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Abstract: We classify framed and oriented 2-1-0-extended TQFTs with values in the
bicategories of Landau-Ginzburg models, whose objects and 1-morphisms are isolated
singularities and (either Z,- or (Z, x Q)-graded) matrix factorisations, respectively.
For this we present the relevant symmetric monoidal structures and find that every
object W € Kk[xy, ..., x,] determines a framed extended TQFT. We then compute the
Serre automorphisms Sy to show that W determines an oriented extended TQFT if
the associated category of matrix factorisations is (n — 2)-Calabi-Yau. The extended
TQFTs we construct from W assign the non-separable Jacobi algebra of W to a circle.
This illustrates how non-separable algebras can appear in 2-1-0-extended TQFTs, and
more generally that the question of extendability depends on the choice of target category.
As another application, we show how the construction of the extended TQFT based on
W = x¥*! given by Khovanov and Rozansky can be derived directly from the cobordism
hypothesis.
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1. Introduction

Fully extended topological quantum field theory is simultaneously an attempt to capture
the quantum field theoretic notion of locality in a simplified rigorous setting, and a source
of functorial topological invariants. In dimension 7z, such TQFTs have been formalised
as symmetric monoidal (oo, n)-functors from certain categories of bordisms with extra
geometric structure to some symmetric monoidal (co, n)-category C.

The fact that such functors must respect structure and relations among bordisms of
all dimensions from O to # is highly restrictive. Specifically, the cobordism hypothesis of
[BD] as formalised in [Lu, AF] states that (in the case of bordisms with framings) a TQFT
is already determined by what it assigns to the point, and that fully extended TQFTs
with values in C are equivalent to fully dualisable objects in C. This is a strong finiteness
condition. Similar relations hold for bordisms with other types of tangential structures;
for example, fully extended TQFTs on oriented bordisms are argued to be described by
homotopy fixed points of an induced SO(n)-action on fully dualisable objects in C.

In the present paper we are concerned with fully extended TQFTs in dimensionn = 2.
Following [SP,Ps] we take an extended framed (or oriented) 2-dimensional TQFT with
values in a symmetric monoidal bicategory B (where B is called the target) to be a
symmetric monoidal 2-functor

Z: Bord] o —> B (L.1)

where 0 = fr (or 0 = or), without any mention of oo-categories. The bicategories
Bord7 ;  of points, 1-manifolds with boundary and 2-manifolds with corners (all with
structure o) are constructed in detail in [SP,Ps]. Moreover, these authors prove versions
of the cobordism hypothesis (as we briefly review in Sect. 3), and the relevant SO(2)-
homotopy fixed points were described in [HSV,HV,He].

The example for the target B that is dominant in the literature is the bicategory
Algy, (or one of its variants, cf. [BD+, App. A]) of finite-dimensional k-algebras, finite-
dimensional bimodules and bimodule maps, where k is some field. Using the cobordism
hypothesis one finds that extended framed TQFTs with values in Alg, are classified by
finite-dimensional separable k-algebras [Lu,SP], while in the oriented case the classifi-
cation is in terms of separable symmetric Frobenius k-algebras [HSV].

On the other hand, non-separable algebras arise prominently in (non-extended) TQFTs.
Recall e. g. from [Ko] that such TQFTs Z: Bordgfl — V) are equivalent to commu-
tative Frobenius algebras in V, where V is a symmetric monoidal 1-category. Important
examples are the categories of vector spaces, possibly with a Zj- or Z-grading. In
Y = Vectﬂ% ZorV = Vect]%, Dolbeault cohomologies of Calabi-Yau manifolds serve
as examples of non-separable commutative Frobenius algebras (describing B-twisted
sigma models). Another class of examples of generically non-separable Frobenius al-
gebras (in Vecty) are the Jacobi algebras k[xy, ..., x,]1/(0x, W, ..., 9y, W) of isolated
singularities described by polynomials W. The associated TQFTs are Landau-Ginzburg
models with potential W.

Hence we are confronted with the following question: How do sigma models and
Landau-Ginzburg models (and other non-extended TQFTs with non-separable Frobenius
algebras) relate to fully extended TQFTs?

A non-extended 2-dimensional TQFT Z: Bord‘z”1 — ) can be extended to the
point if there is a symmetric monoidal bicategory 5 and an extended TQFT Z: Bord‘2’7 1.0
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— B such that (with I3 € B the unit object, and ¢ = ]IBordg 1 0)

V = Endg(lg) and Zn = Z . (1.2)
BUB ne EndBordgl.O(VJ)

Clearly an extension, if it exists, is not unique, as it depends on the target B.
We expect that the extendability of the known classes of non-separable TQFTs is
captured by the following motto:

If a non-extended 2-dimensional TQFT Z,. is a restriction of an appropriate
defect TQFT 29t then Z,. can be extended to the point (at least as a framed

ne

theory), with the bicategory B Zdef associated to zggf as target.

Let us unpack this statement and give concrete meaning to it. A 2-dimensional defect
TQFT is a symmetric monoidal functor Zr‘fg’f on a category of stratified and decorated
oriented 2-bordisms, see [DKR,CRS] or the review [Ca]. Restricting Zr‘fgf to only trivially
stratified bordisms (meaning that there are no 1- or O-strata) which all carry the same
decoration, one obtains a non-extended closed TQFT. As shown in [DKR,Ca] one can
construct a pivotal 2-category BB zar from any defect TQFT Zflleef (along the same lines
as one constructs commutative Frobenius algebras from closed TQFTs). In the case of
state sum models the 2-category is equivalent to the full subbicategory ssFroby, C Algy,
of separable symmetric Frobenius algebras [DKR], and indeed Endgsfrob, (k) = Vecty
where k is the unit object. For A- and B-twisted sigmal models, the bicategories are
expected to be that of symplectic manifolds and Lagrangian correspondences [WW] and
of Calabi-Yau varieties and Fourier-Mukai kernels [CW], respectively; in both cases the
point serves as the unit object and its endomorphism category is equivalent to Vect%.
And in the case of Landau-Ginzburg models it should be the bicategory £G (or its Q-
graded version £LG#") of isolated singularties and matrix factorisations [CM]. These are
the “appropriate” bicategories we have in mind — if they admit a symmetric monoidal
structure (as expected).

We stress that defect TQFT here only serves as a motivation to consider the bicat-
egories above, and we will not mention defects again. A key point is that by choosing
bicategories other than Alg; as targets for extended TQFTs Z, one can associate non-
separable k-algebras to Z, namely what Z assigns to the circle and the pair-of-pants.

In the present paper we make the above precise for Landau-Ginzburg models. In
Sect. 2 we review the bicategories £G and LG, and we present symmetric monoidal
structures for them which on objects reduce to the sum of polynomials; the unit object
is the zero polynomial, and its endomorphism categories are equivalent to Vectf 2 and
Vect]%, respectively. Moreover, we prove that every object in both £G and LG#' is fully
dualisable (Corollaries 2.7 and 2.9). Careful and lengthy checks that the data we supply
satisfy the coherence axioms of symmetric monoidal bicategories are performed in the
PhD thesis [MM] for the case £G, and we explain how they carry over to LG*".

It follows immediately from the cobordism hypothesis that every objectin LG or LG&*
determines an extended framed TQFT (with values in £G or £LG#"), while generically
Landau-Ginzburg models cannot be extended to the point with target Alg, . Hence our
results may be the first explicit demonstration of the general principle that the question
of whether or not a given non-extended TQFT can be extended depends on the choice
of the target for the extended theory.

To settle the question of extendability also in the oriented case, we use the results of
[HSV,HV,He]: a fully dualisable object W determines an extended oriented TQFT if
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and only if the Serre automorphism Sy : W — W (see (3.14)) is isomorphic to the unit
1-morphism Iy .

