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1 Fakultät für Mathematik, Institut für Analysis, Karlsruher Institut für Technologie, Englerstraße 2,
76131 Karlsruhe, Germany. E-mail: lucrezia.cossetti@kit.edu

2 IkerBasque & Universidad del País Vasco/Euskal Herriko Unibertsitatea, Barrio Sarriena s/n, 48940 Leioa,
Bilbao, Spain. E-mail: fanelli@mat.uniroma1.it

3 Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical
University in Prague, Trojanova 13, 12000 Prague 2, Czechia. E-mail: david.krejcirik@fjfi.cvut.cz

Received: 23 November 2019 / Accepted: 8 July 2020
Published online: 18 September 2020 – © The Author(s) 2020

Abstract: By developing the method of multipliers, we establish sufficient conditions
on the magnetic field and the complex, matrix-valued electric potential, which guar-
antee that the corresponding system of Schrödinger operators has no point spectrum.
In particular, this allows us to prove analogous results for Pauli operators under the
same electromagnetic conditions and, in turn, as a consequence of the supersymmetric
structure, also for magnetic Dirac operators.

1. Introduction

1.1. Objectives and state of the art. Understanding electromagnetic phenomena has
played a fundamental role in quantum mechanics. The simplest mathematical model for
the Hamiltonian of an electron, subject to an external electric field described by a scalar
potential V : R

3 → R and an external magnetic field B = curl A with a vector potential
A : R

3 → R
3, is given by the Schrödinger operator

− ∇2
A + V in L2(R3; C) , (1.1)

where ∇A := ∇ + i A is the magnetic gradient.
Unfortunately, the mathematically elegant model (1.1) is not sufficient to explain

finer electromagnetic effects, for it disregards an inner structure of electrons, namely
their spin. A partially successful attempt to take the spin into account is to enrich the
algebraic structure of the Hilbert space and consider the Pauli operator

HP(A, V ) := −∇2
A IC2 + σ · B + V in L2(R3; C

2) , (1.2)

where σ := (σ 1, σ 2, σ 3) are Pauli matrices. Here the term σ · B describes the interaction
of the spin with the magnetic field and V := V IC2 stands for the electric interaction as
above.
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To get a more realistic description of the electron, subject to an external electromag-
netic field, one has to take relativistic effects into account. A highly successful model is
given by the Dirac operator

HD(A, V ) := −iα · ∇A +
1

2
β + V in L2(R3; C

4) , (1.3)

where α := (α1,α2,α3) and β are Dirac matrices and V := V IC4 .
The principal objective of this paper is to develop the so-called method of multipliers

in order to establish spectral properties of the Pauli and Dirac operators. This technique
comes from partial differential equations, but it seems to be much less known in spectral
theory. We are primarily interested in physically relevant sufficient conditions, which
guarantee the absence of point spectra (including possibly embedded eigenvalues).

As far as absence of embedded eigenvalues is concerned, nowadays the method
of multipliers can be considered as a valid alternative to the routine approach, based
on Carleman estimates, that, after the appearance of Kato’s work [23] on Schrödinger
operators, has been consistently used to disproving presence of positive eigenvalues in
the continuous spectrum of diverse Hamiltonian (refer, for instance, to [27], Section
15). We should emphasize that proving a Carleman estimate, in particular in context in
which one seeks to treat optimal (or close to optimal) conditions on the potentials, is a
highly nontrivial task and requires the construction of a parametrix for which suitable
mapping properties have to be proved (in relation to this issue we refer to the remarkable
work by Koch and Tataru [26]). On the contrary, the method of multipliers is a rather
direct approach which, at least at a formal level, asks for clever algebraic manipulations
only. Another advantage of the method of multipliers over the Carleman-based scheme
is represented by the fact that the first approach allows quite intuitively to single out
repulsivity conditions on the potentialswhich permits to include long rangeperturbations
in the analysis, on the other hand it is a known fact that long range potentials, alike short
range ones, cannot be easily handled with the method based on Carleman estimates as
they cannot be treated as small perturbations. This results into the need of including the
long range potential in the proof of the Carleman estimates which represents a rather
challenging issue (see [26] for the most updated available results and [19–21] for more
standard references).

Although some of our results are new even in the self-adjoint setting, we proceed
in greater generality by allowing V : R

3 → C to be complex-valued in (1.1) and
V : R

3 → C
2×2 to be a general matrix-valued potential, possibly non-Hermitian,

in (1.2). Since the spin-magnetic term σ · B can be included in V , we simultaneously
consider matrix electromagnetic Schrödinger operators

HS(A, V ) := −∇2
A IC2 + V in L2(R3; C

2) . (1.4)

Since the operator acts on spinors, we occasionally call the corresponding spectral prob-
lem the spinor Schrödinger equation.

As the last but not least generalisation to mention, in the main body of the paper,
we shall consider the Pauli and Dirac operators in the Euclidean space R

d of arbitrary
dimension d ≥ 1.

The study of spectral properties of scalar Schrödinger operators (1.1) constitutes a
traditional domain of mathematical physics and the literature on the subject is enor-
mous. Much less is known in the mathematically challenging and still physically rel-
evant situations where V is allowed to be complex-valued, see [15,16] and references
therein. Works concerning non-self-adjoint Pauli operators are much more sparse in the
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literature, see [36] and references therein. More results are available in the case of non-
self-adjoint Dirac operators, see [5–8,10–12,14,35]. The paper [16] represents a first,
physically satisfactory, application of the method of multipliers to spectral theory: the
authors established sufficient conditions, which guarantee the total absence of eigen-
values of (1.1). Furthermore, those conditions are compatible with the well established
gauge invariance of electromagnetic models in the sense that they involve the magnetic
field B rather than the vector potential A. This last remarkable fact represents a distin-
guishing feature of [16] compared to previous works in the subject (see, for instance,
Roze [34] where the method of multipliers has been used to prove absence of embedding
eigenvalues under Kato-type decay conditions on both the electric potential V and the
magnetic potential A, introducing then a counterintuitive gauge-dependent constraint).
The two-dimensional situationwas covered later in [15]. The robustness of themethod of
multipliers has been demonstrated in its successful application to the half-space instead
of the whole Euclidean space in [4] and to Lamé instead of Schrödinger operators in [3].
In the present paper, we push the analysis forward by investigating how the unconven-
tional method provides meaningful and interesting results in the same direction also in
the less explored setting of the spinorial Hamiltonians.

1.2. The strategy. The main ingredient in our proofs is the method of multipliers as
developed in [16] for scalar Schrödinger operators (1.1). In the present paper, however,
we carefully revisit the technique and provide all the painful details, which were missing
in thepreviousworks.We identify various technical hypothesis about the electromagnetic
potentials to justify the otherwise formal manipulations. We believe that this part of the
paper will be of independent interest for communities interested in spectral theory as
well as partial differential equations.

The next, completely new contribution is the adaptation of the method to the matrix
electromagnetic Schrödinger operators (1.4). The Pauli Hamiltonians (1.2) are then
covered as a particular case.

Themethod of multipliers does not seem to apply directly to Dirac operators, because
of the lack of positivity of certain commutators. Our strategy is to employ the supersym-
metric structure of Dirac operators (cf. [38, Ch. 5]). More specifically, using the standard
representation

αμ =
(

0 σμ

σμ 0

)
, β =

(
IC2 0
0 −IC2

)
, μ = 1, 2, 3, (1.5)

and the commutation properties of the Pauli matrices, it is easy to see that the square of
the purely magnetic Dirac operator HD(A, 0) =: HD(A) satisfies

HD(A)2 =
(

HP(A) + 1
4 IC2 0

0 HP(A) + 1
4 IC2

)
, (1.6)

where HP(A) := HP(A, 0) is just the purely magnetic Pauli operator (1.2). This allows
us to ensure the absence of the point spectrum of the Dirac operator HD(A), once the
corresponding result for the Pauli operator HP(A) is available, which, in turn, follows
as a consequence of the corresponding result for the general Schrödinger operators
HS(A, V ) with matrix-valued potentials V . Notice that, in this way, we are not able to
treat magnetic Dirac operators with electric perturbations.
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1.3. The results in three dimensions. As usual, the sums on the right-hand sides of (1.1),
(1.2) and (1.4) should be interpreted in a form sense (cf. [24, Ch. VI]). More specifically,
the operators are introduced as the Friedrichs extension of the operators initially defined
on smooth functions of compact support. The regularity hypotheses and the functional
inequalities stated in the theorems below ensure that the operators are well defined as m-
sectorial operators. The Dirac operator (1.3) with V = 0 is a closed symmetric operator
under the stated assumptions.

Henceforth, we use the notation r(x) := |x | for the distance function from the origin
of R

d and ∂r f (x) := x
|x | · ∇ f (x) for the radial derivative of a function f : R

d → C.
We also set f±(x) := max{± f (x), 0} if f is real-valued.

For matrix Schrödinger operators (1.4), we prove the following result.

Theorem 1.1 (Spinor Schrödinger equation). Let A ∈ L2
loc(R

3; R
3) be such that B ∈

L2
loc(R

3; R
3). Suppose that V ∈ L1

loc(R
3; C

2×2) admits the decomposition V = V (1) +
V (2) with components V (1) ∈ L1

loc(R
3) and V (2) = V (2) IC2 , where V (2) ∈ L1

loc(R
3) is

such that [∂r (r Re V (2))]+ ∈ L1
loc(R

3) and rV (1), r(Re V (2))−, r Im V (2) ∈ L2
loc(R

3).

Assume that there exist numbers a, b, β, b, c ∈ [0, 1) satisfying

2(b + β + 2a) < 1 and 2c + 2β + 6a + b2 +
√
2(b + a)(

√
β +

√
a) < 1 (1.7)

such that, for all two-vector u with components in C∞
0 (R3), the inequalities

∫
R3

r2|V (1)|2|u|2 ≤ a2
∫
R3

|∇Au|2,
∫
R3

r2|B|2|u|2 ≤ c2
∫
R3

|∇Au|2, (1.8)

and ∫
R3

r2(Re V (2))2−|u|2 ≤ b2
∫
R3

|∇Au|2,
∫
R3

r2|Im V (2)|2|u|2 ≤ β2
∫
R3

|∇Au|2, (1.9)
∫
R3

[∂r (r Re V (2))]+|u|2 ≤ b2
∫
R3

|∇Au|2, (1.10)

hold true. If in addition A ∈ W 1,3
loc (R3) and V (2) ∈ W 1,3/2

loc (R3), then HS(A, V ) has no
eigenvalues, i.e. σp(HS(A, V )) = ∅.

As a consequence of the previous result, one has the corresponding theorem for Pauli
operators.

Theorem 1.2 (Pauli equation). Under the hypotheses of Theorem 1.1, with (1.7) being
replaced by

2
(
b + β + 2(a +

√
3c)

)
< 1 and

2c + 2β + 6(a +
√
3c) + b2 +

√
2
(
b + (a +

√
3c)

)
(
√

β +

√
a +

√
3c) < 1,

(1.11)

the operator HP(A, V ) has no eigenvalues, i.e. σp(HP(A, V )) = ∅.
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Due to the supersymmetric structure (1.6) of the Dirac operator, the spectra of the
Dirac and Pauli operators are intimately related. In particular, we deduce the following
result from the previous theorem.

Theorem 1.3 (Dirac equation). Let A ∈ L2
loc(R

3; R
3) be such that B ∈ L2

loc(R
3; R

3).

Assume that there exists a number c ∈ [0, 1) satisfying

4
√
3c < 1 and 2c + 6

√
3c +

√
2(

√
3c)3/2 < 1 (1.12)

such that, for all four-vector u with components in C∞
0 (R3), the inequality

∫
R3

r2|B|2|u|2 ≤ c2
∫
R3

|∇Au|2 (1.13)

holds true. If in addition A ∈ W 1,3
loc (R3), then HD(A) has no eigenvalues, i.e.

σp(HD(A)) = ∅.

Remark 1.1. Notice that the conditions in (1.12) are overabundant, in the sense that if c
is such that the second inequality of (1.12) holds true, then 4

√
3c < 1 is automatically

satisfied. Indeed, the second inequality of (1.12) requires c < c∗
1 where c∗

1 ≈ 0.075,
whereas the first requires c < c∗

2 where c∗
2 ≈ 0.14. We decided to keep both conditions

anyway in order to have a faster comparison with the corresponding results concerning
the other theorems.

1.4. Organisation of the paper. Even though so far we have considered only the three-
dimensional framework, in this work we shall actually provide variants of the results
presented above in any dimension. (We anticipate already now that the two-dimensional
framework will be excluded in the settings of Pauli and Dirac operators because of
the well-known Aharonov–Casher effect.) In order to state our results in any dimension,
however, an auxiliarymaterialwill be needed in order to introduce the general framework
for the Pauli and Dirac Hamiltonians. We therefore postpone the presentation of the
general results to Sect. 3, while Sect. 2 is devoted to the definition of Dirac and Pauli
operators to any dimension (this section can be skipped by an experienced reader). The
method of multipliers for scalar Schrödinger operators is revisited with all the necessary
details in Sect. 4. The development of themethod for Schrödinger operators with matrix-
valued potentials is performed in Sect. 5. The application of this general result to Pauli
and Dirac operators is given in Sect. 6.

1.5. Notations. Here we summarise specific notations and conventions that we use in
this paper.

• We adopt the convention to write matrices in boldface.
• For any dimension d ≥ 2, the physically relevant quantity associated to a given
magnetic vector potential A : R

d → R
d is the d × d matrix-valued quantity

B := (∇ A) − (∇ A)t .

Here, as usual, (∇ A) jk = ∂ j Ak and (∇ A)t
jk = (∇ A)k j with j, k = 1, 2 . . . , d.

In d = 2 and d = 3 the magnetic tensor B can be identified with the scalar field
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B12 = ∂1A2 − ∂2A1 or the vector field B = curl A, respectively. More specifically,
one has

Bw =
{

B12 w⊥ if d = 2, w ∈ R
2

−B × w if d = 3, w ∈ R
3,

where for any w = (w1, w2) ∈ R
2, w⊥ := (w2,−w1) and the symbol × denotes

the cross product in R
3.

Notice that we did not comment on the case d = 1. In one dimension, in fact, the
addition of a magnetic potential is trivial, in the sense that it is always possible to
remove it by a suitable gauge transformation. We refer to [2] for a complete survey
on the concept of magnetic field in any dimensions and its definition in terms of
differential forms and tensor fields.

• We adopt the standard notation | · | for the Euclidean norm on C
d . We use the same

symbol | · | for the operator norm: if M is a d × d matrix, we set

|M| := sup
v∈Cd

v �=0

|Mv|
|v| .

• Let v,w ∈ R
d , the centered dot operation v · w designates the scalar product of the

two vectors v,w in R
d .

• Given two vectors v,w ∈ R
d and a d × d matrix M, the double-centered dot

operation v · M · w stands for the vector-matrix-vector product which returns the
following scalar number

v · M · w :=
d∑

j,k=1

vk Mkjw j .

• We use the following definition for the L2-norm of a vector-valued function u =
(u1, u2, . . . , un) on R

d :

‖u‖[L2(Rd )]n :=
( n∑

j=1

‖u j‖2L2(Rd )

)1/2

.

2. Definition of Dirac and Pauli Hamiltonians in any Dimension

As already mentioned, our results will be stated in all dimensions d ≥ 1. In particular,
this requires a more careful analysis on the Dirac and Pauli operators as their explicit
form changes according to the underlying dimension (see Appendix in [22]). Since here
we are just interested in identifying the correct action of the operators, we disregard
issues with the operator domains for a moment.
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2.1. The Dirac operator. Generalising the expression (1.3) to arbitrary dimensions
requires ensuring existence of d + 1 Hermitian matrices α := (α1,α2, . . . ,αd) and
β satisfying the anticommutation relations

αμαν + αναμ = 2δμν ICn(d) ,

αμβ + βαμ = 0Cn(d) ,

β2 = ICn(d) ,

(2.1)

for μ, ν ∈ {1, 2, . . . , d}, where δμν represents the Kronecker symbol. The possibility to
find such matrices clearly depends on the dimension n(d) of the matrices themselves.
In this regard one can verify that the following distinction is needed:

n(d) :=
{

2
d+1
2 if d is odd,

2
d
2 if d is even.

(2.2)

Even though all that really cares are the anticommutation relations that the Dirac
matrices satisfy, for the purpose of visualisation of the supersymmetric structure of the
Dirac operator, we shall rely on a particular representation of these matrices, that is the
so-called standard representation. According to the standard representation one defines
the d+1matrices α = (α1,α2, . . . ,αd) and β iteratively (with respect to the dimension)
distinguishing between odd and even dimensions. For sake of clearness in the following
the Dirac matrices are written with a superscript (d) to stress that these are constructed at
the step corresponding to working in d dimensions, e.g., α = (α

(d)
1 ,α

(d)
2 , . . . ,α

(d)
d ) and

β(d) are the d + 1 Dirac matrices constructed in d dimensions. Moreover, for notation
convenience, we denote thematrix β(d) as the (d+1)-th α-matrix, namely β(d) := α

(d)
d+1.

Odd dimensions If d is odd, let us assume to know the n(d − 1) × n(d − 1) matrices
α

(d−1)
1 ,α

(d−1)
2 , . . . ,α

(d−1)
d corresponding to a previous step in the iteration. We then

define n(d) × n(d) matrices (where, according to (2.2), n(d) = 2n(d − 1)) in the
following way:

α
(d)
μ =

(
0 α

(d−1)
μ

α
(d−1)
μ 0

)
,

β(d) := α
(d)
d+1 =

(
ICn(d−1) 0

0 −ICn(d−1)

)
, μ = 1, 2, . . . , d.

