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Abstract: We classify framed and oriented 2-1-0-extended TQFTs with values in the
bicategories of Landau-Ginzburg models, whose objects and 1-morphisms are isolated
singularities and (either Z2- or (Z2 × Q)-graded) matrix factorisations, respectively.
For this we present the relevant symmetric monoidal structures and find that every
object W ∈ k[x1, . . . , xn] determines a framed extended TQFT. We then compute the
Serre automorphisms SW to show that W determines an oriented extended TQFT if
the associated category of matrix factorisations is (n − 2)-Calabi-Yau. The extended
TQFTs we construct from W assign the non-separable Jacobi algebra of W to a circle.
This illustrates how non-separable algebras can appear in 2-1-0-extended TQFTs, and
more generally that the question of extendability depends on the choice of target category.
As another application, we show how the construction of the extended TQFT based on
W = xN+1 given byKhovanov andRozansky can be derived directly from the cobordism
hypothesis.
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1. Introduction

Fully extended topological quantum field theory is simultaneously an attempt to capture
the quantumfield theoretic notion of locality in a simplified rigorous setting, and a source
of functorial topological invariants. In dimension n, such TQFTs have been formalised
as symmetric monoidal (∞, n)-functors from certain categories of bordisms with extra
geometric structure to some symmetric monoidal (∞, n)-category C.

The fact that such functors must respect structure and relations among bordisms of
all dimensions from 0 to n is highly restrictive. Specifically, the cobordism hypothesis of
[BD] as formalised in [Lu,AF] states that (in the case of bordismswith framings) a TQFT
is already determined by what it assigns to the point, and that fully extended TQFTs
with values in C are equivalent to fully dualisable objects in C. This is a strong finiteness
condition. Similar relations hold for bordisms with other types of tangential structures;
for example, fully extended TQFTs on oriented bordisms are argued to be described by
homotopy fixed points of an induced SO(n)-action on fully dualisable objects in C.

In the present paperwe are concernedwith fully extendedTQFTs in dimension n = 2.
Following [SP,Ps] we take an extended framed (or oriented) 2-dimensional TQFT with
values in a symmetric monoidal bicategory B (where B is called the target) to be a
symmetric monoidal 2-functor

Z : Bordσ
2,1,0 −→ B (1.1)

where σ = fr (or σ = or), without any mention of ∞-categories. The bicategories
Bordσ

2,1,0 of points, 1-manifolds with boundary and 2-manifolds with corners (all with
structure σ ) are constructed in detail in [SP,Ps]. Moreover, these authors prove versions
of the cobordism hypothesis (as we briefly review in Sect. 3), and the relevant SO(2)-
homotopy fixed points were described in [HSV,HV,He].

The example for the target B that is dominant in the literature is the bicategory
Algk (or one of its variants, cf. [BD+, App.A]) of finite-dimensional k-algebras, finite-
dimensional bimodules and bimodule maps, where k is some field. Using the cobordism
hypothesis one finds that extended framed TQFTs with values in Algk are classified by
finite-dimensional separable k-algebras [Lu,SP], while in the oriented case the classifi-
cation is in terms of separable symmetric Frobenius k-algebras [HSV].

On theother hand, non-separable algebras arise prominently in (non-extended)TQFTs.
Recall e. g. from [Ko] that such TQFTs Zne : Bordor2,1 → V are equivalent to commu-
tative Frobenius algebras in V , where V is a symmetric monoidal 1-category. Important
examples are the categories of vector spaces, possibly with a Z2- or Z-grading. In
V = VectZ2

k
or V = VectZ

k
, Dolbeault cohomologies of Calabi-Yau manifolds serve

as examples of non-separable commutative Frobenius algebras (describing B-twisted
sigma models). Another class of examples of generically non-separable Frobenius al-
gebras (in Vectk) are the Jacobi algebras k[x1, . . . , xn]/(∂x1W, . . . , ∂xnW ) of isolated
singularities described by polynomialsW . The associated TQFTs are Landau-Ginzburg
models with potential W .

Hence we are confronted with the following question: How do sigma models and
Landau-Ginzburgmodels (and other non-extendedTQFTswith non-separable Frobenius
algebras) relate to fully extended TQFTs?

A non-extended 2-dimensional TQFT Zne : Bordσ
2,1 → V can be extended to the

point if there is a symmetricmonoidal bicategoryB and an extendedTQFTZ : Bordσ
2,1,0
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→ B such that (with IB ∈ B the unit object, and ∅ = IBordσ
2,1,0

)

V ∼= EndB(IB) and Zne ∼= Z
∣
∣
∣
EndBordσ2,1,0

(∅)
. (1.2)

Clearly an extension, if it exists, is not unique, as it depends on the target B.
We expect that the extendability of the known classes of non-separable TQFTs is

captured by the following motto:

If a non-extended 2-dimensional TQFT Zne is a restriction of an appropriate
defect TQFT Zdef

ne , then Zne can be extended to the point (at least as a framed
theory), with the bicategory BZdef

ne
associated to Zdef

ne as target.

Let us unpack this statement and give concrete meaning to it. A 2-dimensional defect
TQFT is a symmetric monoidal functor Zdef

ne on a category of stratified and decorated
oriented 2-bordisms, see [DKR,CRS] or the review [Ca].RestrictingZdef

ne to only trivially
stratified bordisms (meaning that there are no 1- or 0-strata) which all carry the same
decoration, one obtains a non-extended closed TQFT. As shown in [DKR,Ca] one can
construct a pivotal 2-category BZdef

ne
from any defect TQFT Zdef

ne (along the same lines
as one constructs commutative Frobenius algebras from closed TQFTs). In the case of
state sum models the 2-category is equivalent to the full subbicategory ssFrobk ⊂ Algk
of separable symmetric Frobenius algebras [DKR], and indeed EndssFrobk(k) ∼= Vectk
where k is the unit object. For A- and B-twisted sigmal models, the bicategories are
expected to be that of symplectic manifolds and Lagrangian correspondences [WW] and
of Calabi-Yau varieties and Fourier-Mukai kernels [CW], respectively; in both cases the
point serves as the unit object and its endomorphism category is equivalent to VectZC.
And in the case of Landau-Ginzburg models it should be the bicategory LG (or its Q-
graded version LGgr) of isolated singularties and matrix factorisations [CM]. These are
the “appropriate” bicategories we have in mind – if they admit a symmetric monoidal
structure (as expected).

We stress that defect TQFT here only serves as a motivation to consider the bicat-
egories above, and we will not mention defects again. A key point is that by choosing
bicategories other than Algk as targets for extended TQFTs Z , one can associate non-
separable k-algebras to Z , namely what Z assigns to the circle and the pair-of-pants.

In the present paper we make the above precise for Landau-Ginzburg models. In
Sect. 2 we review the bicategories LG and LGgr, and we present symmetric monoidal
structures for them which on objects reduce to the sum of polynomials; the unit object
is the zero polynomial, and its endomorphism categories are equivalent to VectZ2

k
and

VectZ
k
, respectively. Moreover, we prove that every object in both LG and LGgr is fully

dualisable (Corollaries 2.7 and 2.9). Careful and lengthy checks that the data we supply
satisfy the coherence axioms of symmetric monoidal bicategories are performed in the
PhD thesis [MM] for the case LG, and we explain how they carry over to LGgr.

It follows immediately from the cobordismhypothesis that every object inLG orLGgr

determines an extended framed TQFT (with values in LG or LGgr), while generically
Landau-Ginzburg models cannot be extended to the point with target Algk. Hence our
results may be the first explicit demonstration of the general principle that the question
of whether or not a given non-extended TQFT can be extended depends on the choice
of the target for the extended theory.

To settle the question of extendability also in the oriented case, we use the results of
[HSV,HV,He]: a fully dualisable object W determines an extended oriented TQFT if
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and only if the Serre automorphism SW : W → W (see (3.14)) is isomorphic to the unit
1-morphism IW .

In Sect. 3.2, we show that for a potential W ∈ k[x1, . . . , xn] viewed as an object in
LG we have SW ∼= IW [n] where [n] is the n-fold shift functor which satisfies [2] = [0],
cf. Sect. 2.1. Since IW � IW [1] this implies that W determines an extended oriented
TQFT (cf. Proposition 3.9)

Zor
W : Bordor2,1,0 −→ LG (1.3)

if and only if n is even, and we discuss the relation to Serre functors and Calabi-Yau
categories in Remark 3.10.