In Sect. 3.2, we show that for a potential W € k[xy, ..., x,] viewed as an object in
LG we have Sy = Iw[n] where [n] is the n-fold shift functor which satisfies [2] = [0],
cf. Sect. 2.1. Since Iy 2 Iw[1] this implies that W determines an extended oriented
TQFT (cf. Proposition 3.9)

Zy: Bordy'| o — LG (1.3)

if and only if n is even, and we discuss the relation to Serre functors and Calabi-Yau
categories in Remark 3.10.

For a quasi-homogeneous lpotential W e Kk[xy, ..., x,] viewed as an object in LG5"
we find that Sy = Iw[n—2]{5c(W)}, where c(W) is the central charge of W (see (2.40))
and {—} denotes the shiftin Q-degree. Hence every potential W thatsatisfies the condition
Iw = Iw[n — 2]{%C(W)} determines an extended oriented TQFT (cf. Proposition 3.14)

ZW ot Bordyy o —> LG (1.4)

If the hypersurface {W = 0} in weighted projective space is a Calabi-Yau variety (equiv-
alently: if %C(W) = n — 2) then the trivialisability of Sy reduces to the (n — 2)-Calabi-
Yau condition "2 = Id on the shift functor £ = [1]{1} of the triangulated category
LGE(0, W), as we show in Corollary 3.15. This is in line with the general discussion in
[Lu, Sect.4.2].

Finally, we illustrate the combined power of the cobordism hypothesis and the explicit
control over the bicategories £G and LG&" by computing the actions of our extended
TQFTs on various 2-bordisms: the saddle, the cap, the cup, and the pair-of-pants. This
is done in terms of the explicit adjunction maps of [CM], for which we discuss two
applications:

e Weexplain (in Theorems 3.3 and 3.12, Remarks 3.6 and 3.16) how the non-separable
Jacobi algebra and its residue pairing are recovered from the above extended TQFTs
associated to a potential W.

e The “TQFTs with corners” constructed by Khovanov and Rozansky in [KR1] can
be derived (as we do in Example 3.13) directly from the cobordism hypothesis as
extended TQFTs that assign the potentials W = xV*! to the point, for all N € L.

2. Bicategories of Landau-Ginzburg Models

In this section we collect the data that endows the bicategory of Landau-Ginzburg models
LG with a symmetric monoidal structure in which every object has a dual and every 1-
morphism has left and right adjoints. This is done in Sects. 2.1-2.4. In Sect. 2.5 we
explain how the analogous results hold for the bicategory of graded Landau-Ginzburg
models £LGE".

Our main reference for bicategories, pseudonatural transformations, modifications
etc. is [Be] (see [Le] for a quick reminder). Symmetric monoidal bicategories are re-
viewed in [Gu,SP] and [Sc, App. A.4]; duals for objects and adjoints for 1-morphisms
are e. g. reviewed in [Ps,SP].

2.1. Definition of LG. Recall from [CM, Sect. 2.2] that for a fixed field k of characteristic
zero,! the bicategory of Landau-Ginzburg models LG is defined as follows. An object is

! In fact we can allow any commutative unital ring k if we generalise the definition of potentials as in [CM,
Def.2.4].
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either the pair (k, 0) orapair (k[xy, ..., x,], W) wheren € Z>pand W € k[x1, ..., x,]
is a potential, i.e. the Jacobi algebra

Jacw = klx1, ..., x,1/ (@, W, ..., 0, W) 2.1)
is finite-dimensional over k. We often abbreviate lists of variables (x1, ..., x,) by x,

and we often shorten (k[x], W) to W.
For two objects (k[x], W) and (k[z], V) we have

LG((K[x], W), (k[z], V)) = hmf (k[x, z], V — W) (2.2)

for the Hom category. The right-hand side of (2.2) is the idempotent completion of
the homotopy category of finite-rank matrix factorisations of the potential V. — W over
k[x, z]. We denote matrix factorisations of V — W by (X, dx) (or simply by X for short),
where X = X9 @ X! is a free Z5-graded k[x, z]-module and dy € End£[x’2](X) such

that d)2( = W -idy. The twisted differentials dy, dx’ induce differentials

Sx.x: ¢ > dy ot — (=1)I¥lz o dy (2.3)
on the modules Homy ;1(X, X'), and 2-morphisms in £G are even cohomology classes
with respect to these differentials. Finally, the idempotent completion (—)® in (2.2) is
obtained by considering only matrix factorisations which are direct summands (in the
homotopy category of all matrix factorisations) of finite-rank matrix factorisations. For
more details, see [CM, Sect.2.2].

In passing we note that the category LG(W, V) has a triangulated structure with the
shift functor [1]: LG(W, V) — LG(W, V) acting on objects as

[11: (x°e@ x',dx) — (X' @ X°, —dy) 2.4)
see e.g. [KST, Sect.2.1]. It follows that
[21:= [1] o [1] = ldzgw.v) - @.5)
Horizontal composition in LG is given by functors
®: LG (L], Wa). (2], W) ) x LG((RLx1, W), (KIy], Wa)
— £6((klx], W), (2], W) (26)

which act on 1-morphisms as

Y. X)—Y®X = (((Y0 ®k(y] X% e ! ®kly] Xl))
(Y @iy X @ (' @y X)) @)

withdygx = dy ® 1 +1 ® dy, and analogously on 2-morphisms. It follows from [DM,
Sect. 12] that the right-hand side of (2.7) is indeed a direct summand of a finite-rank
matrix factorisation in the homotopy category over k[x, z], hence ® is well-defined.
Moreover, the associator in £G is induced from the standard associator for modules,
and we will suppress it notationally.
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Remark 2.1. One technical issue in rigorously exhibiting £G as a symmetric monoidal
bicategory (as summarised in Sects. 2.2-2.3) is to establish an effective bookkeeping
device that keeps track of how to transform and interpret various mathematical entities.
Exercising such care already for the functor ® in (2.7) we can write it as (ty ;) ©
®klx,y.z] © ((ty,2)™ x (tx,y)*), where 1, - : k[x, z] — k[x, y, z] etc. are the canonical
inclusions, while (—), and (—)* denote restriction and extension of scalars, respectively;
[MM, Sect.2.3-2.4] has more details.

For an object (k[x1, ..., x,], W) € LG, its unit 1-morphism is ({w, dy,,) with

v =/\ (ék[x,x’] -el-) (2.8)
i=l1

where x’ = (x], ..., x;,) is another list of n variables, {6;} is a chosen k[x, x]-basis of
k[x, x'1®"*, and

n

d,wzz@m W6 A (—) +(x] — xp) - 9) (2.9)
i=1
where
; W1, ... X1, %, .. x)) = W, .., X X, .. X!
oW = (x1 i—1,X; n? (x1 i X ) (2.10)
X! —x;

and 6} is defined by linear extension of 6(6;) = §; ; and to obey the Leibniz rule with
Koszul signs, cf. [CM, Sect.2.2]. In the following we will suppress the symbol A when
writing elements in or operators on [y .

Finally, the left and right unitors

Mx: Iy X — X, px: XQIy — X 2.11)

for X € LG(W, V) are defined as projection to 6-degree zero on the units Iy and Iy,
respectively; their explicit inverses (in the homotopy category LG (W, V)) were worked
out in [CM] to act as follows:

e =3 3 Yl b dx azaf]dx}ﬁmj,

[>20a1<--<a; j

px (i) = Z Z Z( 1)(2)+1|Ct ej ® [ Tdx 9 dx} leal By (212)

[>20a1<--<a; j

where {e;} is a basis of the module X, and dyx is identified with the matrix representing
it with respect to {e; }.