Even dimensions If d is even, we define n(d)×n(d)matrices (where, according to (2.2),
n(d) = n(d − 1) = 2n(d − 2)) as follows:

α
(d)
1 =

(
0 ICn(d−2)

ICn(d−2) 0

)
,

α
(d)
μ+1 =

(
0 −iα(d−2)

μ

iα(d−2)
μ 0

)
, μ = 1, 2, . . . , d − 1,

and

β(d) := α
(d)
d+1 =

(
ICn(d−1) 0

0 −ICn(d−1)

)
.
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Notice that we are also using the convention that n(0) = 1 and that the 1× 1 matrix
α

(0)
1 = (1). This allows us to use the previous rule to construct the Dirac matrices

corresponding to the standard representation also in d = 1 and d = 2.
According to the construction above, one recognises that the Dirac matrices, regard-

less of the dimension, have all the following structure

αμ =
(

0 a∗
μ

aμ 0

)
, β =

(
ICn(d)/2 0

0 −ICn(d)/2

)
, μ = 1, 2, . . . , d, (2.3)

where aμ are n(d)/2 × n(d)/2 matrices (Hermitian if d is odd) such that

aμa∗
ν + aνa∗

μ = 2δμν ICn(d)/2 ,

a∗
μaν + a∗

ν aμ = 2δμν ICn(d)/2 ,
(2.4)

forμ, ν ∈ {1, 2, . . . , d}.Here, as usual, a∗
μ denotes the adjoint to aμ, that is the conjugate

transpose of aμ. We set a := (a1, . . . , ad).

Remark 2.1. Notice that, as a consequence of the fact that αμ are Hermitian (in any
dimension) and that αμ

2 = ICn(d) , one has |αμ| = 1, μ = 1, 2, . . . , d. Therefore, due
to the iterative construction above, one has that also the submatrices aμ and a∗

μ have
norm one, i.e. |aμ| = |a∗

μ| = 1.

In the standard representation, that is using expression (2.3) for the Dirac matrices,
the purely magnetic Dirac operator can be defined through the following block-matrix
differential expression

HD(A) :=
( 1

2 ICn(d)/2 D∗
D − 1

2 ICn(d)/2

)
, (2.5)

where

D := −ia · ∇A, D∗ := −ia∗ · ∇A.

Notice that in odd dimension, being the submatrices aμ Hermitian, one has D = D∗.

2.2. The square of the Dirac operator. From representation (2.5), it can be easily seen
that HD(A) can be decomposed as a sumof a 2×2 diagonal block and a 2×2 off-diagonal
block operators. More specifically, one has

HD(A) = Hdiag + Hoff-diag,

where

Hdiag :=
( 1

2 ICn(d)/2 0
0 − 1

2 ICn(d)/2

)
, Hoff-diag :=

(
0 D∗
D 0

)
.

As one may readily check, Hdiag and Hoff-diag satisfy the anticommutation relation

HdiagHoff-diag + Hoff-diagHdiag = 0. (2.6)
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This distinguishing feature places the Dirac operator within the class of operators with
supersymmetry. It is consequence of the supersymmetric condition (2.6) that squaring
out the Dirac operator gives

HD(A)2 = (Hdiag + Hoff-diag)
2 = H2

diag + H2
off-diag,

where

H2
diag =

( 1
4 ICn(d)/2 0

0 1
4 ICn(d)/2

)
, H2

off-diag =
(
D∗D 0
0 DD∗

)
.

Therefore, HD(A)2 turns out to have the following favorable form

HD(A)2 =
(
D∗D + 1

4 ICn(d)/2 0
0 DD∗ + 1

4 ICn(d)/2

)
. (2.7)

From property (2.4) of the Dirac submatrices, one can show that

D∗D = −∇2
A ICn(d)/2 − i

2
a∗ · B · a, DD∗ = −∇2

A ICn(d)/2 − i

2
a · B · a∗.

(2.8)

2.3. Low-dimensional illustrations. In order to becomemore confidentwith the previous
construction, we decided to present explicitly the situations of dimensions d = 1 and
d = 2 in the next two subsections. (Dimension d = 3 was already discussed above.)

2.3.1. Dimension one In the Hilbert space L2(R; C
2), the 1d Dirac operator reads

HD(0) := −iα∇ +
1

2
β,

where ∇ is just a weird notation for an ordinary derivative. With the notation HD(0) we
emphasise that the magnetic potential A has been chosen to be identically equal to zero,
since in one dimension it can be always removed by choosing a suitable gauge. One can
immediately verify that squaring out the operator HD(0) yields

HD(0)2 = −∇2 IC2 +
1

4
IC2 .

According to the rule provided above, in the standard representation, one chooses
α := σ1 and β := σ3, where σ1 and σ3 are two of the three Pauli matrices. Thus,
one conveniently writes

HD(0) =
( 1

2 D
D − 1

2

)
,

where D := −i∇ and

HD(0)2 =
(

HP(0) + 1
4 0

0 HP(0) + 1
4

)
, (2.9)

with the Pauli operator

HP(0) := −∇2. (2.10)

Hence, in one dimension, the Pauli operator coincides with the free one dimensional
Schrödinger operator acting in L2(R; R).
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2.3.2. Dimension two In the Hilbert space L2(R2; C
2), the 2d Dirac operator reads

HD(A) := −iα · ∇A +
1

2
β,

where α := (α1,α2) and β are 2 × 2 Hermitian matrices satisfying (2.1). Squaring out
HD(A) yields

HD(A)2 = −∇2
A IC2 − i

2
[α1,α2]B12 +

1

4
IC2 .

According to the rule provided above, in the standard representation, one chooses α1 :=
σ1, α2 := σ2 and β := σ3. This gives [α1,α2] = 2iσ3 and

HD(A) =
( 1

2 D∗
D − 1

2

)
,

where

D := −i∂1,A + ∂2,A, D∗ := −i∂1,A − ∂2,A,

and ∂ j,A := ∂ j + i A j , j = 1, 2. Thus

HD(A)2 = HP(A) +
1

4
IC2

with the Pauli operator

HP(A) := −∇2
A IC2 + σ3B12.

2.4. The Pauli operator. After these illustrations, let us come back to the general dimen-
sion d ≥ 1. Recall that the Dirac operator HD(A) has been introduced via (2.5) and that
its square satisfies (2.7). The following lemma specifies the form of the square according
to the parity of the dimension and offers a natural definition for the Pauli operator in any
dimension.

Lemma 2.1. (Algebraic definition of Pauli operators) Let d ≥ 1 and let n(d) be as
in (2.2).

• If d is odd, then

Hodd
D (A)2 =

(
Hodd

P (A) + 1
4 ICn(d)/2 0

0 Hodd
P (A) + 1

4 ICn(d)/2

)
, (2.11)

where we define

Hodd
P (A) := −∇2

A ICn(d)/2 − i

2
a · B · a. (2.12)

• If d is even, then

Heven
D (A)2 = Heven

P (A) +
1

4
ICn(d) , (2.13)

where we define

Heven
P (A) :=

(−∇2
A ICn(d)/2 − i

2 a∗ · B · a, 0
0 −∇2

A ICn(d)/2 − i
2 a · B · a∗

)
. (2.14)
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Proof. In odd dimensions one has that D∗ = D, therefore

D∗D = DD∗ = D2 = [ − ia · ∇A
]2 = −∇2

A ICn(d)/2 − i

2
a · B · a.

Thus, defining

Hodd
P (A) := D∗D

and using (2.7) one immediately gets the desired representation in odd dimensions. In
even dimensions one defines

H even
P (A) :=

(
D∗D 0
0 D∗D

)
.

Hence, from (2.7) and (2.8) one readily has the thesis. ��
Notice that in even dimensions the Pauli operator is a matrix operator with the same

dimension as the Dirac Hamiltonian. In odd dimensions the dimension of the Pauli
operator is a half of that of the Dirac operator. Recalling (2.2), we therefore set

n′(d) :=
{

n(d)/2 if d is odd,
n(d) if d is even. (2.15)

2.5. Domains of the operators. Finally, we specify the domains of the Dirac and Pauli
operators. Notice that the rather formal manipulations of the preceding subsections can
be justifiedwhen the action of the operators is considered on smooth functions of compact
support. Therefore, we shall define each of the operators as an extension of the operator
initially defined on such a restricted domain. We always assume that the vector potential
A ∈ L2

loc(R
d; R

d) is such that B ∈ L1
loc(R

d ; R
d×d).

We define the Pauli operator HP(A) acting on the Hilbert space L2(Rd; R
n′(d)) as

the self-adjoint Friedrichs extension of the operator initially considered on the domain
C∞
0 (Rd; R

n′(d)); notice that this initial operator is symmetric. Disregarding the spin-
magnetic term for a moment, the form domain can be identified with the magnetic
Sobolev space (cf. [30, Sec. 7.20])

H1
A (Rd; R

n′(d))

:=
{

u ∈ L2(Rd; R
n′(d)) : ∂ j,Au ∈ L2(Rd; R

n′(d)) for every j ∈ {1, . . . , d}
}

.

(2.16)

The operator domain is the subset of H1
A (Rd; R

n′(d)) consisting of functionsψ such that
∇2

Aψ ∈ L2(Rd ; R
n′(d)). To include the spin-magnetic term, we make the hypothesis that

there exist numbers a < 1 and b ∈ R such that, for every ψ ∈ C∞
0 (Rd),

1

2

∫
Rd

|B||ψ |2 ≤ a
∫
Rd

|∇Aψ |2 + b
∫
Rd

|ψ |2 . (2.17)

Then the spin-magnetic term is a relatively form-bounded perturbation of the already
defined operator with the relative bound less than one (recall Remark 2.1), so the Pauli
operator HP(A) with the same form domain (2.16) is indeed self-adjoint.
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For the domain of the Dirac operator (2.5) we take

D(HD(A)) := H1
A (Rd ; R

n(d)) . (2.18)

Notice that HD(A) is symmetric. Using Lemma 2.1, for every ψ ∈ C∞
0 (Rd; R

n(d)),
which is dense in D(HD(A)), we have the identity (with a slight abuse of notation)

‖HD(A)ψ‖2 = (ψ, HD(A)2ψ) = (ψ, HP(A)ψ) +
1

4
‖ψ‖2 .

Since the quadratic form of the Pauli operator HP(A) is closed on the space (2.16),
it follows that the Dirac operator HD(A) with (2.18) is a closed symmetric operator.
Under further assumptions about the vector potential (see [38, Sec. 4.3]), one can ensure
that HD(A) is actually self-adjoint, but our results hold under the present more general
setting.

3. Statement of the Main Results in any Dimension

Now we are in position to state our main results in any dimension. As anticipated, in
order to do that, we shall consider separately the three spinorial Hamiltonians.

3.1. The spinor Schrödinger equation. Let us start by considering thematrixSchrödinger
operator

HS(A, V ) := −∇2
A ICn + V in L2(Rd; C

n) , (3.1)

which is an extension of (1.4) to any dimension d ≥ 1 and n ≥ 1. Here V ∈
L1
loc(R

d; C
n×n) and A ∈ L2

loc(R
d ; R

d). The operator is properly introduced as the
Friedrichs extension of the operator initially defined on C∞

0 (Rd ; C
n). The hypotheses

in the theorems below ensure that HS(A, V ) is well defined as an m-sectorial operator.

3.1.1. A general result in any dimension

Theorem 3.1. Given any d, n ≥ 1, let A ∈ L2
loc(R

d ; R
d) be such that B ∈

L2
loc(R

d; R
d×d). Suppose that V ∈ L1

loc(R
d; C

n×n) admits the decomposition V =
V (1) + V (2) with components V (1) ∈ L1

loc(R
d) and V (2) = V (2) ICn , where V (2) ∈

L1
loc(R

d) is such that [∂r (r Re V (2))]+ ∈ L1
loc(R

d) and rV (1), r(Re V (2))−, r Im V (2) ∈
L2

loc(R
d). Assume that there exist numbers a1, a2, b1, b2, b, β1, β2, c ∈ [0, 1) satisfying

b21 + β2
1 + 2a2

1 < 1 and

2c + 2β2 + 2a2 + (d − 1)a2
1 + b2 + (b2 + a2)(β1 + a1) < 1 (3.2)

such that, for all n-vector u with components in C∞
0 (Rd),

∫
Rd

|V (1)||u|2 ≤ a2
1

∫
Rd

|∇Au|2,
∫
Rd

r2|V (1)|2|u|2 ≤ a2
2

∫
Rd

|∇Au|2, (3.3)
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∫
Rd

(Re V (2))−|u|2 ≤ b21

∫
Rd

|∇Au|2,
∫
Rd

r2(Re V (2))2−|u|2 ≤ b22

∫
Rd

|∇Au|2, (3.4)
∫
Rd

[∂r (r Re V (2))]+|u|2 ≤ b2
∫
Rd

|∇Au|2, (3.5)
∫
Rd

|Im V (2)||u|2 ≤ β2
1

∫
Rd

|∇Au|2,
∫
Rd

r2|Im V (2)|2|u|2 ≤ β2
2

∫
Rd

|∇Au|2, (3.6)
∫
Rd

r2|B|2|u|2 ≤ c2
∫
Rd

|∇Au|2. (3.7)

If d = 2 assume also that the inequality

1

2

∫
R2

|u|2
r

≤
∫
R2

r |∇Au|2 +
∫
R2

r(Re V (2))+|u|2 (3.8)

holds true. If, in addition, one has

A ∈ W 1,2p
loc (Rd) and Re V (2) ∈ W 1,p

loc (Rd) , where

⎧⎨
⎩

p = 1 if d = 1,
p > 1 if d = 2,
p = d/2 if d ≥ 3,

(3.9)

then HS(A, V ) has no eigenvalues, i.e. σp(HS(A, V )) = ∅.

Remark 3.1. In order to exclude zero modes we need to replace the second condition
in (3.2) with

2c + b2 + b21 + da2
1 + 2a2 + 2β2 < 2. (3.10)

(See Remark 5.1)

The theorem is further commented on in the following subsections.

3.1.2. Criticality of low dimensions Because of the criticality of theLaplacian in L2(Rd)

with d = 1, 2, the lower dimensional scenarios are a bit special.
First of all, due to the absence of magnetic phenomena in R

1, the corresponding
assumptions (3.3)–(3.7) in dimension d = 1 come with the classical gradient ∇ as a
replacement of the magnetic gradient ∇A. Consequently, because of the criticality of
the Laplacian in L2(R), necessarily V (1) = 0, (Re V (2))− = 0, [∂r (r Re V (2))]+ = 0
and Im V (2) = 0. Moreover, (3.7) is always satisfied if d = 1 being B equal to zero.
Hence, if d = 1, the theorem essentially says that the scalar Schrödinger operator
−∇2 + V in L2(R) has no eigenvalues, provided that V is non-negative and the radial
derivative ∂r (r V ) is non-positive. The requirements respectively exclude non-positive
and positive eigenvalues. The latter is a sort of the classical repulsiveness requirement
(cf. [33, Thm. XIII.58]).

Similarly, if d = 2 and there is no magnetic field (i.e. B = 0), the theorem essen-
tially says that the scalar Schrödinger operator −∇2 + V in L2(R2) has no eigenvalues,
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provided that V is non-negative and the radial derivative ∂r (r V ) is non-positive (again,
the conditions exclude non-positive and positive eigenvalues, respectively). On the other
hand, in twodimensions, the situation becomes interesting if themagnetic field is present.
Indeed, the magnetic Laplacian in L2(R2) is subcritical due to the existence of magnetic
Hardy inequalities (see [28] for the pioneering work and [2] for the most recent devel-
opments). The latter guarantee a source of sufficient conditions to make the hypotheses
(3.3)–(3.7) non-trivial (cf. [15]).

3.1.3. An alternative statement in dimension two We want to comment more on the
additional condition (3.8) in dimension d = 2. Using the 2d weighted Hardy inequality

∫
R2

r |∇Au|2 ≥ 1

4

∫
R2

|u|2
r

, (3.11)

it is easy to check that requiring “enough” positivity toRe V (2) will guarantee the validity
of (3.8). More specifically, the pointwise bound

[Re V (2)(x)]+ ≥ 1

4|x |2 ,

valid for almost every x ∈ R
2 is sufficient for (3.8) to hold. On the other hand, without

the positivity of Re V (2), condition (3.8) is quite restrictive. Indeed, if one assumes
V (2) = 0, then ensuring the validity of (3.8), would require to ensure the existence of
vector potentials A for which an improvement of the weighted Hardy inequality (3.11)
holds true (for (3.8) with V (2) = 0 is nothing but (3.11) with a better constant).

For this reason, following an idea introduced in [15, Sec. 3.2], we provide an alter-
native result, which avoids condition (3.8), but a stronger hypothesis compared to (3.2)
is assumed.