For a quasi-homogeneous potential W ∈ k[x1, . . . , xn] viewed as an object in LGgr

we find that SW ∼= IW [n−2]{ 13c(W )}, where c(W ) is the central charge ofW (see (2.40))
and {−}denotes the shift inQ-degree.Hence every potentialW that satisfies the condition
IW ∼= IW [n−2]{ 13c(W )} determines an extended oriented TQFT (cf. Proposition 3.14)

Zor
W,gr : Bordor2,1,0 −→ LGgr . (1.4)

If the hypersurface {W = 0} in weighted projective space is a Calabi-Yau variety (equiv-
alently: if 1

3c(W ) = n − 2) then the trivialisability of SW reduces to the (n − 2)-Calabi-
Yau condition �n−2 ∼= Id on the shift functor � = [1]{1} of the triangulated category
LGgr(0,W ), as we show in Corollary 3.15. This is in line with the general discussion in
[Lu, Sect. 4.2].

Finally, we illustrate the combined power of the cobordismhypothesis and the explicit
control over the bicategories LG and LGgr by computing the actions of our extended
TQFTs on various 2-bordisms: the saddle, the cap, the cup, and the pair-of-pants. This
is done in terms of the explicit adjunction maps of [CM], for which we discuss two
applications:

• Weexplain (in Theorems 3.3 and 3.12, Remarks 3.6 and 3.16) how the non-separable
Jacobi algebra and its residue pairing are recovered from the above extended TQFTs
associated to a potential W .

• The “TQFTs with corners” constructed by Khovanov and Rozansky in [KR1] can
be derived (as we do in Example 3.13) directly from the cobordism hypothesis as
extended TQFTs that assign the potentials W = xN+1 to the point, for all N ∈ Z�2.

2. Bicategories of Landau-Ginzburg Models

In this sectionwe collect the data that endows the bicategory of Landau-Ginzburgmodels
LG with a symmetric monoidal structure in which every object has a dual and every 1-
morphism has left and right adjoints. This is done in Sects. 2.1–2.4. In Sect. 2.5 we
explain how the analogous results hold for the bicategory of graded Landau-Ginzburg
models LGgr.

Our main reference for bicategories, pseudonatural transformations, modifications
etc. is [Be] (see [Le] for a quick reminder). Symmetric monoidal bicategories are re-
viewed in [Gu,SP] and [Sc, App.A.4]; duals for objects and adjoints for 1-morphisms
are e. g. reviewed in [Ps,SP].

2.1. DefinitionofLG. Recall from [CM,Sect. 2.2] that for afixedfieldkof characteristic
zero,1 the bicategory of Landau-Ginzburg models LG is defined as follows. An object is

1 In fact we can allow any commutative unital ring k if we generalise the definition of potentials as in [CM,
Def. 2.4].
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either the pair (k, 0) or a pair (k[x1, . . . , xn],W )where n ∈ Z�0 andW ∈ k[x1, . . . , xn]
is a potential, i. e. the Jacobi algebra

JacW = k[x1, . . . , xn]/(∂x1W, . . . , ∂xnW ) (2.1)

is finite-dimensional over k. We often abbreviate lists of variables (x1, . . . , xn) by x ,
and we often shorten (k[x],W ) to W .

For two objects (k[x],W ) and (k[z], V ) we have

LG
(

(k[x],W ), (k[z], V )
) = hmf

(

k[x, z], V − W
)⊕ (2.2)

for the Hom category. The right-hand side of (2.2) is the idempotent completion of
the homotopy category of finite-rank matrix factorisations of the potential V − W over
k[x, z]. We denote matrix factorisations of V −W by (X, dX ) (or simply by X for short),
where X = X0 ⊕ X1 is a free Z2-graded k[x, z]-module and dX ∈ End1

k[x,z](X) such

that d2X = W · idX . The twisted differentials dX , dX ′ induce differentials

δX,X ′ : ζ 
−→ dX ′ ◦ ζ − (−1)|ζ |ζ ◦ dX (2.3)

on the modules Homk[x,z](X, X ′), and 2-morphisms inLG are even cohomology classes
with respect to these differentials. Finally, the idempotent completion (−)⊕ in (2.2) is
obtained by considering only matrix factorisations which are direct summands (in the
homotopy category of all matrix factorisations) of finite-rank matrix factorisations. For
more details, see [CM, Sect. 2.2].

In passing we note that the category LG(W, V ) has a triangulated structure with the
shift functor [1] : LG(W, V ) → LG(W, V ) acting on objects as

[1] : (

X0 ⊕ X1, dX
) 
−→ (

X1 ⊕ X0,−dX
)

(2.4)

see e. g. [KST, Sect. 2.1]. It follows that

[2] := [1] ◦ [1] = IdLG(W,V ) . (2.5)

Horizontal composition in LG is given by functors

⊗: LG
(

(k[y],W2), (k[z],W3)
)

×LG
(

(k[x],W1), (k[y],W2)
)

−→ LG
(

(k[x],W1), (k[z],W3)
)

(2.6)

which act on 1-morphisms as

(Y, X) 
−→ Y ⊗ X ≡
((

(Y 0 ⊗k[y] X0) ⊕ (Y 1 ⊗k[y] X1)
)

⊕(

(Y 0 ⊗k[y] X1) ⊕ (Y 1 ⊗k[y] X0)
))

(2.7)

with dY⊗X = dY ⊗ 1 + 1⊗ dX , and analogously on 2-morphisms. It follows from [DM,
Sect. 12] that the right-hand side of (2.7) is indeed a direct summand of a finite-rank
matrix factorisation in the homotopy category over k[x, z], hence ⊗ is well-defined.
Moreover, the associator in LG is induced from the standard associator for modules,
and we will suppress it notationally.
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Remark 2.1. One technical issue in rigorously exhibiting LG as a symmetric monoidal
bicategory (as summarised in Sects. 2.2–2.3) is to establish an effective bookkeeping
device that keeps track of how to transform and interpret various mathematical entities.
Exercising such care already for the functor ⊗ in (2.7) we can write it as (ιx,z)∗ ◦
⊗k[x,y,z] ◦ ((ιy,z)

∗ × (ιx,y)
∗), where ιx,z : k[x, z] ↪→ k[x, y, z] etc. are the canonical

inclusions, while (−)∗ and (−)∗ denote restriction and extension of scalars, respectively;
[MM, Sect. 2.3–2.4] has more details.

For an object (k[x1, . . . , xn],W ) ∈ LG, its unit 1-morphism is (IW , dIW ) with

IW =
∧( n

⊕

i=1

k[x, x ′] · θi
)

(2.8)

where x ′ ≡ (x ′
1, . . . , x

′
n) is another list of n variables, {θi } is a chosen k[x, x ′]-basis of

k[x, x ′]⊕n , and

dIW =
n

∑

i=1

(

∂
x ′,x
[i] W · θi ∧ (−) + (x ′

i − xi ) · θ∗
i

)

(2.9)

where

∂
x ′,x
[i] W = W (x1, . . . , xi−1, x ′

i , . . . x
′
n) − W (x1, . . . , xi , x ′

i+1, . . . x
′
n)

x ′
i − xi

(2.10)

and θ∗
i is defined by linear extension of θ∗

i (θ j ) = δi, j and to obey the Leibniz rule with
Koszul signs, cf. [CM, Sect. 2.2]. In the following we will suppress the symbol ∧ when
writing elements in or operators on IW .

Finally, the left and right unitors

λX : IV ⊗ X −→ X , ρX : X ⊗ IW −→ X (2.11)

for X ∈ LG(W, V ) are defined as projection to θ -degree zero on the units IV and IW ,
respectively; their explicit inverses (in the homotopy category LG(W, V )) were worked
out in [CM] to act as follows:

λ−1
X (ei ) =

∑

l�0

∑

a1<···<al

∑

j

θa1 . . . θal

{

∂
z′,z
[al ] dX . . . ∂

z′,z
[a1]dX

}

j i
⊗ e j ,

ρ−1
X (ei ) =

∑

l�0

∑

a1<···<al

∑

j

(−1)(
l
2)+l|ei |e j ⊗

{

∂
x ′,x
[a1] dX . . . ∂

x ′,x
[al ] dX

}

j i
θa1 . . . θal (2.12)

where {ei } is a basis of the module X , and dX is identified with the matrix representing
it with respect to {ei }.