In summary, the above structure makes £G into a bicategory, cf. [CM, Prop.2.7]. Note
that in LG it is straightforward to determine isomorphisms of commutative algebras (see
e.g. [KR1])

End(Iy) = Jacy . (2.13)
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2.2. Monoidal structure for LG. Endowing £G with a monoidal structure involves
specifying the following data:

(M1) monoidal product O: LG x LG — LG,

(M2) monoidal unit I € LG, specified by a strict 2-functor /: 1 — LG,

(M3) associator a: O o(0d x Idzg) — O o (Idgg x O), which is part of an adjoint
equivalence,

(M4) pentagonator 7 : (Idgg O a)oao(aOldgg) — a oa (using shorthand notation
explained below),

(MS5) left and right unitors /: O o(I xIdgg) — ldgg, r: Oo(ldgg x 1) — Idgg,

(M6) 2-unitors A': To(I x 1) = (D o(a*x1),p :rol = (I1x(1 xr))o(axl),
and u': 1o (r x 1) = (1% (1 x1)) o (a* 1) (using shorthand notation),

subject to the coherence axioms spelled out e.g. in [SP, Sect.2.3]. In this section we
provide the above data for £G, which come as no surprise to the expert. The coherence
axioms are carefully checked in [MM, Ch. 3].

(M1) We start with the monoidal product. It is a 2-functor
O: LG x LG — LG (2.14)

which is basically given by tensoring over k and taking sums of potentials. More
precisely, according to [MM, Prop.3.1.12], O acts as

W, V) = (klx], W), kl[z], V) — (k[x,z], W+ V)) =W+ V (2.15)
on objects, while the functors on Hom catgories

Oy, va), W) = (£G x LG)((Vi, Va), (W1, Wa))
— LG(Vi + Vo, Wy + W2) (2.16)

are given by ®g (up to a reordering of variables similar to the situation in Re-
mark 2.1, see [MM, Def. 3.1.3]). Compatibility with horizontal composition is wit-
nessed by the natural isomorphisms Oy, v,),(v;, V), (W), W) : ®o(Ox0) — Ho®
whose ((Y1, Y2), (X1, X2))-components are given by linearly extending

(MO XIO0X2)) — XD (Y2® X2),
(fi ®k f2) ® (e1 ®k e2) > (=DM (fi@e) @k (L ®er)  (2.17)

for Z>-homogeneous module elements ey, e, f1, f2, and isomorphisms on units
Ow.wy) * Iwyewy, —> Iw, O Iw, (2.18)

are also standard, cf. [MM, Lem. 3.1.4].
(M2) The unit object in LG is

I:=(%k,0). (2.19)

Let 1 be the 2-category with a single object * and only identity 1- and 2-morphisms.
We define a strict 2-functor I : 1 — LG by setting 1 (x) = 1.
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The associator is a pseudonatural transformation
a: Oo(OxIdgg) — Oo(ldgg x O) o XA (2.20)

Here 2 is the rebracketing 2-functor (LG x LG) x LG — LG x (LG x LG),
which we usually treat as an identity. The 1-morphism components a(,v),w) and
2-morphism components a(x,y),z) of the associator are given by

aqu.vyw) = lusvew, auxv),z) = ?»(_XIDY)DZ o Ax.v.z o pxowroz) »(2.21)

where Axyz: X O (Y OZ) — (XOY) O Z is the rebracketing isomorphism
for LG, while A and p are the 2-isomorphisms (2.11).
The associator a and the pseudonatural transformation
a : Oo(dgg xO) oA — Do (O x Idgg) (2.22)
. - - -1 -1
with components ayywy = lusvews axy)zy = *xproz © .AX’Y’Z o
pxOy)Oz are part of a biadjoint equivalence, see [MM, Lem. 3.2.5-3.2.6].
The pentagonator is an invertible modification
m: (1o # (liagg x @) o (a* liapgxoxidzeg) © (1o * (@ x liagg))
—> (a* haggxiaggxn) © (@ * Ioxiagxideg)  (223)

where here and below we write vertical and horizontal composition of pseudo-
natural transformations as o and *, respectively. We also typically use shorthand
notation for the sources and targets of modifications obtained by whiskering; for
example, the pentagonator is then written

7:(dggOa)oao(aOldgg) —> aoa. (2.24)
Its components are

T(T UV W) = Mgy sw®Irsusyvew © (O@U+vaw) iz oy oy ® O@su+v,w)) -

(2.25)
The left and right (1-morphism) unitors are pseudonatural transformations
[: Oo( xldgg) — Idgg, r: Oo(ldgg x 1) — ldgg (2.26)

whose components are given by

lowy=1Iw =rwx, la.x)= ?»}1 0 PX =T(X,1,) > (2.27)

where we identify 1 x LG = LG = LG x T and [y OX = X = X O Iy
(see [MM, Lem.3.1.8&3.2.11 & 3.2.15] for details). The unitors [/, r are part of
biadjoint equivalences (I, ™), (r, r~) as explained in [MM, Lem.3.2.13-3.2.15].
The 2-unitors are invertible modifications A’: 1 o (I x 1) — (I % 1) o (a * 1),
pirol — (Ix(1xr))o(axl),and ' : lo(r x1) — (1*(1x[))o(ax1), written
here in the shorthand notation also employed in (M4) above, whose components
are

—1 —1 —1
Mee)w) = Ay ©Bwvawy s Plvawyn = CQvaw) @ L) o g,

—1
K.y = Pryity - (2.28)

Proposition 2.2. The data (M1)—-(M6) endow LG with a monoidal structure.

Proof. The straightforward but lengthy check of all coherence axioms is performed to
prove Theorem 3.2.18 in [MM, Sect.3.1-3.2]. O
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2.3. Symmetric monoidal structure for LG. Endowing the monoidal bicategory £G with
a symmetric braided structure amounts to specifying the following data:

(S1) braiding b: O — Do as part of and adjoint equivalence (b, b™), where t: LG x
LG — LG x LG is the strict 2-functor which acts as (¢, §) — (&, ¢) on objects,
1- and 2-morphisms,

(S2) syllepsiso: g — b~ o b,

(S3) R:aoboa— (IdggOb)oao(bOldsg)and S: a” oboa™ — (bOldgg) o
a” o(Idgg OD),

subject to the coherence axioms spelled out e.g. in [SP, Sect.2.3]. In this section we

provide the above data which are discussed in detail in [MM, Sect. 3.3].

(S1) The braiding is a pseudonatural transformation
b:O0— 0ot (2.29)

whose 1-morphism components by, w) are given by Iy,w (up to a reordering of
variables, see [MM, Not. 3.1.2 & Lem. 3.3.5]), while the 2-morphism components

bix,yy: Y OX)®bw,,vy) —> baw,,wy) ®(XDOY) (2.30)

are defined in [MM] as natural compositions of canonical module isomorphisms
and structure maps of the bicategory £G. Explicitly, if {e,} and { f5} are bases of
the underlying modules of X and Y, respectively, we have

bix,yy: (fb ® ea) ® 6,-’;1 -.~9,{;" — (=Dleallbls; . 85 o )»}IDY(ea ® fp). (2.31)
The braiding b and the pseudonatural transformation
b™: Oot — O (2.32)

with components by, = baw,v) and by ) = b(y,x) are part of a biadjoint equiva-
lence, see [MM, Sect.3.3.2].

Example 2.3. For a potential W = NN € 7>, the matrix factorisation b, w)
is precisely what is assigned to a “virtual crossing” in the construction of homological
sly-tangle invariants of Khovanov and Rozansky [KR1] (see the second expression in
[KR2, Eq.(A.9)]).

