum is also absolutely continuous (and even
countable Lebesgue). We remark that stopping points or non-degenerate fixed points
(including centers) are known to produce mixing [Ko75] (at rates which are expected
to be polynomial, see e.g. [Fa01]), while typical minimal locally Hamiltonian flows
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with non-degenerate saddles are known not to be mixing by the work of Scheglov
[Sc] for genus two and Ulcigrai [Ul11] for any genus. At the heart of our proof is a
strengthening of results on absence of mixing (in particular of the works [FL03,FL05]
and [Sc]). When the flow is not minimal, and has non-degenerate singularities it has
several minimal components, and the nature of the spectrum (for the restriction of a
typical flow to a minimal component) is unclear. These flows are indeed mixing, but
with sub-polynomial rate (see [Rav], which provides logarithmic upper bounds) and it
is not clear whether to expect singularity or absolute continuity of the spectrum.

1.2. Special flows with symmetric logarithmic singularites over symmetric IETs. For-
mally, Theorem 1.1 is deduced from a result for special flows (see below, or Sect. 2.5 for
formal definitions). It is well known that any minimal (or minimal component of) locally
Hamiltonian flow can be represented as the special flow over an interval exchange trans-
formations or, for short, IET (see Sect. 2 for definitions and for the reduction). Our main
result, that certain special flows have singular spectrum holds for IETs on any number
of intervals in a special class (corresponding to symmetric permutations, or hyperelliptic
strata). Let us give some definitions to formulate the precise statement.

An interval exchange transformation (IET) of d intervals T : I → I (I = [0, |I |))4
with permutation π (on {0, . . . , d − 1}) and endpoints (of the continuity intervals)
0 =: β0 < β1 < . . . βd−1 < βd := |I | is a piecewise isometry which sends the interval
Ii := [βi , βi+1), for 0 ≤ i < d, by a translation, explicitly given by

T (x) = x − βi + βπ(i), if x ∈ [βi , βi+1).

We say that π : {0, 1, . . . , d − 1} → {0, 1, . . . , d − 1} is symmetric if π(i) = d − 1− i
for 0 ≤ i < d. Thus, in an IET with a symmetric permutation the order of the exchanged
intervals is reversed. These are IETs which arise when considering (suitably chosen
Poincaré sections of translation flows) hyperelliptic strata of translation surfaces, in
particular for any genus g ≥ 1 (see for example Lemma 2.1).

We say that a result holds for almost every IETwith permutationπ if it holds for almost
every choice of the lengths |Ii | = βi+1 − βi of the exchanged intervals (with respect to
the restriction of the Lebesguemeasure onRd to the simplex�d−1 = {(λ1, . . . λd), λi ≥
0,

∑d−1
i=0 λi = 1}).

The special flow over T : I → I under a positive, integrable roof function f (see
also Sect. 2.5) is the vertical, unit speed flow on the region X f below the graph of f ,
given by X f := {(x, y) ∈ I × R : 0 ≤ y < f (x)}, with the identification of each
point on the graph, of the form (x, f (x)), where x ∈ I , with the base point (T (x), 0),
as shown in Fig. 2 (see Sect. 2.5 for formal definitions).

We consider special flows under a roof function chosen in a class of (positive) func-
tions which have logarithmic singularities at the discontinuities βi . This is the type of
singularities that arise in the special flow representation of locally Hamiltonian flows
with simple saddles, see Sect. 2.7. More precisely, the class of functions, denoted by

SymLog
(
�d−1
i=0 Ii

)
(to refer to Symmetric Logarithmic singularities), consists of pos-

itive real valued functions, defined on
⋃d−1

i=0 (βi , βi+1) and such that the restriction
f |(βi , βi+1) of f to each (βi , βi+1) is of the form

f |(βi , βi+1) = |Ci log(x − βi )| + |Ci log(βi+1 − x)| + gi (x)

4 We usually assume that |I | ≤ 1.
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Fig. 2. Aspecial flowover a symmetric 5-IETwith endpointsβ0, . . . , β5 under a roof f ∈ SymLog
(
�4
i=0 Ii

)
.

In this example C4 = 0

where Ci ≥ 0 is a non-negative constant, gi is a function of bounded variation on
[βi , βi+1] and not all Ci are simultaneously zero (see also the definitions in Sect. 2.6).
Thus, if Ci �= 0, f explodes logarithmically at each endpoint of Ii and the singularities
are symmetric (not necessarily f |(βi , βi+1) because of the presence of gi ). An example
of a roof function is shown in Fig. 2.

The main result in the setting of special flows is the following.

Theorem 1.2. Let π be a symmetric permutation. For almost every IET T with permu-

tation π and endpoints βi , 0 ≤ i ≤ d, for any f ∈ SymLog
(
�d−1
i=0 Ii

)
, the special flow

(T f
t ) over T under f has purely singular spectrum.

The result in the context of special flows is hencemore general (since it holds for IETs
of any number d ≥ 2 of exchanged intervals in the base), but unfortunately (similarly to
the case of Scheglov’s result [Sc] on absence of mixing) this does not yield any general
result for smooth locally Hamiltonian flows on surfaces of genus higher than two (see
Remark 2.2). The role played by the symmetry of the IET, together with the symmetry
in the roof, is explained in Sect. 1.4. We remark that the special case of Theorem 1.2 for
d = 2 recovers the main result from [FL03].

1.3. Translation surfaces well approximated by single cylinders. We now state some
results on cylinders in translation surfaces, which will be used as an ingredient in our
proof of singularity of the spectrum but hold in more generality for any translation
surface. As a reference on background material on translation surfaces, we refer the
reader to one of the surveys [FoMa,Vi,Yo].

Let (M, ω) denote a (compact) translation surface, namely a Riemann surfaceM with
an Abelian differential ω which defines a flat metric with conical singularities on M ,
which correspond to zeros ofω. Recall that the notion of direction iswell defined globally
on a translation surface, thus directions can be identified with S1. Denote by Cylω the
set of all cylinders in the translation surface (M, ω), i.e. C ∈ Cylω is a maximal open
annulus filled by homotopic simple closed (flat) geodesics. Any cylinder C is isometric
to an annulus J × R/cZ, where J ⊂ R is an (open) interval and c > 0. The core curve
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of C is the closed geodesic represented by {x} × R/cZ, where x is the mid point of the
interval J .

For any cylinder C ∈ Cylω, denote by:
• γ (C) the core curve of C ;
• θC ∈ S1 the direction of C (i.e. the direction of the core curve γ (C));
• a(C) the area of C with respect to the flat area-form induced by ω;
• 
(C) > 0 the length of γ (C) in the flat metric.

Assume that a(M) = 1. For every 0 < ε < 1 let Cylεω be the subset of cylinders
C ∈ Cylω with a(C) ≥ 1− ε. We are interested in showing that on a typical translation
surface, a full measure set of directions can be approximated (with a certain speed) by
the directions of a sequence of cylinders Cylεω, i.e. by single cylinders of area close to
one.

To state the result, let C denote a connected component of (a stratum of) the moduli
space of compact area one translation surfaces. In particular, all translation surfaces in
C have the same number and type of conical singularities, or equivalently zeros of the
Abelian differential. Let mC denote the sum of the multiplicities of singular points (for
example mC = 2 for translation surfaces with genus two and two simple saddles, more
in general mC = ∑n

i=1 κi for connected components of the stratumH(κ1, . . . , κn)).
Recall that each C is endowed by a natural volume probabilitymeasure νC (theMasur-

Veech measure [Mas82,Ve]). Let c1(C) be the corresponding Siegel-Veech constant (we
refer e.g. to [EsMa] for the notion of Siegel-Veech constant, which enters in counting
problems on translations surfaces).

Let λ denote the Lebesgue (probability) measure on the unit circle S1 in the complex
plane, which we freely identify with [0, 2π). The main result of this section is the
following.

Proposition 1.3 (Directions well approximated by large cylinders). For νC-almost every
translation surface (M, ω) ∈ C and any ε > 0 there exists a sequence of cylinders
(Ci )i≥1 on (M, ω) so that 
(Ci ) → +∞ as i → +∞ and for every i ≥ 1 we have

a(Ci ) ≥ 1 − ε and ‖θCi − π
2 ‖ <

1


(Ci )2 log(
(Ci ))
.

The sequence of cylinders (Ci )i≥1 giveswhatwewill call a good approximation of the
vertical direction by directions of single cylinders (when ε is small). The approximation
rate 
(Ci )

−2 log(
(Ci ))
−1 is chosen to allow us to prove singularity of the spectrum in

the genus two case.
Proposition 1.3 can be easily deduced (see Sect. 5) from the following result on

translation surfaces, which mimics, in the context of translation surfaces, the statement
of Khintchine Theorem in Diophantine approximation.

Theorem 1.4 (Khintchine Theorem for cylinders on translation surfaces; c.f. [Ch, The-
orem 1] and [MaTrWe, Theorem 6.1 (2)]). Let ψ : R+ → R

+ be non-increasing so that
tψ(t) ≤ 1 for t large enough and

∫ +∞
1 tψ(t) = ∞. Then for a.e. (M, ω) ∈ C and every

0 < ε < 1/2 the set

Wψ
ω =

⋂

m≥1

⋃

{C∈Cylεω: 
(C)≥m}

{
φ ∈ S1 : ‖θC − φ‖ < ψ(
(C))

}
(1)

has full Lebesguemeasure.Moreover, for a.e. (M, ω) ∈ C there exists a sequence (Ci )i≥1
in Cylεω such that 
(Ci ) → +∞ as i → +∞ and ‖θCi − π

2 ‖ < ψ(
(Ci )) for all i ≥ 1.
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This result’s proof is independent of the rest of the paper and follows from the methods
of [Ch] and [MaTrWe]. It is proved in Sect. 5.

1.4. Strategy of the proof of the main result. Let us conclude the introduction explaining
the main ideas in the proof. To study ergodic and spectral properties of locally Hamil-
tonian flows, it is standard to exploit their representation as special flows over an IET
(or a rotation when g = 1). The growth of Birkhoff sums Sn( f ) = ∑n−1

k=0 f ◦ T k of the
roof function f and its derivatives play a crucial role in the proof of properties such as
mixing, weak mixing, multiple mixing, shearing properties and disjointness phenom-
ena among others. Spectral behavior is no exception, but requires a much more delicate
understanding of weak limits of Birkhoff sums.

The criterion we use for proving singularity of the spectrum of special flows (stated
in Sect. 3.2) is devised to deal with flows which display absence of mixing. An impor-
tant early criterion for absence of mixing appears in Katok’s work [Ka80], which shows
that special flows over IETs under roof functions of bounded variation are never mix-
ing, and by Kochergin’s, which shows the absence of mixing for special flows over
rotations under a roof with a symmetric logarithmic singularity (see [Ko72,Ko07]).
Both criteria require as input tightness of Birkhoff sums along some subsequences of
rigidity (or partial rigidity) times, i.e. one has to show that there exists a sequence
(qn) of times such that T qn converges to identity on subsets En of measure tending
to one (if there is rigidity, or measure bounded below in the case of partial rigidity)
and at the same time, for some centralizing sequence (an) and uniform constant C ,
Leb{x ∈ En| |Sqn ( f )(x) − an| < C}/Leb(En) → 1. In the case of rotations and func-
tions of bounded variation, this follows easily from Denjoy-Kosma inequality, while
for functions with symmetric logarithmic singularities one has to exploit a cancellation
phenomenon among contributions coming from the symmetric singularities.

These type of criteriawere pushed in twodifferent directions in [FL03] and [Sc,Ul11].
Frączek and Lemańczyk in [FL03], considering the same example as Kochergin (spe-
cial flows with one symmetric logarithmic singularity over rotations), showed that if,
in addition to tightness, one can also control the tails of the distribution of the cen-
tralized Birkhoff sums Sqn ( f )(x) − an , one can prove much stronger results (using
joinings and Markov operators) and deduce in particular spectral disjointness from mix-
ing flows, which implies that the spectrum is purely singular. In [Sc,Ul11] IETs were
considered on the base (which is required when treating surfaces of genus g ≥ 2). In
this case, cancellations are much more difficult to prove because of the absence of the
Denjoy-Koksma inequality. To prove absence of mixing, though, it is sufficient to prove
cancellations on carefully constructed partial rigidity times. The usual tool to study
IETs (which is not used in this paper) is Rauzy-Veech induction, a renormalization
algorithm for IETs. In [Ul11] Rauzy-Veech induction (and the log integrability of the
associated cocycle) are heavily used to obtain cancellations at carefully chosen renor-
malization times. On the other hand, in Scheglov’s work [Sc], the cancellations were
proved through a careful combinatorial analysis of the substitutions arising from the
action of Rauzy-Veech induction on symmetric permutations. Ideally one would like to
combine these two approaches in order to prove spectral results (as in [FL03]) for IETs
(as in [Sc,Ul11]). The key difficulty is that cancellations are hard to achieve for IETs
on sets of large measure (the cancellations in [Ul11] for example are crucially based on
balanced Rauzy-Veech induction time, which are opposite to rigidity times).