In summary, the above structuremakesLG into a bicategory, cf. [CM, Prop. 2.7]. Note
that inLG it is straightforward to determine isomorphisms of commutative algebras (see
e. g. [KR1])

End(IW ) ∼= JacW . (2.13)
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2.2. Monoidal structure for LG. Endowing LG with a monoidal structure involves
specifying the following data:

(M1) monoidal product � : LG × LG → LG,
(M2) monoidal unit I ∈ LG, specified by a strict 2-functor I : 1 → LG,
(M3) associator a : � ◦(� × IdLG) → � ◦ (IdLG × �), which is part of an adjoint

equivalence,
(M4) pentagonator π : (IdLG � a) ◦ a ◦ (a � IdLG) → a ◦ a (using shorthand notation

explained below),
(M5) left and right unitors l : � ◦(I × IdLG) → IdLG , r : � ◦(IdLG × I ) → IdLG ,
(M6) 2-unitors λ′ : 1 ◦ (l × 1) → (l ∗ 1) ◦ (a ∗ 1), ρ′ : r ◦ 1 → (1 ∗ (1 × r)) ◦ (a ∗ 1),

and μ′ : 1 ◦ (r × 1) → (1 ∗ (1 × l)) ◦ (a ∗ 1) (using shorthand notation),

subject to the coherence axioms spelled out e. g. in [SP, Sect. 2.3]. In this section we
provide the above data for LG, which come as no surprise to the expert. The coherence
axioms are carefully checked in [MM, Ch.3].

(M1) We start with the monoidal product. It is a 2-functor

� : LG × LG −→ LG (2.14)

which is basically given by tensoring over k and taking sums of potentials. More
precisely, according to [MM, Prop. 3.1.12], � acts as

(W, V ) ≡ (

(k[x],W ), (k[z], V )
) 
−→ (

k[x, z],W + V )
) ≡ W + V (2.15)

on objects, while the functors on Hom catgories

�(V1,V2),(W1,W2) : (

LG × LG
)(

(V1, V2), (W1,W2)
)

−→ LG
(

V1 + V2,W1 +W2
)

(2.16)

are given by ⊗k (up to a reordering of variables similar to the situation in Re-
mark 2.1, see [MM,Def. 3.1.3]). Compatibilitywith horizontal composition iswit-
nessed by the natural isomorphisms�(U1,U2),(V1,V2),(W1,W2) : ⊗◦(�×�) → �◦⊗
whose ((Y1,Y2), (X1, X2))-components are given by linearly extending

(

(Y1 � Y2) ⊗ (X1 � X2)
) −→ (Y1 ⊗ X1) � (Y2 ⊗ X2) ,

( f1 ⊗k f2) ⊗ (e1 ⊗k e2) 
−→ (−1)| f2|·|e1| · ( f1 ⊗ e1) ⊗k ( f2 ⊗ e2) (2.17)

forZ2-homogeneous module elements e1, e2, f1, f2, and isomorphisms on units

�(W1,W2) : IW1+W2 −→ IW1 � IW2 (2.18)

are also standard, cf. [MM, Lem.3.1.4].
(M2) The unit object in LG is

I := (k, 0) . (2.19)

Let1be the 2-categorywith a single object∗ andonly identity 1- and2-morphisms.
We define a strict 2-functor I : 1 → LG by setting I (∗) = I.
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(M3) The associator is a pseudonatural transformation

a : � ◦ (� × IdLG) −→ � ◦ (IdLG × �) ◦ A . (2.20)

Here A is the rebracketing 2-functor (LG × LG) × LG → LG × (LG × LG),
which we usually treat as an identity. The 1-morphism components a((U,V ),W ) and
2-morphism components a((X,Y ),Z) of the associator are given by

a((U,V ),W ) = IU+V+W , a((X,Y ),Z) = λ−1
(X�Y )�Z ◦ AX,Y,Z ◦ ρX�(Y�Z) ,(2.21)

where AX,Y,Z : X � (Y � Z) → (X � Y ) � Z is the rebracketing isomorphism
for LG, while λ and ρ are the 2-isomorphisms (2.11).
The associator a and the pseudonatural transformation

a− : � ◦ (IdLG × �) ◦ A −→ � ◦ (� × IdLG) (2.22)

with components a−
((U,V ),W ) = IU+V+W , a−

((X,Y ),Z) = λ−1
X�(Y�Z) ◦ A−1

X,Y,Z ◦
ρ(X�Y )�Z are part of a biadjoint equivalence, see [MM, Lem.3.2.5–3.2.6].

(M4) The pentagonator is an invertible modification

π : (

1� ∗ (1IdLG × a)
) ◦ (

a ∗ 1IdLG×�×IdLG
) ◦ (

1� ∗ (a × 1IdLG )
)

−→ (

a ∗ 1IdLG×IdLG×�

) ◦ (

a ∗ 1�×IdLG×IdLG
)

(2.23)

where here and below we write vertical and horizontal composition of pseudo-
natural transformations as ◦ and ∗, respectively. We also typically use shorthand
notation for the sources and targets of modifications obtained by whiskering; for
example, the pentagonator is then written

π : (IdLG � a) ◦ a ◦ (a � IdLG) −→ a ◦ a . (2.24)

Its components are

π(((T,U ),V ),W ) = λIT+U+V+W⊗IT+U+V+W ◦ (

�(T,U+V+W ) ⊗1IT+U+V+W ⊗ �(T+U+V,W )

)

.

(2.25)

(M5) The left and right (1-morphism) unitors are pseudonatural transformations

l : � ◦ (I × IdLG) −→ IdLG , r : � ◦ (IdLG × I ) −→ IdLG (2.26)

whose components are given by

l(∗,W ) = IW = r(W,∗) , l(1∗,X) = λ−1
X ◦ ρX = r(X,1∗) , (2.27)

where we identify 1 × LG ≡ LG ≡ LG × 1 and I0 � X ≡ X ≡ X � I0
(see [MM, Lem.3.1.8&3.2.11&3.2.15] for details). The unitors l, r are part of
biadjoint equivalences (l, l−), (r, r−) as explained in [MM, Lem.3.2.13–3.2.15].

(M6) The 2-unitors are invertible modifications λ′ : 1 ◦ (l × 1) → (l ∗ 1) ◦ (a ∗ 1),
ρ′ : r ◦1 → (1∗(1×r))◦(a∗1), andμ′ : 1◦(r×1) → (1∗(1×l))◦(a∗1), written
here in the shorthand notation also employed in (M4) above, whose components
are

λ′
((∗,V ),W ) = λ−1

IV+W
◦ �

−1
(V,W ) , ρ′

((V,W ),∗) = (�(V,W ) ⊗ 1IV+W ) ◦ λ−1
IV+W

,

μ′
((V,∗),W ) = ρ−1

IV�IW
. (2.28)

Proposition 2.2. The data (M1)–(M6) endow LG with a monoidal structure.

Proof. The straightforward but lengthy check of all coherence axioms is performed to
prove Theorem 3.2.18 in [MM, Sect. 3.1–3.2]. ��
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2.3. Symmetricmonoidal structure forLG. Endowing themonoidal bicategoryLG with
a symmetric braided structure amounts to specifying the following data:

(S1) braiding b : � → �◦τ as part of and adjoint equivalence (b, b−), where τ : LG×
LG → LG × LG is the strict 2-functor which acts as (ζ, ξ) 
→ (ξ, ζ ) on objects,
1- and 2-morphisms,

(S2) syllepsis σ : 1� → b− ◦ b,
(S3) R : a ◦ b ◦ a → (IdLG � b) ◦ a ◦ (b� IdLG) and S : a− ◦ b ◦ a− → (b� IdLG) ◦

a− ◦ (IdLG � b),

subject to the coherence axioms spelled out e. g. in [SP, Sect. 2.3]. In this section we
provide the above data which are discussed in detail in [MM, Sect. 3.3].

(S1) The braiding is a pseudonatural transformation

b : � −→ � ◦ τ (2.29)

whose 1-morphism components b(V,W ) are given by IV+W (up to a reordering of
variables, see [MM, Not. 3.1.2&Lem.3.3.5]), while the 2-morphism components

b(X,Y ) : (Y � X) ⊗ b(V1,V2) −→ b(W1,W2) ⊗ (X � Y ) (2.30)

are defined in [MM] as natural compositions of canonical module isomorphisms
and structure maps of the bicategory LG. Explicitly, if {ea} and { fb} are bases of
the underlying modules of X and Y , respectively, we have

b(X,Y ) : ( fb ⊗ ea) ⊗ θ
j1
i1

. . . θ
jm
im


−→ (−1)|ea |·| fb |δ j1,0 . . . δ jm ,0 · λ−1
X�Y (ea ⊗ fb) . (2.31)

The braiding b and the pseudonatural transformation

b− : � ◦ τ −→ � (2.32)

with components b−
(V,W ) = b(W,V ) and b−

(X,Y ) = b(Y,X) are part of a biadjoint equiva-
lence, see [MM, Sect. 3.3.2].