(S2) The syllepsis is an invertible modification

o:lg— b ob (2.33)

whose components oy, wy: Iyvsw — b(v,W) ® bv,w) are given by )LI*VLW (up

to a reordering of variables and a sign-less swapping of tensor factors, see [MM,
Lem.3.3.8]).
(S3) The invertible modifications

R:aoboa— (IdggOb)oao (bOldeg),
S:ta  oboa” — (bOIdgg)oa™ o(ldgg Ob) (2.34)

have components R, v),w) and S, v),w) which act on basis elements, i.e. on
tensor and wedge products of f-variables, by a reordering with appropriate signs,
see [MM, Lem. 3.3.11] for the lengthy explicit expressions.
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Theorem 2.4. The data (M1)—(M6) and (S1)—(S3) endow LG with a symmetric monoidal
Structure.

Proof. Ttis shown in [MM, Sect. 3.1 & 3.3] that the data (S1)—(S3) are well-defined and
satisfy the coherence axioms for symmetric braidings. O

We note that instead of directly constructing the data (M1)—(M6) and (S1)—(S3) and
verifying their coherence axioms, one could also employ Shulman’s method of con-
structing symmetric monoidal bicategories from symmetric monoidal double categories
[Sh]. A double category of Landau-Ginzburg models was first studied in [MN].

2.4. Duality in LG.

2.4.1. Adjoints for 1-morphisms Endowing LG with left and right adjoints for I-morphisms
amounts to specifying the following data:

(A1) l-morphisms X, X € LG(V, W) for every X € LG(W, V),
(A2) 2-morphisms evy: X ® X — Iy, coevy: Iy - X Q@ X, &vx: X®@ X" — Iy
and coevy: Iy — X7 ® X forevery X € LG(W, V),

subject to coherence axioms. In this section we recall the above data as constructed in
[CM] (this reference also spells out the coherence axioms).

(A1) Setting XV = Homyy ;1(X, k[x, z]) and defining the associated twisted differen-

tial by dyv(¢) = (—1)!?*1¢ o dx for homogeneous ¢ € XV, the left and right
adjoints of

X € LG((Klx1, ..., xq], W), (Klz1, ... 2m], V) (2.35)
are given by
X =XY[m] and X' = X"[n], (2.36)

respectively, where [m] is the m-th power of the shift functor [1] in (2.4) with itself.
Hence if in a chosen basis dy is represented by the block matrix ( DOO %‘ ), then in
0
-] -f
is odd, and similarly for dy+. It follows that X =~ X" ifm = nmod?2.
(A2) To present the adjunction 2-morphisms

T T
the dual basis d+y is represented by ( %" ) if m is even, and by ( D01 Yifm

eriTX®X—>Iw, coevx:lv—>X®TX,
Sx: XX — Iy, coevy: Iy — X' ® X, (2.37)

recall from [Li] the basic properties of residues (collected for our purposes in [CM,
Sect.2.4]), let {e;} be a basis of X, and define A®) = (—1)"d,,dx ... dx,dx,
A® = 0;,dx ...0;,dx. In [CM] the theory of homological perturbation and
associative Atiyah classes were used to obtain the following explicit expressions:
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ovx(ef®en =3 3 (~nOHele, g,

l;() ay<--<aj

{A@ 8 dx ... 9, dx ), dz

0, V... 0.,V

Sxlej@eH =) Y (=nreDlilg, g,

120 a1<<aq

2,7 2,7
{85 dx - Bndx AW}, dx

O W, ... 0n W

-Res

- Res

r+l1 . / ’
COGVX()/) = Z(_l)( 2 )+mr+5m {a[zb’lz]dx e 8[Zéf]dx}l] € ® e; 5
i.j
E(_)\E_‘,V)(();) — Z(_])(f+1)|ej|+sn [a[);;;x] dy) ... B[XI;’IX] (dX)]ji e;k ®e; (2.38)
ij
where b;, b 7ands,,, s, € Zy areuniquely determined by requiringthatb; < - -- <

b,, by < --- < by, as well as )7951 -“913; = (=1)"01...6, and y0p, ...0p, =
(=1D)m0y ...60,.

Theorem 2.5. The data (Al)—(A2) endow the bicategory LG with left and right adjoints
for every I-morphism.

Proof. This is [CM, Thm.6.11]. (In fact LG even has a “graded pivotal” structure, see
[CM, Sect.7].) O

2.4.2. Duals for objects Endowing the symmetric monoidal bicategory £G with duals
for objects amounts to specifying the following data:

(D1) an object W* = (k[x], W)* € LG for every W = (k[x], W) € LG,
(D2) 1-morphisms evy : W* O W — T and coevy : I — W O W* such that there are
2-isomorphisms
a:rw,s @ (Uw Oevw) ® aqw,w),w) ® (coevw Olw) ® Iy, — Iw,
Cr: l(*,w*) ® (evy Olw*) ® a((W*,W),W*) ® (Iw+ Ocoevy) ® r‘;,* — Iy~ .
In this section we provide the above data; the explicit isomorphisms c|, ¢; are constructed
in [MM, Ch.4].

(D1) The dual of W = (k[x], W) is (k[x], —W) = W* = —W.
(D2) The adjunction 1-morphisms exhibiting —W as the (left) dual are the matrix
factorisations

evw = Iy and coevy = Iy (2.39)

of W(x") — W(x), viewed as 1-morphisms (—W)OW — TandI — WO (-W),
respectively.

Note that — W is also the right dual of W, with évy = Iy and coevy = Iy viewed
as l-morphisms W O (—W) — Iand T — (—W)O W.
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Proposition 2.6. The data (D1)—(D2) endow the monoidal bicategory LG with duals for
every object.

Proof. The cusp isomorphisms cy, ¢; are computed in terms of the unitors A, p and
canonical swap maps in [MM, Lem. 4.6]. O

Recall that an object A of a symmetric monoidal bicategory B is fully dualisable
if A has a dual and if the corresponding adjunction 1-morphisms ev 4, coev4 themselves
have left and right adjoints, which in turn have left and right adjoints, and so on. Hence
Proposition 2.6 together with Theorem 2.5 implies:

Corollary 2.7. Every object of LG is fully dualisable.

2.5. Graded matrix factorisations. Landau-Ginzburg models with an additional Q- or
Z-grading appear naturally as (non-functorial) quantum field theories, in their relation
to conformal field theories, as well as in representation theory and algebraic geometry.
In this section we recall the bicategory of graded Landau-Ginzburg models LG from
[CM,CRCR,Mu] (see also [BFK]) and observe that it inherits the symmetric monoidal
structure from L£G. Moreover, every object in LG#" is fully dualisable.

An object of LG®" is a pair (K[x, ..., x,], W) where now k[xp, ..., x,] is a graded
ring by assigning degrees |x;| € Q- to the variables x;, and W € k[xy, ..., x,] is
either zero or a potential of degree 2. The central charge of W = (k[x1, ..., x,], W) is
the numerical invariant

c(W)=3>"(1-|xl). (2.40)

i=1

A 1-morphism (k[x], W) — (k[z], V) in £LG®" is a summand of a finite-rank matrix
factorisation (X, dx) of V. — W over k[x, z] such that the following four conditions
are satisfied: (i) the modules X0 = D, <0 Xg and X! = D, cq X; are Q-gﬂr.aded,
(i) the action of x; and z; on X are respectively of Q-degree |x;| and |z;], (iii) the
map dy has Q-degree 1, and (iv) if we write {—} for the shift in Q-degree and if X’ =
@qu k[x, z]{q}®%« for i € {0,1}, then {g € Q|a;, # 0} must® be a subset of
i+ Gy_w, where

Gy_w :=(lxil.....Ixaul. lz1l. ... |zml) C Q and Go:=7Z. (2.41)

A 2-morphism in £G&" between two 1-morphisms (X, dx), (X', dx+) is a cohomology
class of Z;- and Q-degree 0 with respect to the differential §x x in (2.3).