Theorem 3.2. Let d = 2 and let n, A, B and V be as in Theorem 3.1. Assume that there
exist numbers a1, a2, b1, b2, b, β1, β2, c, ε ∈ [0, 1) satisfying

b21 + β2
1 + 2a2

1 < 1 and

2c + 2β2 + 2a2 + a2
1 + b2 + (b2 + a2)(β1 + a1) + 4ε +

17

ε
(a2

1 + β2
1 ) < 1, (3.12)

such that, for all n-vector u with components in C∞
0 (R2), inequalities (3.3)–(3.7) hold

true. If, in addition, one has

A ∈ W 1,2p
loc (R2) and Re V (2) ∈ W 1,p

loc (R2),

where p > 1,

then HS(A, V ) has no eigenvalues, i.e. σp(HS(A, V )) = ∅.
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3.1.4. A simplification in higher dimensions In dimensions d ≥ 3, as a consequence of
the diamagnetic inequality (see [25] and [30, Thm. 7.21])

|∇|ψ |(x)| ≤ |∇Aψ(x)| a.e. x ∈ R
d , (3.13)

together with the classical Hardy inequality

∫
Rd

|ψ(x)|2
|x |2 dx ≤ 4

(d − 2)2

∫
Rd

|∇ψ |2 dx, ∀ψ ∈ C∞
0 (Rd), d ≥ 3, (3.14)

applied to |ψ |, one can prove the following magnetic Hardy inequality

∫
Rd

|ψ(x)|2
|x |2 dx ≤ 4

(d − 2)2

∫
Rd

|∇Aψ |2 dx, ∀ψ ∈ C∞
0 (Rd), d ≥ 3. (3.15)

Using (3.15), it is easy to check that the first inequalities in (3.3), (3.4) and (3.6) follow
respectively as a consequence of the second inequalities in (3.3), (3.4) and (3.6) with

a2
1 := 2

d − 2
a2, b21 := 2

d − 2
b2, β2

1 := 2

d − 2
β2,

and assuming a2, b2, β2 < (d−2)/2.Hence, in the higher dimensions d ≥ 3, conditions
in (3.2) simplifies to

2

d − 2

(
b2 + β2 + 2a2

)
< 1 and

2c + 2β2 +
2(2d − 3)

d − 2
a2 + b2 +

√
2√

d − 2
(b2 + a2)(

√
β2 +

√
a2) < 1. (3.16)

In particular, this justifies the fact that in Theorem 1.1 which is a special case of Theo-
rem 3.1 for d = 3 (and n = 2) we assume only the validity of (1.8), (1.9) and (1.10),
moreover (3.2) is replaced by (1.7) (notice that dropping the subscript ·2 in the constants
and fixing d = 3 in (3.16) gives (1.7)).

3.1.5. The Aharonov–Bohm field Let us come back to dimension two and consider the
Aharonov–Bohm magnetic potential

A(x, y) := (− sin θ, cos θ)
α(θ)

r
, (3.17)

where (x, y) = (r cos θ, r sin θ) is the parametrisationvia polar coordinates, r ∈ (0,∞),

θ ∈ [0, 2π), and α : [0, 2π) → R is an arbitrary bounded function. In this specific case,
there is an explicit magnetic Hardy-type inequality (see [28, Thm. 3])

∫
R2

|∇Aψ |2 ≥ γ 2
∫
R2

|ψ |2
r2

, ∀ψ ∈ C∞
0 (R2\{0}), γ := dist{ᾱ, Z}, (3.18)

where ᾱ has the physical meaning of the total magnetic flux:

ᾱ := 1

2π

∫ 2π

0
α(θ) dθ. (3.19)
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Notice that in this case the magnetic field B equals zero everywhere except for x = 0;
indeed

B = 2πᾱδ (3.20)

in the sense of distribution, where δ is the Dirac delta function.
The Aharonov–Bohm potential (3.17) is not in L2

loc(R
2), so the matrix Schrödinger

operator is not well defined as described below (3.1) and Theorem 3.1 does not apply
to it as such. Now the Schrödinger operator HS(A, V ) is introduced as the Friedrichs
extension of the operator (1.4) initially defined on C∞

0 (R2\{0}; C
n). At the same time,

it is possible to adapt the method of multipliers in such a way that it covers this situation
as well. The following result can be considered as an extension of [15, Thm. 5] in the
scalar case to the spinorial Schrödinger equation.

Theorem 3.3. Let d = 2 and let A be as in (3.17) with ᾱ /∈ Z and V as in Theorem 3.1.
Assume that there exist numbers a, b, b, β, ε ∈ [0, 1) satisfying

1

γ
(b + β + 2a) < 1 and

2β + 2a +
a

γ
+ b2 +

1√
γ

(b + a)(
√

a +
√

β) +

(
1

4
− γ 2

)[
ε +

(a + β)

εγ 3

]
< 1,

(3.21)

with γ := dist{ᾱ, Z}, such that, for all n-vector u with component in C∞
0 (R2\{0}),

inequalities

∫
R2

r2|V (1)|2|u|2 ≤ a2
∫
R2

|∇Au|2, (3.22)

and

∫
R2

r2(Re V (2))2−|u|2 ≤ b2
∫
R2

|∇Au|2,
∫
R2

r2|Im V (2)|2|u|2 ≤ β2
∫
R2

|∇Au|2, (3.23)
∫
R2

[∂r (r Re V (2))]+|u|2 ≤ b2
∫
R2

|∇Au|2 (3.24)

hold true. If, in addition, one has

Re V (2) ∈ W 1,p
loc (R2), p > 1,

then HS(A, V ) has no eigenvalues, i.e. σp(HS(A, V )) = ∅.
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3.1.6. On the regularity condition (3.9) and their replacement As we will see in more
details later on (see Sect. 4.2), the additional local regularity assumptions (3.9) on the
potentials are needed in order to justify rigorously the algebraic manipulations that the
method of multipliers introduces. A formal proof of Theorem 3.1 would require just the
weaker conditions A ∈ L2

loc(R
d) and V ∈ L1

loc(R
d).

The unpleasant conditions (3.9) can be removed if we consider the situation of poten-
tials V and A with just one singularity at the origin (see Sect. 4.5). This specific case is
worth being investigated as it allows to cover a large class of non vanishing potentials,
e.g., V (x) = a/|x |α ICn with a �= 0 and α > 0, and also the Aharonov–Bohm vector
fields (3.17) which otherwise would be ruled out by conditions (3.9). It is evident that
the Coulomb singularity −ze2/r at r = 0, with z|e| the nuclear charge, is also included
in the class of available potentials, this fact is remarkable in view of the great interest in
quantum mechanics on stability of atoms, both in the pure electric framework and when
magnetic interactions are included (the interested reader is referred to the monograph
[31] which provides a thorough account of stability of matter and to the original papers
[37] and to [18] and [32] when also magnetic effects are analyzed).

3.1.7. An alternative general result in the self-adjoint setting Obviously, Theorem 3.1
above is valid, with clear simplifications, also in the self-adjoint situation, namely con-
sidering Hermitian matrix-valued potentials V . In this case, however, we also have an
alternative result thatwehave decided to present because the “repulsivity” condition (3.5)
is replaced by a “more classical” assumption in terms of r∂r V (2). Furthermore, condi-
tion (3.8) is not needed in this context. More precisely we have the following result.

Theorem 3.4. Let d, n ≥ 1 and let A ∈ L2
loc(R

d ; R
d) be such that B ∈ L2

loc(R
d ; R

d×d).

Suppose that V ∈ L1
loc(R

d ; R
n×n) admits the decomposition V = V (1) + V (2) with

components V (1) ∈ L1
loc(R

d) and V (2) = V (2) ICn , where V (2) ∈ L1
loc(R

d) is such
that [r∂r V (2)]+ ∈ L1

loc(R
d) and r V (1) ∈ L2

loc(R
d). Assume that there exist numbers

a1, a2, b, b, c ∈ [0, 1) satisfying

a2
1 + b2 < 1 and 2c + b2 + da2

1 + 2a2 < 2 (3.25)

such that, for all n-vector u with components in C∞
0 (Rd), (3.3) and (3.7) hold and,

moreover,

∫
Rd

V (2)
− |u|2 ≤ b2

∫
Rd

|∇Au|2,
∫
Rd

[r∂r V (2))]+|u|2 ≤ b2
∫
Rd

|∇Au|2. (3.26)

If in addition (3.9) holds true, then HS(A, V ) has no eigenvalues, i.e. σp(HS(A, V )) =
∅.

Remark 3.2. Here, the first condition in (3.25) is not explicitly used in the proof of the
theorem, but it is needed to give sense to theHamiltonian HS(A, V ).We refer to Sect. 4.1
for details.
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3.2. The Pauli equation. Recall that the definition of the Pauli operator depends on the
parity of the dimension, cf. Lemma 2.1.

Theorem 3.5. Let d ≥ 3be an integer and let n′(d) be as in (2.15). Let A ∈ L2
loc(R

d; R
d)

be such that B ∈ L2
loc(R

2; R
d×d). Suppose that V ∈ L1

loc(R
d ; C

n′(d)×n′(d)) admits the

decomposition V = V (1) + V (2) with components V (1) ∈ L1
loc(R

d ; C
n′(d)×n′(d)) and

V (2) = V (2) I
Cn′(d) , where V (2) ∈ L1

loc(R
d) is such that [∂r (r Re V (2))]+ ∈ L1

loc(R
d)

and rV (1), r(Re V (2))−, r Im V (2) ∈ L2
loc(R

d). If d is even, we additionally require
V (1) = V (1) I

Cn′(d) . Assume that there exist numbers a, b, β, b, c ∈ [0, 1) satisfying

2

d − 2

(
b + β + 2

(
a +

d

2
c
))

< 1,

2c + 2β +
2(2d − 3)

d − 2

(
a +

d

2
c
)
+ b2

+

√
2√

d − 2

(
b +

(
a +

d

2
c
))(√

β +

√
a +

d

2
c
)

< 1, (3.27)

such that, for all n′(d)-vector u with components in C∞
0 (Rd), the inequalities∫

Rd
r2|V (1)|2|u|2 ≤ a2

∫
Rd

|∇Au|2,
∫
Rd

r2|B|2|u|2 ≤ c2
∫
Rd

|∇Au|2, (3.28)

and ∫
Rd

r2(Re V (2))2−|u|2 ≤ b2
∫
Rd

|∇Au|2,
∫
Rd

r2|Im V (2)|2|u|2 ≤ β2
∫
Rd

|∇Au|2, (3.29)
∫
Rd

[∂r (r Re V (2))]+|u|2 ≤ b2
∫
Rd

|∇Au|2, (3.30)

hold true. If, in addition, one has

A ∈ W 1,d
loc (Rd) and Re V (2) ∈ W 1,d/2

loc (Rd),

then HP(A, V ) has no eigenvalues, i.e. σp(HP(A, V )) = ∅.

Remark 3.3. (Even parity) Observe that in the even dimensional case we assume also the
component V (1) to be diagonal. This is needed in order not to spoil the diagonal form
in the definition (2.14) of the free Pauli operator, which will represent a crucial point in
the strategy underlying the proof (we refer to Sect. 6.2 for more details).

The case of low dimensions d = 1, 2 is intentionally not present in Theorem 3.5 for
the following reasons.

Remark 3.4. (Dimension one) As discussed in Sect. 2.3.1, the one-dimensional Pauli
operator coincides with the scalar potential-free Schrödinger operator −∇2 (i.e. the
one-dimensional Laplacian), hence the absence of the point spectrum is trivial in this
case. Formally, it is already guaranteed by Theorem 3.1 with d = n = 1 (see also
Sect. 3.1.2).
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Remark 3.5. (Dimension two) The two dimensional case is rather special because of the
paramagnetism of the Pauli operator. As a matter of fact, the total absence of the point
spectrum is no longer guaranteed even in the purely magnetic case (i.e. V = 0). In this
case the Pauli operator has the form (see Sect. 2.3.2)

HP(A, 0) =
(−∇2

A + B12 0
0 −∇2

A − B12

)
. (3.31)

For smooth vector potentials, the supersymmetry says that the operators −∇2
A ± B12

have the same spectrum except perhaps at zero (see [9, Thm. 6.4]). Hence the absence
of the point spectrum for the two-dimensional Pauli operator is in principle governed by
our Theorem 3.1 with d = 2 and n = 1 (or Theorem 3.2) or its self-adjoint counterpart
Theorem 3.4 for the special choice V = B12 IC2 . Unfortunately, we do not see how to
derive any non-trivial condition on B12 to guarantee the total absence of eigenvalues (cf.
Remark 5.2). Physically, it does not come as a big surprise because of the celebrated
Aharonov–Casher effect, which states that the number of zero-eigenstates is equal to the
integer part of the total magnetic flux (see [9, Sec. 6.4]). On the one hand, the absence
of negative eigenvalues does follow as an immediate consequence of the standard lower
bound ∫

R2
|∇Au|2 ≥ ±

∫
R2

B12|u|2, ∀u ∈ C∞
0 (R2), (3.32)

which holds with either of the sign ± (see, e.g., [1, Sec. 2.4]).
Notice that when an attractive potential is added to the two-dimensional Pauli oper-

ator, it has been proved [17,39] that the perturbed Hamiltonian presents always (i.e.
no matter how small is chosen the coupling constant) negative eigenvalues (not only
due to the Aharonov–Casher zero modes turning into negative ones, but it is also the
essential part of the spectrum that contributes to their appearance). This fact can be seen
as a quantification of the aforementioned paramagnetic effect of the Pauli operators in
contrast to the diamagnetic effect which holds true for magnetic Schrödinger operators.

3.3. The Dirac equation. Finally, we state our results for the purely magnetic Dirac
operator (2.5).

Theorem 3.6. Let d ≥ 3 and let n(d) be as in (2.2). Let A ∈ L2
loc(R

d; R
d) be such that

B ∈ L2
loc(R

d; R
d×d). Assume that there exists a number c ∈ [0, 1) satisfying

2d

d − 2
c < 1 and 2c +

d(2d − 3)

d − 2
c +

√
2√

d − 2

(d

2
c
)3/2

< 1 (3.33)

such that, for all n(d)-vector u with components in C∞
0 (Rd), the inequality∫

Rd
r2|B|2|u|2 ≤ c2

∫
Rd

|∇Au|2 (3.34)

holds true. If in addition A ∈ W 1,d
loc (Rd), then HD(A) has no eigenvalues, i.e.

σp(HD(A)) = ∅.

As discussed in Sect. 2.3.1, the square of the one-dimensional Dirac operator is just
the one-dimensional Laplacian shifted by a constant (cf. (2.9)), hence the absence of
the point spectrum follows at once in this case. On the other hand, the two-dimensional
analogue of Theorem 3.6 is unavailable, because of the absence of a two-dimensional
variant of Theorem 3.5 in the Pauli case, cf. Remark 3.5.
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4. Scalar Electromagnetic Schrödinger Operators Revisited

In this section, we leave aside the operators acting on spinor Hilbert spaces and focus on
scalar electromagnetic Schrödinger operators (1.1). This will be useful later on when, in
the following sections, we reduce our analysis to the level of components. We provide a
careful and deep analysis of the method of multipliers, stressing on the major outcomes
that the technique provides in this context. Our goal is to represent a reader-friendly
overview of the original ideas and main outcomes of [15,16] to tackle the issue of the
total absence of eigenvalues of scalar Schrödinger operators. Furthermore,we go through
the more technical parts by rigorously establishing some results that were just sketched
in the previous works.

4.1. Definition of the operators. For the sake of completeness, we start with recalling
some basic facts on the rigorous definition of the scalar electromagnetic Schrödinger
operators.

Let d ≥ 1 be any natural number. Let A ∈ L2
loc(R

d; R
d) and V ∈ L1

loc(R
d; C)

be respectively a vector potential and a scalar potential (the latter possibly complex-
valued). ThequantumHamiltonian apt to describe themotionof a non-relativistic particle
interacting with the electric field −∇V and the magnetic field B := (∇ A) − (∇ A)t is
represented by the scalar electromagnetic Schrödinger operator

HA,V := −∇2
A + V in L2(Rd). (4.1)

Observe that the magnetic field is absent in R
1 and A can be chosen to be equal to zero

without loss of generality. Therefore the two-dimensional framework is the lowest in
which the introduction of a magnetic field is non-trivial.

As usual, the sum in (4.1) should be understood in the sense of forms after assuming
that V is relatively form-bounded with respect to the magnetic Laplacian −∇2

A with the
relative bound less than one. We shall often proceed more restrictively by assuming the
form-subordination condition∫

Rd
|V ||u|2 ≤ a2

∫
Rd

|∇Au|2, ∀ u ∈ DA := {u ∈ L2(Rd) : ∇Au ∈ L2(Rd)}, (4.2)

where a ∈ [0, 1) is a constant independent of u. Assumption (4.2) in particular implies
that the quadratic form

hV [u] :=
∫
Rd

V |u|2, u ∈ D(hV ) :=
{

u ∈ L2(Rd) :
∫
Rd

|V ||u|2 < ∞
}

is relatively bounded with respect to the quadratic form

h A[u] :=
∫
Rd

|∇Au|2, u ∈ D(h A) = DA,

with the relative bound less than one. Consequently, the sum h A,V := h A + hV with
domain D(h A,V ) := DA is a closed and sectorial form. Therefore HA,V as defined
in (4.1) makes sense as the m-sectorial operator associated to h A,V via the representation
theorem (cf. [24, Thm. VI.2.1]).
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With the aim of including also potentials which are not necessarily subordinated in
the spirit of (4.2), now we present an alternative way to give a meaning to the operator
HA,V assuming different conditions on the electric potential V . We introduce the form

h(1)
A,V [u] :=

∫
Rd

|∇Au|2 +
∫
Rd

(Re V )+|u|2, u ∈ D(h(1)
A,V ) := C∞

0 (Rd)
|||·|||

,

with

|||u|||2 :=
∫
Rd

|∇Au|2 +
∫
Rd

(Re V )+|u|2 +
∫
Rd

|u|2.