In this paper, for surfaces of genus two or symmetric permutations, we (implicitly)
exploit a very geometric approach to deduce cancellations, based on a simple mecha-
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nism which uses in an essential way the hyperelliptic involution: the key idea is that,
for any symmetric (of equal backward and forward length) trajectory from a fixed point
of the hyperelliptic involution, there are perfect cancellations for Birkhoff sums of the
derivative of the roof function (see Sect. 4.2). Cancellations achieved through the hyper-
elliptic involution have the advantage of being compatible with rigidity. In particular,
they can be shown to hold for Birkhoff sums along a rigidity tower of area close to one
(i.e. a Rokhlin tower for the IET which comes from a cylinder of area close to one on
the surface).

One of the advantages of this approach is that we do not make use at all of Rauzy-
Veech induction. Theorem 1.1 also provides an independent proof of Scheglov’s work
[Sc], which highlights the role played by the hyperelliptic symmetry in Scheglov’s
combinatorial calculations.

In order to prove singularity of the spectrum using this approach (and the criterion
stated in Sect. 3, which is a generalization of the criterion in [FL04, Corollary 5.2] and
[FL03, Proposition 11]) though, another ingredient is needed, namely good rigidity (see
Definition 4.2). Cancellations achieved thanks to the hyperelliptic involution only hold
for Birkhoff sums along a full rigidity tower. To prove the exponential tails estimates
needed to apply the criterion on the whole tower, one has to control incomplete sums,
that can in general fail to be tight. These potentially worse estimates (see Remark 4.1)
are compensated for by assuming that points in the base of the rigidity tower have
a quantitatively good form of recurrence (see Definition 4.2). The existence of good
rigidity towers for almost every IET is deduced (in Sect. 4.4) from the abundance of
translation surfaces well approximated by single cylinders (i.e. from Proposition 1.3).

1.5. Structure of the paper. In Sect. 2 we first recall some background material on
locally Hamiltonian flows and their reduction to special flows, with particular attention
to the form of the representation in the special case of genus two and two isomorphic
saddles (see Lemma 2.1 and Corollary 2.2). Our criterion for singularity for special flows
(Theorem 3.1) is stated and proved in Sect. 3.2, after recalling basic spectral notions
in Sect. 3.1. Elementary but precise estimates on (Birkhoff sums of) functions with
symmetric logarithmic singularities are proved in Sect. 4.1; these, combined with the
symmetry and the cancellation arguments are explained in Sect. 4.2 (which follow from
the hyperelliptic involution, see Lemmas 4.4 and 4.5), are then used in Sect. 4.4, in
combination with the rigidity deduced from single cylinders (given by Proposition 1.3)
to conclude the proof of the singularity result in genus two (i.e. Theorem 1.1). Finally, in
Sect. 5 (which can be read independently), we prove the Khintchine-type result for trans-
lation surfaces (Theorem 1.4) and show how it implies Proposition 1.3 about translation
surfaces well approximated by single cylinders.

2. Locally Hamiltonian Flows and Reduction to Special Flows

In this section we recall some definitions, basic notions and background material on
locallyHamiltonian flows (Sect. 2.1 and Sect. 2.2) and on special flows Sect. 2.5.We also
quickly summarize some results in the literature of locally Hamiltonian flows Sect. 2.8.

2.1. Smooth area-preserving flows as locally Hamiltonian flows. In this section we
define locally Hamiltonian flows and show that they are equivalent to smooth area-
preserving flows.
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Assume that M is a 2-dimensional closed connected orientable smooth surface of
genus g ≥ 1. Let X : M → T M be a smooth tangent vector field with finitely many
fixed points and such that the corresponding flow (ϕt )t∈R preserves a smooth volume
form ω (which is locally given by V (x, y)dx ∧ dy for some smooth positive real valued
function V : U → R on the coordinate chart). Then, letting η := ıXω = ω(η, · ),
where ıX denotes the contraction operator, we have dη = 0. Furthermore, since η is a
smooth closed 1-form, for any p ∈ M and any simply connected neighbourhood U of
p there exists a smooth (local Hamiltonian) map (unique up to additive constant) such
that dH = η on U .

Conversely, let (M, ω) be a 2-dimensional symplectic manifold, where M is a closed
connected orientable smooth surface of genus g ≥ 1 endowed with the standard area
form ω (obtained as pull-back of the area form dx∧dy onR2). Let η be a smooth closed
real-valued differential 1-form. Let X be the vector field determined by η = ıXω and
consider the flow (ϕt )t∈R on M associated to X . Since η is closed, the transformations
ϕt , t ∈ R, are area-preserving (i.e. preserve the area form ω and the measure given by
integrating it). We will always assume that the form is normalized so that the associated
measure gives area 1 to M .

The flow (ϕt )t∈R is known as the multi-valued Hamiltonian flow associated to η.
Indeed, the flow (ϕt )t∈R is locally Hamiltonian, i.e. locally one can find coordinates
(x, y) on M in which (ϕt )t∈R is given by the solution to the equations ẋ = ∂H/∂y, ẏ =
−∂H/∂x for some smooth real-valued Hamiltonian function H . A global Hamiltonian
H cannot be in general defined (see [NiZh], §1.3.4), but one can think of (ϕt )t∈R as
globally given by a multi-valued Hamiltonian function.

When g ≥ 2, the (finite) set of fixed points of (ϕt )t∈R is always non-empty. We will
always assume that the 1-form η is Morse, i.e. it is locally the differential of a Morse
function. Thus, zeros of η are isolated and finite and all correspond to either centers
(see Fig. 3a) or simple saddles (see Fig. 3b), see Sect. 2.3 (as opposed to degenerate
multi-saddles which have 2k separatrices for k > 2, see Fig. 3c).

2.2. Topology and measure class on locally Hamiltonian flows. One can define a topol-
ogy on locally Hamiltonian flows by considering perturbations of closed smooth 1-forms
by smooth closed 1-forms. With respect to this topology, the set of locally Hamiltonian
flows whose zeros are all Morse (hence isolated and finite, simple saddles or centers)
is open and dense (and hence in particular generic in the Baire category sense), see for
example Lemma 2.3 in [Rav]. Let � be the set of fixed points of η and let k be the
cardinality of �.

The measure-theoretical notion of typical that we use is defined as follows and coin-
cide with the notion of typical induced by the Katok fundamental class (introduced by
Katok in [Ka73], see also [NiZh]). We recall that two measures belong to the same mea-
sure class if they have the same sets of zero mesure (and hence induce the same notion
of full measure, or typical)); thus, a measure class is uniquely identified by a collection
of sets which have measure zero with respect to all measures in the class.

Let γ1, . . . , γn be a base of the relative homology H1(M, �,R), where n = 2g+k−1
(k := #�). The image of η by the period map Per is Per(η) = (

∫
γ1

η, . . . ,
∫
γn

η) ∈ R
n .

The pull-back Per∗Leb of theLebesguemeasure class by the periodmapgives ameasure
class on closed 1-forms (with k critical points): explicitely, the measure zero sets for this
measure class are all preimages through Per of measure zero sets inRn (with respect to
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Fig. 3. Type of non-degenerate fixed points for an area-preserving flow

the Lebesgue measure Leb on Rn). We say that a property is typical if it is satisfied for
a set of locally Hamiltonian flows a full measure, namely the complement of a measure
zero set for this measure class.

A saddle connection is a flow trajectory from a saddle to a saddle and a saddle
loop is a saddle connection from a saddle to the same saddle (see Fig. 3a). Notice that
if the set of fixed points � contains a center, the island of closed orbits around it is
automatically surrounded by a saddle loop homologous to zero (see Fig. 3a). The set of
locally Hamiltonian flows which have at least one saddle loop homologous to zero form
an open set.5 Flows in this open set decompose into several minimal components.6 On
the other hand, in the open set Umin consisting of locally Hamiltonian flows with only
simple saddles and no saddle loops homologous to zero a typical flow (in the measure
theoretical sense defined above) has no saddle connections and hence it is minimal by a
result of Maier [Mai] (or, in the language of special flows introduced in the next section,
by the result of Keane [Kea] on IETs).

Remark 2.1. Minimal locallyHamiltonian flows (aswell asminimal components) can be
seen as (singular) time-reparametrizations of translationflows (linearflowson translation
surfaces), i.e. they have the same orbits as a translation flow, but the movement along the
orbits happens with different speed (and in particular it takes an infinite time to reach
saddles). This follows for example from a result in [Mai], which guarantees that any
1-form η without saddle loops homologous to zero is the real part of a holomorphic one
form (see [Zor]).

2.3. Singularities and normal forms. In this section we associate an invariant to each
non-degenerate fixed point which will play a crucial role in describing isomorphic sin-
gularities and their special flow representation.

Let M be an m-dimensional C2-manifold equipped with a volume form ω. Let f :
M → R be aC2-map whose critical points are isolated. Suppose that p ∈ M is a critical
point of f and let us consider local coordinates (x1, . . . , xm) in a neighbourhood of p
so that (0, . . . , 0) are local coordinates of p. In these local coordinates ω(x1,...,xm ) =
V (x1, . . . , xm) dx1 ∧ . . . ∧ dxm , where V is a positive (or negative) function. Let

5 Saddle loops homologous to zero are indeed persistent under small perturbations, see §2.1 in [Zor] or
Lemma 2.4 in [Rav].

6 Minimal components are subsurfaces (possibly with boundary) on which the (restriction of the) flow is
minimal, in the sense that all semi-infinite trajectories are dense. As proved independently by Maier [Mai],
Levitt [Lev] and Zorich [Zor]), each smooth area-preserving flow can be decomposed into up to g minimal
components and periodic components, i.e. subsurfaces (possibly with boundary) on which all orbits are closed
and periodic (as the disk filled by periodic orbits in Fig. 3a).
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Kω( f, p) := det Hess( f )(0, . . . , 0)

V 2(0, . . . , 0)
.

Since d f (p) = 0, Kω( f, p) does not depend on the choice of local coordinates and it
imitates the notion of curvature (on the graph of f ) at any critical point of f even if M
is not equipped with any Riemannian metric. Moreover, Kω( f, p) �= 0 if and only if p
is a non-degenerate critical point and by the Morse lemma there exist local coordinates
(x1, . . . , xm) in a neighbourhood of p such that

f (x1, . . . , xm) = f (0, . . . , 0) − x21 − . . . − x2k + x2k+1 + . . . + x2m

and sgn Kω( f, p) = (−1)k .
Assume now that M is two dimensional and consider a local Hamiltonian H : U →

R, U ⊂ M , of a locally Hamiltonian flow (ϕt )t∈R preserving the area form ω. If p is a
fixed point of (ϕt )t∈R (hence a critical point of H ), then we can define

Kω,X (p) := Kω(H, p).

The quantity Kω,X (p) does not depend on the choice of local Hamiltonian, hence it is
well defined.

A fixed point p is non-degenerate exactly when Kω,X (p) �= 0. If Kω,X (p) > 0
then p is the centre of a topological disc filled with periodic orbits, as in Fig. 3a. If
Kω,X (p) < 0 then p is a saddle point (see Fig. 3b).

2.4. Isomorphic saddles. We will use the following working definition of isomorphic
(simple) saddles.

Definition 2.1 (Isomorphic saddles). We say that two saddles corresponding to fixed
points p1, p2 of (ϕt )t∈R are isomorphic iff Kω(H, p1) = Kω(H, p2).

Indeed, the above definition implies that, for both i = 1, 2, we can find local coordinates
around pi so that pi is mapped to (0, 0), ω is given by the standard form dx ∧ dy,
and the local Hamiltonian has the form H(x, y) = Kxy + higher order terms, for a
common value K := √−Kω(H, p1) = √−Kω(H, p2). This property is satisfied if
there is a smooth symplectic (preserving ω) isomorphism mapping flow trajectories to
flow trajectories among the two local neighbours.

Definition 2.2 (Isomorphic saddles locus). We will denote by K the set of locally
Hamiltonian flows on a surface of genus two in Umin which have two isomorphic simple
saddles.