Example 2.3. For a potential W = xN+1, N ∈ Z�2, the matrix factorisation b(W,W )

is precisely what is assigned to a “virtual crossing” in the construction of homological
slN -tangle invariants of Khovanov and Rozansky [KR1] (see the second expression in
[KR2, Eq. (A.9)]).

(S2) The syllepsis is an invertible modification

σ : 1� −→ b− ◦ b (2.33)

whose components σ(V,W ) : IV+W → b−
(V,W ) ⊗ b(V,W ) are given by λ−1

IV+W
(up

to a reordering of variables and a sign-less swapping of tensor factors, see [MM,
Lem.3.3.8]).

(S3) The invertible modifications

R : a ◦ b ◦ a −→ (IdLG � b) ◦ a ◦ (b � IdLG) ,

S : a− ◦ b ◦ a− −→ (b � IdLG) ◦ a− ◦ (IdLG � b) (2.34)

have components R((U,V ),W ) and S((U,V ),W ) which act on basis elements, i. e. on
tensor and wedge products of θ -variables, by a reordering with appropriate signs,
see [MM, Lem.3.3.11] for the lengthy explicit expressions.
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Theorem 2.4. The data (M1)–(M6) and (S1)–(S3) endowLG with a symmetricmonoidal
structure.

Proof. It is shown in [MM, Sect. 3.1&3.3] that the data (S1)–(S3) are well-defined and
satisfy the coherence axioms for symmetric braidings. ��

We note that instead of directly constructing the data (M1)–(M6) and (S1)–(S3) and
verifying their coherence axioms, one could also employ Shulman’s method of con-
structing symmetric monoidal bicategories from symmetric monoidal double categories
[Sh]. A double category of Landau-Ginzburg models was first studied in [MN].

2.4. Duality in LG.

2.4.1. Adjoints for 1-morphisms EndowingLGwith left and right adjoints for 1-morphisms
amounts to specifying the following data:

(A1) 1-morphisms †X, X† ∈ LG(V,W ) for every X ∈ LG(W, V ),
(A2) 2-morphisms evX : †X ⊗ X → IW , coevX : IV → X ⊗ †X , ẽvX : X ⊗ X† → IV

and c̃oevX : IW → X† ⊗ X for every X ∈ LG(W, V ),

subject to coherence axioms. In this section we recall the above data as constructed in
[CM] (this reference also spells out the coherence axioms).

(A1) Setting X∨ = Homk[x,z](X, k[x, z]) and defining the associated twisted differen-
tial by dX∨(φ) = (−1)|φ|+1φ ◦ dX for homogeneous φ ∈ X∨, the left and right
adjoints of

X ∈ LG
(

(k[x1, . . . , xn],W ), (k[z1, . . . , zm], V )
)

(2.35)

are given by

†X = X∨[m] and X† = X∨[n] , (2.36)

respectively, where [m] is them-th power of the shift functor [1] in (2.4) with itself.
Hence if in a chosen basis dX is represented by the block matrix ( 0 D1

D0 0 ), then in

the dual basis d†X is represented by (
0 DT

0
−DT

1 0
) if m is even, and by (

0 DT
1

−DT
0 0

) if m

is odd, and similarly for dX† . It follows that †X ∼= X† if m = nmod 2.
(A2) To present the adjunction 2-morphisms

evX : †X ⊗ X −→ IW , coevX : IV −→ X ⊗ †X ,

ẽvX : X ⊗ X† −→ IV , c̃oevX : IW −→ X† ⊗ X , (2.37)

recall from [Li] the basic properties of residues (collected for our purposes in [CM,
Sect. 2.4]), let {ei } be a basis of X , and define �(x) = (−1)n∂x1dX . . . ∂xn dX ,
�(z) = ∂z1dX . . . ∂zm dX . In [CM] the theory of homological perturbation and
associative Atiyah classes were used to obtain the following explicit expressions:
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evX (e∗
i ⊗ e j ) =

∑

l�0

∑

a1<···<al

(−1)(
l
2)+l|e j | θa1 . . . θal

· Res
⎡

⎣

{

�(z) ∂
x,x ′
[a1] dX . . . ∂

x,x ′
[al ] dX

}

i j d z

∂z1V, . . . , ∂zm V

⎤

⎦ ,

ẽvX (e j ⊗ e∗
i ) =

∑

l�0

∑

a1<···<al

(−1)l+(n+1)|e j | θa1 . . . θal

· Res
⎡

⎣

{

∂
z,z′
[al ] dX . . . ∂

z,z′
[a1]dX �(x)

}

i j d x

∂x1W, . . . , ∂xnW

⎤

⎦ ,

coevX (γ ) =
∑

i, j

(−1)(
r+1
2 )+mr+sm

{

∂
z,z′
[b1]dX . . . ∂

z,z′
[br ]dX

}

i j
ei ⊗ e∗

j ,

c̃oevX (γ̄ ) =
∑

i, j

(−1)(r̄+1)|e j |+sn
{

∂
x,x ′
[b̄r̄ ] (dX ) . . . ∂

x,x ′
[b̄1] (dX )

}

j i
e∗
i ⊗ e j (2.38)

wherebi , b̄j̄ and sm, sn ∈ Z2 are uniquely determinedby requiring thatb1 < · · · <

br , b̄1 < · · · < b̄r̄ , as well as γ̄ θb̄1 . . . θb̄r̄ = (−1)snθ1 . . . θn and γ θb1 . . . θbr =
(−1)sm θ1 . . . θm .

Theorem 2.5. The data (A1)–(A2) endow the bicategory LG with left and right adjoints
for every 1-morphism.

Proof. This is [CM, Thm.6.11]. (In fact LG even has a “graded pivotal” structure, see
[CM, Sect. 7].) ��

2.4.2. Duals for objects Endowing the symmetric monoidal bicategory LG with duals
for objects amounts to specifying the following data:

(D1) an object W ∗ ≡ (k[x],W )∗ ∈ LG for every W ≡ (k[x],W ) ∈ LG,
(D2) 1-morphisms evW : W ∗

� W → I and coevW : I → W � W ∗ such that there are
2-isomorphisms

cl : r(W,∗) ⊗ (IW � evW ) ⊗ a((W,W ∗),W ) ⊗ (coevW �IW ) ⊗ l−W −→ IW ,

cr : l(∗,W ∗) ⊗ (evW �IW ∗) ⊗ a−
((W ∗,W ),W ∗) ⊗ (IW ∗ � coevW ) ⊗ r−

W ∗ −→ IW ∗ .

In this sectionwe provide the above data; the explicit isomorphisms cl, cr are constructed
in [MM, Ch.4].

(D1) The dual of W ≡ (k[x],W ) is (k[x],−W ) ≡ W ∗ ≡ −W .
(D2) The adjunction 1-morphisms exhibiting −W as the (left) dual are the matrix

factorisations

evW = IW and coevW = IW (2.39)

ofW (x ′)−W (x), viewed as 1-morphisms (−W )�W → I and I → W � (−W ),
respectively.

Note that −W is also the right dual of W , with ẽvW = IW and c̃oevW = IW viewed
as 1-morphisms W � (−W ) → I and I → (−W ) � W .
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Proposition 2.6. The data (D1)–(D2) endow the monoidal bicategoryLG with duals for
every object.

Proof. The cusp isomorphisms cl, cr are computed in terms of the unitors λ, ρ and
canonical swap maps in [MM, Lem.4.6]. ��

Recall that an object A of a symmetric monoidal bicategory B is fully dualisable
if A has a dual and if the corresponding adjunction 1-morphisms evA, coevA themselves
have left and right adjoints, which in turn have left and right adjoints, and so on. Hence
Proposition 2.6 together with Theorem 2.5 implies:

Corollary 2.7. Every object of LG is fully dualisable.

2.5. Graded matrix factorisations. Landau-Ginzburg models with an additional Q- or
Z-grading appear naturally as (non-functorial) quantum field theories, in their relation
to conformal field theories, as well as in representation theory and algebraic geometry.
In this section we recall the bicategory of graded Landau-Ginzburg models LGgr from
[CM,CRCR,Mu] (see also [BFK]) and observe that it inherits the symmetric monoidal
structure from LG. Moreover, every object in LGgr is fully dualisable.