The form h(1)
A,V is closed by definition. Now instead of assuming the smallness condi-

tion (4.2) for the whole V , we take the advantage of the splitting in real (positive and
negative part) and imaginary part of the potential to require the following more natural
subordination: There exist b, β ∈ [0, 1) with

b2 + β2 < 1 (4.3)

such that, for any u ∈ D(h(1)
A,V ),

∫
Rd

(Re V )−|u|2 ≤ b2
∫
Rd

|∇Au|2,
∫
Rd

|Im V ||u|2 ≤ β2
∫
Rd

|∇Au|2. (4.4)

In other words, we require the subordination just for the parts (Re V )− and Im V of the
potential V . Hence, defining

h(2)
A,V [u] := −

∫
Rd

(Re V )−|u|2 + i
∫
Rd

Im V |u|2,

the form h(2)
A,V is relatively bounded with respect to h(1)

A,V , with the relative bound less

than one (see (4.3)). Consequently, as above, the sum h A,V = h(1)
A,V +h(2)

A,V is a closed and

sectorial form and D(h A,V ) = D(h(1)
A,V ). Therefore, also in this more general setting,

HA,V is the m-sectorial operator associated with h A,V .

In order to consider simultaneously both these two possible configurations, we intro-
duce the decomposition V = V (1) + V (2) and assume that there exist a, b, β ∈ [0, 1)
satisfying

a2 + b2 + β2 < 1 (4.5)

such that, for any u ∈ DA, ∫
Rd

|V (1)||u|2 ≤ a2
∫
Rd

|∇Au|2, (4.6)

and ∫
Rd

(Re V (2))−|u|2 ≤ b2
∫
Rd

|∇Au|2,
∫
Rd

|Im V (2)||u|2 ≤ β2
∫
Rd

|∇Au|2. (4.7)

Let us define h(1)
A,V [u] := ∫

Rd |∇Au|2 +∫
Rd (Re V (2))+|u|2 withD(h(1)

A,V ) := C∞
0 (Rd)

|||·|||
,

where

|||u|||2 :=
∫
Rd

|∇Au|2 +
∫
Rd

(Re V (2))+|u|2 +
∫
Rd

|u|2,
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and h(2)
A,V [u] := ∫

Rd V (1)|u|2 −∫
Rd (Re V (2))−|u|2 + i

∫
Rd Im V (2)|u|2 withD(h(2)

A,V ) :=
D(h(1)

A,V ). By the same reasoning as above, one has that HA,V is the m-sectorial operator

associated with the closed and sectorial form h A,V := h(1)
A,V + h(2)

A,V with D(h A,V ) :=
D(h(1)

A,V ). In order to drop the dependance on the form h in the notation of the domain
that will not be used explicitly any more, from now on we will denote

DA,V := D(h A,V ).

4.2. Further hypotheses on the potentials. As we shall see below, in order to justify
rigorously the algebraic manipulations that the method of multipliers introduces, we
need to assume more regularity on the magnetic potential A and on the electric potential
V = V (1) + V (2) than the ones required to give a meaning to the electromagnetic
Hamiltonian (4.1).

4.2.1. Further hypotheses on the magnetic potential We assume

A ∈ W 1,p
loc (Rd ; R

d) where

⎧⎨
⎩

p = 2 if d = 1,
p > 2 if d = 2,
p = d if d ≥ 3.

(4.8)

In particular, these assumptions ensure that for any u ∈ DA then

Au ∈ L2
loc(R

d ; R
d) (4.9)

and the same can be said for ∂l Au, with l = 1, 2, . . . , d. Indeed, from the Hölder
inequality, one has that for any k = 1, 2, . . . , d

‖Aku‖2
L2
loc(R

d )
≤ ‖Ak‖L p

loc(R
d )‖u‖Lq

loc(R
d ) with 1/p + 1/q = 1/2. (4.10)

Observe that the diamagnetic inequality (3.13) and u ∈ DA guarantee |u| ∈ H1(Rd).

By the Sobolev embeddings

H1(Rd) ↪→ Lq(Rd) where

⎧⎨
⎩

q = ∞ if d = 1,
2 ≤ q < ∞ if d = 2,
q = 2∗ := 2d/(d − 2) if d ≥ 3.

(4.11)

Consequently, if one chooses q as in (4.11), then ‖u‖Lq (Rd ) is finite. If, moreover, the
Hölder conjugated exponent p is as in our assumption (4.8), then ‖Ak‖L p

loc(R
d ) is finite

and therefore, from (4.10), Aku ∈ L2
loc(R

d).

Notice that, given any function u ∈ DA as soon as Au ∈ L2(Rd), then∇u ∈ L2(Rd)

and therefore u ∈ H1(Rd). In other words

{u ∈ DA & Au ∈ L2(Rd)} ⊆ H1(Rd). (4.12)
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4.2.2. Further hypotheses on the electric potential Recalling the decomposition V =
V (1)+V (2), we assume the following condition on the real part of the second component:

Re V (2) ∈ W 1,p
loc (Rd ; R) where

⎧⎨
⎩

p = 1 if d = 1,
p > 1 if d = 2,
p = d/2 if d ≥ 3

(4.13)

By the same reasoning as done above for the magnetic potential, one can observe that
assumption (4.13) ensures that for any u ∈ H1

A(Rd), then

Re V (2)|u|2 ∈ L1
loc(R

d),

and the same can be said for ∂k Re V (2), with k = 1, 2, . . . , d.

4.3. The method of multipliers: main ingredients. The purpose of this subsection is to
provide, in a unified and rigorous way, the proof of the common crucial starting point
of the series of works [3,4,15,16] for proving the absence of the point spectrum of the
electromagnetic Hamiltonians HA,V in various settings.

Since this section is intended as a review of already known results on scalar
Schrödinger Hamiltonians, here we will be concerned almost exclusively with the most
interesting and more troublesome case of the spectral parameter λ ∈ C within the sector
of the complex plane given by

{λ ∈ C : Re λ ≥ |Im λ|}. (4.14)

On the other hand, how to deal with the complementary sector, i.e., {λ ∈ C : Re λ <

|Im λ|} can be seen explicitly in the proof of our original results (see Sects. 5 and 6).
The proof of the absence of eigenvalues within the sector defined in (4.14) is based on

the following crucial result obtained by means of the method of multipliers. It basically
provides an integral identity forweak solutionsu to the resolvent equation (HA,V −λ)u =
f , where f : R

d → C is a suitable function. More specifically, u ∈ DA,V is such that
the identity

∫
Rd

∇Au · ∇Av +
∫
Rd

V uv̄ = λ

∫
Rd

uv̄ +
∫
Rd

f v̄ (4.15)

holds for any v ∈ DA,V , where f is any suitable function for which the last integral
in (4.15) is finite. The crucial result reads as follows.

Lemma 4.1. Let d ≥ 1, let A ∈ L2
loc(R

d; R
d) be such that B ∈ L2

loc(R
d; R

d×d)

and (4.8) holds. Suppose that V ∈ L1
loc(R

d ; C) admits the decomposition V = V (1) +
V (2) with Re V (2) satisfying (4.13). Let u ∈ DA,V be a solution to (4.15), with |Im λ| ≤
Re λ and r f ∈ L2(Rd), satisfying

(
r2|V (1)|2 + r2(Re V (2))2− + [∂r (r Re V (2))]+ + r2|Im V 2|2 + r2|B|2

)
|u|2 ∈ L1(Rd).

Then also r |∇Au−|2 + r−1|u|2 + [∂r (r Re V (2))]−|u|2 + r [Re V (2)]+|u|2 ∈ L1(Rd) and
the identity
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∫
Rd

|∇Au−|2 dx + (Re λ)−1/2|Im λ|
∫
Rd

|x ||∇Au−|2 dx

− (d − 1)

2
(Re λ)−1/2|Im λ|

∫
Rd

|u|2
|x | dx

+2 Im
∫
Rd

x · B · u−∇Au− dx

+(d − 1)
∫
Rd

Re V (1)|u|2 dx + 2Re
∫
Rd

x · V (1)u−∇Au− dx

+(Re λ)−1/2|Im λ|
∫
Rd

|x |Re V (1)|u|2 dx

−
∫
Rd

∂r (|x |Re V (2))|u|2 dx − 2 Im
∫
Rd

x Im V (2)u−∇Au− dx

+(Re λ)−1/2|Im λ|
∫
Rd

|x |Re V (2)|u|2 dx

= (d − 1)Re
∫
Rd

f ū dx + 2Re
∫
Rd

x · f −∇Au− dx

+(Re λ)−1/2|Im λ|Re
∫
Rd

|x | f ū dx (4.16)

holds true with

u−(x) := e−i(Re λ)1/2 sgn(Im λ)|x |u(x) (4.17)

and f − defined in the analogous way.

Remark 4.1 (Dimension one). Since the addition of a magnetic potential is trivial in R
1,

the corresponding identity (4.16) with d = 1 comes with the classical gradient ∇ as a
replacement of the magnetic gradient ∇A, moreover the term involving B is not present.

The proof of Lemma 4.1 can be found in Sect. 4.3.1, here we just provide its main
steps:

• Step one: Approximation of u with a sequence of compactly supported functions
u R (see definition (4.28) below) which satisfy a related problem with small (in a
suitable topology) corrections. This first step is necessary in order to justify rigorously
the algebraic manipulations that the method of multipliers introduces when the test
function v is chosen to be possibly unbounded (so that it is not even a priori clear if
this specific choice v belongs to L2(Rd)).

• Step two:Development of the method of multipliers for u R (main core of the proof)
in order to produce the analogue of identity (4.16) for the approximating sequence.
This step will require a further approximation procedure which will ensure that the
chosen multiplier v (see (4.51) below) is in DA,V and therefore allowed to be taken
as a test function.

• Step three: Proof of (4.16) by taking the limit as R → ∞ in the previous identity
and using the smallness of the corrections which is quantified in Lemma 4.3 below.

As a byproduct of the crucial identity of Lemma 4.1, we get the following inequality.
For the sake of completeness, we provide it with a proof.
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Lemma 4.2. Under the hypotheses of Lemma 4.1 the following estimate

‖∇Au−‖2L2(Rd )
+ (Re λ)−1/2|Im λ|

[ ∫
Rd

|x ||∇Au−|2 dx

− (d − 1)

2

∫
Rd

|u−|2
|x | dx +

∫
Rd

|x |(Re V (2))+|u−|2 dx

]

≤ 2
(
‖|x ||B|u−‖L2(Rd ) + ‖|x | Im V (2)u−‖L2(Rd ) + ‖|x | f ‖L2(Rd )

)
‖∇Au−‖L2(Rd )

+(d − 1)‖| f |1/2|u−|1/2‖2L2(Rd )
+ ‖[∂r (|x |Re V (2))]1/2+ u−‖2L2(Rd )

+
(
‖|x |(Re V (2))−u−‖L2(Rd ) + ‖|x | f ‖L2(Rd )

)
(
‖|Im V (2)|1/2u−‖L2(Rd ) + ‖| f |1/2|u−|1/2‖L2(Rd )

)
(4.18)

holds true.

Proof of Lemma 4.2. Let us consider identity (4.16) with V (1) = 0. In passing, notice
that requiring V (1) = 0 do not entails any loss of generality. Indeed since, according
to our notations, V (1) represents the component of the electric potential V which is
fully subordinated to the magnetic Dirichlet form (in the sense given by (4.6)), it can be
treated at the same level of the forcing term f.

After splitting Re V (2) in its positive and negative parts, namely using Re V (2) =
(Re V (2))+ − (Re V (2))−, identity (4.16) with V (1) = 0 reads as follows

∫
Rd

|∇Au−|2 dx + (Re λ)−1/2|Im λ|
[ ∫

Rd
|x ||∇Au−|2 dx − (d − 1)

2∫
Rd

|u|2
|x | dx +

∫
Rd

|x |(Re V (2))+|u|2 dx

]

= −2 Im
∫
Rd

x · B · u−∇Au− dx

+
∫
Rd

∂r (|x |Re V (2))|u|2 dx + 2 Im
∫
Rd

x Im V (2)u−∇Au− dx

+(Re λ)−1/2|Im λ|
∫
Rd

|x |(Re V (2))−|u|2 dx

+(d − 1)Re
∫
Rd

f ū dx + 2Re
∫
Rd

x f −∇Au− dx

+(Re λ)−1/2|Im λ|Re
∫
Rd

|x | f ū dx . (4.19)

We consider first

I := −2 Im
∫
Rd

x · B · u−∇Au− dx .

By the Cauchy–Schwarz inequality, it immediately follows that

|I | ≤ 2‖|x ||B|u−‖L2(Rd )‖∇Au−‖L2(Rd ). (4.20)
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Now we consider the terms in (4.19) involving V (2), that is

II :=
∫
Rd

∂r (|x |Re V (2))|u|2 dx + 2 Im
∫
Rd

x Im V (2)u−∇Au− dx

+ (Re λ)−1/2|Im λ|
∫
Rd

|x |(Re V (2))−|u|2 dx

= II1 + II2 + II3.

Using that |u| = |u−|, the term II1 can be easily estimated in this way:

II1 ≤
∫
Rd

[∂r (|x |Re V (2))]+|u|2 dx = ‖[∂r (|x |Re V (2))]1/2+ u−‖2L2(Rd )
. (4.21)

By the Cauchy–Schwarz inequality one has

II2 ≤ |II2| ≤ 2‖|x | Im V (2)u−‖L2(Rd )‖∇Au−‖L2(Rd ). (4.22)

Finally, if Im λ �= 0, we also need to estimate II3. First notice that choosing v = Im λ
|Im λ|u

in (4.15) (with V (1) = 0) and taking the imaginary part of the resulting identity, gives
the following L2- bound

‖u‖L2(Rd ) ≤ |Im λ|−1/2
(
‖|Im V (2)|1/2u‖L2(Rd ) + ‖| f |1/2|u|1/2‖L2(Rd )

)
. (4.23)

Using the Cauchy–Schwarz inequality, the L2-bound (4.23), the fact that we are working
in the sector |Im λ| ≤ Re λ, and again using that |u| = |u−|, we have

II3 ≤ (Re λ)−1/2|Im λ|‖|x |[Re V (2)]−u‖L2(Rd )‖u‖L2(Rd )

≤ ‖|x |[Re V (2)]−u−‖L2(Rd )

(
‖|Im V (2)|1/2u−‖L2(Rd ) + ‖| f |1/2|u−|1/2‖L2(Rd )

)
.

(4.24)

Now we estimate the terms in (4.19) involving f, namely

III := (d − 1)Re
∫
Rd

f ū dx + 2Re
∫
Rd

x f −∇Au− dx

+ (Re λ)−1/2|Im λ|Re
∫
Rd

|x | f ū dx

= III1 + III2 + III3.

In a similar way as done to estimate II1, II2 and II3, one gets

III1 ≤ (d − 1)‖| f |1/2|u−|1/2‖2L2(Rd )
, III2 ≤ 2‖|x | f ‖L2(Rd )‖∇Au−‖L2(Rd )

(4.25)

and

III3 ≤ (Re λ)−1/2|Im λ|‖|x | f ‖L2(Rd )‖u‖L2(Rd )

≤ ‖|x | f ‖L2(Rd )

(
‖|Im V (2)|1/2u−‖L2(Rd ) + ‖| f |1/2|u−|1/2‖L2(Rd )

)
.

(4.26)

Applying estimates (4.20), (4.21),(4.22) and (4.24) together with (4.25) and (4.26)
in (4.19), we obtain the thesis. ��

Nowwe are in a position to prove Lemma 4.1 on the basis of the three steps presented
above.
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4.3.1. Proof of Lemma 4.1

• Step one. The desired approximation by compactly supported functions is achieved
by a usual “horizontal cut-off.” Let μ : [0,∞) → [0, 1] be a smooth function such
that

μ(r) =
{
1 if 0 ≤ r ≤ 1,
0 if r ≥ 2.

Given a positive number R, we set μR(x) := μ(|x |R−1). Then μR : R
d → [0, 1] is

such that

μR = 1 in BR(0), μR = 0 in R
d\B2R(0),

|∇μR | ≤ cR−1, |�μR | ≤ cR−2, (4.27)

where BR(0) stands for the open ball centered at the origin and with radius R > 0
and c > 1 is a suitable constant independent of R. For any function h : R

d → C we
then define the compactly supported approximating family of functions by setting

h R := μRh. (4.28)

If u ∈ DA,V is a weak solution to−∇2
Au+V u = λu+ f , it is not difficult to show that

the compactly supported function u R belongs to DA,V and solves in a weak sense
the following related problem

− ∇2
Au R + V u R = λu R + fR + err(R) in R

d , (4.29)

where

err(R) := −2∇Au · ∇μR − u�μR . (4.30)

The next easy result shows that the extra terms (4.30), which originate from the
introduction of the horizontal cut-off μR , become negligible as R increases.

Lemma 4.3. Given u ∈ DA,V , let err(R) be as in (4.30). Then the following limits

‖err(R)‖L2(Rd )

R→∞−−−→ 0, ‖|x |err(R)‖L2(Rd )

R→∞−−−→ 0

hold true.

Proof. By (4.27) we have

‖err(R)‖L2(Rd ) ≤ 2

(∫
Rd

|∇Au|2|∇μR |2
)1/2

+

(∫
Rd

|u|2|�μR |2
)1/2

≤ 2c

R

(∫
{R<|x |<2R}

|∇Au|2
)1/2

+
c

R2

(∫
{R<|x |<2R}

|u|2
)1/2

.

Since u ∈ L2(Rd) and ∇Au ∈ [
L2(Rd)

]d , the right-hand side tends to zero as R goes to
infinity.