The notion of typical on K ⊂ Umin (which is the notion used in the statement of
Theorem 1.1) is obtained restricting the notion of Katok measure class (see Sect. 2.2) to
K as follows. Consider the period map Per : K → R

n obtained restricting the period
map Per : Umin → R

n defined in Sect. 2.2 to K ⊂ Umin . We say that a property holds
for a typical flow in K if it fails on a set of measure zero with respect to the pull back
of the Lebesgue measure class via Per : K → R

n , namely it fails on the preimage
Per−1(Z) of a set Z ⊂ R

n with Leb(Z) = 0. See also Remark 2.3 for a reformulation
of this notion of typical in terms of special flows representations.
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2.5. Special flows. Let us now recall the definition of special flow. Let T be an auto-
morphism of a standard (Borel) probability space (X,B, μ). Let f : X → R>0 be an
integrable function so that inf x∈X f (x) > 0. Let us denote by Sn( f )(x) the Birkhoff
sum defined by

Sn( f )(x) =
{∑

0≤i<n f (T i x) if n ≥ 0

−∑
n≤i<0 f (T i x) if n < 0.

The special flow (T f
t )t∈R built over the automorphism T and under the roof function f

acts on

X f := {(x, r) ∈ X × R : 0 ≤ r < f (x)}

so that

T f
t (x, r) = (T nx, r + t − Sn( f )(x)),

where n = n(t, x) ∈ Z is a unique integer number with Sn( f )(x) ≤ r + t < Sn+1( f )(x).
Under the action of (T f

t )t>0, a point (x, y) ∈ X f moves with unit velocity along
the vertical line up to the point (x, f (x)), then jumps instantly to the point (T (x), 0),
according to the base transformation and afterward it continues its motion along the
vertical line until the next jump and so on. The integer n(t, x) (for t > 0) is the number
of discrete iterations of the map T undergone by the orbit of x up to time t .

The flow (T f
t )t∈R preserves the finite measure μ f which is the restriction of μ× λR

to X f . If T is ergodic with respect to μ, it is easy to see then (T f
t )t∈R is also ergodic

(with respect to μ f ), see e.g. [CFS].

2.6. Roofswith logarithmic singularities. Wenowdefine the class of functionswhichwe
work with and arise as roof functions of locally Hamiltonian flows with non-degenerate
saddles.

Let T be an IET with endpoints of the continuity intervals 0 := β0 < β1 <

. . . βd−1 < βd := |I | (see Sect. 1.2).

Definition 2.3 (logarithmic singularities).We say that a function f has pure logarithmic

singularities at the endpoints βi of T and write f ∈ Logp
(
�d−1
i=0 Ii

)
if it is of the form

f (x) =
∑

0≤i<d

χ(βi ,βi+1)(x)
( − C+

i log(x − βi ) − C−
i+1 log(βi+1 − x)

)
, (2)

for some constantsC±
i ≥ 0, not all simultaneously zero. Notice that the signs are chosen

so that f ≥ 0.
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We say that f has pure symmetric logarithmic singularities at the endpoints βi of T

and write f ∈ SymLogp
(
�d−1
i=0 Ii

)
if in addition we have thatC+

i = C−
i+1 for 0 ≤ i < d,

so that the function is symmetric on each interval (βi , βi+1).
We say that f has logarithmic singularities (resp. symmetric logarithmic singulari-

ties) and write f ∈ Log
(
�d−1
i=0 Ii

)
(resp. f ∈ SymLog

(
�d−1
i=0 Ii

)
) if and only if f can

be written as f = f p + g where f p ∈ Logp
(
�d−1
i=0 Ii

)
(resp. f ∈ SymLogp

(
�d−1
i=0 Ii

)
)

has pure logarithmic (symmetric) singularities and g : I → R is a function of bounded
variation.

We remark that we allow some of the C±
i to be zero; so f could have a finite one-sided

limit at someβi (butwe assume that at least one of the singularities is indeed logarithmic).
We notice also that this symmetry condition (which is symmetric on each exchanged
interval) is not the same than appears in other works on locally Hamiltonian flows with
non-degenerate saddles (where symmetric logarithmic singularities refers to functions

in Log
(
�d−1
i=0 Ii

)
such that

∑d−1
i=0 C+

i = ∑d
i=1 C

−
i ). We will use the assumption that

the saddles are isomorphic in Theorem 1.1 to obtain this stronger form of symmetry for
such (genus 2) surfaces.

2.7. Reduction to symmetric special flows. It is well known that minimal (or minimal
components of) locally Hamiltonian flows can be represented as special flows over
rotations (in genus one) or interval exchange transformations (for g ≥ 2). The roof
function has a finite number of singularities (where it explodes to infinity) which are of
logarithmic-type (see the form of singularities in Definition 2.3) if the fixed points are
simple saddles or power-type singularities (i.e. singularities of the form C±

i /|x − βi |αi
for some power 0 < αi < 1) in presence of (degenerate) multi-saddles (as in Fig. 3c) or
stopping points. In case of minimal flows with only simple saddles (or more in general
when there are no saddle loops homologous to zero), the logarithmic singularities display
a form of symmetry.7 For Theorems 1.1 and 1.2 we require a stronger form of symmetry
for both the roof and the base transformation.

The following Lemma provides the reduction to symmetric special flows which we
need to prove the result on flows in genus two (see in particular Corollary 2.2). While
(i i) is standard (and included only for completeness), (i) and (i i i) provide the required
more detailed information on the symmetry of the base and the roof (in particular the
precise values of the constants C±

i ).

Lemma 2.1 (Symmetries of the reduction to special flows). Let (ϕt )t∈R be a minimal
locally Hamiltonian flow on a surface M. Then, (ϕt )t∈R is measurably isomorphic to a
special flow (T f )t∈R over an IET T (whose endpoints are denoted by βi , 0 ≤ i ≤ d)
under a roof function f : I → R>0 ∪ {+∞}. The special flow representation can be
chosen to that:

(i) if M has genus 1 or 2 then T is a d-IET given by a symmetric permutation (with
d = 2g if there is a unique saddle or d = 2g + 1 if there are two);

(ii) when (ϕt )t∈R has only simple saddles, f ∈ Log
(
�d−1
i=0 Ii

)
;

7 Symmetry, or asymmetry, of the logarithmic singularities are crucial in determining the mixing properties
of the flow, see Sect. 2.8. Asymmetry is usually introduced by the presence of saddle loops homologous to
zero, we refer for example [Rav] for details.
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(iii) under the assumptions of (i i ), the constants C±
i in (2) are given by the values of the

invariants Kω,X (p) associated to saddle points: if the forward (ϕt )t∈R-orbit of βi
meets the saddle point p before returning to I , then

C+
i = C−

i = 1
√−Kω,X (p)

. (3)

The proof of Lemma 2.1 is presented below. Combining (i) − (i i i) of Lemma 2.1,
we have the following Corollary which we will use to prove Theorem 1.1.

Corollary 2.2. If M has genus two and (ϕt )t∈R is a minimal locally Hamiltonian flow
with two isomorphic simple saddles p1, p2 ∈ M, then it is isomorphic to a special
flow over an IET T with a symmetric permutation π with d = 5 and roof f ∈
SymLog (�4

i=0 Ii
)
. More precisely, there exists 0 ≤ i0 < 5 such that C+

i0
= C−

i0+1
= 0

and

C+
i = C−

i+1 = 1
√−Kω,X (p1)

= 1
√−Kω,X (p2)

> 0 for all i �= i0.

Remark 2.2. The conclusion of Part (i) of Lemma 2.1 also holds more in general when
the flow (ϕt )t∈R has one or two saddles and is the time-change of a linear flow on a
translation surface M in a hyperelliptic component of stratum of the form H(2g − 2)
or H(g − 1, g − 1), g ≥ 1 (the saddles then have respectively 4g − 2 or 2g and 2g
separatrices). On the other hand, to have a roof f ∈ S ymLog one needs by Part (i i) to
have only simple saddles (with 4 separatrices), so this forces g = 2 and two singularities.
Thus, the special flows in Theorem 1.2 arise as special representation ofminimal smooth
surface flows only in genus two. Finally, notice also that the assumption that the two
saddles are isomorphic is needed to have the symmetry of the constants.

Proof of Lemma 2.1. Since (ϕt )t∈R is minimal, any curve γ transverse to (ϕt )t∈R is a
global transversal (i.e. intersects all infinite orbits) and hence provides a Poincaré section
for (ϕt )t∈R. Let us say that the parametrization of γ is standard if γ : I → M (where
I is an interval starting at zero) is parametrized so that η(dγ ) = 1. It is well known
(see for example [Yo, Section 4.4]) that, in the standard parametrization, the Poincaré
first return map T : I → I to γ is an IET. The number of exchanged intervals is
d = 2g + k−1 (where k is the cardinality of the set of fixed points) if the endpoints of γ

are chosen on separatrices and, if 0 = β0 < β1 < . . . < βd = |I | denote the endpoints
of exchanged intervals, the (forward) trajectories from all the βi ’s are separatrices which
end in a saddle (notice that there are no centers since (ϕt )t∈R is minimal) and do not
return to I , with the exception of two of them, which first return to the endpoints of γ

or its backward trajectory is a separatrix which starts from a saddle.
To prove (i), it is convenient to recall that (ϕt )t∈R is a time-change of a translation

flow (ht )t∈R (see Remark 2.1). Let us denote by (M, ω) the translation structure on M .
If M has genus one or two, then it belongs to one of the strata H(0), H(2) or H(1, 1)
and it admits a hyperelliptic involution, i.e. there is a diffeomorphism ι : M → M
(affine in the coordinate charts of (M, ω)) such that ι2 = I d. Let us choose γ so that
γ (I ) is an interval in (M, ω) and the image γ (x0) of the midpoint x0 = |I |/2 of I is
a Weierstrass point, i.e. a fixed point of ι, i.e. ι(γ (x0)) = γ (x0). Thus ι fixes γ : let
us denote S : I → I the symmetry such that ι(γ (x)) = γ (S(x)). Moreover, ι inverts
the direction of trajectories of (ht )t∈R, so that we have ht (ι(q)) = ι(h−t (q)) for all
q ∈ γ, t > 0. Observe that this implies that the backward trajectory from q first returns
to γ in p iff the forward trajectory from ι(q) first return to γ in ι(p).
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Letq ∈ γ be thefirst return of the forward trajectory of p ∈ γ toγ ; if x, y ∈ I are such
that γ (x) = p, γ (y) = q, since T is by definition the first return map in the coordinates
on I , this means that T (x) = y. Remark that equivalently p is the first return of the
backward trajectory from q to γ . Applying ι, ι(p), ι(q) have coordinates respectively
S(x), S(y) and, by the observation in the previous paragraph, the first return of the
forward trajectory from ι(q) to γ is ι(p) (since p as just remarked is the first backward
return of q). In coordinates, this can be written as T (S(y)) = S(x). Combining both
equations in coordinates and recalling that S2 = id, we get

S(x) = T (S(y)) = T (S(T (x))) ⇔ T (x) = S ◦ T−1 ◦ S(x), (4)

for all x ∈ I . Since in the translation structure S : I → I is an affine symmetry and
it fixes x0 = |I |/2, S must be of the form S(x) = |I | − x . One can then show that
(4) forces the T to be symmetric, i.e. the permutation π must reverse the order of the
intervals. This concludes the proof of (i).

By standard ergodic theory (see e.g. [CFS]), (ϕt )t∈R is metrically isomorphic to the
special flowover its Poincaré section T under the function f given by the first return time.
If all saddles are simple, by the local form of Hamiltonian saddles (as first remarked by
Arnold in [Arn], see also [CF, § 7.1]) the first return time function f : I → R>0∪{+∞}
is given by f ∈ Log

(
�d−1
i=0 Ii

)
, i.e. it has the form

f (x) =
∑

0≤i<d

( − C+
i log(x − βi ) − C−

i+1 log(βi+1 − x)
)
χ(βi ,βi+1)(x) + g(x),

where g : I → R is of bounded variation. This concludes the proof of (i i).
Let us now show that if γ (βi ) is the first backward hitting point of a separatrix

incoming to a saddle p to γ (I ) then (i i i) hold. Choose local coordinates (x, y) in a
neighbourhood U of p and a local Hamiltonian so that H(x, y) = xy. Then ω(x, y) =
V (x, y)dx ∧ dy, where V is a positive (or negative) smooth map. Fix ε > 0 such that
[−ε, ε]× [−ε, ε] ⊂ U . In local coordinates the differential equation associated with the
vector field X is given by

x ′ = x

V (x, y)
, y′ = − y

V (x, y)
and t �→ H(x(t), y(t)) = x(t)y(t) is constant.

Therefore the forward semiorbit of any ±(x/ε, ε) with x ∈ [−ε2, ε2] \ {0} leaves the
square [−ε, ε] × [−ε, ε] at ± sgn(x)(ε, x/ε). Moreover, the time it takes to go through
the square is

τ(x) =
∫ τ(x)

0
dt =

∫ τ(x)

0

V (x(t), x/x(t))x ′(t)
x(t)

dt

=
∫ 1

|x |/ε2
V

( ± ε
(
sgn(x)s, |x |/ε2

s

))

s
ds.