An object of LGgr is a pair (k[x1, . . . , xn],W ) where now k[x1, . . . , xn] is a graded
ring by assigning degrees |xi | ∈ Q>0 to the variables xi , and W ∈ k[x1, . . . , xn] is
either zero or a potential of degree 2. The central charge of W ≡ (k[x1, . . . , xn],W ) is
the numerical invariant

c(W ) = 3
n

∑

i=1

(

1 − |xi |
)

. (2.40)

A 1-morphism (k[x],W ) → (k[z], V ) in LGgr is a summand of a finite-rank matrix
factorisation (X, dX ) of V − W over k[x, z] such that the following four conditions
are satisfied: (i) the modules X0 = ⊕

q∈Q X0
q and X1 = ⊕

q∈Q X1
q are Q-graded,

(ii) the action of xi and z j on X are respectively of Q-degree |xi | and |z j |, (iii) the
map dX has Q-degree 1, and (iv) if we write {−} for the shift in Q-degree and if Xi ∼=
⊕

q∈Q k[x, z]{q}⊕ai,q for i ∈ {0, 1}, then {q ∈ Q | ai,q �= 0} must2 be a subset of
i + GV−W , where

GV−W := 〈|x1|, . . . , |xn|, |z1|, . . . , |zm |〉 ⊂ Q and G0 := Z . (2.41)

A 2-morphism in LGgr between two 1-morphisms (X, dX ), (X ′, dX ′) is a cohomology
class of Z2- and Q-degree 0 with respect to the differential δX,X ′ in (2.3).

We continue to write [−] for the Z2-grading shift and {−} for the Q-grading shift.
Translating [KST, Thm.2.15] into our conventions we see that LGgr(W, V ) has the
structure of a triangulated category with shift functor

� := [1]{1} . (2.42)

Since the categories LGgr(W, V ) are idempotent complete (cf. [KST, Lem.2.11])
the construction of [DM] ensures that horizontal composition in LGgr can be defined

2 Without condition (iv) we still obtain a bicategory LGGR, with the same structures that we exhibit here
for LGgr. As explained in [Mu, Lecture 3], the Hom categories LGGR(W, V ) are equivalent to infinite direct
sums of LGgr(W, V ) with itself, hence we can restrict to LGgr.
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analogously to (2.6). Moreover, the units IW of LG can naturally be endowed with an
appropriateQ-grading (by setting |θi | = |xi |−1 and |θ∗

i | = 1−|xi |), and the associatorα
and unitors λ, ρ of LGgr are those of LG (as they manifestly have Q-degree 0). Hence
LGgr is indeed a bicategory.

The bicategory LGgr also inherits a symmetric monoidal structure from LG. This is
so because all 1- and 2-morphisms in the data (M1)–(M6), (S1)–(S3) are constructed
from the units IW and from the structure maps α, λ, ρ, their inverses and (Q-degree 0)
swapping maps, respectively.

For a 1-morphism

X ∈ LGgr((k[x1, . . . , xn],W ), (k[z1, . . . , zm], V )
)

(2.43)

we define its left and right adjoint as

†X = X∨[m]{ 13c(V )} , X† = X∨[n]{ 13c(W )} . (2.44)

The above shifts in Q-degree are necessary to render the adjunction maps
evX , coevX , ẽvX , c̃oevX in (2.37) and (2.38) to be of Q-degree 0 so that they are in-
deed 2-morphisms in LGgr. Finally, the (left and right) dual of (k[x],W ) ∈ LGgr is
(k[x],−W ) with the same grading, and the matrix factorisation underlying the adjunc-
tion 1-morphisms evW , coevW , ẽvW , c̃oevW is again IW , but now viewed as aQ-graded
matrix factorisation.

In summary, we have:

Theorem 2.8. The bicategory LGgr inherits a symmetric monoidal structure from LG,
every object of LGgr has a dual, and every 1-morphism has adjoints.

Corollary 2.9. Every object of LGgr is fully dualisable.

3. Extended TQFTs with Values in LG and LGgr

In this section we study extended TQFTs with values inLG andLGgr. We briefly review
framed and oriented 2-1-0-extended TQFTs and their “classification” in terms of fully
dualisable objects and trivialisable Serre automorphisms, respectively. Then we observe
that every objectW ≡ (k[x1, . . . , xn],W ) inLG orLGgr gives rise to an extended framed
TQFT (Proposition 3.2 and Remark 3.6), and we show precisely when W determines
an oriented theory (Propositions 3.9 and 3.14). We also show how the extended framed
(or oriented) TQFTs recover the Jacobi algebras JacW as commutative (Frobenius) k-
algebras (Theorems 3.3 and 3.12, Remark 3.16), and we explain how a construction of
Khovanov and Rozansky can be recovered as a special case of the cobordism hypothesis
(Example 3.13).

3.1. Framed case. Recall from [SP, Sect. 3.2] and [Ps, Sect. 5] that there is a symmetric
monoidal bicategory Bordfr2,1,0 of framed 2-bordisms. Its objects, 1- and 2-morphisms
are, roughly, disjoint unions of 2-framed points + and −, 2-framed 1-manifolds with
boundary and (equivalence classed of) 2-framed 2-manifolds with corners. For any
symmetric monoidal bicategory B, the cobordism hypothesis, originally due to [BD],
describes the 2-groupoid Funsym⊗(Bordfr2,1,0,B) (of symmetric monoidal 2-functors

Z : Bordfr2,1,0 → B, their symmetric monoidal pseudonatural transformations and mod-
ifications) in terms of data internal to B that satisfy certain finiteness conditions. Objects
of Funsym⊗(Bordfr2,1,0,B) are called extended framed TQFTs with values in B.
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To formulate the precise statement of the cobordism hypothesis, denote by Bfd the
full subbicategory ofBwhose objects are fully dualisable, andwriteK (Bfd) for the core
ofBfd, i. e. the subbicategory ofBfd with the same objects andwhose 1- and 2-morphisms
are the equivalences and 2-isomorphisms of B, respectively. Then:

Theorem 3.1. (Cobordism hypothesis for framed 2-bordisms, [Ps, Thm.8.1]). Let B be
a symmetric monoidal bicategory. There is an equivalence

Funsym⊗
(

Bordfr2,1,0,B
) ∼=−→ K (Bfd) ,

Z 
−→ Z(+) . (3.1)

Note that thanks to the description of Bordfr2,1,0 as a symmetric monoidal bicategory
in terms of generators and relations given in [Ps], the action ofZ is fully determined (up
to coherent isomorphisms) by what it assigns to the point. For example, if Z(+) = A,
then the 2-framed circle which is the horizontal composite of the two semicircles (or
elbows) † ev+ and ev+ is sent to evA ⊗ † evA. Similarly, 2-morphisms in Bordfr2,1,0 can
be decomposed into cylinders and adjunction 2-morphisms for ev+, coev+ and their
(multiple) adjoints; we will discuss several examples of such decompositions in the
proofs of Theorems 3.3 and 3.12 below.

We now turn to the symmetric monoidal bicategory of Landau-Ginzburg modelsLG.
As a direct consequence of the cobordism hypothesis and Corollary 2.7 we have:

Proposition 3.2. Every object W ≡ (k[x1, . . . , xn],W ) ∈ LG determines an extended
framed TQFT

Z fr
W : Bordfr2,1,0 −→ LG with Z fr

W (+) = W . (3.2)

This can be interpreted as “every Landau-Ginzburg model can be extended to the
point as a framed TQFT”. In the remainder of Sect. 3.1 we make this more precise by
relating Z fr

W to the (non-extended) closed oriented TQFT

ZW : Bordor2,1 −→ Vectk (3.3)

which via the standard classification in terms of commutative Frobenius algebras (see
e. g. [Ko]) is described by the Jacobi algebra JacW with pairing

〈−,−〉W : JacW ⊗k JacW −→ k (3.4)

induced by the residue trace map

JacW −→ k , φ 
−→ Res

[
φ d x

∂x1W, . . . , ∂xnW

]

=: 〈φ〉W , (3.5)

i. e. 〈φ,ψ〉W = 〈φψ〉W .
To recover the k-algebra JacW with its multiplicationμJacW : φ⊗ψ 
→ φψ , we want

to show that JacW and μJacW are what Z fr
W assigns to “the” circle and “the” pair-of-

pants. However, there are infinitely many isomorphism classes of 2-framed circles (one
for every integer), so we have to be more specific. Using the equivalent description of
2-framed circles in terms of immersions ι : S1 → R2 together with a normal framing
[DSPS, Sect. 1.1], the correct choice is to take the standard circle embedding for ι together
with outwardpointingnormals.Wedenote the corresponding2-framedcircle S10 . In terms
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of the structure 1-morphisms of Bordfr2,1,0 (whose horizontal composition we write as #),
we have (see [DSPS, Sect. 1.2])

S10 = ev+ #
† ev+ . (3.6)

This is the correct choice in the sense that for every integer k, there is a 2-framed circle S1k ,
and for every pair (k, l) ∈ Z2 there is a pair-of-pants 2-morphism S1k � S1l → S1k+l in
Bordfr2,1,0, and only for k = 0 = l do we get a multiplication. This is “the” 2-framed
pair-of-pants for us.