Similarly,

‖|x |err(R)‖L2(Rd ) ≤ 2

(∫
Rd

|x |2|∇Au|2|∇μR |2
)1/2

+

(∫
Rd

|x |2|u|2|�μR |2
)1/2

≤ 4c

(∫
{R<|x |<2R}

|∇Au|2
)1/2

+
2c

R

(∫
{R<|x |<2R}

|u|2
)1/2

,

and again the right-hand side goes to zero as R approaches infinity. ��
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• Step two. This second step represents the main body of the section, it is here
that the method of multipliers is fully developed. Informally speaking the method
of multipliers is based on producing integral identities by choosing different test
functions v in (4.15) (see Lemma 4.4 below) and later combining them in a refined
way to get, for instance in our case, the analogous to (4.16). By virtue of the previous
step, we shall develop the method for compactly supported solutions u ∈ DA,V
to (4.15), it will be in the next Step three that we will get the result also for not
necessarily compactly supported solutions.
As a starting point we state the aforementioned identities, these are collected in the
following lemma. Notice that the lemma is stated for any λ ∈ C and not necessarily
just for λ in the sector (4.14).

Lemma 4.4. Let d ≥ 1, let A ∈ L2
loc(R

d ; R
d) be such that B ∈ L2

loc(R
d ; R

d×d)

and assume also (4.8), Suppose that V ∈ L1
loc(R

d ; C) admits the decomposition V =
V (1) + V (2) with Re V (2) satisfying (4.13). Let u ∈ DA,V be any compactly supported
solution of (4.15), with λ any complex constant and |x | f ∈ L2

loc(R
d), satisfying

(
|x |2|V (1)|2 + |x |2|Im V (2)|2

)
|u|2 ∈ L1

loc(R
d). (4.31)

Then |x |−1|u|2 ∈ L1
loc(R

d) and the following identities

∫
Rd

|∇Au|2 dx +
∫
Rd

Re V |u|2 dx = Re λ

∫
Rd

|u|2 dx + Re
∫
Rd

f ū dx . (4.32)

−d − 1

2

∫
Rd

|u|2
|x | dx +

∫
Rd

|x ||∇Au|2 dx +
∫
Rd

Re V |x ||u|2

dx = Re λ

∫
Rd

|x ||u|2 dx + Re
∫
Rd

f |x |ū dx . (4.33)
∫
Rd

Im V |u|2 dx = Im λ

∫
Rd

|u|2 dx + Im
∫
Rd

f ū dx . (4.34)

Im
∫
Rd

x

|x | · ū∇Au dx +
∫
Rd

Im V |x ||u|2

dx = Im λ

∫
Rd

|x ||u|2 dx + Im
∫
Rd

f |x |ū dx . (4.35)

2
∫
Rd

|∇Au|2 dx + 2 Im
∫
Rd

x · B · u∇Au dx

+d
∫
Rd

Re V (1)|u|2 dx + 2Re
∫
Rd

x · V (1)u∇Au dx

−
∫
Rd

x · ∇ Re V (2)|u|2 dx − 2 Im
∫
Rd

x · Im V (2)u∇Au dx

= −2 Im λ Im
∫
Rd

x · u∇Au dx

+d Re
∫
Rd

f ū dx + 2Re
∫
Rd

f x · ∇Au dx . (4.36)

hold true.
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Now we show how to use these identities to prove the analogous of identity (4.16)
for compactly supported solutions of (4.15). For the sake of clarity, the technical proof
of Lemma 4.4 is postponed to Sect. 4.4.

Let us start our algebraic manipulation of identities (4.32)–(4.36) by taking the sum

− (4.32) − 2(Re λ)1/2 sgn(Im λ) (4.35) + (4.36).

This gives
∫
Rd

|∇Au|2 dx − 2(Re λ)1/2 sgn(Im λ) Im
∫
Rd

x

|x | · ū ∇Au dx

+Re λ

∫
Rd

|u|2 dx

+2(Re λ)1/2|Im λ|
∫
Rd

|x ||u|2 dx

+2 Im λ Im
∫
Rd

x · u ∇Au dx + 2 Im
∫
Rd

x · B · u ∇Au dx

+(d − 1)
∫
Rd

Re V (1)|u|2 dx + 2Re
∫
Rd

x · V (1)u ∇Au dx

−2(Re λ)1/2 sgn(Im λ)

∫
Rd

|x | Im V (1)|u|2 dx

−
∫
Rd

Re V (2)|u|2 dx −
∫
Rd

x · ∇ Re V (2)|u|2 dx

−2(Re λ)1/2 sgn(Im λ)

∫
Rd

|x | Im V (2)|u|2 dx

−2 Im
∫
Rd

x · Im V (2)u∇Au dx

= (d − 1)Re
∫
Rd

f ū dx + 2Re
∫
Rd

x · f ∇Au dx

−2(Re λ)1/2 sgn(Im λ) Im
∫
Rd

|x | f ū dx . (4.37)

Recalling definition (4.17) of u−, one observes that

∇Au−(x)=e−i(Re λ)1/2 sgn(Im λ)|x |
(

∇Au−i(Re λ)1/2 sgn(Im λ)
x

|x |u(x)

)
, (4.38)

and therefore

|∇Au−|2 = |∇Au|2 + Re λ|u|2 − 2(Re λ)1/2 sgn(Im λ)
x

|x | · Im(ū∇Au). (4.39)

Moreover one has

x · B · u∇Au = x · B · u− ∇Au−, (4.40)

where the previous follows from the fact that being B anti-symmetric, then x · B · x = 0.
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Reintegrating (4.39) over R
d , we obtain∫

Rd
|∇Au|2 dx − 2(Re λ)1/2 sgn(Im λ) Im

∫
Rd

x

|x | · ū ∇Au dx

+Re λ

∫
Rd

|u|2 dx =
∫
Rd

|∇Au−|2 dx . (4.41)

Adding equation (4.33) multiplied by (Re λ)−1/2|Im λ| to (4.37), plugging (4.41), using
again (4.39) and (4.40), we get∫

Rd
|∇Au−|2 dx + (Re λ)−1/2|Im λ|

∫
Rd

|x ||∇Au−|2 dx

− (d − 1)

2
(Re λ)−1/2|Im λ|

∫
Rd

|u|2
|x | dx

+2 Im
∫
Rd

x · B · u−∇Au− dx

+(d − 1)
∫
Rd

Re V (1)|u|2 dx + (Re λ)−1/2|Im λ|
∫
Rd

|x |Re V (1)|u|2 dx

+2Re
∫
Rd

x · V (1)u

(
∇Au + i(Re λ)1/2 sgn(Im λ)

x

|x | ū

)
dx

−
∫
Rd

∂r (|x |Re V (2))|u|2 dx + (Re λ)−1/2|Im λ|
∫
Rd

|x |Re V (2)|u|2 dx

−2 Im
∫
Rd

x Im V (2)u

(
∇Au + i(Re λ)1/2 sgn(Im λ)

x

|x | ū

)
dx

= (d − 1)Re
∫
Rd

f ū dx + (Re λ)−1/2|Im λ|Re
∫
Rd

|x | f ū dx

+2Re
∫
Rd

x · f

(
∇Au + i(Re λ)1/2 sgn(Im λ)

x

|x | ū

)
dx . (4.42)

Then, using (4.38) in the fourth, last but two and last line of the previous identity, we
obtain ∫

Rd
|∇Au−|2 dx + (Re λ)−1/2|Im λ|

∫
Rd

|x ||∇Au−|2 dx

− (d − 1)

2
(Re λ)−1/2|Im λ|

∫
Rd

|u|2
|x | dx

+2 Im
∫
Rd

x · B · u−∇Au− dx

+(d − 1)
∫
Rd

Re V (1)|u|2 dx + 2Re
∫
Rd

x · V (1)u−∇Au− dx

+(Re λ)−1/2|Im λ|
∫
Rd

|x |Re V (1)|u|2 dx

−
∫
Rd

∂r (|x |Re V (2))|u|2 dx − 2 Im
∫
Rd

x Im V (2)u−∇Au− dx

+(Re λ)−1/2|Im λ|
∫
Rd

|x |Re V (2)|u|2 dx
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= (d − 1)Re
∫
Rd

f ū dx + 2Re
∫
Rd

x · f −∇Au− dx

+(Re λ)−1/2|Im λ|Re
∫
Rd

|x | f ū dx, (4.43)

where f −(x) := e−i(Re λ)1/2 sgn(Im λ)|x | f (x).

• Step three.Nowwewant to comeback to our approximating sequenceu R .Recalling
that u R is a weak solution to (4.29), identity (4.43), rewritten in terms of u R, fR and
err(R) gives

∫
Rd

|∇Au−
R |2 dx + (Re λ)−1/2|Im λ|

∫
Rd

|x ||∇Au−
R |2 dx

− (d − 1)

2
(Re λ)−1/2|Im λ|

∫
Rd

|u R |2
|x | dx

+2 Im
∫
Rd

x · B · u−
R∇Au−

R dx

+(d − 1)
∫
Rd

Re V (1)|u R |2 dx + 2Re
∫
Rd

x · V (1)u−
R∇Au−

R dx

+(Re λ)−1/2|Im λ|
∫
Rd

|x |Re V (1)|u R |2 dx

−
∫
Rd

∂r (|x |Re V (2))|u R |2 dx − 2 Im
∫
Rd

x Im V (2)u−
R∇Au−

R dx

+(Re λ)−1/2|Im λ|
∫
Rd

|x |Re V (2)|u R |2 dx

= (d − 1)Re
∫
Rd

fRu R dx + 2Re
∫
Rd

x · f −
R ∇Au−

R dx

+(Re λ)−1/2|Im λ|Re
∫
Rd

|x | fRu R dx

+(d − 1)Re
∫
Rd

err(R)u R dx + 2Re
∫
Rd

x · err(R)−∇Au−
R dx

+(Re λ)−1/2|Im λ|Re
∫
Rd

|x |err(R)u R dx . (4.44)

Letting R go to infinity, the thesis follows fromdominated andmonotone convergence
theorems and Lemma 4.3.

4.4. The method of multipliers: proof of the crucial Lemma 4.4. This part is entirely
devoted to the rigorous proof of the crucial identities contained in Lemma 4.4. Let us
start proving (4.32) and (4.33). Choosing in (4.15) v := ϕu, with ϕ : R

d → R being
a radial function such that v ∈ DA,V (since the support of u is compact, any locally
bounded ϕ together with locally bounded partial derivatives of first order is admissible).
Using the generalised Leibniz rule for the magnetic gradient, namely

∇A(gh) = (∇Ag)h + g∇h (4.45)
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valid for any g, h : R
d → C, we get
∫
Rd

ϕ|∇Au|2 +
∫
Rd

ū∇Au · ∇ϕ +
∫
Rd

V ϕ|u|2

= λ

∫
Rd

ϕ|u|2 +
∫
Rd

f ϕū.

Taking the real part of the obtained identity, using that being A a real-valued vector field
one has one has

Re(ū∇Au) = Re(ū∇u) (4.46)

and performing an integration by parts give

−1

2

∫
Rd

�ϕ|u|2 +
∫
Rd

ϕ|∇Au|2 +
∫
Rd

Re V ϕ|u|2 = Re λ

∫
Rd

ϕ|u|2 + Re
∫
Rd

f ϕū.

Taking ϕ := 1 and ϕ(x) := |x |, we get (4.32) and (4.33). Equations (4.34) and (4.35)
are obtained as in the previous case choosing in (4.15) v := ψu, with ψ : R

d → R

being a radial function such that v ∈ DA,V and taking the imaginary part of the resulting
identity. Finally, one chooses ψ := 1 and ψ(x) := |x |, respectively.

The remaining identity (4.36) is formally obtained by plugging into (4.15) the mul-
tiplier

v := [∇2
A, φ]u = �φu + 2∇φ · ∇Au with φ(x) := |x |2, (4.47)

taking the real part and integrating by parts. However, such v does not need to belong to
DA (and therefore neither toDA,V ). Indeed, though on the one hand the unboundedness
of the radial function φ does not pose any problems because the support of u is assumed
to be compact at this step, on the other hand ∇Au does not necessarily belong to DA.

Following the strategy developed in [4], we replace (4.47) by its regularised version

v := �φu + ∇φ · [∇δ,N
A u + ∇−δ,N

A u]
= �φu + ∂kφ [∂δ,N

k,A u + ∂
−δ,N
k,A u] with φ(x) := |x |2, (4.48)

where

∇δ,N
A u := (∂

δ,N
1,A , . . . , ∂

δ,N
d,A )u with

∂
δ,N
k,A u := ∂δ

k u + iTN (Ak)u, k = 1, 2, . . . , d, (4.49)

and where

∂δ
k u(x) := τ δ

k u(x) − u(x)

δ
with

τ δ
k u(x) := u(x + δek), k = 1, 2, . . . , d, (4.50)

with δ ∈ R\{0} is the standard difference quotient of u (we refer to [13, Sec. 5.8.2] or [29,
Sec. 10.5] for basic facts about the difference quotients) and the Lipschitz continuous
function

TN (s) := max{−N ,min{s, N }}
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with N > 0 is the usual truncation function. After the second equality of (4.48) and in
the sequel, we use the Einstein summation convention.

We start showing that v defined as in (4.48) belongs to DA,V , which is saying v ∈
L2(Rd), ∂l,Av := (∂l + i Al)v ∈ L2(Rd) for any l = 1, . . . , d and

√
(Re V (2))+v ∈

L2(Rd). To see that, let us rewrite explicitly (4.48) with the choice φ(x) := |x |2, that
is

v := 2du + 2xk[∂δ,N
k,A u + ∂

−δ,N
k,A u]. (4.51)

Clearly, being u ∈ DA,V , the first term in v belongs to DA,V and therefore we need to
comment further just on the second term of the sum, namely xk ∂

δ,N
k,A u (the part involving

∂
−δ,N
k,A u is analogous). One can check that xk∂

δ,N
k,A u := xk(∂

δ
k + iTN (Ak))u ∈ L2(Rd);

this is a consequence of u ∈ L2(Rd) being compactly supported and of the boundedness
of TN (Ak). It is less trivial to prove that for any l = 1, 2, . . . , d, one has ∂l,A[xk∂

δ,N
k,A u] ∈

L2(Rd).

To begin with, it is easy to check that the following commutation relation between
the magnetic gradient ∂l,A and its regularised version ∂

δ,N
k,A holds true

[
∂l,A, ∂

δ,N
k,A

] := i[(∂l Ak)χ{|Ak |≤N } − (∂δ
k Al)τ

δ
k ], k, l = 1, 2 . . . , d. (4.52)

Here [·, ·] denotes the usual commutator operator, for any given subset S ⊆ R
d , the

function χS is the characteristic function of the set S and τ δ
k is the translation operator

as defined in (4.50).
Using (4.45), the fact that, by definition of the commutator operator, ∂l,A∂

δ,N
k,A =

∂
δ,N
k,A ∂l,A + [∂l,A∂

δ,N
k,A ] and eventually using (4.52) one has

∂l,A[xk∂
δ,N
k,A u] = δl,k∂

δ,N
k,A u + xk∂l,A∂

δ,N
k,A u

= δl,k∂
δ,N
k,A u + xk∂

δ,N
k,A ∂l,Au + xk[∂l,A, ∂

δ,N
k,A ]u

= v1 + v2 + v3,

where

v1 := δl,k∂
δ,N
k,A u, v2 := xk∂

δ,N
k,A ∂l,Au, v3 := xki[(∂l Ak)χ{|Ak |≤N } − (∂δ

k Al)τ
δ
k ]u.

Here and hence δl,k for every k, l = 1, 2, . . . , d denotes the Kronecker symbol.
Now, being u ∈ DA,V (thus in particular u ∈ L2(Rd)) and since TN (Ak) ∈ L∞(Rd),

then

v1 = δl,k∂
δ,N
k,A u := δl,k(∂

δ
k + iTN (Ak))u

is clearly in L2(Rd). Moreover, since u ∈ DA,V (thus in particular ∂l,Au ∈ L2(Rd))
is compactly supported, one can conclude the same for v2. With respect to v3, since
Ak ∈ W 1,p

loc (Rd)with p as in (4.8), then (∂l Ak)u ∈ L2(Rd) (see (4.9)). Similar reasoning
allows us to conclude that also (∂δ

k Al)τ
δ
k u ∈ L2(Rd). Therefore v3 ∈ L2(Rd).

Nowwe are left to show just that
√

(Re V (2))+[xk∂
δ,N
k,A u] ∈ L2(Rd). First let us write

√
(Re V (2))+[xk∂

δ,N
k,A u] = v4 + v5,
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where

v4 := xk

√
(Re V (2))+∂

δ
k u, v5 := i xk

√
(Re V (2))+TN (Ak)u.

Observe that being u ∈ DA,V (thus in particular
√

(Re V (2))+u ∈ L2(Rd)) and com-
pactly supported and since TN (Ak) ∈ L∞(Rd), one has that v5 ∈ L2(Rd). Making
explicit the difference quotient ∂δ

k u, one can also see that v4 ∈ L2(Rd) by using that
(Re V (2))+ ∈ L p

loc(R
d) with p as in (4.13) and the fact that |u| ∈ H1(Rd).

Gathering these facts together, we guaranteed that ourmultiplier v as defined in (4.51)
belongs to DA,V and hence we have justified its choice as a test function in the weak
formulation (4.15).

Now we are in a position to prove identity (4.36). For a moment, we proceed in a
greater generality by consideringφ in (4.48) to be an arbitrary smooth functionφ : R

d →
R. We plug (4.48) in (4.15) and take the real part. Below, for the sake of clarity, we
consider each integral of the resulting identity separately.