We continue to write [—] for the Z,-grading shift and {—} for the Q-grading shift.
Translating [KST, Thm.2.15] into our conventions we see that LG (W, V) has the
structure of a triangulated category with shift functor

¥ = [1]{1}. (2.42)

Since the categories LG&" (W, V) are idempotent complete (cf. [KST, Lem.2.11])
the construction of [DM] ensures that horizontal composition in £G&" can be defined

2 Without condition (iv) we still obtain a bicategory CQGR, with the same structures that we exhibit here
for LG8 . As explained in [Mu, Lecture 3], the Hom categories ﬁQGR(W, V) are equivalent to infinite direct
sums of LG& (W, V) with itself, hence we can restrict to LG8,
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analogously to (2.6). Moreover, the units Iy of £G can naturally be endowed with an
appropriate Q-grading (by setting |0;| = |x;|—1and |9i* | = 1—]x;]), and the associator «
and unitors A, p of LG8 are those of LG (as they manifestly have Q-degree 0). Hence
LG#" is indeed a bicategory.

The bicategory LG also inherits a symmetric monoidal structure from £G. This is
so because all 1- and 2-morphisms in the data (M1)—-(M6), (S1)—(S3) are constructed
from the units Iy and from the structure maps «, A, p, their inverses and (Q-degree 0)
swapping maps, respectively.

For a 1-morphism

X € Kggr((k[xly cee xn]v W)v (k[zls T Zm]v V)) (243)
we define its left and right adjoint as
X = XVIml{3e(V)), X' =X"[n)(ze(W))}. (2.44)

The above shifts in Q-degree are necessary to render the adjunction maps
evy, coevy, évy, coevy in (2.37) and (2.38) to be of Q-degree 0 so that they are in-
deed 2-morphisms in £G#'. Finally, the (left and right) dual of (k[x], W) € LG is
(k[x], —W) with the same grading, and the matrix factorisation underlying the adjunc-
tion 1-morphisms evy, coevy, €V, coevyy is again Iy, but now viewed as a Q-graded
matrix factorisation.

In summary, we have:

Theorem 2.8. The bicategory LG inherits a symmetric monoidal structure from LG,
every object of LG® has a dual, and every 1-morphism has adjoints.

Corollary 2.9. Every object of LG is fully dualisable.

3. Extended TQFTs with Values in £G and LG8

In this section we study extended TQFTs with values in £G and LG#". We briefly review
framed and oriented 2-1-0-extended TQFTs and their “classification” in terms of fully
dualisable objects and trivialisable Serre automorphisms, respectively. Then we observe
thatevery object W = (K[x1, ..., x,], W) in LG or LG? givesrise to an extended framed
TQFT (Proposition 3.2 and Remark 3.6), and we show precisely when W determines
an oriented theory (Propositions 3.9 and 3.14). We also show how the extended framed
(or oriented) TQFTSs recover the Jacobi algebras Jacy as commutative (Frobenius) k-
algebras (Theorems 3.3 and 3.12, Remark 3.16), and we explain how a construction of
Khovanov and Rozansky can be recovered as a special case of the cobordism hypothesis
(Example 3.13).

3.1. Framed case. Recall from [SP, Sect.3.2] and [Ps, Sect. 5] that there is a symmetric
monoidal bicategory Bord2 1.0 of framed 2-bordisms. Its objects, 1- and 2-morphisms
are, roughly, disjoint unions of 2-framed points + and —, 2-framed 1-manifolds with
boundary and (equivalence classed of) 2-framed 2-manifolds with corners. For any
symmetric monoidal bicategory B, the cobordism hypothesis, originally due to [BD],
describes the 2-groupoid Funsym@)(Bordgr1 o+ B) (of symmetric monoidal 2-functors

Z: Bord2 1.0 — B, their symmetric monoidal pseudonatural transformations and mod-
ifications) in terms of data internal to B that satisfy certain finiteness conditions. Objects
of Funsym®(Bord2 1 0» B) are called extended framed TQFTs with values in B.
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To formulate the precise statement of the cobordism hypothesis, denote by B the
full subbicategory of B whose objects are fully dualisable, and write .# (') for the core
of B, i.e. the subbicategory of B with the same objects and whose 1- and 2-morphisms
are the equivalences and 2-isomorphisms of 3, respectively. Then:

Theorem 3.1. (Cobordism hypothesis for framed 2-bordisms, [Ps, Thm. 8.1]). Let B be
a symmetric monoidal bicategory. There is an equivalence

Funsym®(B0rd£r’l’0, B) =N J{(de),
Zr— Z(+). (3.1

Note that thanks to the description of Bordgr1 o as a symmetric monoidal bicategory
in terms of generators and relations given in [Ps], the action of Z is fully determined (up
to coherent isomorphisms) by what it assigns to the point. For example, if Z(+) =
then the 2-framed circle which is the horizontal composite of the two semicircles (or
elbows) Tev, and ev, is sent to ev4 ® T evy. Similarly, 2-morphisms in Bord‘;rl o can
be decomposed into cylinders and adjunction 2-morphisms for ev,, coev, and their
(multiple) adjoints; we will discuss several examples of such decompositions in the
proofs of Theorems 3.3 and 3.12 below.

We now turn to the symmetric monoidal bicategory of Landau-Ginzburg models LG.
As a direct consequence of the cobordism hypothesis and Corollary 2.7 we have:

Proposition 3.2. Every object W = (K[xy, ..., x,], W) € LG determines an extended
framed TQFT

Zly: Bordy | —> LG with Zj(+) = W. (3.2)

This can be interpreted as “every Landau-Ginzburg model can be extended to the
point as a framed TQFT”. In the remainder of Sect. 3.1 we make this more precise by
relating Zg, to the (non-extended) closed oriented TQFT

Zy: Bordy'; — Vecty (3.3)

which via the standard classification in terms of commutative Frobenius algebras (see
g. [Ko]) is described by the Jacobi algebra Jacy with pairing

(—, —)w: Jacw ® Jacy — k 3.4

induced by the residue trace map

= (P)w (3.5)

Jacy — k, ¢r—>Res|:

¢ dx
W, ..., 0, W

e. (¢, V)w = (oV)w

To recover the k-algebra Jacy with its multiplication ftjacy, : @ @ ¥ — ¢, we want
to show that Jacy and pijac, are what Zg, assigns to “the” circle and “the” pair-of-
pants. However, there are infinitely many isomorphism classes of 2-framed circles (one
for every integer), so we have to be more specific. Using the equivalent description of
2-framed circles in terms of immersions ¢: S' — R? together with a normal framing
[DSPS, Sect. 1.1], the correct choice is to take the standard circle embedding for ¢ together
with outward pointing normals. We denote the corresponding 2-framed circle Sé .Interms
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of the structure 1-morphisms of Bordg 1.0 (whose horizontal composition we write as #),
we have (see [DSPS, Sect. 1.2])

St =evi#Tev, . (3.6)

This is the correct choice in the sense that for every integer k, there is a 2-framed circle S ,1 s
and for every pair (k, ) € Z? there is a pair-of-pants 2-morphism S,i u Sl1 — S,l 4 in
Bordgl’o, and only for k = 0 = [ do we get a multiplication. This is “the” 2-framed
pair-of-pants for us.

Theorem 3.3. For every (K[xy, ..., x,], W) € LG, we have that
(zf;’v(sg), 2 (pair-of-pants)) 3.7)

is isomorphic to (Jacw, jacy ) as a k-algebra.