Theorem 3.3. For every (k[x1, . . . , xn],W ) ∈ LG, we have that
(

Z fr
W (S10), Z

fr
W (pair-of-pants)

)

(3.7)

is isomorphic to (JacW , μJacW ) as a k-algebra.

Proof. Note first that Z fr
W (S10)

∼= evW ⊗ † evW = evW ⊗(ev∨
W [0]) = IW ⊗k[x,x ′] I∨

W
is isomorphic in LG((k, 0), (k, 0)) ∼= vectZ2 to the vector space JacW (viewed as a
Z2-graded vector space concentrated in even degree). One can check that an explicit
isomorphism κ : IW ⊗k[x,x ′] I∨

W
∼= EndLG(IW ) ∼= JacW is given by linear extension of

p(x)q(x ′) · ei ⊗ e∗
j 
→ p(x)q(x) · δi, j , where p and q are polynomials and {ei } is a basis

of the k[x, x ′]-module IW .
Next we prove that Z fr

W sends the pair-of-pants to the commutative multiplication
μJacW . For this we decompose the pair-of-pants into generators, namely into cylinders
over the left and right elbows ev+ : − �+ → ∅ and † ev+ : ∅ → − � +, respectively,
and the “upside-down saddle” evev+ : † ev+ # ev+ → 1−�+ (which is called v1 in [DSPS,
Ex.1.1.7]). Then

pair-of-pants = 1ev+ # evev+ # 1† ev+ : S10 � S10 −→ S10 . (3.8)

Hence if Z fr
W (evev+) = evevW , then the functor Z fr

W sends this pair-of-pants to 1evW ⊗
evevW ⊗1† evW , which by pre- and post-composition with the isomorphism
κ : evW ⊗ † evW ∼= JacW becomes a map μ : JacW ⊗k JacW → JacW . Noting that
both κ and evevW act diagonally (with evevW (e∗

i ⊗e j ) = δi, j since evW : (−W )�W → I
has trivial target, cf. the explicit expression for evevW in (2.38)), we find that μ is indeed
given by multiplication of polynomials, i. e. μ = μJacW .

To complete the proof we need to argue that Z fr
W assigns our choice of counit evevW

to the upside-down saddle evev+ , and not some other choice of adjunction data. By [Ps,
Thm.3.17 & Thm.8.1], extended framed TQFTs are equivalent to “coherent fully dual
pairs” in their target bicategories, see [Ps, Def. 3.12] for the details. For the algebra
structure on Z fr

W (S10), we only need a “coherent dual pair” as defined in [Ps, Def. 2.6].
One straightforwardly checks that (W,−W, evW , coevW , cr, cl) satisfies all the defin-
ing properties of a coherent dual pair, ensuring that Z fr

W can indeed be chosen such
that Z fr

W (evev+) = evevW . (The key defining properties of coherent dual pairs for us to
check are the so-called swallowtail identities of [Ps, Def. 2.6], which can be viewed as
consistency constraints on our cusp isomorphism cl. But since cl, cr and all other 2-
morphisms that appear in the swallowtail identities are structure maps of the underlying
bicategory ofLG, the coherence theorem for bicategories guarantees that the constraints
are satisfied.) ��
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Remark 3.4. The finite-dimensionalk-algebra JacW is typically not separable. For exam-
ple, if W = xN+1 with N ∈ Z�2 the algebra JacW has non-semisimple representations
(as multiplication by x has non-trivial Jordan blocks) and hence cannot be separable.
Thus JacW is not fully dualisable in the bicategoryAlgk of finite-dimensionalk-algebras,
bimodules and intertwiners [Lu,SP], so JacW cannot describe an extended TQFT with
values in Algk. Proposition 3.2 and Theorem 3.3 explain how JacW does appear in an
extended TQFT with values in LG, namely as the algebra assigned to the circle S10 and
its pair-of-pants.

For an algebra A ∈ Algk its Hochschild cohomology HH•(A) is isomorphic to
evA ⊗ † evA, and for Hochschild homology one finds HH•(A) ∼= evA ⊗ b(A,A) ⊗coevA.
Similarly, for every object W ≡ (k[x1, . . . , xn],W ) ∈ LG we may define

HH•(W ) := evW ⊗ † evW , HH•(W ) := evW ⊗ b(W,W ) ⊗ coevW . (3.9)

Thus by Theorem 3.3 we have HH•(W ) ∼= JacW , and paralleling the first part of the
proof we find HH•(W ) ∼= JacW [n] as Z2-graded vector spaces (because the matrix fac-
torisations b(W,W ) and coevW are IW � IW and IW ∼= I †W = I∨

W [n], respectively). Hence
HH•(W ) and HH•(W ) precisely recover the Hochschild cohomology and homology
of the 2-periodic differential graded category of matrix factorisations MF(k[x],W ) as
computed in [Dy, Cor. 6.5&Thm.6.6]:

Corollary 3.5. For every W ≡ (k[x],W ) ∈ LG we have

HH•(W ) ∼= HH•(MF(k[x],W )
)

, HH•(W ) ∼= HH•
(

MF(k[x],W )
)

. (3.10)

Remark 3.6. Proposition 3.2, Theorem 3.3 and Corollary 3.5 have direct analogues for
the graded Landau-Ginzburg models of Sect. 2.5. Firstly, Theorem 3.1 and Corollary 2.9
immediately imply that every object (k[x1, . . . , xn],W ) ∈ LGgr determines an extended
TQFT

Z fr
W,gr : Bordfr2,1,0 −→ LGgr . (3.11)

Secondly, going through the proof of Theorem 3.3 we see that to the circle S10 and its
pair-of-pants, Z fr

W,gr assigns the Jacobi algebra JacW which is now a Q-graded algebra
with degree-preserving multiplication. We note that here it is important that the upside-
down saddle evev+ : † ev+ # ev+ → 1−�+ involves the left adjoint of ev+: by (2.44) we
have † evW = ev∨

W [0]{0} = ev∨
W , so Z fr

W,gr(pair-of-pants) really gives a map

JacW ⊗k JacW ∼= (

evW ⊗ † evW
)

�

(

evW ⊗ † evW
)

−→ (

evW ⊗ † evW
) ∼= JacW . (3.12)

(Incorrectly using the right adjoint ev†W = ev∨
W [2n]{ 23c(W )} would lead to unwanted

Q-degree shifts in the multiplication. In Remark 3.16 below however we are naturally
led to use the right adjoint ev†W to obtain the correct graded trace map 〈−〉W on JacW .)

Thirdly, for every (k[x1, . . . , xn],W ) ∈ LGgr the matrix factorisation underlying
coevW is IW ∼= I †W = I∨

W [n]{ 13c(W )} = I∨
W [n − 2]{ 13c(W )}, and hence we have

HH•(W ) ∼= JacW , HH•(W ) ∼= JacW [n − 2]{ 13c(W )} . (3.13)
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3.2. Oriented case. An extended oriented TQFT with values in a symmetric monoidal
bicategory B is a symmetric monoidal 2-functor Z : Bordor2,1,0 → B. Here Bordor2,1,0 is
the bicategory of oriented 2-bordisms defined and explicitly constructed in [SP, Ch.3];
see in particular Fig. 3.13 of loc. cit. for a list of the 2-morphism generators (to wit:
the saddle, the upside-down saddle, the cap, the cup, and cusp isomorphisms) and their
relations. Hence objects of Bordor2,1,0 are disjoint unions of positively and negatively
oriented points, which we (also) denote + and −, respectively. It was argued in [Lu]
that such 2-functors Z are classified by the homotopy fixed points of the SO(2)-action
induced on Bfd by the SO(2)-action which rotates the framings in Bordfr2,1,0. This was
worked out in detail in [HSV,HV,He] as we briefly review next.

An SO(2)-action on Bfd is a monoidal 2-functor � from the fundamental 2-groupoid
�2(SO(2)) to the bicategory of autoequivalences ofBfd. Since SO(2) is path-connected,
�2(SO(2)) has essentially a single object ∗ which � sends to the identity IdBfd on Bfd.
Since π1(SO(2)) ∼= Z the action of � on 1-morphisms is essentially determined by its
value on the identity 1∗ corresponding to 1 ∈ Z. It was argued in [Lu, Rem.4.2.5] that
for an oriented TQFT Z as above with Z(+) =: A, the relevant choice for �(1∗) is the
Serre automorphism SA of A ∈ Bfd. By definition SA is the 1-morphism

SA := r(A,∗) ⊗ (

1A � ẽvA
) ⊗ (

b(A,A) � 1A∗
) ⊗ (

1A � ẽv†A
) ⊗ r−

A : A −→ A .