• Kinetic term Let us start with the “kinetic” part of (4.15):

K := Re
∫
Rd

∇Au · ∇Av. (4.53)

Using

∂l,Av = (∂l�φ)ū + �φ∂l,Au + ∂lkφ [∂δ,N
k,A u + ∂

−δ,N
k,A u]

+∂kφ [∂l,A∂
δ,N
k,A u + ∂l,A∂

−δ,N
k,A u],

we write K = K1 + K2 + K3 + K4 with

K1 := Re
∫
Rd

∂l,Au(∂l�φ)ū,

K2 :=
∫
Rd

|∇Au|2�φ,

K3 := Re
∫
Rd

∂lkφ ∂l,Au [∂δ,N
k,A u + ∂

−δ,N
k,A u],

K4 := Re
∫
Rd

∂kφ ∂l,Au [∂l,A∂
δ,N
k,A u + ∂l,A∂

−δ,N
k,A u].

(4.54)

Using (4.46) and integrating by parts in K1 give

K1 = −1

2

∫
Rd

�2φ|u|2.

Now we consider K4. Using simply the definition of the commutator operator, we write

K4 = K4,1 + K4,2,

where

K4,1 := Re
∫
Rd

∂kφ ∂l,Au
{
∂

δ,N
k,A ∂l,Au + ∂

−δ,N
k,A ∂l,Au

}
,



Absence of Eigenvalues of Dirac and Pauli Hamiltonians 667

K4,2 := Re
∫
Rd

∂kφ∂l,Au
{[∂l,A, ∂

δ,N
k,A ]u + [∂l,A, ∂

−δ,N
k,A ]u}

.

We start considering K4,1. Using an analogous version to (4.46) for the regularised
magnetic gradient, namely

Re(ū ∂
δ,N
k,A u) = Re(ū ∂δ

k u), k = 1, 2, . . . , d (4.55)

and the identity

2 Re(ψ̄∂δ
k ψ) = ∂δ

k |ψ |2 − δ|∂δ
k ψ |2 (4.56)

valid for every ψ : R
d → C, we write K4,1 = K4,1,1 + K4,1,2 with

K4,1,1 := 1

2

∫
Rd

∂kφ{∂δ
k |∂l,Au|2 + ∂−δ

k |∂l,Au|2}, and

K4,1,2 := − δ

2

∫
Rd

∂kφ{|∂δ
k ∂l,Au|2 − |∂−δ

k ∂l,Au|2}.

Making use of the integration-by-parts formula for difference quotients (see [13,
Sec. 5.8.2]) ∫

Rd
ϕ ∂δ

k ψ = −
∫
Rd

(∂−δ
k ϕ) ψ (4.57)

which holds true for every ϕ,ψ ∈ L2(Rd), one gets

K4,1,1 = −1

2

∫
Rd

{
∂−δ

k ∂kφ + ∂δ
k ∂kφ

}|∇Au|2.

At the same time, making explicit the difference quotient and changing variable in K4,1,2
give (summation both over k and l)

K4,1,2 = − δ

2

∫
Rd

{∂kφ − (τ δ
k ∂kφ)}|∂δ

k ∂l,Au|2.

Now we choose the multiplier φ(x) := |x |2 and observe that

∂kφ = 2xk, ∂lkφ = 2δk,l , ∂±δ
k ∂kφ = 2, ∇�φ = 0, �2φ = 0. (4.58)

Consequently,

K1 = 0, K2 = 2d
∫
Rd

|∇Au|2 dx, K3 = 2Re
∫
Rd

∂l,Au [∂δ,N
l,A u + ∂

−δ,N
l,A u] dx,

and

K4 = −2d
∫
Rd

|∇Au|2 dx +
∫
Rd

|τ δ
k ∇Au − ∇Au|2 dx

+2 Im
∫
Rd

xk∂l,Au
[
(∂l Ak)χ{|Ak |≤N }ū − (∂δ

k Al)τ
δ
k ū

]
dx

+2 Im
∫
Rd

xk∂l,Au
[
(∂l Ak)χ{|Ak |≤N }ū − (∂−δ

k Al)τ
−δ
k ū

]
dx .
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In summary,

K = 2Re
∫
Rd

∂l,Au [∂δ,N
l,A u + ∂

−δ,N
l,A u] dx +

∫
Rd

|τ δ
k ∇Au − ∇Au|2 dx

+2 Im
∫
Rd

xk∂l,Au
[
(∂l Ak)χ{|Ak |≤N }ū − (∂δ

k Al)τ
δ
k ū

]
dx

+2 Im
∫
Rd

xk∂l,Au
[
(∂l Ak)χ{|Ak |≤N }ū − (∂−δ

k Al)τ
−δ
k ū

]
dx .

Now we want to see what happens when δ goes to zero and N goes to infinity. To do
so, we need the following lemma.

Lemma 4.5. Under the hypotheses of Lemma 4.4, the following limits hold true:

∂
δ,N
l,A u

δ→0
N→∞−−−−→ ∂l,Au in L2(Rd) (4.59)

and

[
(∂l Ak)χ{|Ak |≤N } − (∂δ

k Al)τ
δ
k

]
u

δ→0
N→∞−−−−→ [∂l Ak − ∂k Al ]u in L2(Rd). (4.60)

Proof. Let us start with (4.59). Using the explicit expression (4.49) for ∂δ,N
l,A u, one easily

has∫
Rd

|∂δ,N
l,A u − ∂l,Au|2 dx ≤ 2

∫
Rd

|∂δ
l u − ∂lu|2 dx + 2

∫
Rd

|TN (Al)u − Alu|2 dx .

Now, as a consequence of the L2-strong convergence of the difference quotients (which
can be used here because u ∈ H1(Rd) (see (4.12))), the first integral converges to zero
as δ goes to zero. As regards with the second integral we use that, by definition, TN (s)
converges to s as N tends to infinity, the bound |TN (s)| ≤ |s| and the fact that by virtue
of (4.8) the function Alu ∈ L2(Rd), these allow us to conclude that the integral goes to
zero as N goes to infinity via the dominated convergence theorem. This concludes the
proof of (4.59).

Now we prove (4.60). Observe that (4.60) follows as soon as one proves that the
limits

(∂l Ak)χ{|Ak |≤N }u
N→∞−−−−→ ∂l Aku in L2(Rd)

and

(∂δ
k Al)τ

δ
k u

δ→0−−→ ∂k Alu in L2(Rd)

hold true. As hypothesis (4.8) implies that ∂l Aku ∈ L2(Rd), the first limit is an imme-
diate consequence of the dominated convergence theorem. With respect to the second
one, one has∫

Rd
|(∂δ

k Al)τ
δ
k u − ∂k Alu|2 dx ≤ 2

∫
Rd

|∂δ
k Al |2|τ δ

k u − u|2 dx

+2
∫
Rd

|∂δ
k Al − ∂k Al |2|u|2 dx

and the two integrals tend to zero as δ goes to zero as a consequence of the Lq -continuity
of the translations with 1 ≤ q < ∞ and the strong L p-convergence of the difference
quotients with 1 ≤ p < ∞ together with assumption (4.8). ��
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With Lemma 4.5 at hand, it follows as a mere consequence of the Cauchy–Schwarz
inequality that

K
δ→0

N→∞−−−−→ 4
∫
Rd

|∂l,Au|2 dx + 4 Im
∫
Rd

xk∂l,Au [∂l Ak − ∂k Al ]ū dx .

• Source term Let us now consider simultaneously the “source” and “eigenvalue” parts
of (4.15), that is,

F := Re

(
λ

∫
Rd

uv̄ +
∫
Rd

f v̄

)
. (4.61)

This can be written as F = F1 + F2 + F3 + F4 with

F1 := Re λ

∫
Rd

�φ|u|2,

F2 := Re λRe
∫
Rd

∂kφ u[∂δ,N
k,A u + ∂

−δ,N
k,A u],

F3 := − Im λ Im
∫
Rd

∂kφ u[∂δ,N
k,A u + ∂

−δ,N
k,A u],

F4 := Re
∫
Rd

f {�φū + ∂kφ [∂δ,N
k,A u + ∂

−δ,N
k,A u]}.

(4.62)

Applying (4.55) and (4.56), we further split F2 = F2,1 + F2,2, where

F2,1 := 1

2
Re λ

∫
Rd

∂kφ {∂δ
k |u|2 + ∂−δ

k |u|2} and

F2,2 := − δ

2
Re λ

∫
Rd

∂kφ {|∂δ
k u|2 − |∂−δ

k u|2}.

Using the integration-by-parts formula (4.57), we get

F2,1 = −1

2
Re λ

∫
Rd

{∂−δ
k ∂kφ + ∂δ

k ∂kφ}|u|2.

Choosing φ(x) := |x |2 in the previous identities and using (4.58) gives

F1 = 2d Re λ

∫
Rd

|u|2 dx,

F2 = −2d Re λ

∫
Rd

|u|2 dx − δ Re λ

∫
Rd

xk{|∂δ
k u|2 − |∂−δ

k u|2} dx,

F3 = −2 Im λ Im
∫
Rd

xku [∂δ,N
k,A u + ∂

−δ,N
k,A u] dx,

F4 = Re
∫
Rd

f {2dū + 2xk[∂δ,N
k,A u + ∂

−δ,N
k,A u]} dx .

Using limit (4.59) in Lemma 4.5, one gets from the Cauchy–Schwarz inequality that

F
δ→0

N→∞−−−−→ −4 Im λ Im
∫
Rd

xku ∂k,Au dx + Re
∫
Rd

f {2dū + 4xk ∂k,Au} dx .
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• Electric potential term Let us now consider the contribution of the “potential” part
of (4.15), that is,

J := Re
∫
Rd

V uv̄. (4.63)

Using the decomposition V = V (1) + V (2), it can be written as J = J1 + J2 with

J1 := Re
∫
Rd

V (1)uv̄ and J2 := Re
∫
Rd

V (2)uv̄

First of all,

J1 =
∫
Rd

Re V (1)�φ|u|2 + Re
∫
Rd

∂kφV (1) u [∂δ,N
k,A u + ∂

−δ,N
k,A u].

Let us consider now the part involving V (2). We can write

J2 = J2,1 + J2,2 + J2,3,

where

J2,1 :=
∫
Rd

Re V (2)�φ|u|2, J2,2 :=
∫
Rd

Re V (2)∂kφ Re{u [∂δ,N
k,A u + ∂

−δ,N
k,A u]}

J2,3 := − Im
∫
Rd

Im V (2)∂kφ u [∂δ,N
k,A u + ∂

−δ,N
k,A u]

Let us consider J2,2. Using (4.55), (4.56) and integrating by parts we get

J2,2 = −1

2

∫
Rd

{∂−δ
k [∂kφ Re V (2)] + ∂δ

k [∂kφ Re V (2)]}|u|2

− δ

2

∫
Rd

Re V (2)∂kφ{|∂δ
k u|2 − |∂−δ

k u|2}

= −1

2

∫
Rd

{∂−δ
k [∂kφ Re V (2)] + ∂δ

k [∂kφ Re V (2)]}|u|2

+
1

2

∫
Rd

∂δ
k [∂kφ Re V (2)]|τ δ

k u − u|2.

Choosing φ(x) := |x |2 in the previous identities and using (4.58) we can write

J1 = J1,1 + J1,2,

where

J1,1 := 2d
∫
Rd

Re V (1)|u|2 dx and J1,2 := 2Re
∫
Rd

xk V (1) u [∂δ,N
k,A u + ∂

−δ,N
k,A u] dx .

Moreover

J2,1 = 2d
∫
Rd

Re V (2)|u|2 dx, J2,3 = −2 Im
∫
Rd

xk Im V (2)u[∂δ,N
k,A u + ∂

−δ,N
k,A u] dx,

J2,2 = −
∫
Rd

{∂−δ
k [xk Re V (2)] + ∂δ

k [xk Re V (2)]}|u|2 dx
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+
∫
Rd

∂δ
k [xk Re V (2)]|τ δ

k u − u|2 dx .

By virtue of hypothesis (4.31), |x ||V (1)||u| ∈ L2
loc(R

d) and then, using the Cauchy–
Schwarz inequality and limit (4.59) in Lemma 4.5, one has

J1,2
δ→0

N→∞−−−−→ 4Re
∫
Rd

xk V (1)u ∂k,Au dx . (4.64)

Similarly, using that |x ||Im V (2)||u| ∈ L2
loc(R

d) (see (4.31)) and again (4.59), via the
Cauchy–Schwarz inequality one also has

J2,3
δ→0

N→∞−−−−→ −4 Im
∫
Rd

xk Im V (2)u ∂k,Au dx .

Since xk Re V (2) ∈ W 1,p
loc (Rd) with p as in (4.13), using the strong L p-convergence of

the difference quotients with 1 ≤ p < ∞ and via the Hölder inequality, it is not difficult
to see that

J2,2
δ→0−−→ − 2

∫
Rd

∂k[xk Re V (2)]|u|2 dx

= −2d
∫
Rd

Re V (2)|u|2 dx − 2
∫
Rd

xk∂k Re V (2)|u|2 dx,

where the last identity follows from the Leibniz rule applied to ∂k(xk Re V (2)).

In summary, gathering the previous limits altogether, one gets

J1
δ→0

N→∞−−−−→ 2d
∫
Rd

Re V (1)|u|2 dx + 4Re
∫
Rd

xk V (1)u ∂k,Au dx .

and

J2
δ→0

N→∞−−−−→ −2
∫
Rd

xk∂k Re V (2)|u|2 dx − 4 Im
∫
Rd

xk Im V (2)u∂k,Au dx .

Passing to the limit δ → 0 and N → ∞ in (4.15) and multiplying the resulting
identity by 1/2, one obtains (4.36). ��

4.5. Potentials with just one singularity: alternative proof of the crucial Lemma 4.4. In
this section we consider the case of potentials (both electric and magnetic) with capacity
zero set of singularities, in fact with just one singularity at the origin. This will allow
us to remove the unpleasant hypotheses (4.8) and (4.13). Since the point has a positive
capacity in dimension one, here we exclusively consider d ≥ 2. (As a matter of fact, if
d = 1, hypothesis (4.13) is rather natural, while (4.8) is automatically satisfied because
of the absence of magnetic fields on the real line.)

To be more specific, in the sequel we consider the following setup. Let A ∈
L2
loc(R

d\{0}; R
d) and V ∈ L1

loc(R
d\{0}; C) and assume

Re V ∈ L∞
loc(R

d\{0}) and A ∈ W 1,∞
loc (Rd\{0}). (4.65)
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Notice that assumption (4.65) is satisfied by a large class of non vanishing potentials,
namely V (x) = a/|x |α with a �= 0 and α > 0 and the Aharonov–Bohm vector
field (3.17).

Observe that since it is no more necessarily true that V ∈ L1
loc(R

d ; C) and A ∈
L2
loc(R

d; R
d), the procedure developed in Sect. 4.1 in order to rigorously introduced

the Hamiltonian HA,V formally defined in (4.1) must be adapted. The modification of
the procedure consists merely in taking the Friedrichs extension of the operator initially
defined on C∞

0 (Rd\{0}) instead of C∞
0 (Rd). To be more specific, we first introduce the

closed quadratic form

h(1)
A,V [u] :=

∫
Rd

|∇Au|2 dx +
∫
Rd

(Re V )+|u|2 dx,

u ∈ D(h(1)
A,V ) := C∞

0 (Rd\{0})|||·|||, (4.66)

where

|||u|||2 := h(1)
A,V [u] + ‖u‖2L2(Rd )

.

Assume that there exist b, β ∈ [0, 1) with
b2 + β2 < 1,

such that, for any u ∈ D(h(1)
A,V ),

∫
Rd

(Re V )−|u|2 dx ≤ b2
∫
Rd

|∇Au|2 dx,

∫
Rd

|Im V ||u|2 dx ≤ β2
∫
Rd

|∇Au|2 dx . (4.67)

Then, defining

h(2)
A,V [u] := −

∫
Rd

(Re V )−|u|2 dx + i
∫
Rd

Im V |u|2 dx, u ∈ D(h(1)
A,V ),

the form h(2)
A,V is relatively boundedwith respect to h(1)

A,V , with the relative bound less than

one. Consequently, the sum h A,V := h(1)
A,V +h(2)

A,V with domainD(h A,V ) := D(h(1)
A,V ) is

a closed and sectorial form and HA,V is understood as them-sectorial operator associated
with h A,V via the representation theorem. Again, we abbreviate

DA,V := D(h A,V ).

4.5.1. Proof of identity (4.36) This subsection is concernedwith the proof of Lemma 4.4
in the present alternative framework. More specifically we will provide the proof of
identity (4.36) only, which is the one whose changes are significant. For the sake of
clarity, we restate it with the alternative hypotheses assumed in this section. (Without loss
of generality, we consider just the situation in which V (1) = 0; indeed, the assumption
(4.13) that we remove now concerned the component V (2) only.)
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Lemma 4.6. Let d ≥ 2. Let A ∈ L2
loc(R

d\{0}) be such that B ∈ L2
loc(R

d\{0}) and

let V ∈ W 1,1
loc (Rd\{0}) be potentials satisfying (4.65). Let u ∈ DA,V be any compactly

supported solution of (4.15), with λ being any complex constant and |x | f ∈ L2
loc(R

d),

satisfying (
|x |2|B|2 + |x |2|Im V |2 + [x · ∇ Re V ]+

)
|u|2 ∈ L1

loc(R
d).

Then [x · ∇ Re V ]−|u|2 ∈ L1
loc(R

d) and the following identity

2
∫
Rd

|∇Au|2 dx + 2 Im
∫
Rd

x · B · u∇Au dx (4.36′)

−
∫
Rd

x · ∇ Re V (2)|u|2 dx − 2 Im
∫
Rd

x · Im V (2)u∇Au dx

= −2 Im λ Im
∫
Rd

x · u∇Au dx

+ d Re
∫
Rd

f ū dx + 2Re
∫
Rd

f x · ∇Au dx

holds true.