To get the last equality we use the substitution x(t) = ± sgn(x)εs. By Lemma A.1 in
[FU], τ(x) = −V (0, 0) log x + g(x), where g : [−ε2, ε2] → R is of bounded variation.
Let us consider the transversal curves γ : [−ε2, ε2] → M given by γ (s) = ±(s/ε, ε)
or γ (s) = ±(ε, s/ε). Since η in local coordinates is given by η(x,y) = y dx + x dy, we
always have η(dγ ) = 1 so all of them are standard. As

Kω,X (p) = det Hess(H)(0, 0)

V 2(0, 0)
= −1

V 2(0, 0)
,
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we have V (0, 0) = 1/
√−Kω,X (p). This completes the proof of (i i i) and hence of the

Lemma. ��
Proof of Corollary 2.2. By Lemma 2.1 one can choose the special representation of
(ϕt )t∈R so that (by (i), since (ϕt )t∈R has two saddles)π is symmetricwith d = 2g+1 = 5
and furthermore, since the saddles are both simple, by (i i), f ∈ Log (�4

i=0 Ii
)
.

Suppose that the forward (ϕt )t∈R-orbit (or equivalently (ht )t∈R-orbit) of βi (0 ≤ i <

5) meets the saddle point p before returning to I . Applying the involution ι, we obtain
that the backward (ht )t∈R-orbit of Sβi = |I | − βi meets the saddle point ι(p) before
backward returning to I . Since T transforms (βi , βi+1) on (|I | − βi+1, |I | − βi ) by a
translation, it follows that the forward (ht )t∈R-orbit (or equivalently (ϕt )t∈R-orbit) of
βi+1 meets the saddle point ι(p) before returning to I . By (i i i) in Lemma 2.1 and the
fact that p and ι(p) are isomorphic, we have

C+
i = 1

√−Kω,X (p)
= 1

√−Kω,X (ι(p))
= C−

i+1.

The same argument shows that if the forward (ϕt )t∈R-orbit ofβi does notmeet any saddle
point before returning to I then βi+1 satisfies the same property. Then C+

i = C−
i+1 = 0.

By the proof of (i) in Lemma 2.1, βi and βi+1 are the only two points satisfying this
property, which completes the proof. ��
Remark 2.3. In the reduction described above of a locally Hamiltonian flow to a special
flow over an IET T , one can see that the length of each interval (βi , βi+1) exchanged by
T coincide with one of the coordinates of Per(η), where we recall that Per denotes the
period map defined in Sect. 2.2. Thus, for every subset U ⊂ Umin of locally Hamiltonian
flows, the set {Per(η), η ∈ U} has full Lebesgue measure as long as a full measure set
of IET on d intervals and fixed permutation (with respect to the Lebesgue measure on
the lenghts of the intervals) appears in the base of special flows representations of flows
in U .

Furthermore, to show that a property is typical within a subset U ⊂ Umin of locally
Hamiltonian flows (in the sense of Sect. 2.4 for U = K), it is sufficient to show that it
holds for every special flow representation of a flow in U over a full measure set of IETs
in the base (in this way it can only fail only on the preimage via Per of a zero Lebesgue
mesure set). In particular, to show that singularity of the spectrum holds for a typical
flow in the isomorphic saddle locus K (recall Definition 2.2), it is enough to show that
for almost every IET with a symmetric permutation π with d = 5, every special flow
with symmetric logarithmic singularities f ∈ SymLog (�4

i=0 Ii
)
has singular spectrum.

2.8. Previous results on ergodic and spectral properties. Let us briefly summarize the
mixing and spectral results known for locally Hamiltonian flows and special flows over
rotations and IETs. Mixing properties of locally Hamiltonian flows turn out to depend
crucially on the type of singularities (i.e. fixed points) of the flow.
Flowswith no singularities or degenerate singularities. If a smooth flow on a compact
surface has no singularities, by Poincaré-Hopf theorem the surface has genus one and
hence is a torus. It is well known that such smooth flows on the torus are not mixing.
Furthermore, let us point out that Katok in [Ka80] showed that linear flows on translation
surfaces (and more in general special flows over IETs -thus in particular over rotations-
under a roof function of bounded variation) are never mixing.
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On the torus, one can introduce a fake singularity by adding a stopping point. This
operation can drastically change the ergodic and spectral properties: as already men-
tioned in the introduction, Forni, Fayad and Kanigowski recently showed in [FFK] that
if the stopping point is sufficiently strong, the resulting flow has countable Lebesgue
spectrum. Stopping points can be thought as degenerate saddles, with only two separa-
trices. On a surface of any genus g ≥ 1, the presence of either a stopping point, or more
in general, of a degenerate critical points (which correspond to multi-saddles, i.e. sad-
dles with 2n prongs, n �= 2 integer, see Fig. 3c) produce power-like singularities in the
special flow representation. Special flows over IETs with these type of singularities are
mixing (for a full measure set of base transformations) by Kochergin’s work [Ko75].
Flows with logarithmic singularities over rotations. Singularities which are non-
degenerate, as we just saw (in the previous Sect. 2.7) give rise to special flows with loga-
rithmic singularities. In this case,mixing depends on the (a)symmetry of the singularities.
The first result on absence of mixing for special flows with symmetric logarithmic singu-
larities over rotations is due to Kochergin [Ko72] (see also [Ko07] where the result was
proved for all irrational frequencies). If the roof has an asymmetric logarithmic singular-
ities, instead, mixing is typical, as it was proved by Sinai-Khanin for a full measure set
of rotations numbers (see also further works by Kochergin [Ko75,Ko03,Ko04,Ko04’]).
These flows are also known as Arnold flows since Sinai-Khanin result [KS] proved
Arnold’s conjecture [Arn] on mixing of typical locally Hamiltonian flows with a saddle
point on the torus).

Stronger mixing and spectral properties were later shown for flows over rotations.
First, as already mentioned in the introduction, Frączek and Lemańczyk in [FL03]
showed that flows under a symmetric logarithm over a full measure set of rotation
numbers are disjoint from all mixing flows and have singular spectrum. Fayad and
Kanigowski recently proved in [FK] that Arnold flows (as well as some Kochergin flows
-i.e. flows under roofs with power-type singularities- over rotations) are mixing of all
orders. Kanigowski, Lemańczyk and Ulcigrai proved some disjointness properties (in
particular disjointness of rescalings) for typical Arnold flows, [KLU].
Flows with logarithmic singularities over IETs. Fewer results are available for flows
with logarithmic singularities over IETs. A simple mechanism that shows that weak
mixing (or, equivalently, continuity of the spectrum) holds typically as long as there
is a logarithmic singularity (recall that weak mixing is also know to hold for typical
translation flows by [AF]). Mixing again depends on the symmetry. Scheglov proved in
[Sc] that typical minimal locally Hamiltonian flows with isomorphic simple saddles in
g = 2 are not mixing.

Ulcigrai showed in [Ul11] that, for typical IETs, flows with symmetric singularities
are not mixing (thus, in the open set Umin of locally Hamiltonian flows, the typical
flow, which is minimal and ergodic, is weak mixing but not mixing). Nevertheless,
the existence of a mixing flow under a symmetric roof function (smoothly realized by
a minimal, locally Hamiltonian flow with only simple saddles on a surface of genus
g = 5) was proved by Chaika and Wright in [CW].

On the other hand, generalizing Sinai-Khanin result [KS], Ulcigrai showed in [Ul07]
that flows over IETs with one asymmetric logaritmic singularity are mixing for almost
every IET. These result was recently generalized by Ravotti in [Rav] to any number
of singularities (thus showing that in presence of saddle loops homologous to zero
the typical locally Hamiltonian flow with non-degenerate zeros has mixing minimal
components). Recent strengthenings of the mixing property were also proved: Ravotti
in [Rav] also proved quantitative (subpolynomial) bounds on the speed of mixing for
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smooth observables. Finally, in [KKU] it was shown that for a full measure (sub)set of
IETs, flows with asymmetric logarithmic singularities are mixing of all orders (and thus
that mixing implies mixing of all orders for typical smooth area-preserving flows any
genus.)

3. A Criterion for Singularity in Special Flows

In this section we present a sufficient condition (originally formulated in [FL03,FL04]
in a slightly less general form) which guarantees that (T f

t )t∈R has singular spectrum.
We first recall some basic spectral theory.

3.1. Spectral notions. The spectrum and the spectral properties of a measure-preserving
flow (Tt )t∈R acting on a probability Borel space (X,B, μ) are defined in terms of the
Koopman (unitary) operators associated to (Tt )t∈R. Let us recall that, for every t ∈ R,
the Koopman operator associated to the automorphism Tt , which, abusing the notation,
we will denote also by Tt , is the operator

Tt : L2(X, μ) → L2(X, μ) given by Tt ( f ) = f ◦ Tt .

To every g ∈ L2(X, μ) one can associate a spectral measure denoted by σg , i.e. the
unique finite Borel measure on R such that

〈g ◦ Tt , g〉 =
∫

R

eits dσg(s) for every t ∈ R.

The spectrum of (Tt )t∈T is (purely) singular iff for every g ∈ L2(X, μ) the spectral
measure σg is singular with respect to the Lebesgue measure on R.

Let us denote byR(g) ⊂ L2(X, μ) the cyclic subspace generated by g which is given
by

R(g) := span{Tt (g) : t ∈ R} ⊂ L2(X, μ)

By the spectral theorem (see e.g. [CFS]) the Koopman R-representation (T f
t )t∈R

restricted to R(g) is unitarily isomorphic to the R-representation (Vt )t∈R on L2(R, σg)

given by Vt (h)(s) = eitsh(s).
Finally, let us recall the notion of integral operator. For every probability Borel

measure P on R denote by
∫
R
Tt d P(t) : L2(X, μ) → L2(X, μ) the operator such that

〈∫

R

Tt d P(t)(g1), g2

〉

=
∫

R

〈Tt (g1), g2〉 dP(t)

for all g1, g2 ∈ L2(X, μ).
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3.2. The singularity criterion. We will now state the singularity criterion for special
flows (T f

t ), which are based on rigidity of the base T : X → X combined with
exponential tails of the Birkhoff sums for the roof function f : X → R>0. Let us first
recall the notion of rigidity.

Definition 3.1 (Rigidity). An automorphism T of a probability Borel space (X,B, μ) is
called rigid if there exists an increasing sequence (hn)n∈N of natural numbers such that

lim
n→+∞ μ(A�T hn A) = 0 for every A ∈ B.

The sequence (hn)n∈N is then a rigidity sequence for T .

For every B ∈ B with μ(B) > 0, we denote by μB the conditional measure given
by μB(A) = μ(A|B) = μ(A ∩ B)/μ(B) for every measurable A.

Theorem 3.1 (Singularity Criterion via rigidity and exponential tails). Let f : X →
R>0 be an integrable roof function with inf x∈X f (x) > 0. Suppose that there exist a
rigidity sequence (hn)n∈N for T , a sequence (Cn)n∈N of Borel sets with μ(Cn) → 1 as
n → +∞, and a sequence of real numbers (cn)n∈N (centralizing constants) such that
(Shn ( f )(x)−cn)n∈N has exponential tails, i.e. there exists two positive constants C and
b such that

μ({x ∈ Cn : |Shn ( f )(x) − cn| ≥ t}) ≤ Ce−bt for all t ≥ 0 and n ∈ N. (5)

Then the flow (T f
t )t∈R has singular spectrum.

Remark 3.1. The exponential tails assumption, i.e. (5), along rigidity sets implies in
particular that the sequence of centralized Birkhoff sums (Shn ( f )(x) − cn)n∈N is tight.
Tightness of Birkhoff sums along (partial) rigidity subsequences of the base is at the
heart of many criteria for absence of mixing, starting from Katok [Ka80] and Kogergin
[Ko72] seminal works. Theorem 3.1 can hence be seen as considerable strengthening of
this approach to absence of mixing and shows that tightness and rigidity (of the base),
with the additional information of exponential tails, is sufficient to show singularity
of the spectrum. Contrary to proofs of absence of mixing, though, it is crucial for the
spectral conclusion that the rigidity here is global, i.e. the measure of the sets Cn tends
to 1.

We conclude this section with the proof of the criterion. In the proof we will use the
following result from [FL05], which is a version of Prokhorov weak compactness of
tight sequences along rigidity sets.

Proposition 3.2 (Theorem 6 in [FL05]). Suppose that there exist a rigidity sequence
(hn)n∈N for T , a sequence (Cn)n∈N of Borel sets with μ(Cn) → 1 as n → +∞ and a
sequence of real numbers (cn)n∈N such that

(i) the sequence (
∫
Cn

| fn|2 dμ|)n∈N is bounded, where fn := Shn ( f ) − cn;
(ii) there exists a probability distribution P onR such that ( fn|Cn)∗(μCn ) → P weakly.