Proof. Note first that ZI(S}) = evy @ Tevy = evwy Revy, [0]) = Iw ®xpxx Iy
is isomorphic in £G((k, 0), (k, 0)) = vect?2 to the vector space Jacy (viewed as a
Z-graded vector space concentrated in even degree). One can check that an explicit
isomorphism « : Iy ®k[x,x'] Ivvv = Endsg(Iw) = Jacy is given by linear extension of
p(x)g(x')-e; ® e;f = p(x)q(x)-§; j, where p and g are polynomials and {e;} is a basis
of the k[x, x']-module Iy .

Next we prove that Zg, sends the pair-of-pants to the commutative multiplication
WJacy - For this we decompose the pair-of-pants into generators, namely into cylinders
over the left and right elbows evy: — U+ — @ and Tev,: # — — U +, respectively,
and the “upside-down saddle” evey, : Tev,#ev, — 1_,4 (which is called v; in [DSPS,
Ex.1.1.7]). Then

pair-of-pants = ley, # eVey, # lig,, : Seush — s} (3.8)

Hence if Zar, (eVey,) = €Vevy,, then the functor Z‘f{, sends this pair-of-pants to ley,, ®
eVevy ®ltey,,, which by pre- and post-composition with the isomorphism
k: eviy ® Tevy = Jacy becomes a map wu: Jacw ®gJacy — Jacwy. Noting that
both k and eveyy, act diagonally (with eveyy, (ef ®e;) = §; j sinceevy : (=W)OW — I
has trivial target, cf. the explicit expression for evey,, in (2.38)), we find that 1 is indeed
given by multiplication of polynomials, i.€. i = Ujacyy, -

To complete the proof we need to argue that Z‘f{, assigns our choice of counit eveyy,
to the upside-down saddle evey, , and not some other choice of adjunction data. By [Ps,
Thm.3.17 & Thm. 8.1], extended framed TQFTs are equivalent to “coherent fully dual
pairs” in their target bicategories, see [Ps, Def.3.12] for the details. For the algebra
structure on Z&r,(Sé), we only need a “coherent dual pair” as defined in [Ps, Def.2.6].
One straightforwardly checks that (W, —W, evy, coevy, ct, ¢1) satisfies all the defin-
ing properties of a coherent dual pair, ensuring that Zg, can indeed be chosen such
that Z{{, (eVey,) = €Veyy, . (The key defining properties of coherent dual pairs for us to
check are the so-called swallowtail identities of [Ps, Def.2.6], which can be viewed as
consistency constraints on our cusp isomorphism cj. But since cy, ¢; and all other 2-
morphisms that appear in the swallowtail identities are structure maps of the underlying
bicategory of LG, the coherence theorem for bicategories guarantees that the constraints
are satisfied.) |
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Remark 3.4. The finite-dimensional k-algebra Jacyy is typically not separable. For exam-
ple, if W = xV*! with N € 7>, the algebra Jacy has non-semisimple representations
(as multiplication by x has non-trivial Jordan blocks) and hence cannot be separable.
Thus Jacy is not fully dualisable in the bicategory Alg, of finite-dimensional k-algebras,
bimodules and intertwiners [Lu,SP], so Jacy cannot describe an extended TQFT with
values in Algy. Proposition 3.2 and Theorem 3.3 explain how Jacy does appear in an
extended TQFT with values in £, namely as the algebra assigned to the circle S(% and
its pair-of-pants.

For an algebra A € Alg, its Hochschild cohomology HH®(A) is isomorphic to
ev4 ® T evy, and for Hochschild homology one finds HHe(A) = evy ® b, 4) ®coevy.
Similarly, for every object W = (k[x1, ..., x,], W) € LG we may define

HH*(W) :=evy @ Tevyy, HHo(W) :=evy ®bw,w) ® coevy . (3.9

Thus by Theorem 3.3 we have HH®*(W) = Jacy, and paralleling the first part of the

proof we find HH, (W) = Jacy [n] as Z,-graded vector spaces (because the matrix fac-

torisations b(w w) and coevy are Iy O Iw and Iy = [ ;fv =1 VY, [n], respectively). Hence

HH* (W) and HH,(W) precisely recover the Hochschild cohomology and homology
of the 2-periodic differential graded category of matrix factorisations MF(k[x], W) as
computed in [Dy, Cor. 6.5 & Thm. 6.6]:

Corollary 3.5. For every W = (k[x], W) € LG we have
HH*(W) = HH*(MF(k[x], W)), HHo (W)= HH,(MF(k[x], W)). (3.10)

Remark 3.6. Proposition 3.2, Theorem 3.3 and Corollary 3.5 have direct analogues for
the graded Landau-Ginzburg models of Sect. 2.5. Firstly, Theorem 3.1 and Corollary 2.9

immediately imply that every object (k[x, ..., x,], W) € LG& determines an extended
TQFT
Zip ot Bord) | o —> LG (3.11)

Secondly, going through the proof of Theorem 3.3 we see that to the circle Sé and its
pair-of-pants, Zg,, o assigns the Jacobi algebra Jacy which is now a Q-graded algebra
with degree-preserving multiplication. We note that here it is important that the upside-
down saddle evey, : Tev, #ev, — 1_,, involves the left adjoint of ev,: by (2.44) we
have "evy = evy, [0]{0} = evy,, so Zg, gr(pair-of—pants) really gives a map

Jacy @ Jacw = (evy ® evi ) O (evw ® Tevy )

— (evW®TevW) = Jacy . (3.12)
(Incorrectly using the right adjoint evJCV = eV\v/v [2n]{%c(W)} would lead to unwanted

Q-degree shifts in the multiplication. In Remark 3.16 below however we are naturally

led to use the right adjoint ev&, to obtain the correct graded trace map (—)w on Jacy.)

Thirdly, for every (K[x1, ..., x,], W) € LG the matrix factorisation underlying
coevy is Iy = IVTV = I%,[n]{%c(W)} = IVVV[n — 2]{%C(W)}, and hence we have

HH*(W) = Jacy, HHo(W) = Jacy([n — 2]{c(W)}. (3.13)
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3.2. Oriented case. An extended oriented TQFT with values in a symmetric monoidal
bicategory B is a symmetric monoidal 2-functor Z: Bord§' 1,0 — B. Here Bordgr 1

the bicategory of oriented 2-bordisms defined and exphc1tly constructed in [SP, Ch. 3]

see in particular Fig. 3.13 of loc. cit. for a list of the 2-morphism generators (to wit:

the saddle, the upside-down saddle, the cap, the cup, and cusp isomorphisms) and their
relations. Hence objects of Bord§' 1.0 are disjoint unions of positively and negatively
oriented points, which we (also) denote + and —, respectively. It was argued in [Lu]
that such 2-functors Z are classified by the homotopy fixed points of the SO(2)-action
induced on B by the SO(2)-action which rotates the framings in Bordgr1 o- This was
worked out in detail in [HSV,HV, He] as we briefly review next. .

An SO(2)-action on B is a monoidal 2-functor ¢ from the fundamental 2-groupoid
1> (SO(2)) to the bicategory of autoequivalences of B Since SO(2) is path-connected,
[12(SO(2)) has essentially a single object * which o sends to the identity Idr on B,
Since 71 (SO(2)) = Z the action of ¢ on I-morphisms is essentially determined by its
value on the identity 1, corresponding to 1 € Z. It was argued in [Lu, Rem.4.2.5] that
for an oriented TQFT Z as above with Z(+) =: A, the relevant choice for o(1) is the
Serre automorphism S, of A € B'. By definition Sy is the 1-morphism

Sa = T(A,%) ®(1A Dé\{/A)®(b(A,A) O 1A*)®(1A IZICVA)(X)}”A A— A.
(3.14)

Here we denote the braiding, horizontal composition and monoidal product in B by b,
® and 0O, respectively, as we do in £G and LG*.