Proof. For d ≥ 3 we define ξ : [0,∞) → [0, 1] to be a smooth function such that

ξ(r) :=
{
0 if r ≤ 1,
1 if r ≥ 2,

and set ξε(x) := ξ(|x |/ε). For d = 2, let ξ ∈ C∞([0, 1]) such that ξ = 0 in a right
neighborhood of 0 and ξ = 1 in a left neighborhood of 1; then we define the smooth
function

ξε(x) :=
⎧⎨
⎩
0 if |x | ≤ ε,

ξ(log2(|x |/ε)) if ε ≤ |x | ≤ 2ε,
1 if |x | ≥ 2ε.

It comes from a straightforward computation to check that in both cases, there exists a
constant c̃ > 0 such that the following control on the first derivatives

|∇ξε| ≤ c̃/ε (4.68)

holds true.

We take as the test function in (4.15) a slight modification of the multiplier (4.48)
chosen above, namely

v := �φu + ξε∂kφ[∂δ
k,Au + ∂−δ

k,Au] with φ(x) := |x |2, (4.69)

where

∂δ
k,Au := ∂δ

k u + i Aku, k = 1, 2, . . . , d,

with ∂δ
k defined as in (4.50). More specifically,

v = 2du + 2ξεxk[∂δ
k,Au + ∂−δ

k,Au]. (4.70)
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Observe that in this framework we do not need the truncation of the magnetic potential.
Mimicking the arguments of Sect. 4.4, one can show that v defined as in (4.70)

belongs to DA,V . In fact, one has v ∈ L2(Rd), ∂l,Av := (∂l + i Al)v ∈ L2(Rd) for
any l = 1, . . . , d and

√
(Re V )+v ∈ L2(Rd). We comment just on ξεxk∂

δ
k,Au in (4.70).

Being ξε supported off the origin, Ak ∈ L∞(supp ξε), therefore ξεxk∂
δ
k,Au := ξεxk(∂

δ
k +

i Ak)u ∈ L2(Rd). Now we want to show that ∂l,A[ξεxk∂
δ
k,Au] ∈ L2(Rd). First observe

that using the chain rule for magnetic derivatives (4.45), one can write

∂l,A[ξεxk∂
δ
k,Au] = v1 + v2,

where

v1 := ξε∂l,A[xk∂
δ
k,Au], and v2 := ∂lξε[xk∂

δ
k,Au].

Clearly, exactly as above, v2 ∈ L2(Rd). Using again that ‖Ak‖L∞(supp ξε) < ∞ and

the fact that xk∂
δ
k,Au = xk∂

δ,N
k,A u with N = ‖Ak‖L∞(supp ξε), where ∂

δ,N
k,A are defined as

in (4.49), one can reason as in Sect. 4.4 to conclude that v1 ∈ L2(Rd) aswell (observe that
here it comes into play the assumption ∂l Ak ∈ L∞(Rd\{0}), as in the previous section
it came into play the assumption ∂l Ak ∈ L p

loc(R
d) with p as in (4.8)). It remains just

to prove that
√

(Re V )+[ξεxk∂
δ
k,Au] ∈ L2(Rd), but this follows immediately observing

that, on the support of ξε, (Re V )+ is bounded.
Now we are in position to prove identity (4.36’). Also in this section we proceed

in a greater generality by considering φ in (4.69) to be an arbitrary smooth function
φ : R

d → R. After we will plug in our choice φ(x) = |x |2. We consider identity (4.15)
with the test function v as in (4.70) and we take the real part. Each resulting integrals
are treated separately.

• Kinetic term Let us start with the “kinetic” part of (4.15), i.e. (4.53). Using

∂l,Av = (∂l�φ)ū + �φ∂l,Au

+ ξε∂lkφ[∂δ
k,Au + ∂−δ

k,Au] + ξε∂kφ [∂l,A∂δ
k,Au

+ ∂l,A∂−δ
k,Au] + ∂lξε∂kφ[∂δ

k,Au + ∂−δ
k,Au],

we write K = K ε
0 + K1 + K2 + K ε

3 + K ε
4 with K1 and K2 as in (4.54) and

K ε
0 := Re

∫
Rd

∂lξε∂kφ∂l,Au [∂δ
k,Au + ∂−δ

k,Au],

K ε
3 := Re

∫
Rd

ξε∂lkφ ∂l,Au [∂δ
k,Au + ∂−δ

k,Au],

K ε
4 := Re

∫
Rd

ξε∂kφ ∂l,Au [∂l,A∂δ
k,Au + ∂l,A∂−δ

k,Au].

As regards with K ε
4 , proceeding in the same way as done in Sect. 4.4 to treat the term

K4, we end up with

K ε
4 = K ε

4,1,1 + K ε
4,1,2 + K ε

4,2,
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where

K ε
4,1,1 = −1

2

∫
Rd

{∂−δ
k (ξε∂kφ) + ∂δ

k (ξε∂kφ)}|∇Au|2,

K ε
4,1,2 = − δ

2

∫
Rd

{ξε∂kφ − τ δ
k (ξε∂kφ)}|∂δ

k ∂l,Au|2

and

K ε
4,2 = Im

∫
Rd

ξε∂kφ∂l,Au
[
∂l Ak ū − (∂δ

k Al)τ
δ
k ū

]

+ Im
∫
Rd

ξε∂kφ∂l,Au
[
∂l Ak ū − (∂−δ

k Al)τ
−δ
k ū

]
.

Now we choose φ(x) := |x |2. Using (4.58) we get

K ε
0 = 2Re

∫
Rd

∂lξεxk∂l,Au [∂δ
k,Au + ∂−δ

k,Au] dx,

K1 = 0, K2 = 2d
∫
Rd

|∇Au|2 dx, K ε
3 = 2Re

∫
Rd

ξε∂l,Au [∂δ
l,Au + ∂−δ

l,Au] dx,

and

K ε
4,1,1 = −

∫
Rd

{∂−δ
k (ξεxk) + ∂δ

k (ξεxk)}|∇Au|2 dx,

K ε
4,1,2 =

∫
Rd

∂δ
k (ξεxk)|τ δ

k ∂l,Au − ∂l,Au|2 dx,

K ε
4,2 = 2 Im

∫
Rd

ξεxk∂l,Au
[
∂l Ak ū − (∂δ

k Al)τ
δ
k ū

]
dx

+2 Im
∫
Rd

ξεxk∂l,Au
[
∂l Ak ū − (∂−δ

k Al)τ
−δ
k ū

]
dx .

Now we need the following analogous version to Lemma 4.5.

Lemma 4.7. Under the hypotheses of Lemma 4.6, the limits

∂δ
l,Au

δ→0−−→ ∂l,Au in L2
loc(R

d\{0})

and

(∂δ
k Al)τ

δ
k u

δ→0−−→ ∂k Alu in L2
loc(R

d\{0})

hold true.
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Using Lemma 4.7 and letting δ go to zero, it is easy to see that

K ε
0

δ→0−−→ 4Re
∫
Rd

∂lξεxk∂l,Au∂k,Au dx,

K ε
3

δ→0−−→ 4
∫
Rd

ξε|∂l,Au|2 dx,

K ε
4,1,1

δ→0−−→ −2
∫
Rd

∂k(ξεxk)|∇Au|2 dx

= −2
∫
Rd

∂kξεxk |∇Au|2 dx − 2d
∫
Rd

ξε|∇Au|2 dx,

K ε
4,1,2

δ→0−−→ 0,

K ε
4,2

δ→0−−→ 4 Im
∫
Rd

ξεxk∂l,Au[∂l Ak − ∂k Al ]ū dx .

(4.71)

Now we want to see what happens in the limit of ε approaching zero. In order to do that
we will use the following lemma.

Lemma 4.8. Let g ∈ L1(Rd) and let ξε be defined as above. Then
∫
Rd

ξεg dx
ε→0−−→

∫
Rd

g dx and
∫
Rd

∂lξεxk g dx
ε→0−−→ 0 k, l = 1, 2 . . . , d. (4.72)

Proof. The first limit in (4.72) immediately follows from the definition of ξε via the
dominated convergence theorem. On the other hand, using (4.68), one has

∫
Rd

|∂lξε||xk ||g| dx ≤ 2̃c
∫

ε<|x |<2ε
|g| dx

ε→0−−→ 0,

which yields the second limit in (4.72), again from the dominated convergence theorem.
��

Using Lemma 4.8 and passing to the limit in (4.71), one easily gets

K
δ→0
ε→0−−→ 4

∫
Rd

|∂l,Au|2 dx + 4 Im
∫
Rd

xk∂l,Au[∂l Ak − ∂k Al ]ū dx .

Notice that here we have used that, by hypothesis, |x |2|B|2|u|2 ∈ L1
loc(R

d).

• Source term Now consider simultaneously the “source” and “eigenvalue” parts
of (4.15), i.e. (4.61). Plugging in (4.61) our chosen test function v defined in (4.69),
we can write F = F1 + Fε

2 + Fε
3 + Fε

4 with F1 as in (4.62) and

Fε
2 := Re λRe

∫
Rd

ξε∂kφ u[∂δ
k,Au + ∂−δ

k,Au],

Fε
3 := − Im λ Im

∫
Rd

ξε∂kφ u[∂δ
k,Au + ∂−δ

k,Au],
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Fε
4 := Re

∫
Rd

f {�φū + ξε∂kφ [∂δ
k,Au + ∂−δ

k,Au]}.

As regards with Fε
2 , proceeding as in Sect. 4.4 when we treated F2, we end up with

Fε
2 = Fε

2,1 + Fε
2,2

with

Fε
2,1 = −1

2
Re λ

∫
Rd

{∂−δ
k (ξε∂kφ) + ∂δ

k (ξε∂kφ)}|u|2 and

Fε
2,2 := − δ

2
Re λ

∫
Rd

ξε∂kφ {|∂δ
k u|2 − |∂−δ

k u|2}.

Choosing φ(x) := |x |2 in the previous identities and using (4.58) give

F1 = 2d Re λ

∫
Rd

|u|2 dx,

Fε
2,1 = −Re λ

∫
Rd

{∂−δ
k (ξεxk) + ∂δ

k (ξεxk)}|u|2 dx,

Fε
2,2 = −δ Re λ

∫
Rd

ξεxk {|∂δ
k u|2 − |∂−δ

k u|2} dx,

Fε
3 = −2 Im λ Im

∫
Rd

ξεxku [∂δ
k,Au + ∂−δ

k,Au] dx,

Fε
4 = Re

∫
Rd

f {2dū + 2ξεxk[∂δ
k,Au + ∂−δ

k,Au]} dx .

Reasoning as above, one gets

Fε
2,1

δ→0−−→ −2Re λ

∫
Rd

∂kξεxk |u|2 dx − 2d Re λ

∫
Rd

ξε|u|2 dx,

Fε
2,2

δ→0−−→ 0,

Fε
3

δ→0−−→ −4 Im λ Im
∫
Rd

ξεxku∂k,Au dx,

Fε
4

δ→0−−→ Re
∫
Rd

f {2dū + 4ξεxk∂k,Au} dx .

Using Lemma 4.8, we conclude that

F
δ→0
ε→0−−→ −4 Im λ Im

∫
Rd

xku∂k,Au dx + Re
∫
Rd

f {2dū + 4xk∂k,Au} dx .
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• Electric potential term Let us now consider the contribution of the “potential” part
of (4.15), i.e. (4.63). Plugging v defined as in (4.69) into (4.63), we write J = J1 + J ε

2
with

J1 :=
∫
Rd

Re V �φ|u|2 and J ε
2 := Re

∫
Rd

V ξε∂kφu[∂δ
k,Au + ∂−δ

k,Au].

Choosing φ(x) := |x |2 in the previous identities and using (4.58), we obtain

J1 = 2d
∫
Rd

Re V |u|2 dx and J ε
2 = 2Re

∫
Rd

ξεxk V u[∂δ
k,Au + ∂−δ

k,Au] dx .

Now we write

J ε
2 = J ε

2,1 + J ε
2,2,

where

J ε
2,1 := 2Re

∫
Rd

ξεxk Re V u[∂δ
k,Au + ∂−δ

k,Au] dx and

J ε
2,2 := −2 Im

∫
Rd

ξεxk Im V u[∂δ
k,Au + ∂−δ

k,Au] dx .

Using that Re V is bounded on supp ξε, taking the limit as δ goes to zero, it follows from
Lemma 4.7

J ε
2,1

δ→0−−→ 4Re
∫
Rd

ξεxk Re V u∂k,Au dx

= −2
∫
Rd

∂kξεxk Re V |u|2 dx − 2d
∫
Rd

ξε Re V |u|2 dx

− 2
∫
Rd

ξεxk∂k Re V |u|2 dx,

where in the last identity we have just integrated by parts. Moreover, using that by
hypothesis |x |2|Im V |2|u|2 ∈ L1

loc(R
d), we have

J ε
2,2

δ→0−−→ −4 Im
∫
Rd

ξεxk Im V u∂k,Au dx .

Finally, using that Re V |u|2 and [xk∂k Re V ]+|u|2 ∈ L1(Rd) and again
|x |2|Im V |2|u|2 ∈ L1

loc(R
d), then Lemma 4.8 gives

J
δ→0
ε→0−−→ −2

∫
Rd

[xk∂k Re V ]+|u|2 dx

+2
∫
Rd

[xk∂k Re V ]−|u|2 dx − 4 Im
∫
Rd

xk Im V u∂k,Au dx .

Observe that in order to pass to the limit in the integral involving [xk∂k Re V ]−,we have
used the monotone convergence theorem being ξε ↗ 1 as ε tends to zero.

In summary, passing to the limit δ → 0 and ε → 0 in (4.15) and multiplying the
resulting identity by 1/2, one obtains (4.36’). This concludes the proof of Lemma 4.6.
��
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5. Absence of Eigenvalues of Matrix Schrödinger Operators

We start our investigation on Schrödinger operators by considering first themost delicate
case represented by the non self-adjoint results Theorem 3.1 (and its particular case
Theorem 1.1) and the alternatives in d = 2 given by Theorem 3.2 and Theorem 3.3. The
self-adjoint situation is treated afterward (Sect. 5.2).

5.1. Non self-adjoint case.

Proof of Theorem 3.1. Let u be any weak solution to the eigenvalue equation

HS(A, V )u = λu (5.1)

with HS(A, V ) being defined as in (1.4) and λ being any complex constant. More
precisely, u satisfies

∫
Rd

∇Au j · ∇Av j dx +
∫
Rd

V (2)u jv j dx = λ

∫
Rd

u jv j dx +
∫
Rd

f jv j dx (5.2)

for j = 1, 2 . . . , n and for any v j ∈ DA,V .

Here, since we want to use directly the estimate in Lemma 4.2, we have defined
f := −V (1)u. In passing, observe that by virtue of our hypothesis (3.3), it is not difficult
to check that f, so defined, satisfies

n∑
j=1

‖| f j |1/2|u j |1/2‖2L2(Rd )
≤ a2

1‖∇Au−‖2[L2(Rd )]n and

‖|x | f ‖[L2(Rd )]n ≤ a2‖∇Au−‖[L2(Rd )]n , (5.3)

with a1 and a2 as in (3.3) and u− as in (4.17). Notice that here we have used that
|u| = |u−|.

The strategy of our proof is to show that, under the hypotheses of Theorem 3.1, u
is identically zero. In order to do that, as customary, we split the proof into two cases:
|Im λ| ≤ Re λ and |Im λ| > Re λ. ��

• Case |Im λ| ≤ Re λ. Since u j , for j = 1, 2, . . . , n, is a solution to (5.2), we can use
directly Lemma 4.2 to get the estimate

‖∇Au−
j ‖2L2(Rd )

+ (Re λ)−1/2|Im λ|
[ ∫

Rd
|x ||∇Au−

j |2 dx

− (d − 1)

2

∫
Rd

|u−
j |2

|x | dx +
∫
Rd

|x |(Re V (2))+|u−
j |2 dx

]

≤ 2
(
‖|x ||B|u−

j ‖L2(Rd ) + ‖|x | Im V (2)u−
j ‖L2(Rd )

+‖|x | f j‖L2(Rd )

)
‖∇Au−

j ‖L2(Rd )

+(d − 1)‖| f j |1/2|u−
j |1/2‖2L2(Rd )

+‖[∂r (|x |Re V (2))]1/2+ u−
j ‖2L2(Rd )
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+
(
‖|x |(Re V (2))−u−

j ‖L2(Rd ) + ‖|x | f j‖L2(Rd )

)
(
‖|Im V (2)|1/2u−

j ‖L2(Rd ) + ‖| f j |1/2|u−
j |1/2‖L2(Rd )

)
.

Summing over j = 1, 2, . . . , n and using the Cauchy–Schwarz inequality for discrete
measures, we easily obtain

‖∇Au−‖2[L2(Rd )]n + (Re λ)−1/2|Im λ|
[ ∫

Rd
|x ||∇Au−|2 dx

− (d − 1)

2

∫
Rd

|u−|2
|x | dx +

∫
Rd

|x |(Re V (2))+|u−|2 dx

]

≤ 2
(
‖|x ||B|u−‖[L2(Rd )]n + ‖|x | Im V (2)u−‖[L2(Rd )]n

+‖|x | f ‖[L2(Rd )]n

)
‖∇Au−‖[L2(Rd )]n

+(d − 1)
n∑

j=1

‖| f j |1/2|u−
j |1/2‖2L2(Rd )

+‖[∂r (|x |Re V (2))]1/2+ u−‖2[L2(Rd )]n

+
(
‖|x |(Re V (2))−u−‖[L2(Rd )]n + ‖|x | f ‖[L2(Rd )]n

)(
‖|Im V (2)|1/2u−‖[L2(Rd )]n

+
( n∑

j=1

‖| f j |1/2|u−
j |1/2‖2L2(Rd )

)1/2)
.