Then, passing to a subsequence if necessary, we have

T f
cn →

∫

R

T f
−t d P(t) in the weak operator topology.
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Proof of Theorem 3.1. Suppose that, contrary to our claim, the spectral measure σg (see
Sect. 3.1 for the definition) is absolutely continuous for some non-zero g ∈ L2(X f , μ f ).
Then, by the Riemann-Lebesgue lemma,

Vt → 0 in the weak operator topology on L2(R, σg) as |t | → +∞. (6)

Note that, by (5), we have

∫

Cn

|Shn ( f )(x) − cn|2 dμ(x) ≤
∞∑

m=0

∫

{x∈Cn :m≤|Shn ( f )(x)−cn |<m+1}
(m + 1)2 dμ(x)

≤
∞∑

m=0

C(m + 1)2e−bm .

Hence, the condition (i) inProposition3.2 is satisfied.Moreover, also by (5), the sequence
of probability Borel measures (( fn|Cn)∗(μCn ))n∈N on R is uniformly tight. Therefore,
passing to a subsequence, we have ( fn|Cn)∗(μCn ) → P weakly for some probabil-
ity measure P and the condition (i i) in Proposition 3.2 is satisfied. Moreover, P has
exponentially decaying tails, i.e. there exist C, b > 0 such that

P((−∞,−t) ∪ (t,+∞)) ≤ Ce−bt for all t ≥ 0.

In view of Proposition 3.2, we have

T f
cn →

∫

R

T f
−t d P(t) in the weak operator topology.

Restricting this convergence to the invariant subspace R(g) and passing to L2(R, σg),
this gives

Vcn →
∫

R

V−t d P(t) in the weak operator topology on L2(R, σg).

In view of (6), it follows that for all h1, h2 ∈ L2(R, σg) we have

0 =
〈∫

R

V−t d P(t)(h1), h2

〉

=
∫

R

∫

R

e−i tsh1(s)h2(s) dσg(s) dP(t)

=
∫

R

P̂(s)h1(s)h2(s) dσg(s),

where P̂ is the Fourier transform of the measure P . Therefore (since h1 and h2 are
arbitrary), P̂(s) = 0 for σg a.e. s ∈ R. On the other hand, as P has exponentially
decaying tails, its Fourier transform P̂ is an analytic function on R. It follows that
P̂ ≡ 0, contrary to non-triviality of the measure σg . This completes the proof. ��
Remark 3.2. In fact, the proof of Theorem 3.1 also gives spectral disjointness of T f from
all mixing flows.

4. Logarithmic Singularities, Symmetries and Exponential Tails

In this section we will verify that, in the settings of Theorem 1.2 the assumptions of the
singularity criterion given by Theorem 3.1 hold.



Singularity of the Spectrum in Genus Two 1389

4.1. Birkhoff sums of functions with logarithmic singularities. In this section we present
some estimates on Birkhoff sums of functions with logarithmic singularities which will
be used to prove the exponential tails assumption. The results are all elementary, essen-
tially based on the mean value theorem. The precise form of the estimates though allows
us to have a detailed control of the behavior of the tails, i.e. the way Birkhoff sums
explode due to the presence of singularities.

The following general Lemma shows that control of the exponential tails can be
deduced from upper bounds on the second derivative. It will be applied below to g =
Shn ( f ) (Birhoff sums of f along rigidity times hn).

Lemma 4.1. (Exponential tails control) Suppose that g : (a, b) → R is a C2-function
such that

|g′′(x)| ≤ C

(x − a)2
+

C

(b − x)2
for every x ∈ (a, b).

Let y0 = a+b
2 and assume that there exists x0 ∈ (a, b) be such that g′(x0) = 0. Then for

every x ∈ (a, b) we have

|g(x) − g(y0)| ≤ C
(

− log
x − a

b − a
− log

b − x

b − a
+

b − a

x0 − a
+

b − a

b − x0

)
. (7)

In particular, for every t ≥ 0 we have

λ({x ∈ (a, b) : |g(x) − g(y0)| ≥ t})
b − a

≤ 2
√
Ke−t/2C , (8)

where K := 1
4e

b−a
x0−a +

b−a
b−x0 .

Remark 4.1. Notice that K depends only on the point x0 where g′(x0) = 0, so that in
order for Lemma 4.1 to imply exponential tails estimates for a sequence of functions
with a uniform constant K it is essential to control x0 and in particular its distance from
the endpoints a, b. In Sect. 4.2, Lemma 4.1 will be applied to the function g = Shn ( f )
on one of the maximal intervals (a, b) in which it is continuous. The assumption that
there exists x0 such that Shn ( f

′)(x0) = g′(x0) = 0 follows easily from the fact that
Shn ( f ) explodes at the endpoints of (a, b) (and hence has a minimum). On the other
hand, the location of x0 ∈ (a, b) is not in general easy to control and we will crucially
use arguments which exploit the hyperelliptic symmetry to control x0.

Proof. By assumption, for every x ∈ (a, b) we have

|g′(x)| = |g′(x) − g′(x0)| ≤
∣
∣
∣

∫ x

x0

( C

(t − a)2
+

C

(b − t)2

)
dt

∣
∣
∣

≤ C
(∣
∣
∣

1

b − x
− 1

x − a

∣
∣
∣ +

1

x0 − a
+

1

b − x0

)
.

It follows that, for every x ∈ (a, b) we have
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|g(x) − g(y0)| ≤ C
∣
∣
∣

∫ x

y0

(∣
∣
∣

1

b − t
− 1

t − a

∣
∣
∣ +

1

x0 − a
+

1

b − x0

)
dt

∣
∣
∣

≤ C
( ∫ x

y0

( 1

b − t
− 1

t − a

)
dt +

|x − y0|
x0 − a

+
|x − y0|
b − x0

)

≤ C
(

− log
x − a

(b − a)/2
− log

b − x

(b − a)/2
+

b − a

x0 − a
+

b − a

b − x0

)
,

since |x − y0| ≤ b − a and recalling that y0 − a = b − y0 = (b − a)/2. This gives (7).
Moreover, by (7), if |g(x) − g(y0)| ≥ t then

(x − a)(b − x)

(b − a)2
≤ Ke−t/C .

Note also that for any u > 0 we have

λ({x ∈ (a, b) : (x−a)(b−x)
(b−a)2

≤ u})
b − a

= λ({x ∈ (0, 1) : x(1 − x) ≤ u}) ≤ 2
√
u,

which gives (8). ��
The followingLemma (Lemma4.2) provides an upper bound on the second derivative

Shn ( f
′′)which is exactly of the form needed to verify the assumption of Lemma 4.1 and

prove exponential tails.

Definition 4.1 (Rokhlin tower by intervals). Let T : I → I be an IET with |I | ≤ 1.
Given an interval Jn := (an, bn) ⊂ I and an integer hn ∈ N we say that the union
C := ⋃hn−1

i=0 T i Jn is a (Rokhlin) tower by intervals of base Jn of height hn if and only
if the images T i Jn, 0 ≤ i < hn are pairwise disjoint intervals.

We remark that, since each T i Jn is by assumption an interval (i.e. it was not split by
discontinuities of T ), Jn is an interval of continuity for T i for every 0 ≤ i < hn .

Lemma 4.2 (Second derivative upper bounds).Consider a function f ∈ Logp
(
�d−1
i=0 Ii

)

of the form

f (x) =
∑

0≤i<d

( − C+
i log(x − βi ) − C−

i+1 log(βi+1 − x)
)
χ(βi ,βi+1)(x).

Assume that x ∈ Jn where Jn := (an, bn) ⊂ I is the base of a Rokhlin tower by intervals
of height hn ∈ N. Then

|Shn ( f ′′)(x)| ≤ π2

6

( C+

(x − an)2
+

C−

(bn − x)2

)
(9)

with C+ = ∑d−1
i=0 C+

i and C− = ∑d
i=1 C

−
i . Moreover, if an < x < x ′ < bn then for

every 0 ≤ h < hn, we have

|Sh( f )(x) − Sh( f )(x
′)| ≤C+

( x ′ − x

x − an
+

x ′ − x

bn − an

(
1 + log

1

bn − an

))

+ C−( x ′ − x

bn − x ′ +
x ′ − x

bn − an

(
1 + log

1

bn − an

))
.

(10)



Singularity of the Spectrum in Genus Two 1391

Remark 4.2. We stress that (9) holds only for Birkhoff sums along a tower, i.e. a point
x is in the base of the Rokhlin tower and the Birkhoff sum goes up to height hn of
the tower, while (10) holds for points in the base Jn and for any intermediate time
0 ≤ h < hn . Under the assumption that x is not close to the endpoints an, bn of Jn ,
namely if x−an ≥ c(bn −an) and bn −x ≥ c(bn −an) for some 0 < c < 1, (9) together
with Lemma 4.1 provide a uniform bound (independent on n) for the difference in (10),
while (10) provides only an upper bound of order C log(bn − an)−1. This is a well-
known upper bound for functions with asymmetric logarithmic singularities (see e.g.
[KS,Ul07,Rav], where it is shown that Sh( f ′)(x) grows as hn log hn). While Birkhoff
sums along a (large) tower are well distributed, incomplete sums can indeed be very
unbalanced and only satisfy estimates associated to an asymmetric roof.

Proof. Notice first that it is enough to prove (9) and (10) in the special cases when

f = f +i := − log(x − βi )χ(βi ,βi+1)(x) (and C+ = 1,C− = 0) and

f = f −
i := − log(βi+1 − x)χ(βi ,βi+1)(x) (and C+ = 0,C− = 1).

Indeed, taking the linear combination
∑d−1

i=0 C+
i f +i + C−

i+1 f
−
i then yields the general

form of the result. Since the reasoning is analogous for functions of the form f +i or f −
i

we will only do the computations for f = f +i .
For any x ∈ Jn choose 0 ≤ j < hn such that the iterate T j x is the closest to βi

among all iterates T kx , 0 ≤ k < hn belonging to the interval (βi , βd). Then

T j x − βi ≥ x − an .

Notice that inf{|T i (x) − T j (x)|, 0 ≤ i �= j < h} ≥ bn − an . Indeed, each point of the
orbit T h(x) for 0 ≤ h < hn belongs to one of the disjoint intervals {T h Jn, 0 ≤ h < hn},
each of which (since T h is an isometry on Jn) has length bn − an . Thus,

|Shn ( f ′′)(x)| ≤
∑

0≤l<hn

1

(T j x − βi + l(bn − an))2
≤ 1

(x − an)2
∑

0≤l<hn

1

(1 + l bn−an
x−an

)2

≤ 1

(x − an)2
∑

l≥1

1

l2
= π2

6

1

(x − an)2
.

This gives (9).
Suppose now that an < x < x ′ < bn and f = f +i . Let δ := x ′ − x and ε := x − an .

Then for any 0 ≤ h < hn (noticing that since the area of a tower is less than one,
hn(bn − an) ≤ 1),

|Sh( f )(x ′) − Sh( f )(x)| ≤
∑

0≤k<hn
T k x>βi

log
(T kx − βi ) + δ

T kx − βi
≤

∑

0≤k<hn
T k x>βi

δ

T kx − βi

≤
∑

0≤l<hn

δ

(T j x − βi ) + l(bn − an)
≤

∑

0≤l<hn

δ

ε + l(bn − an)

≤ δ

ε
+

∑

1≤l<hn

δ

l(bn − an)
≤ δ

ε
+

δ

bn − an
(1 + log hn)
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≤ δ

ε
+

δ

bn − an

(
1 + log

1

bn − an

)
.

In virtue of the initial remark, this concludes the proof of (10). ��
From Lemmas 4.1 and 4.2, we can deduce exponential tails as long as we can control

the location of a zero of Shn ( f
′).

Corollary 4.3. Let yn = an+bn
2 . Assume that there exists 0 < c < 1/2 such that for

every n ≥ 1 we have Shn ( f
′)(xn) = 0 for some xn ∈ [an + c(bn −an), bn − c(bn −an)].

Then for every n ≥ 1 and t ≥ 0 we have

1

bn − an
λ({x ∈ Jn : |Shn ( f )(x) − Shn ( f )(yn)| ≥ t}) ≤ e1/ce−t/2C ,

where C = π2

6 max
{∑d−1

i=0 C+
i ,

∑d
i=1 C

−
i

}
.

Proof. This is a consequence of Lemma 4.1 (applied to g = Shn ( f )) and Lemma 4.2:
it is enough to notice that since xn ∈ [an + c(bn − an), bn − c(bn − an)], the constant K
(see Lemma 4.1) is globally bounded (in terms of c > 0). Indeed,

K = 1
4e

bn−an
xn−an

+
bn−an
bn−xn ≤ e

2
c

4
,

which completes the proof. ��

4.2. Hyperelliptic symmetry and cancellations. In this section we show that the symme-
tries of an IET with a symmetric π and a roof function with pure symmetric logarithmic
singularities allow us to determine critical points of Shn ( f ).