The bicategory of SO(2)-homotopy fixed points .7 (B4)S9?) was defined and en-
dowed with a natural symmetric monoidal structure in [HV]. Objects of # (B14)30?) are
pairs (A, o04) where A € B and o4 is atrivialisation of the Serre automorphism S4, 1. e.
a 2-isomorphism S, — 14 in B. A 1-morphism (A, 04) — (A’, oar) in J# (B4)SO)
is an equivalence F € de(A, A’) such that Ap o (04 @ 1) 0o SF = pro (1 @ 04)
where S is the 2-isomorphism constructed in the proof of [HV, Prop.2.8], and 2-
morphisms F — F’ in . (B)SO® are 2-isomorphism F — F’ in B. Building on
[Lu,SP,HSV,HV], extended oriented TQFTs with values in B were classified by fully
dualisable objects with trivialisable Serre automorphisms in [He]:

Theorem 3.7. (Cobordism hypothesis for oriented 2-bordisms, [He, Cor. 5.9]). Let B be
a symmetric monoidal bicategory. There is an equivalence

Funsym®(Bordg”1’O, B) =, o (BMYSO)
Zr— Z(+). (3.15)

We return to the symmetric monoidal bicategory £G. To determine extended oriented
TQFTs with values in LG we have to compute Serre automorphisms for all objects:

Lemma 3.8. Let W = (K[x1, ..., x,], W) € LG. Then Sy = Iw[n].

Proof. According to Sects. 2.3-2.4, the factors r(w ). lw, €Vw, bw,w), Lw= and Fy in
the defining expression (3.14) are all given by the matrix factorisation underlying the unit
Iy € EQ(W W), while the matrix factorisation underlying é?/'&, = &y [2n] = évy,
is Iy, v IW [n] = Iw[n]. This leads to Sy = Iw[n]. (A straighforward computation,
ta.kmg into account subtleties of the kind mentioned in Remark 2.1, is carried out in
the proof of [MM, Lem.5.2.3] to construct an explicit isomorphism Sy — Iy only in
terms of A, p and standard swapping isomorphisms.) O
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The general fact Iw 2 Iw[1] (even Homggw, wy(Iw, Iw[1]) = 0 is true) together
with Theorem 3.7 thus imply:

Proposition 3.9. An object W = (K[xy,...,x,], W) € LG determines an extended
oriented TQFT

Zw: Bordd'| o — LG with Zy(+) =W (3.16)
if and only if n is even.

Remark 3.10. Letd € Z. Following [Ke], we say that a k-linear, Hom-finite triangulated
category 7 with shift functor ¥ is weakly d-Calabi-Yau if 7 admits a Serre functor
St such that ¢ = S7. The triangulated category £G(0, W) is known to admit a Serre
functor Sggo,wy = [n] = [n — 2]. Hence LG (0, W) is weakly (n — 2)-Calabi-Yau, the
Serre automorphism and Serre functor coincide in the sense that Sy ® (=) = Sz, w).
and the condition that Sy is trivialisable is equivalent to the condition that the Serre
functor is isomorphic to the identity.

Remark 3.11. (i) Proposition 3.9 can be interpreted as “every Landau-Ginzburg model
with an even number of variables can be extended to the point as an oriented TQFT”.
However, since for odd (and even) n there is an isomorphism of Frobenius algebras

Jacw = K[x1, ... x,1/ (0, W, ... 05, W)

ZR[x1, -y Xy 1/ By (W32, 8, (W 4 37), 3y (W + y2))
=Jacy,2, (3.17)

every non-extended oriented Landau-Ginzburg model appears as part of an extended
oriented TQFT Z}; or Z‘(}’;Hz (depending on whether 7 is even or odd, respectively),

namely as the commutative Frobenius algebra with underlying vector space Z“};(Sl)
or Z $+y2 (S1). Note that for this argument to work we need to ensure that this Frobe-

nius algebra is really isomorphic to the associated Jacobi algebra, as we do with
Theorems 3.3 and 3.12.

(ii) Instead of £G one can also consider the symmetric monoidal bicategory £G*/?
whichis equal to LG except that the vector space of 2-morphisms (X, dx) — (X, dx’)
is defined to be H‘;X v (Homyiy ;1(X, X'))/Z2, i.e. both even and odd cohomology

of the differential 8y x in (2.3) are included while ¢ € Homyiy (X, X') and —¢
are identified after taking cohomology. Dividing out this Z-action circumvents the
issue that without it the interchange law would only hold up to a sign, as we have
(C1®5) o (61 ®&) = (—1)2IE(g 0£1) ® (£ 0 &) for appropriately composable
homogeneous 2-morphisms. Such Z;-quotients also appear in [KR1]; the bicategory
L£G*/? is described in more detail in [MM, Sect.5.3.1] (where it is denoted LG).

In particular, forevery (k[xy, ..., x,], W) € LG*/? there is an even/odd isomorphism
Iw = Iy[n] for n even/odd. Hence by Lemma 3.8 every object of LG */2 determines
an extended oriented TQFT with values in £G*/>.

(iii) A better way to deal with the signs in the interchange law mentioned in part (ii)
above is to incorporate them into a richer conceptual structure. Part of this involves the
natural differential Z,-graded categories (with differential §x x’ as above) studied in
[Dy], whose even cohomologies are the matrix factorisation categories of Sect. 2.1.

3 A Serre functor of T is an additive equivalence S7: 7 — 7 together with isomorphisms
Hom (A, B) = Homy (B, S7(A))* that are natural in A, B € 7.
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Such bicategories of differential graded matrix factorisation categories are studied in
[BFK], and demanding their monoidal product to be made up of differential graded
functors produces Koszul signs in the interchange law.

A wider perspective on Koszul signs and parity issues in Landau-Ginzburg models as
discussed here is that they are thought to be the topological twists of supersymmetric
quantum field theories, see e.g. [HK+,LL,HL]. Formalising this construction in a
functorial field theory setting would involve symmetric monoidal super 2-functors
on super bicategories of super bordisms, which is a theory whose details to our knowl-
edge have not been worked out. Relatedly, we expect the graded pivotal bicategory
LG of [CM] to arise as the bicategory associated to a non-extended oriented defect
TQFT on super bordisms (which again has not been defined in detail as far as we
know), paralleling the non-super construction of [DKR] reviewed in [Ca].

Theorem 3.12. For every (k[xy, ..., x,], W) € LG with n even, we have that
(zc;(sg), 20" (pair-of-pants), 2} (cup)(1), zf;’v(cap)) (3.18)
is isomorphic to (recall (3.5) for the residue trace (—)w)

(vacw. saeu 1. €)w) (3.19)

as a commutative Frobenius k-algebra, where the traces Z{; (cap) and (—)w induce

the Frobenius pairings on Z{,[r, (Sé) and Jacy, respectively, and ¢ € Jacy is a uniquely
determined invertible element.

Proof. The isomorphism on the level of k-algebras was already established in Theo-
rem 3.3, it remains to compute the action of Zg, on the cap and cup 2-morphisms.

The cap is the bordism éVey, from the 2-framed circle ev, # evi to 1. We first assume
that Z}c{, sends it to the 2-morphism &Vey,, from evy ®ev€v = evy ® Tevy to .
Since evy : (k[x], —W) O (k[x], W) — (k, 0) has trivial target, only the summand
I = 0 contributes to the expression for éVey,, in (2.38), and pre-composing with the
isomorphism Jacy = evy ® " evy from the proof of Theorem 3.3 produces the residue
trace (—)w.