(3.14)

Here we denote the braiding, horizontal composition and monoidal product in B by b,
⊗ and �, respectively, as we do in LG and LGgr.

The bicategory of SO(2)-homotopy fixed points K (Bfd)SO(2) was defined and en-
dowedwith a natural symmetricmonoidal structure in [HV]. Objects ofK (Bfd)SO(2) are
pairs (A, σA)where A ∈ Bfd and σA is a trivialisation of the Serre automorphism SA, i. e.
a 2-isomorphism SA → 1A in B. A 1-morphism (A, σA) → (A′, σA′) in K (Bfd)SO(2)

is an equivalence F ∈ Bfd(A, A′) such that λF ◦ (σA′ ⊗ 1F ) ◦ SF = ρF ◦ (1F ⊗ σA)

where SF is the 2-isomorphism constructed in the proof of [HV, Prop. 2.8], and 2-
morphisms F → F ′ in K (Bfd)SO(2) are 2-isomorphism F → F ′ in B. Building on
[Lu,SP,HSV,HV], extended oriented TQFTs with values in B were classified by fully
dualisable objects with trivialisable Serre automorphisms in [He]:

Theorem 3.7. (Cobordism hypothesis for oriented 2-bordisms, [He, Cor. 5.9]). Let B be
a symmetric monoidal bicategory. There is an equivalence

Funsym⊗
(

Bordor2,1,0,B
) ∼=−→ K (Bfd)SO(2) ,

Z 
−→ Z(+) . (3.15)

We return to the symmetric monoidal bicategoryLG. To determine extended oriented
TQFTs with values in LG we have to compute Serre automorphisms for all objects:

Lemma 3.8. Let W ≡ (k[x1, . . . , xn],W ) ∈ LG. Then SW ∼= IW [n].
Proof. According to Sects. 2.3–2.4, the factors r(W,∗), 1W , ẽvW , b(W,W ), 1W ∗ and r−

W in
the defining expression (3.14) are all given by thematrix factorisation underlying the unit
IW ∈ LG(W,W ), while the matrix factorisation underlying ẽv†W = ẽv∨

W [2n] = ẽv∨
W

is I∨
W

∼= I †W [n] ∼= IW [n]. This leads to SW ∼= IW [n]. (A straighforward computation,
taking into account subtleties of the kind mentioned in Remark 2.1, is carried out in
the proof of [MM, Lem.5.2.3] to construct an explicit isomorphism SW → IW only in
terms of λ, ρ and standard swapping isomorphisms.) ��
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The general fact IW � IW [1] (even HomLG(W,W )(IW , IW [1]) = 0 is true) together
with Theorem 3.7 thus imply:

Proposition 3.9. An object W ≡ (k[x1, . . . , xn],W ) ∈ LG determines an extended
oriented TQFT

Zor
W : Bordor2,1,0 −→ LG with Zor

W (+) = W (3.16)

if and only if n is even.

Remark 3.10. Let d ∈ Z. Following [Ke], we say that a k-linear, Hom-finite triangulated
category T with shift functor � is weakly d-Calabi-Yau if T admits a Serre functor 3

ST such that �d ∼= ST . The triangulated category LG(0,W ) is known to admit a Serre
functor SLG(0,W )

∼= [n] = [n − 2]. Hence LG(0,W ) is weakly (n − 2)-Calabi-Yau, the
Serre automorphism and Serre functor coincide in the sense that SW ⊗ (−) ∼= SLG(0,W ),
and the condition that SW is trivialisable is equivalent to the condition that the Serre
functor is isomorphic to the identity.

Remark 3.11. (i) Proposition3.9 canbe interpreted as “everyLandau-Ginzburgmodel
with an even number of variables can be extended to the point as an oriented TQFT”.
However, since for odd (and even) n there is an isomorphism of Frobenius algebras

JacW = k[x1, . . . , xn]/(∂x1W, . . . , ∂xnW )

∼= k[x1, . . . , xn, y]/(∂x1(W + y2), . . . , ∂xn (W + y2), ∂y(W + y2))

= JacW+y2 , (3.17)

every non-extended oriented Landau-Ginzburg model appears as part of an extended
oriented TQFT Zor

W orZor
W+y2

(depending on whether n is even or odd, respectively),

namely as the commutative Frobenius algebra with underlying vector space Zor
W (S1)

orZor
W+y2

(S1). Note that for this argument to work we need to ensure that this Frobe-
nius algebra is really isomorphic to the associated Jacobi algebra, as we do with
Theorems 3.3 and 3.12.
(ii) Instead of LG one can also consider the symmetric monoidal bicategory LG•/2

which is equal toLG except that the vector space of 2-morphisms (X, dX ) → (X, dX ′)
is defined to be H•

δX,X ′ (Homk[x,z](X, X ′))/Z2, i. e. both even and odd cohomology

of the differential δX,X ′ in (2.3) are included while ζ ∈ Homk[x,z](X, X ′) and −ζ

are identified after taking cohomology. Dividing out this Z2-action circumvents the
issue that without it the interchange law would only hold up to a sign, as we have
(ζ1 ⊗ ζ2) ◦ (ξ1 ⊗ ξ2) = (−1)|ζ2|·|ξ1|(ζ1 ◦ ξ1)⊗ (ζ2 ◦ ξ2) for appropriately composable
homogeneous 2-morphisms. SuchZ2-quotients also appear in [KR1]; the bicategory
LG•/2 is described in more detail in [MM, Sect. 5.3.1] (where it is denoted LG).
In particular, for every (k[x1, . . . , xn],W ) ∈ LG•/2 there is an even/odd isomorphism
IW ∼= IW [n] for n even/odd. Hence by Lemma 3.8 every object of LG•/2 determines
an extended oriented TQFT with values in LG•/2.

(iii) A better way to deal with the signs in the interchange law mentioned in part (ii)
above is to incorporate them into a richer conceptual structure. Part of this involves the
natural differentialZ2-graded categories (with differential δX,X ′ as above) studied in
[Dy], whose even cohomologies are the matrix factorisation categories of Sect. 2.1.

3 A Serre functor of T is an additive equivalence ST : T → T together with isomorphisms
HomT (A, B) ∼= HomT (B,ST (A))∗ that are natural in A, B ∈ T .
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Such bicategories of differential graded matrix factorisation categories are studied in
[BFK], and demanding their monoidal product to be made up of differential graded
functors produces Koszul signs in the interchange law.
Awider perspective on Koszul signs and parity issues in Landau-Ginzburg models as
discussed here is that they are thought to be the topological twists of supersymmetric
quantum field theories, see e. g. [HK+,LL,HL]. Formalising this construction in a
functorial field theory setting would involve symmetric monoidal super 2-functors
on super bicategories of super bordisms, which is a theorywhose details to our knowl-
edge have not been worked out. Relatedly, we expect the graded pivotal bicategory
LG of [CM] to arise as the bicategory associated to a non-extended oriented defect
TQFT on super bordisms (which again has not been defined in detail as far as we
know), paralleling the non-super construction of [DKR] reviewed in [Ca].

Theorem 3.12. For every (k[x1, . . . , xn],W ) ∈ LG with n even, we have that
(

Z fr
W (S10), Z

fr
W (pair-of-pants), Z fr

W (cup)(1), Z fr
W (cap)

)

(3.18)

is isomorphic to (recall (3.5) for the residue trace 〈−〉W )
(

JacW , μJacW , 1, 〈ζ(−)〉W
)

(3.19)

as a commutative Frobenius k-algebra, where the traces Z fr
W (cap) and 〈−〉W induce

the Frobenius pairings on Z fr
W (S10) and JacW , respectively, and ζ ∈ JacW is a uniquely

determined invertible element.

Proof. The isomorphism on the level of k-algebras was already established in Theo-
rem 3.3, it remains to compute the action of Z fr

W on the cap and cup 2-morphisms.

The cap is the bordism ẽvev+ from the 2-framed circle ev+ # ev
†
+ to 1∅. We first assume

that Z fr
W sends it to the 2-morphism ẽvevW from evW ⊗ ev†W = evW ⊗ † evW to I0.