Remark 4.3. Let (Tt )t∈R be a measure-preserving flow on (X,B, μ) and let S be a
measure-preserving involution such that

Tt ◦ S = S ◦ T−t for every t ∈ R. (11)

Let I ⊂ X be a global transversal for the flow (Tt )t∈R such that S(I ) = I . Let TI : I → I
be the first return map to I and f : I → R>0 be the first return time. Then, it is easy to
check that,

TI ◦ S = S ◦ T−1
I and f ◦ T−1

I ◦ S = f. (12)

In fact, the conditions (11) and (12) are in a sense equivalent. Indeed, if S : I → I is
an involution satisfying (12), then it has an extension to the involution S f : I f → I f

given by

S f (x, y) := (Sx,−y) for all (x, y) ∈ I f .

Then (12) implies (11) for the special flow T f
I .

Assume throughout this section that T : I → I is an IET associated with the symmetric

permutation π(i) = d − 1 − i for 0 ≤ i < d. Recall that SymLogp
(
�d−1
i=0 Ii

)
denotes

functions with pure symmetric logarithmic singularities (see Definition 2.3). Such IETs
and functions enjoy the following symmetries.
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Lemma 4.4 (Symmetries) Let T be an IET with a symmetric π and endpoints 0 = β0 <

· · · < βd = |I | and assume f ∈ SymLogp
(
�d−1
i=0 Ii

)
. Then, if S : I → I denotes the

involution S(x) = |I | − x,

(SB) T ◦ S = S ◦ T−1;
(SR) f ′ ◦ T−1 ◦ S = − f ′.

[SB stands for Symmetries of the Base and SR for Symmetries of the Roof.] Notice that
the relation (SB) is the same that appeared in the proof of Lemma 2.1, see (4).

Proof. Since π is symmetric, T maps [βi , βi+1) linearly on [|I | − βi+1, |I | − βi ), i.e.

T x = x + |I | − βi − βi+1 for all x ∈ [βi , βi+1).

Thus, one can verify directly that (SB) holds. We claim that a measurable function

φ : I → R ∪ {±∞} satisfies φ ◦ T−1 ◦ S = −φ if and only if

φ(x) = −φ(βi + βi+1 − x) for all x ∈ (βi , βi+1) and any 0 ≤ i < d. (13)

Indeed, for every x ∈ (βi , βi+1) we have

φ(T−1(Sx)) = φ(T−1(|I | − x)) = φ(|I | − x − (|I | − βi − βi+1)) = φ(βi + βi+1 − x).

This gives our claim.

Since f ∈ SymLogp
(
�d−1
i=0 Ii

)
,

f ′(x) = − C+
i

x − βi
+

C−
i+1

βi+1 − x
if x ∈ (βi , βi+1) for 0 ≤ i < d, (14)

where C+
i = C−

i+1 = C for 0 ≤ i < d. Hence one sees that φ := f ′ satisfies (13) and
hence (SR) holds. ��
Remark 4.4. By the proof of Lemma 4.4, we also have that for every f ∈ Logp

(
�d−1
i=0 Ii

)

the symmetry condition (C+
i = C−

i+1 for 0 ≤ i < d) is equivalent to f ◦ T−1 ◦ S = f .

The relations in Lemma 4.4 automatically imply the symmetry of Birkhoff sums
stated in Lemma 4.5 below and hence allows us to locate x0 such that Sn( f ′)(x0) = 0
(see Corollary 4.6).

Lemma 4.5 (Cancellations). Suppose that T and S are measure-preserving automor-
phisms of a probability Borel space (X,B, μ) such that T ◦ S = S ◦ T−1 and S is idem-
potent (S2 = I d). Assume that φ : X → R is a measurable map with φ ◦T−1 ◦ S = −φ.
Then for every n ∈ N and x ∈ X we have

Sn(φ)(T−n(Sx)) = −Sn(φ)(x).

In particular, if x0 ∈ X is a fixed point of S (Sx0 = x0), then for every n ∈ N we have

Sn(φ)(T−nx0) = −Sn(φ)(x0).
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Proof. The first part follows simply by the chain of equalities

Sn(φ)(T−n(Sx)) =
∑

0≤i<n

φ(T i−n(Sx)) =
∑

0≤i<n

φ(T−1−i (Sx))

=
∑

0≤i<n

φ(T−1(S(T i x))) = −
∑

0≤i<n

φ(T i x) = −Sn(φ)(x).

The second part is also immediate. ��
Combining Lemmas 4.4 and 4.5 we have the following Corollary.

Corollary 4.6 (Cancellations). Let T be an IET with a symmetric π and endpoints 0 =
β0 < · · · < βd = |I | and f ∈ SymLogp

(
�d−1
i=0 Ii

)
. For every n ∈ N, we have

Sn( f
′)(T−nx0) = −Sn( f

′)(x0) for x0 = |I |/2. (15)

Moreover, if (a, b) is an interval on which Sn( f ′) is continuous and both x0 and T−nx0
belong to (a, b), it follows that there exists

xn ∈ (a, b) such that Sn( f
′)(xn) = 0.

Proof. By Lemma 4.4, the assumptions of Lemma 4.5 hold for T : I → I , f ′ : I → R

and S : I → I given by S(x) = |I | − x . Since x0 = |I |/2 is the (unique) fixed point of
the involution S, the first part follows immediately from Lemma 4.5.

We claim that the second part is simply an application of the intermediate value
theorem. Indeed, first note that since Sn( f ′) is by assumption continuous on (a, b) and f
has pure logarithmic singularities, it is actually smooth. By the first part of the Corollary,
Sn( f ′)(T−nx0) = −Sn( f ′)(x0) and by assumption both x0 and T−nx0 belong to (a, b),
so Sn( f ′) changes sign on (a, b) and hence must have a zero. ��

4.3. Good rigidity and exponential tails. The last ingredient we need to verify the
assumptions of the singularity criterion are rigidity sequences given by Rokhlin tow-
ers with good recurrence on the base (in the sense of Definition 4.2 below). Recall
that Rokhlin towers by intervals were defined at the beginning of Sect. 4.1 (see
Definition 4.1).

Definition 4.2 (Good rigidity). We say that T : I → I admits a good rigidity sequence
if there exists a sequence of Rokhlin towers by intervals Cn ⊂ I of base Jn = [an, bn]
and height hn such that

(GR1) λ(Cn) → |I |
and, if we define qn = 1

bn−an
and εn := 1

qn log qn
,

(GR2) the tower Cn is εn-rigid, that is, for every x ∈ Cn , we have

|T hn x − x | ≤ εn := 1

qn log qn
.

This good form of recurrence (which will be deduced in Sect. 4.4 by the abundance
of directions well approximated by cylinders, see Lemma 4.10) provides the final key
ingredient to the proof of singularity of the spectrum for special flows with symmetric
logarithmic singularities.
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Proposition 4.7 (Singularity for symmetric logarithmic flows from good rigidity). Let
T be an IET with a symmetric permutation π and endpoints 0 = β0 < · · · < βd = |I |
and assume that f ∈ SymLog (�0≤i<d Ii

)
has symmetric logarithmic singularities.

If T admits a good rigidity sequence of Rokhlin towers Cn ⊂ I with bases Jn =
[an, bn] and heights hn such that, for some 0 < c < 1/2, for every n ∈ N there exists a
point xn ∈ Jn such that

xn ∈ [an + c/qn, bn − c/qn] and Shn f
′(xn) = 0, (16)

then the special flow (T f
t )t∈R is ergodic and has purely singular spectrum.

The proof is given below, using the following two Lemmas.

Lemma 4.8 (Exponential tails). Suppose that f ∈ SymLogp (�0≤i<d Ii
)
. Under the

same assumptions as in Proposition 4.7, if C′
n is a subtower of Cn of height hn and whose

base is J ′
n = [an + 2εn, bn − 2εn], then there exists B > 0 such that for every n ≥ 1 and

t ≥ B we have

λ({x ∈ C′
n : |Shn ( f )(x) − Shn ( f )(yn)| ≥ t}) ≤ |I |e1/ce−(t−B)/2C ,

where

C := π2

6

d−1∑

i=0

C+
i = π2

6

d∑

i=1

C−
i , yn = an + bn

2
.

Proof. Step 1 (x in the base).Assumefirst that x ∈ C′
n belongs to J

′
n . Since by assumption

there exists xn ∈ [an + c/qn, bn − c/qn] such that Shn ( f
′)(xn) = 0 we can apply

Corollary 4.3 which shows that

qnλ({x ∈ J ′
n : |Shn ( f )(x) − Shn ( f )(yn)| ≥ t}) ≤ e1/ce−t/2C . (17)

Step 2 (comparing y ∈ J ′
n and x = T h y for 0 ≤ h < hn). Consider now any x ∈ C′

n
and write it as x = T h y for some y ∈ [an + 2εn, bn − 2εn] and 0 ≤ h < hn . Then

|Shn ( f )(x) − Shn ( f )(y)| = |Sh( f )(y) − Sh( f )(T
hn y)|

with

|y − T hn y| ≤ εn and y, T hn y ∈ [an + εn, bn − εn].
Hence, by (10),

|Sh( f )(y) − Sh( f )(T
hn y)| ≤ 2C

(
1 + εnqn(1 + log qn)

) ≤ 2C
(
1 +

1 + log qn
log qn

)

≤ 6C =: B.

Therefore, |Shn ( f )(x) − Shn ( f )(y)| ≤ B.
Step 3 (general case). By the triangle inequality, adding and subtracting Shn ( f )(y),
where y is chosen so that x = T h y as in Step 2, we have that |Shn ( f )(x)−Shn ( f )(yn)| ≥
t implies |Shn ( f )(y) − Shn ( f )(yn)| ≥ t − B. In view of (17), it follows that

λ({x ∈ C′
n : |Shn ( f )(x) − Shn ( f )(yn)| ≥ t}) ≤ hn

qn
e1/ce−(t−B)/2C ≤ |I |e1/ce−(t−B)/2C .

This concludes the proof. ��
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Since any function f ∈ SymLog
(
�d−1
i=0 Ii

)
bydefinition canbewritten as f = f p+g,

where f p ∈ SymLogp
(
�d−1
i=0 Ii

)
and g is a function of bounded variation, the last

element we need to prove Proposition 4.7 is to control Birkhoff sums of g, through the
following standard Denjoy-Koksma-type Lemma.

Lemma 4.9 (Estimate for bounded variation functions). Let g : I → R be a function of
bounded variation equal to V ≥ 0. Then for all x ∈ C′

n and x ′ ∈ J ′
n we have

|Shn (g)(x) − Shn (g)(x
′)| ≤ 2V .

Proof. First note that if x, x ′ ∈ Jn and 0 ≤ h < hn then

|Sh(g)(x) − Sh(g)(x
′)| ≤ V .

Indeed, since

|Sh(g)(x) − Sh(g)(x
′)| ≤

∑

0≤ j<h

|g(T j x) − g(T j x ′)|

and the intervals [T j x, T j x ′] for 0 ≤ j < h are pairwise disjoint, the right sum is
bounded from above by the variation of g.

If x ∈ C′
n then x = T h y for some y ∈ [an + 2εn, bn − 2εn] and 0 ≤ h < hn . Then

|Shn ( f )(x) − Shn ( f )(y)| = |Sh( f )(y) − Sh( f )(T
hn y)|

with |y − T hn y| ≤ εn and y, T hn y ∈ Jn . It follows that

|Shn ( f )(x) − Shn ( f )(x
′)| ≤ |Sh( f )(y) − Sh( f )(T

hn y)|
+|Shn ( f )(y) − Shn ( f )(x

′)| ≤ 2V .

��
We can now use Lemmas 4.8 and 4.9 to prove Proposition 4.7.