Similarly, the cup: ¢ — S& = ev,#"ev, is equal to coevey, . Using the explicit
expression for coevey,, in (2.38) we see that post-composing Z‘f,{, (cup)(1) with the
isomorphism evy ® Tevy = Jacy is indeed the unit 1 € Jacy.

To complete the proof we must investigate to what extent our choice of adjunction
data in £G gives rise to a “coherent fully dual pair” (where again we rely on the result
of [Ps] that extended framed TQFTSs are equivalent to coherent fully dual pairs): if the
coherent dual pair (W, —W, evy, coevy, ¢r, c]) can be lifted to a coherent fully dual
pair then Zg, can be chosen such that Zg, (€Vey,) = €Vey,, . First we observe that by
Lemma 3.8 there is a “fully dual pair”

(W, —W, evwy, coevwy, Iw, Iw, ¢, €1, e, €e» ey €cs W, ¢) (3.20)

in the sense of [Ps, Def.3.10], where ¢ := Ay, =: ¥ and p., €, [, €. are equal
tO COEVeyy, s €Veyyy s COEVcoevy » EVcoevyy UP tO appropriate composition with the isomor-
phisms A1, pT!. As explained in the proof of [Ps, Thm. 3.16], every fully dual pair can
be made coherent by changing only the counit 2-morphisms by composition with an au-
tomorphism ¢ of Iy (and possibly the cusp isomorphism ¢} which however in our case is
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not necessary as observed in the proof of Theorem 3.3). Given a fully dual pair, the map ¢
is uniquely determined by the cusp-counit equation of [Ps, Def.3.12], which involves
two adjunction maps on one side and none on the other. In our case one finds that the
constraint reduces to the equality of two linear maps Jacy ®x Jacy — k, one of which
involves the residue trace (—)w pre-composed with ¢ € Aut(I/y) C End(Iy) = Jacy,
while the other is a composite of structure maps of the symmetric monoidal bicategory
LG (without any adjunction maps). |

Paralleling the above proof we see that for even 7, the extended oriented TQFT Z};
also assigns the Frobenius algebra Jacy to the oriented circle, pair-of-pants, cup and
cap (up to an invertible element ¢ € Jacy).

Example 3.13. For every N € Z>, the potential xN*! determines an extended ori-
ented TQFT with values in the symmetric monoidal bicategory £G*/? introduced in
Remark 3.11(ii). We denote this TQFT by Zkg as it recovers — directly from the cobor-
dism hypothesis — the explicit construction that Khovanov and Rozansky gave in [KR1,
Sect.9]. In loc. cit. the authors determine their TQFT by describing what it assigns to
the point +, the circle, the cap, the cup and the saddle bordisms in Bord‘z’fl’o. Except for
the saddle we have already computed all these assignments of Zkr for any potential W
in Theorems 3.3 and 3.12, and for W = x™*! they match the prescriptions of [KR1]
(except for non-essential prefactors for the cap and cup morphisms).

To establish that the TQFT Zkgr indeed matches that of [KR1, Sect.9] it remains
to compute Zgg(saddle) = Zggr(Coevey,) and compare it to the explicit matrix ex-
pressions in [KR1, Page 81] (or Page 95 of arXiv:math/0401268v2 [math.QA]). Since
ZKR(&)\éVEV+) = &)\éVeVX v. this is another exercise in using the formulas (2.38) for
adjunction 2-morphisms. This is carried out in [MM, Sect.5.3.2], finding

€124 1 0 0
—exq 1l 0 0
0 0 -1 1
0 0 —exs —er24

Zkr(saddle) = (3.21)

where the entries e;jx = Y, piemn_1 xl.“x?x,g € k[x1, x2, x3, x4] depend on four vari-

ables as the source and target of COeVey ,,, involve four copies of x¥*! € £G*/2. Up to
X

a minor normalisation issue ¢ the expression (3.21) agrees with that of [KR1].

In summary, we verified that the construction of [KR1, Sect. 9] can be understood as
an application of the cobordism hypothesis to the potential W = xV*1.

We return to the bicategory LG of Sect. 2.5. All the above results in the present
section have analogues or refinements in £G#'. In particular:

Proposition 3.14. An object W = (K[x1, ..., x,], W) € LGE determines an extended
oriented TQFT

W ot Bordd o —> LG with Z (+) =W (3.22)

if and only if [n — 2){3c(W)} = Id ge 0. w.

4 More precisely, (3.21) agrees with the saddle morphism of [KR1] if the arbitrary polynomial r of degree
N —2in loc. cit. is set to Y, pycrd—N—2 x?xgxgxff, and if non-scalar entries of the matrix are multiplied

by % The latter seems to be a typo in [KR1] as without these factors the expression would not be closed with

respect to the differential § B .
Iy DI_W’erN+l ®6VXN+I
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Proof. By Theorem 3.7, W determines a TQFT as stated if and only if its Serre automor-
phism Sy is trivialisable. Paralleling the proof of Lemma 3.8 we see that, using (2.44),

the matrix factorisation underlying Sw is é?/;, = &/{V[Zn]{%c(W)}. Hence Sw is iso-
morphic to Iy [2nl{2c(W)} = I}, [n]{tc(W)} = Iw[n — 21{1c(W)}. O

Let £G&/% be the symmetric monoidal 2-category obtained from £G¢" by replacing
the hom categories LG& (W, V) with the orbit categories LG (W, V) /Z obtained by
dividing out the action of the shift functor ¥ = [1]{1}, i.e.

Hom ez (X, ¥) = @5 Hom gger (X, £*(Y)) (3.23)
keZ

for 1-morphism X, Y € Ob(LGZ/Z(W, V)) = Ob(LGE (W, V). It follows that in
L£G8/7 we have X = TK(X) for all I-morphisms X and k € Z (with 1x viewed as a
2-isomorphism of degree k).

In the setting of orbit categories, Calabi-Yau varieties give rise to oriented extended
TQFTs:

Corollary 3.15. Iffor (k[x1, ..., x,1, W) € LG* the hypersurface {W = 0}inweighted
projective space is a Calabi-Yau variety, then W determines an extended oriented TQFT
Bordg’rlﬁ0 — L£ge/?,

Proof. We write Yy for the zero locus of W in weighted projective space. The variety Yy
is Calabi-Yau if and only if the condition c¢1(Yw) = 0 is satisfied by the first Chern
class, which in our normalisation convention is equivalent to > i, |x;| = |[W| = 2.

This implies %C(W) =Y " (1 —|xi]) = n — 2, and hence according to the proof of
Proposition 3.14 we have that

Sw ® (=) = [n —2){n — 2} (3.24)

is the (n — 2)-fold product of the shift functor ¥ = [1]{1} of LG# (0, W) with itself.
Hence Sy = Iy in £LG&/%, O

Remark 3.16. There is also an analogue of Theorem 3.12 for Z‘f{,, o’ We already saw in
Remark 3.6 that Z{{,’ or sends the circle and pair-of-pants to Jacy as a graded algebra.
As in the proof of Theorem 3.12 we find that Z‘f{,ﬁ gr(cup)(l) gives the unit 1 € (Jacw)o
of degree 0 (because coevey,, is of Q-degree 0).

Finally, Zar,y gr(cap) is a map (up to an invertible element, i.e. a constant { € k*)
from evy ® ev;, =evy ® evé,[Zn]{%c(W)} = Jacw{%c(W)} to k. This expresses the
known fact that the residue trace map (—)y is nonzero only on elements of degree %c (W).
For example for W = x¥*! we have %C(W) =2(1 — w27 and (x/) na = 8 N-1,
while [xV ! = (N = Dy =2 — o
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