Since evW : (k[x],−W ) � (k[x],W ) → (k, 0) has trivial target, only the summand
l = 0 contributes to the expression for ẽvevW in (2.38), and pre-composing with the
isomorphism JacW ∼= evW ⊗ † evW from the proof of Theorem 3.3 produces the residue
trace 〈−〉W .

Similarly, the cup : ∅ → S10 = ev+ # † ev+ is equal to coevev+ . Using the explicit
expression for coevevW in (2.38) we see that post-composing Z fr

W (cup)(1) with the
isomorphism evW ⊗ † evW ∼= JacW is indeed the unit 1 ∈ JacW .

To complete the proof we must investigate to what extent our choice of adjunction
data in LG gives rise to a “coherent fully dual pair” (where again we rely on the result
of [Ps] that extended framed TQFTs are equivalent to coherent fully dual pairs): if the
coherent dual pair (W,−W, evW , coevW , cr, cl) can be lifted to a coherent fully dual
pair then Z fr

W can be chosen such that Z fr
W (ẽvev+) = ẽvevW . First we observe that by

Lemma 3.8 there is a “fully dual pair”
(

W,−W, evW , coevW , IW , IW , cr, cl, μe, εe, μc, εc, ψ, φ
)

(3.20)

in the sense of [Ps, Def. 3.10], where φ := λIW =: ψ and μe, εe, μc, εc are equal
to coevevW , evevW , coevcoevW , evcoevW up to appropriate composition with the isomor-
phisms λ±1, ρ±1. As explained in the proof of [Ps, Thm.3.16], every fully dual pair can
be made coherent by changing only the counit 2-morphisms by composition with an au-
tomorphism ζ of IW (and possibly the cusp isomorphism cl which however in our case is
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not necessary as observed in the proof of Theorem 3.3). Given a fully dual pair, themap ζ

is uniquely determined by the cusp-counit equation of [Ps, Def. 3.12], which involves
two adjunction maps on one side and none on the other. In our case one finds that the
constraint reduces to the equality of two linear maps JacW ⊗k JacW → k, one of which
involves the residue trace 〈−〉W pre-composed with ζ ∈ Aut(IW ) ⊂ End(IW ) ∼= JacW ,
while the other is a composite of structure maps of the symmetric monoidal bicategory
LG (without any adjunction maps). ��

Paralleling the above proof we see that for even n, the extended oriented TQFT Zor
W

also assigns the Frobenius algebra JacW to the oriented circle, pair-of-pants, cup and
cap (up to an invertible element ζ ∈ JacW ).

Example 3.13. For every N ∈ Z�2, the potential xN+1 determines an extended ori-
ented TQFT with values in the symmetric monoidal bicategory LG•/2 introduced in
Remark 3.11(ii). We denote this TQFT by ZKR as it recovers – directly from the cobor-
dism hypothesis – the explicit construction that Khovanov and Rozansky gave in [KR1,
Sect. 9]. In loc. cit. the authors determine their TQFT by describing what it assigns to
the point +, the circle, the cap, the cup and the saddle bordisms in Bordor2,1,0. Except for
the saddle we have already computed all these assignments of ZKR for any potential W
in Theorems 3.3 and 3.12, and for W = xN+1 they match the prescriptions of [KR1]
(except for non-essential prefactors for the cap and cup morphisms).

To establish that the TQFT ZKR indeed matches that of [KR1, Sect. 9] it remains
to compute ZKR(saddle) = ZKR(c̃oevev+) and compare it to the explicit matrix ex-
pressions in [KR1, Page81] (or Page 95 of arXiv:math/0401268v2 [math.QA]). Since
ZKR(c̃oevev+) = c̃oevevxN+1 this is another exercise in using the formulas (2.38) for
adjunction 2-morphisms. This is carried out in [MM, Sect. 5.3.2], finding

ZKR(saddle) =
⎛

⎜
⎝

e124 1 0 0
−e234 1 0 0
0 0 −1 1
0 0 −e234 −e124

⎞

⎟
⎠ (3.21)

where the entries ei jk := ∑

a+b+c=N−1 x
a
i x

b
j x

c
k ∈ k[x1, x2, x3, x4] depend on four vari-

ables as the source and target of c̃oevevxN+1 involve four copies of x
N+1 ∈ LG•/2. Up to

a minor normalisation issue 4 the expression (3.21) agrees with that of [KR1].
In summary, we verified that the construction of [KR1, Sect. 9] can be understood as

an application of the cobordism hypothesis to the potential W = xN+1.

We return to the bicategory LGgr of Sect. 2.5. All the above results in the present
section have analogues or refinements in LGgr. In particular:

Proposition 3.14. An object W ≡ (k[x1, . . . , xn],W ) ∈ LGgr determines an extended
oriented TQFT

Zor
W,gr : Bordor2,1,0 −→ LGgr with Zor

W,gr(+) = W (3.22)

if and only if [n − 2]{ 13c(W )} ∼= IdLGgr(0,W ).

4 More precisely, (3.21) agrees with the saddle morphism of [KR1] if the arbitrary polynomial r of degree
N − 2 in loc. cit. is set to

∑

a+b+c+d=N−2 x
a
1 x

b
2 x

c
3x

d
4 , and if non-scalar entries of the matrix are multiplied

by 1
2 . The latter seems to be a typo in [KR1] as without these factors the expression would not be closed with

respect to the differential δ
IW�I−W ,ev†

xN+1 ⊗ evxN+1
.

http://arxiv.org/abs/math/0401268v2
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Proof. By Theorem 3.7,W determines a TQFT as stated if and only if its Serre automor-
phism SW is trivialisable. Paralleling the proof of Lemma 3.8 we see that, using (2.44),
the matrix factorisation underlying SW is ẽv†W = ẽv∨

W [2n]{ 23c(W )}. Hence SW is iso-

morphic to I∨
W [2n]{ 23c(W )} = I †W [n]{ 13c(W )} ∼= IW [n − 2]{ 13c(W )}. ��

Let LGgr/Z be the symmetric monoidal 2-category obtained from LGgr by replacing
the hom categories LGgr(W, V ) with the orbit categories LGgr(W, V )/Z obtained by
dividing out the action of the shift functor � = [1]{1}, i. e.

HomLGgr/Z(X,Y ) =
⊕

k∈Z
HomLGgr (X, �k(Y )) (3.23)

for 1-morphism X,Y ∈ Ob(LGgr/Z(W, V )) = Ob(LGgr(W, V )). It follows that in
LGgr/Z, we have X ∼= �k(X) for all 1-morphisms X and k ∈ Z (with 1X viewed as a
2-isomorphism of degree k).

In the setting of orbit categories, Calabi-Yau varieties give rise to oriented extended
TQFTs:

Corollary 3.15. If for (k[x1, . . . , xn],W ) ∈ LGgr the hypersurface {W = 0} inweighted
projective space is a Calabi-Yau variety, then W determines an extended oriented TQFT
Bordor2,1,0 → LGgr/Z.

Proof. WewriteYW for the zero locus ofW inweighted projective space. The varietyYW
is Calabi-Yau if and only if the condition c1(YW ) = 0 is satisfied by the first Chern
class, which in our normalisation convention is equivalent to

∑n
i=1 |xi | = |W | = 2.

This implies 1
3c(W ) = ∑n

i=1(1 − |xi |) = n − 2, and hence according to the proof of
Proposition 3.14 we have that

SW ⊗ (−) ∼= [n − 2]{n − 2} (3.24)

is the (n − 2)-fold product of the shift functor � = [1]{1} of LGgr(0,W ) with itself.
Hence SW ∼= IW in LGgr/Z. ��
Remark 3.16. There is also an analogue of Theorem 3.12 for Z fr

W,gr: We already saw in

Remark 3.6 that Z fr
W,gr sends the circle and pair-of-pants to JacW as a graded algebra.

As in the proof of Theorem 3.12 we find that Z fr
W,gr(cup)(1) gives the unit 1 ∈ (JacW )0

of degree 0 (because coevevW is of Q-degree 0).
Finally, Z fr

W,gr(cap) is a map (up to an invertible element, i. e. a constant ζ ∈ k
×)

from evW ⊗ ev†W = evW ⊗ ev∨
W [2n]{ 23c(W )} ∼= JacW { 23c(W )} to k. This expresses the

known fact that the residue tracemap 〈−〉W is nonzero only on elements of degree 2
3c(W ).

For example for W = xN+1 we have 2
3c(W ) = 2(1 − 2

N+1 ) and 〈x j 〉xN+1 = δ j,N−1,
while |xN−1| = (N − 1) 2

N+1 = 2 − 4
N+1 .
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