Proof of Proposition 4.7. We will verify the assumptions of the singularity criterion
(Theorem 3.1). Let us remark first that, by assumption, T is a rank 1 transformation
and hence it is ergodic, see [Fe, Theorem 2]. To check the exponential tails assumption,

recall first that, by definition, f ∈ SymLog
(
�d−1
i=0 Ii

)
(see Def. 2.3 ) can be written as

f = f p + g where f p ∈ SymLogp
(
�d−1
i=0 Ii

)
and g has bounded variation. Thus, if V

denotes the total variation of g, by Lemma 4.9,

|Shn ( f )(x) − Shn ( f )(yn)| ≤ |Shn ( f p)(x) − Shn ( f p)(yn)| + 2V for every x ∈ C′
n

and, |Shn ( f )(x)−Shn ( f )(yn)| ≥ t implies |Shn ( f p)(x)−Shn ( f p)(yn)| ≥ t−2V . Thus,
by Lemma 4.8 applied to the function f p, for every n ≥ 1 and t ≥ B + 2V we have

λ({x ∈ C′
n : |Shn ( f )(x) − Shn ( f )(yn)| ≥ t}) ≤ |I |e1/ce−(t−B−2V )/2C ,

with λ(C′
n) → 1. Since by assumption (hn) is a rigidity sequence and the previous

equation gives the exponential tails assumption (5), the singularity criterion given by
Theorem 3.1 implies that the special flow (T f

t )t∈R has singular spectrum. ��



Singularity of the Spectrum in Genus Two 1397

4.4. Final arguments. We will now show how to conclude the proof of Theorems 1.1
and 1.2. We will use Proposition 4.7 (which we just proved) and Propostion 1.3, which
we will prove in the next and final section. To prove Theorem 1.1, we also need the
following Lemma, which relates the notion of good rigidity (see Definition 4.2) to the
conclusion of Proposition 1.3.

Lemma 4.10 (Good rigidity from cylinders). Let (ht )t∈R be the vertical translation flow
on an area one translation surface (M, ω). Assume that there exists a sequence (Cn)n∈N
of cylinders with a(Cn) → 1 and 
(Cn) → +∞ as n → +∞ such that

|θCn − π
2 | <

1


(Cn)2 log(
(Cn))
. (18)

Let I ⊂ M be a horizontal interval such that both of its endpoints lie on a separatrix and
are the first meeting point (forward or backward) of the separatrix and I . If T : I → I is
an IET obtained as the Poincaré map of (ht )t∈R, then T admits a good rigidity sequence.

The idea behind Lemma 4.10 is simply that towers for the IET can be essentially
obtained intersecting the cylinders Cn with the Poincaré section. Before we prove
Lemma 4.10, we make the following remark which simplifies the analysis.

Remark 4.5. We will without loss of generality assume that the endpoints of I = [a, b]
do not belong to Cn for every n ∈ N. Indeed, assume that a ∈ Cn . By definition of
I , a = h−s(σ ), for a singularity σ ∈ M and |s| < C (where C > 0 is a constant
independent on n, chosen to be an upper bound for backward and forward first return
times of singularities to the section). Since hs(a) = σ /∈ Cn , we find s′ between 0 and s
such that hs′(a) ∈ ∂Cn and |s′| is the smallest positive real number with such property.
Choose v ∈ ∂Cn so that the triangle with vertices hs′(a), v, a is right (v is its right angle
vertex) and contained in Cn . Then

d(a,v)
|s′| = | sin(π/2 − θCn )|. It follows that

d(a, ∂Cn) ≤ d(a, v) = |s′|| sin(π
2 − θCn )| ≤ |s||π

2 − θCn | ≤ C


(Cn)2 log(
(Cn))
.

Analogous estimates hold for the other endpoint. If we define trimmed cylinders (C ′
n)n∈N

given by:

C ′
n := Cn \

{
x ∈ Cn : d(x, ∂Cn) ≤ C


(Cn)2 log(
(Cn))

}
,

then the discarded set has measure at most 2C

(Cn) log(
(Cn))

and therefore we also have that
a(C ′

n) → 1 as n grows. Since θC ′
n

= θCn and 
(C ′
n) = 
(Cn), the sequence of cylinders

(C ′
n)n∈N also satisfies (18). Therefore we can replace the sequence (Cn)n∈N with the

sequence of cylinders (C ′
n)n∈N, which by construction do not contain the endpoints of

I .

With the above remark we can now prove Lemma 4.10.

Proof of Lemma 4.10. Let (Cn)n∈N be the sequence of cylinders satisfying the assump-
tion of Lemma 4.10 and let I denote, by abusing the notation, also the horizontal interval
on M which gives the Poincaré section determining T . Let (an, bn) ⊂ I be one of con-
nected components of the intersection of Cn with I and set hn to be the number of
connected components in I ∩ Cn . In view of Remark 4.5, all these connected compo-
nents are horizontal intervals of length bn − an whose endpoints both lie on ∂Cn . The
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images of the intervals (an, bn) under the vertical flow (and hence the successive inter-
sections of Cn with I ) are not necessarily disjoint, but since the vertical flow is close by
(18) to the direction θCn of the cylinder, to obtain the base of a tower it is sufficient to
trim the interval as follows. Let Jn := (an, bn) to be the smaller interval given by

an := an + εn, bn := bn − εn, where εn := 1


(Cn) log(
(Cn))
.

Then, by (18) and elementary trigonometry (see Fig. 4a), we have that the symmetric
difference of T hn Jn and Jn has length


(Cn)
∣
∣ sin

(
θCn − π

2

) ∣
∣ ≤ 
(Cn)|θCn − π

2 | ≤ 1


(Cn) log(
(Cn))
= εn .

Note first that by Remark 4.5 it follows that the sets T h(Jn) for 0 ≤ h < hn are intervals.
Moreover, they are pairwise disjoint and we also have that |T hn (x) − x | ≤ εn for any
x from these intervals. Setting (Cn)n∈N to be given by Cn := ∪hn−1

h=0 T h(Jn), we obtain
towers which satisfy (GR2) from the Definition 4.2. To finish the proof it is enough to
show that the towers (Cn)n∈N satisfy (GR1). Consider the subsurface Fn ⊂ M (obtained
flowing Jn) given by Fn := ⋃

0≤t<sin(θCn )
(Cn)
ht (Jn) (the flowing time sin(θCn )
(Cn) is

here the smallest first return time of points in Jn to Jn , cf. Fig. 4). Denote by pI : M → I
the projection along the vertical flow of M on I defined by setting pI (x) to be the first
meeting point of the backward orbit of x under (ht )t∈R with I . Then Cn = pI (Fn).
Moreover, by the bound on θCn ,

a(Fn) = |Jn| · 
(Cn) sin(θCn ) = (b̄n − ān − 2εn)
(Cn) sin(θCn )

= (b̄n − ān)
(Cn) sin(θCn ) − 2εn
(Cn) sin(θCn ) ≥ a(Cn) − 2

log(
(Cn))
→ 1.

Then, if c > 0 denotes the minimum of all backward first return times of points from I
to I and recall that | · | denotes the Lebesgue measure of a (measurable) subset of I , we
have

c |pI (M \ Fn)| ≤ a(M \ Fn) → 0.

Therefore |pI (M \ Fn)| → 0. Consequently

|Cn| = |pI (Fn)| = |I | − |pI (M \ Fn)| → |I |.
This finishes the proof of (GR1). ��

We can now prove Theorem 1.2. Let us first outline the strategy of the proof. Singu-
larity of the spectrum for special flows satisfying the assumptions of Theorem 1.2 will
be deduced from an application of Proposition 4.7. Hence we only need to verify that
the assumptions (good rigidity and location of zeros of the derivatives) hold for almost
every T with permutation π . In Part 1, good rigidity is deduced from Proposition 1.3
via Lemma 4.10. In Part 2, the assumption (16) on the location of zeros of the deriva-
tive is proven exploiting the symmetry of the function and the cancellation phenomena
described in Sect. 4.2 (via Corollary 4.6).
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Fig. 4. Auxiliary figures for the proofs of Lemma 4.10 and Proposition 4.7

Proof of Theorem 1.2 Part 1. Let d ≥ 2 and consider the symmetric permutation π on
d symbols. Consider translation surfaces (for example obtained by choosing suspension
data, see [Yo]) which has an IET T , with permutation π as a Poincaré section. Any such
translation surface (M, ω) belongs to the stratumH = H(2g−2)where g = d/2 if d is
even, or toH = H(g−1, g−1)where g = (d−1)/2 if d is odd. By Proposition 1.3, for
almost every translation surface in (any connected component of) the stratumH(2g−2)
orH(g−1, g−1), the vertical flow is well approximated by single cylinders in the sense
of Proposition 1.3. Furthermore, since Proposition 1.3 holds for every ε > 0, taking a
sequence εn → 0 and using a diagonal argument, we also have that for a full measure set
FH of translation surface in either strata there exists a sequence of cylinders (Cn)n∈N
with a(Cn) → 1 and satisfying (18). We can also assume that for every surface (M, ω)

inFH the corresponding horizontal flow has no saddle connection.
By standard arguments (using Fubini theorem and the local product structure of the

Masur-Veech measure on translation surfaces), we hence get a full measure set Fπ of
IETs with permutation π (those which arise as Poincaré sections of the vertical flow on
surfaces in FH) that, by Lemma 4.10, admit a good rigidity sequence (in the sense of
Definition 4.2).
Part 2.GivenT ∈ Fπ , let (M, ω)be a translation surface inFH ofwhich I is a horizontal
section. Let ι : M → M denote the hyperelliptic involution on (M, ω) (see Sect. 2.7).
Since π is symmetric, the midpoint x0 = |I |/2 of T is fixed by ι (i.e. is a Weierstrass
point). Let (Cn)n∈N be the sequence of cylinders on (M, ω) satisfying (18) and a(Cn) →
1. We can assume that each cylinder Cn is maximal. Since, for n sufficiently large,
a(Cn) > 1/2, we must have ι(Cn) = Cn . Indeed, since ι maps cylinders into cylinders
and preserves area, ι(Cn) is a cylinder intersecting Cn (as a(ι(Cn)) > 1/2 and a(Cn) >

1/2). Therefore Cn ∪ ι(Cn) is also a cylinder. By the maximality of Cn , it follows that
ι(Cn) = Cn . This implies that there is a Weierstrass point (actually exactly two) on the
core curve of Cn . We claim that, without loss of generality, we can assume that for all
n ∈ N this Weierstrass point is the mid-point x0 of I . (Indeed, if it is not, we can replace
the section I with another symmetric section centered at the given Weiestrass point;
then by Remarks 4.3 and 4.4 (applied to f = f p) this new section yields a special flow



1400 J. Chaika, K. Frączek, A. Kanigowski, C. Ulcigrai

which also satisfies the assumption of Theorem 1.2 and both special flows have the same
spectral properties since they are both metrically isomorphic to the same surface flow.)

We now claim that the sequence of good rigidity towers given by Lemma 4.10 can
be choosen so that

x0 ∈ [an + 2c/qn, bn − 2c/qn], T−hn x0 ∈ [an + c/qn, bnc/qn] for some 0 < c < 1/4
(19)

Indeed, since the midpoint x0 of I belongs to the core curve of Cn for every n, we
can choose Jn = [an, bn] ⊂ I such that (an − εn, bn + εn) is the unique connected
component of the intersection I with Cn that contains x0 (see the proof of Lemma 4.10).
Then x0 = (an + bn)/2. Fix 0 < c < 1/4 so that, for every n sufficiently large,
εn ≤ c/qn . Then, x0 ∈ [an + 2c/qn, bn − 2c/qn] ⊂ [an, bn]. Consider now T−hn x0.
Since |T−hn x0 − x0| ≤ εn ≤ c/qn and x0 ∈ [an +2c/qn, bn − 2c/qn], we have that also
T−hn x0 ∈ [an + c/qn, bn − c/qn], which concludes the proof of (19).

From (19), since x0, T−hn x0 ∈ [an + c/qn, bn − c/qn] ⊂ (an, bn) which by assump-
tion is a continuity interval for Shn ( f ) (see the remark after theDefinition 4.1), we deduce
by Corollary 4.6 that there exists xn ∈ [an +c/qn, bn −c/qn] such that Shn ( f ′)(xn) = 0.

This shows that all assumptions of Proposition 4.7 hold for the special flow (T f
t )t∈R

over T ∈ Fπ and hence (by Proposition 4.7), that (T f
t )t∈R has purely singular spectrum.

��
Proof of Theorem 1.1. Any (ϕt )t∈R locally Hamiltonian flow with two simple isomor-
phic saddles on M of genus two, by Corollary 2.2, is metrically isomorphic to a special
flow over T with the symmetric permutation π (given by π(i) = 4 − i , 0 ≤ i < 5)
under f ∈ SymLog (�4

i=0 Ii
)
(and hence has the same ergodic and spectral properties).

By Theorem 1.2, for almost every choice of the lengths βi+1 −βi of T , such special flow
has purely singular spectrum. This, by Remark 2.3, implies singularity of the spectrum
for a full measure set of locally Hamiltonian flows in the isomorphic saddles locus K
with respect to the Katok fundamental class (defined in Sect. 2.4). ��

5. Translation Surfaces Well Approximated by Single Cylinders

In this sectionwewill prove the results on the abundance of single cylinders in translation
surfaces stated in Sect. 1.3, namely Theorem 1.4 and Proposition 1.3. Let us first show
how Proposition 1.3 follows from Theorem 1.4.

Proof of Proposition 1.3. Letψ(t) = 1
t2 log t

. Thenψ satisfies the assumptions of Theo-

rem 1.4. Moreover let εn = 1
n . Notice that a.e. (M, ω) belongs to the intersection of the

full measure sets coming from Theorem 1.4 (intersection over the (εn)n∈N). It remains
to notice that every such (M, ω) satisfies the assertion of Proposition 1.3. ��

The rest of this section is devoted to the proof of Theorem 1.4. From now on we will
constantly assume that 0 < ε < 1/2. For every θ ∈ S1 and r > 0 let B(θ, r) = {φ ∈
S1 : ‖φ − θ‖ < r}. Let C be a connected component in the moduli space of area one
translation surfaces. Theorem 1.4 will be a consequence of the following result.

Proposition 5.1. Let ψ : R+ → R
+ be non-increasing so that tψ(t) ≤ 1 for t large

enough and
∫ +∞
1 tψ(t) = ∞. For every 0 < ε < 1/2 there exists 0 < c ≤ 1 such that

a.e. (M, ω) ∈ C and every interval J ⊂ S1 satisfies

cT 2λ(J ) < #{C ∈ Cylεω : 
(C) ≤ T and θC ∈ J } for all T ≥ Tω,J , (20)
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for some Tω,J > 0. Moreover, if (20) holds, then for T ≥ max(Tω,J , 36/(cλ(J ))), we
have

λ
( ⋃

{C∈Cylεω:
(C)≥T }
B(θC , ψ(
(C))) ∩ J

)
≥ c

9
λ(J ).

The above result can be proved by a modification of the methods of [Ch] and [MaTrWe].
We will present a full proof for completeness in Sect. 5.1.

Let us now show how it implies Theorem 1.4.

Proof of Theorem 1.4. Let

Wψ
ω,m :=

⋃

{C∈Cylεω:
(C)≥m}
B(θC , ψ(
(C))).

Then the sequence of sets (Wψ
ω,m)m≥1 is non-increasing with

⋂
m≥1 W

ψ
ω,m = Wψ

ω . To

prove (1) we need to show that for a.e. (M, ω) ∈ C and every m ≥ 1 the set Wψ
ω,m ⊂ S1

has full measure.
In view of Proposition 5.1, for a.e. (M, ω) ∈ C and any interval J ⊂ S1 we have

λ
(
Wψ

ω,m ∩ J
)

λ(J )
≥ c

9
if m ≥ Tω,J and m ≥ 36/(cλ(J )). (21)

Take any translation surface (M, ω) satisfying the above condition and suppose, contrary
to our claim, that for some m0 ≥ 1 the set Wψ

ω,m0 ⊂ S1 does not have full measure. By
the Lebesgue density theorem there exists an interval J ⊂ S1 such that

λ
(
Wψ

ω,m ∩ J
)

λ(J )
≤ λ

(
Wψ

ω,m0 ∩ J
)

λ(J )
<

c

9
for all m ≥ m0,

contrary to (21). This gives (1).
Denote by A ⊂ C the set of translation sufaces (M, ω) ∈ C for which there exists a

sequence (Ci )i≥1 inCylεω such that 
(Ci ) → +∞ as i → +∞ and ‖θCi − π
2 ‖ < ψ(
(Ci ))

for all i ≥ 1. In view of (1) there exists a subset A′ ⊂ C with νC (A′) = 1 such that if
(M, ω) ∈ A′ then for every φ ∈ Wψ

ω we have

rπ/2−φω ∈ A and λ(Wψ
ω ) = 1.

Let us consider the continuous map

� : S1 × C → C, �(θ, ω) = rπ/2−θω.

By Fubini’s theorem and the invariance of νC under the action of rotations (rθ )θ∈S1 , we
have �∗(λ × νC) = νC . Moreover,

⋃

ω∈A′
(Wψ

ω × {ω}) ⊂ �−1(A).

Using again Fubini’s theorem, we obtain

1 = (λ × νC)(�−1(A)) = νC(A),

which completes the proof. ��
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5.1. Proof of Proposition 5.1. The first part of Proposition 5.1 (i.e. (20)) is an immediate
consequence of the following result, which follows by Theorem 1.9 in [Vor]:

Theorem 5.2. For a.e. translation surface (M, ω) ∈ C and all intervals J ⊂ S1, I ⊂
[0, 1] we have

lim
T→+∞

#{C ∈ Cylω : 
(C) ≤ T, θC ∈ J, a(C) ∈ I }
T 2 = c1(C)λ(J )|I |mC−1.

So it remains to prove the second part of Proposition 5.1. For this we first state some
additional lemmas.

Lemma 5.3. Let (M, ω) be any translation surface. If x ∈ M belongs to two different
cylinders C,C ′ ∈ Cylω then ‖θC − θC ′ ‖ ≥ max{a(C),a(C ′)}


(C)
(C ′) .

Proof. For every θ ∈ S1 denote by (hθ
t )t∈R the directional translation flow on (M, ω)

in direction θ . Notice that the width of the cylinder C is a(C)

(C)

. Suppose that x ∈ C

is a periodic point for (hφ
t )t∈R for some φ �= θC and R > 0 is its minimal period,

i.e. hφ
s (x) = hφ

s−R(x) for all s ∈ R. Choose s ∈ R so that hφ
s (x) is just leaving

the periodic cylinder C . So hφ
s−t (x) ∈ C for all 0 < t <

a(C)

(C)

| csc(θC − φ)| and in

particular hφ
s−t (x) �= hφ

s (x). Therefore R ≥ a(C)

(C)

| csc(θC − φ)| which implies that

‖θC − φ‖ ≥ a(C)
R
(C)

. ��
Corollary 5.4. If 0 < ε < 1/2 then the set

{θC ∈ S1 : C ∈ Cylεω such that 
(C) ≤ T }
is 1−ε

T 2 separated. In particular, for any interval J and T > 0 we have

#{C ∈ Cylεω : 
(C) ≤ T and θC ∈ J } ≤ 2T 2λ(J ) + 1.

Proof. Since the cylinders have area greater than 1
2 , any pair of cylinders must share a

point. The statement then follows from Lemma 5.3. ��
For any interval J = B(θ, r) ⊂ S1 and any s > 0 let J+s := B(θ, r + s).

Lemma 5.5. Let σ := 18
√
c−1 > 1 and 0 < ε < 1/2. Assume that J ⊂ S1 is an

interval and T ≥ 36/(cλ(J )) satisfy (20) and

λ
( ⋃

{C∈Cylεω:L≥
(C)≥T }
B(θC , ψ(
(C))) ∩ J

)
<

c

9
λ(J ) (22)

for some L > T . Then

λ
(( ⋃

{C∈Cylεω:σ L≥
(C)≥L}
B(θC , ψ(
(C))) \

⋃

{C∈Cylεω:L≥
(C)≥T }
B(θC , ψ(
(C)))

)
∩ J

)

> min{(σ L)2ψ(σ L), 1} c
4
λ(J ).
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Proof. As σ L > L > T ≥ Tω,J , by (20) and Corollary 5.4, the set

� := J ∩
⋃

{C∈Cylεω:
(C)≤σ L}
{θC } ⊂ S1

has at least c(σ L)2λ(J ) points that are 1
2(σ L)2

separated. Denote by ∂� the set of two
points in�which are the closest to the ends of the interval J . Then for every θ ∈ �\∂�

we have

B
(
θ,min{ψ(σ L), (σ L)−2/2}) ⊂ J. (23)

Since ψ(T ) ≤ 1/T ≤ cλ(J )/36, by Corollary 5.4, we have

#{C ∈ Cylεω : L ≥ 
(C) ≥ T, θC ∈ J+ψ(T )} ≤ 2λ(J+ψ(T ))L2 + 1 ≤ 4λ(J )L2 + 1.

(24)

Moreover
⋃

{C∈Cylεω :L≥
(C)≥T }
B(θC , ψ(
(C))) ∩ J ⊂

⋃

{C∈Cylεω :L≥
(C)≥T, θC∈J+ψ(T )}
B(θC , ψ(
(C))) (25)

and

λ
( ⋃

{C∈Cylεω:L≥
(C)≥T, θC∈J+ψ(T )}
B(θC , ψ(
(C)))

)

≤ λ
( ⋃

{C∈Cylεω:L≥
(C)≥T }
B(θC , ψ(
(C))) ∩ J

)
+ 4ψ(T ) <

2c

9
λ(J ).

(26)

In view of (26) and (24), the cardinality of the set�∗ ⊂ � of points θ ∈ � such that

B
(
θ,min{ψ(σ L), (σ L)−2/2}) ∩

⋃

{C∈Cylεω:L≥
(C)≥T, θC∈J+ψ(T )}
B(θC , ψ(
(C))) �= ∅

is at most

3(4L2λ(J ) + 1) +
4c

9
λ(J )(σ L)2.

Indeed, the union of N intervals with total measure μ meets at most μ/ε + N points
which are ε-separated. As elements of � are 1/(2(σ L)2)-separated, it follows that there
are at most

2c
9 λ(J )

1
2(σ L)2

+ 4L2λ(J ) + 1 = 4c

9
λ(J )(σ L)2 + 4L2λ(J ) + 1

elements of �∗ such that

θ ∈
⋃

{C∈Cylεω:L≥
(C)≥T, θC∈J+ψ(T )}
B(θC , ψ(
(C))). (27)

Suppose that θ ∈ �∗ does not meet (27). Then θ is in the 1/(2(σ L)2)-neighbourhood
of an interval B(θC , ψ(
(C))) but it does not belong to B(θC , ψ(
(C))). As elements
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of � are 1/(2(σ L)2)-separated, for every C there are at most two elements of �∗ which
do not meet (27). Thus

#�∗ ≤ 4c

9
λ(J )(σ L)2 + 4L2λ(J ) + 1 + 2(4L2λ(J ) + 1)

= 3(4L2λ(J ) + 1) +
4c

9
λ(J )(σ L)2.

Since #� ≥ c(σ L)2λ(J ), σ = 18/
√
c and L > T ≥ 36/(cλ(J )), this gives

#(� \ (∂� ∪ �∗)) ≥ c(σ L)2λ(J ) − 12L2λ(J ) − 5 − 4c

9
λ(J )(σ L)2

≥ c
5

9
(σ L)2λ(J ) − 17L2λ(J ) >

1

2
c(σ L)2λ(J ).

(28)

As ψ is non-increasing, by (23) and the definition of �∗, for every θ ∈ � \ (∂� ∪ �∗)
we have B(θ,min{ψ(σ L), (σ L)−2/2}) is a subset of

( ⋃

{C∈Cylεω :σ L≥
(C)≥L}
B(θC , ψ(
(C)))\

⋃

{C∈Cylεω :L≥
(C)≥T,θC∈J+ψ(T )}
B(θC , ψ(
(C)))

)
∩ J

⊂
( ⋃

{C∈Cylεω :σ L≥
(C)≥L}
B(θC , ψ(
(C))) \

⋃

{C∈Cylεω :L≥
(C)≥T }
B(θC , ψ(
(C)))

)
∩ J,

where the last inclusion follows from (25). Since the centers of intervals are (σ L)−2/2
separated, by (28), the measure of the last set is at least

1

4
c(σ L)2λ(J )min{ψ(σ L), (σ L)−2},

which completes the proof. ��
Lemma 5.6. If ψ : R+ → R

+ is bounded, non-increasing and
∫ ∞
1 tψ(t) = +∞ then

for any σ > 1 we have

∞∑

k=0

σ 2kψ(σ k) = +∞.

Proof. Lemma follows directly from the following

∫ ∞

1
tψ(t)dt =

∞∑

k=0

∫ σ k+1

σ k
tψ(t)dt ≤

∞∑

k=0

(σ k+1 − σ k)σ k+1ψ(σ k)

=
∞∑

k=0

σ(σ − 1)σ 2kψ(σ k).

��
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Proof of Proposition 5.1. Recall that we only need to show the second part (we already
know that (20) holds).

To prove the result we need to show that for every interval J ⊂ S1 there exists
k ≥ logσ T such that

λ
( ⋃

{C∈Cylεω:σ k≥
(C)≥T }
B(θC , ψ(
(C))) ∩ J

)
≥ c

9
λ(J ). (29)

Suppose, contrary to our claim, that for all k ≥ logσ T (29) does not hold. ByLemmas 5.5
and 5.6, we have

λ
( ⋃

{C∈Cylεω :
(C)≥T }
B(θC , ψ(
(C))) ∩ J

)

≥
∑

k≥logσ (T )

λ
(( ⋃

{C∈Cylεω :σ k+1≥
(C)≥σ k }
B(θC , ψ(
(C))) \

⋃

{C∈Cylεω :σ k≥
(C)≥T }
B(θC , ψ(
(C)))

)
∩ J

)

≥
∑

k≥logσ (T )

min{σ 2kψ(σ k ), 1} c
4
λ(J ) = +∞,

which is a contradiction. ��
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