Using assumptions (3.4)–(3.7) together with (5.3), one has
(
1 − (

2c + 2β2 + 2a2 + (d − 1)a2
1 + b2 + (b2 + a2)(β1 + a1)

))‖∇Au−‖2[L2(Rd )]n

+(Re λ)−1/2|Im λ|
[ ∫

Rd
|x ||∇Au−|2 dx − (d − 1)

2

∫
Rd

|u−|2
|x | dx

+
∫
Rd

|x |(Re V (2))+|u−|2 dx

]
≤ 0. (5.4)

Now we need to estimate the squared bracket of the latter inequality, namely

I :=
∫
Rd

|x ||∇Au−|2 dx − (d − 1)

2

∫
Rd

|u−|2
|x | dx

+
∫
Rd

|x |(Re V (2))+|u−|2 dx . (5.5)

Notice that, since I appears as a “coefficient” of the positive spectral quantity
(Re λ)−1/2|Im λ|, we would like to get a positive contribution out of it to eventually
discard this term in the previous estimate. Notice that only the second term in I could
spoil such positivity and therefore our aim is to control its magnitude in size by means
of the positivity of the other terms in I.

To do so, we will proceed distinguishing the cases d = 1, d = 2 and d ≥ 3.
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Let us start with the easiest d = 1. In this situation the second term in I cancels out
and therefore I ≥ 0.

We go further considering the case d ≥ 3. Here we employ the weighted magnetic
Hardy-inequality

∫
Rd

|x ||∇Au|2 dx ≥ (d − 1)2

4

∫
Rd

|u|2
|x | dx . (5.6)

More specifically, using (5.6) we have

I ≥ d − 3

d − 1

∫
Rd

|x ||∇Au−|2 dx +
∫
Rd

|x |(Re V (2))+|u−|2 dx, (5.7)

which again is positive because we are considering d ≥ 3.
Observe that in both cases treated so far, namely d = 1 and d ≥ 3, the positivity of

the real part of V (2), namely the term
∫
Rd |x |[Re V (2)]+|u|2 dx, did not really enter the

proof of the positivity of I. The situation is different when considering d = 2. Indeed,
although (5.6) is valid also for d = 2, in this case the right-hand side of estimate (5.7)
is not necessarily positive. Thus assumption (3.8) comes into play here. Indeed, thanks
to (3.8), it is immediate that

I :=
∫
R2

|x ||∇Au−|2 dx − 1

2

∫
R2

|u−|2
|x | dx +

∫
R2

|x |(Re V (2))+|u−|2 dx ≥ 0.

Hence we have proved that in any dimension d ≥ 1 we have I ≥ 0. This yields that
(
1 − (

2c + 2β2 + 2a2 + (d − 1)a2
1 + b2 + (b2 + a2)(β1 + a1)

))‖∇Au−‖2[L2(Rd )]n ≤ 0,

which, by virtue of (3.2), implies that u− (and therefore u) is identically equal to zero.

Remark 5.1. Before passing to the remaining case | Im λ| > Re λ we must comment on
the absence of zero modes, i.e. λ = 0, that clearly cannot be directly deduced from
the argument above (note that we consistently divided by Re λ). Actually the proof in
this situation is easier and basically follows the same strategy adopted to prove the self-
adjoint result Theorem 3.4 and it is based on the use of a single identity. We provide
here the main steps for the sake of completeness. From (4.36) (with f = 0) we have

2
∫
Rd

|∇Au j |2 dx = − 2 Im
∫
Rd

x · B · u j∇Au j dx +
∫
Rd

r∂r Re V (2)|u j |2 dx

− d Re
∫
Rd

(V (1)u) j u j − 2Re
∫
Rd

x · (V (1)u) j∇Au j dx

+ 2 Im
∫
Rd

x · Im V (2)u j∇Au j dx .

Observe that ∂r (r Re V (2)) = Re V (2) + r∂r Re V (2), then one has
∫
Rd

r∂r Re V (2)|u j |2 dx =
∫
Rd

∂r (r Re V (2))|u j |2 dx −
∫
Rd

Re V (2)|u j |2 dx

≤
∫
Rd

[∂r (r Re V (2))]+|u j |2 dx +
∫
Rd

(Re V (2))−|u j |2 dx .
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Plugging the latter in the former, then using the Cauchy–Schwarz inequality and sum-
ming over j = 1, 2, . . . , n, we get

2‖∇Au‖2[L2(Rd )]n ≤ 2
( ∫

Rd
|x |2|B|2|u|2 dx

)1/2‖∇Au‖[L2(Rd )]n

+
∫
Rd

[∂r (r Re V (2))]+|u|2 dx

+
∫
Rd

(Re V (2))−|u|2 dx + d
∫
Rd

|V (1)||u|2 dx

+ 2
( ∫

Rd
|x |2|V (1)|2|u|2 dx

)1/2‖∇Au‖[L2(Rd )]n

+ 2
( ∫

Rd
|x |2|Im V (2)|2|u|2 dx

)1/2‖∇Au‖[L2(Rd )]n .

Now, using (3.3), the first in (3.4), (3.5), the second in (3.6) and (3.7), one easily gets(
2 − (2c + b2 + b21 + da2

1 + 2a2 + 2β2)
)
‖∇Au‖2[L2(Rd )]n ≤ 0.

This gives a contradiction in virtue of (3.10).

• Case |Im λ| > Re λ. Let u j for j = 1, 2, . . . , n be a solution to (5.2). Choos-
ing as a test function v j := u j and taking the real part of the resulting identity and
adding/subtracting, instead of the real part, the imaginary part of the resulting identity,
one gets ∫

Rd
|∇Au j |2 dx +

∫
Rd

(Re V (2))+|u j |2 dx −
∫
Rd

(Re V (2))−|u j |2 dx

±
∫
Rd

Im V (2)|u j |2 dx

= (Re λ ± Im λ)

∫
Rd

|u j |2 dx + Re
∫
Rd

f j u j dx ± Im
∫
Rd

f j u j dx .

Summing over j = 1, 2, . . . , n and discarding the positive term on the left-hand side
involving (Re V (2))+, one easily gets

‖∇Au‖2[L2(Rd )]n

≤ (Re λ ± Im λ)

∫
Rd

|u|2 dx +
∫
Rd

(Re V (2))−|u|2 dx +
∫
Rd

|Im V (2)||u|2 dx

+2
n∑

j=1

‖| f j |1/2|u j |1/2‖2L2(Rd )
.

Using the first inequalities in (3.4), (3.6) and (5.3), we have(
1 − (b21 + β2

1 + 2a2
1)

)
‖∇Au‖2[L2(Rd )]n ≤ (Re λ ± Im λ)‖u‖2[L2(Rd )]n .

Therefore, since by the first inequality in (3.2) we have b21 + β2
1 + 2a2

1 < 1, then Re λ ±
Im λ ≥ 0 unless u = 0. But since |Im λ| > Re λ we conclude that u = 0.

This concludes the proof of Theorem 3.1. ��
Now we prove the alternative Theorem 3.2 valid in d = 2.
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Proof of Theorem 3.2. Since the proof follows analogously to the one of Theorem 3.1
presented above, except for the analysis in the sector |Im λ| ≤ Re λ, we shall comment
just on this situation.

As in the proof of Theorem 3.1, we want to estimate the term I defined in (5.5),
which appears multiplied by the spectral coefficient (Re λ)−1/2|Im λ| in (5.4). A first
application of the weighted inequality (5.6) gives

I ≥ −1

4

∫
R2

|u−|2
|x | dx +

∫
R2

|x |(Re V (2))+|u−| dx

≥ −1

4

∫
R2

|u−|2
|x | dx, (5.8)

where the last inequality follows by discarding the positive term involving the potential

V (2). Now, we proceed estimating the term
∫
R2

|u−|2
|x | dx . In order to do that we will

strongly use the following Hardy–Poincaré-type inequality

∫
BR

|∇ψ |2 dx ≥ 1

4R

∫
BR

|ψ |2
|x | dx, (5.9)

valid for all ψ ∈ W 1,2
0 (BR), where BR := {x ∈ R

2 : |x | < R} denotes the open disk of
radius R > 0 (see [15] for an explicit proof of (5.9)).

Following the strategy of [15], given two positive numbers R1 < R2, we introduce
the function η : [0,∞) → [0, 1] such that η = 1 on [0, R1], η = 0 on [R2,∞) and
η(r) = (R2 − r)/(R2 − R1) for r ∈ (R1, R2). We denote by the same symbol η the
radial function η◦r : R

2 → [0, 1].Now, writing u− = ηu−+ (1−η)u− and using (5.9),
we have

∫
R2

|u−|2
|x | dx ≤ 2

∫
BR2

(η|u−|)2
|x | dx + 2

∫
R2

(
(1 − η)|u−|)2

|x | dx

≤ 8R2

∫
BR2

|∇(η|u−|)|2 dx +
2

R1

∫
R2

|u−|2 dx

≤ 16R2

∫
R2

|∇|u−||2 dx + 16
R2

(R2 − R1)2

∫
R2

|u−|2 dx +
2

R1

∫
R2

|u−|2 dx .

Choosing R1 = R2/2 and using the diamagnetic inequality (3.13) give

∫
R2

|u−|2
|x | dx ≤ 16R2

∫
R2

|∇Au−|2 dx +
68

R2

∫
R2

|u−|2 dx .

Now we fix conveniently R2; namely, given any positive number ε, we set R2 :=
ε(Re λ)1/2/|Im λ| in the previous inequality. Then multiplying the resulting inequal-
ity by (Re λ)−1/2|Im λ| 14 , we get
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(Re λ)−1/2|Im λ|1
4

∫
R2

|u−|2
|x | dx ≤ 4ε

∫
R2

|∇Au−|2 dx +
17

ε
|Im λ|

∫
R2

|u−|2 dx

≤ 4ε
∫
R2

|∇Au−|2 dx+
17

ε

∫
R2

|Im V ||u−|2 dx

≤
[
4ε +

17

ε
(a2

1 + β2
1 )

] ∫
R2

|∇Au−|2 dx,

(5.10)

where in the first inequality we have used the restriction to the sector |Im λ| ≤ Re λ,

the second estimate follows from (4.34) with f = 0 and the third inequality from (3.3)
and (3.6).

Using that, from (5.8) and (5.10), one has

(Re λ)−1/2|Im λ| I ≥ −(Re λ)−1/2|Im λ| 1
4

∫
R2

|u−|2
|x | dx

≥ −
[
4ε +

17

ε
(a2

1 + β2
1 )

] ∫
R2

|∇Au−|2 dx

and plugging this last bound in (5.4), we get

[
1 −

(
2c + 2β2 + 2a2 + a2

1 + b2 + (b2 + a2)(β1 + a1) + 4ε +
17

ε
(a2

1 + β2
1 )

)]

‖∇Au−‖2[L2(R2)]n ≤ 0.

From hypothesis (3.12), we therefore conclude that u = 0 as above. ��
Finally, we prove the two dimensional result in which the magnetic potential is fixed

to be the Aharonov–Bohm one.

Proof of Theorem 3.3. As in the proof of Theorem 3.2, we need to estimate the term
I defined in (5.5), which appears in (5.4). Notice that in this specific case (due to the
triviality of the magnetic field, everywhere except at the origin, see (3.20)), in (5.4) there
does not appear the constant c related to the smallness condition assumed for B. In order
to estimate I , we will use the following weighted Hardy inequality, which is also an
improvement upon (3.11) , it reads

∫
R2

|x ||∇Aψ |2 dx ≥
(
1

4
+ γ 2

)∫
R2

|ψ |2
|x | dx, ∀ψ ∈ C∞

0 (Rd\{0}), (5.11)

where γ := dist{ᾱ, Z} and ᾱ is as in (3.19) (see [15, Lem. 3] for a proof of (5.11)).
A first application of (5.11) gives

(Re λ)−1/2|Im λ| I ≥ −(Re λ)−1/2|Im λ|
(
1

4
− γ 2

) ∫
R2

|u−|2
|x | dx, (5.12)

where we discarded the positive term in I involving the potential V (2). Notice that since
we are assuming ᾱ /∈ Z, then γ ∈ (0, 1/2], this gives 1/4 − γ 2 ≥ 0.
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Now, we proceed estimating the term
∫
R2

|u−|2
|x | dx . Given any positive number R,

we write
∫
R2

|u−|2
|x | dx =

∫
BR

|u−|2
|x | dx +

∫
R2\BR

|u−|2
|x | dx

≤ R
∫

BR

|u−|2
|x |2 dx +

1

R

∫
R2

|u−|2 dx,

where, also here, BR denotes the open disk of radius R > 0.
Choosing in the previous inequality R := εγ 2(Re λ)1/2/|Im λ|with any positive con-

stant ε, andmultiplying the resulting estimate by thequantity (Re λ)−1/2|Im λ| ( 14 − γ 2
)
,

we get

(Re λ)−1/2|Im λ|
(
1

4
− γ 2

)∫
R2

|u−|2
|x | dx

≤
(
1

4
− γ 2

) [
εγ 2

∫
R2

|u−|2
|x |2 dx +

1

εγ 2

∫
R2

|Im V ||u−|2 dx

]

≤
(
1

4
− γ 2

) [
ε +

(a + β)

εγ 3

] ∫
R2

|∇Au−|2 dx .

In the first inequalitywe have used the restriction to the sector |Im λ| ≤ Re λ,while in the
second inequality we have used first the Hardy inequality (3.18) and then the hypotheses
on the potential (3.22) together with the second inequality of (3.23). Plugging the last
estimate in (5.12) and the resulting estimate in (5.4), and using an analog reasoning as
in Remark 3.1.4, give

[
1 −

(
2β + 2a +

a

γ
+ b2 +

1√
γ

(b + a)(
√

a +
√

β) +

(
1

4
− γ 2

) [
ε +

(a + β)

εγ 3

])]

‖∇Au−‖2[L2(R2)]n ≤ 0.

From hypothesis (3.21) we therefore conclude that u = 0 as above. ��

5.2. Self-adjoint case: Proof of Theorem 3.4. Now we prove the much simpler and less
involved analogous result to Theorem 3.1 for self-adjoint Schrödinger operators, namely
Theorem 3.4.

Proof of Theorem 3.4. Let u be any weak solution to the eigenvalues equation (5.1),
with V real-valued.

The proof of this theorem is based exclusively on the identity (4.36). More precisely,
using that V is real-valued, so necessarily Im λ = 0, from (4.36) (with f = 0) we get

2
∫
Rd

|∇Au j |2 dx = − 2 Im
∫
Rd

x · B · u j∇Au j dx +
∫
Rd

|x |∂r V (2)|u j |2 dx

− d
∫
Rd

V (1)|u|2 dx − 2Re
∫
Rd

x · V (1)u j∇Au j dx .

(5.13)
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Observing that ∫
Rd

|x |∂r V (2)|u j |2 dx ≤
∫
Rd

[|x |∂r V (2)]+|u j |2 dx,

using the Cauchy–Schwarz inequality and summing over j = 1, 2, . . . , n, one has

2‖∇Au‖2[L2(Rd )]n ≤ 2
( ∫

Rd
|x |2|B|2|u|2 dx

)1/2‖∇Au‖[L2(Rd )]n +
∫
Rd

[|x |∂r V (2)]+|u|2 dx

+ d
∫
Rd

|V (1)||u|2 dx + 2
( ∫

Rd
|x |2|V (1)|2|u|2 dx

)1/2‖∇Au‖[L2(Rd )]n .

Now, using (3.3), (3.7) and (3.26), one easily gets(
2 − (2c + b2 + da2

1 + 2a2)
)
‖∇Au‖2[L2(Rd )]n ≤ 0.

This immediately gives a contradiction in virtue of (3.25). This concludes the proof. ��
In passing, observe that here we did not need to split the proof and proving separately

absence of positive and non-positive eigenvalues. Indeed, we got the absence of the total
point spectrum in just one step.

Remark 5.2. (Two-dimensional Pauli operators as a special case) One reason for inves-
tigating matrix self-adjoint Schrödinger operators in this work, comes from our interest
in pointing out a pathological behavior of the two dimensional purely magnetic (and so
self-adjoint) Pauli Hamiltonian. From the explicit expression (3.31) of the two dimen-
sional Pauli operators, it is evident the relation with the scalar Schrödinger operator

−∇2
A + V (1) with V (1) := ±B12.

In this specific situation identity (5.13), which was the crucial identity to prove absence
of point spectrum in the self-adjoint situation, reads (after multiplying by 1/2)∫

R2
|∇Au|2 dx = − Im

∫
R2

x · B12u∇Au
⊥

dx −
∫
R2

B12|u|2 dx

−Re
∫
R2

x · B12u∇Au dx .

We stress that differently to the proof presented above, here the presence of the second
term on the right-hand side involving the magnetic field does not allow us to get a
contradiction. Indeed, roughly speaking, all the positivity coming from the left-hand side
and that is customarily used to get the contradiction under the smallness assumption on
the magnetic field is exploited to control the second term on the right-hand side (due to
inequality (3.32)), therefore, using (3.7), one is left with a term of the type

−2c‖∇Au‖2L2(R2)
≤ 0,

which leads to no contradiction, however small is chosen the constant c.

6. Absence of Eigenvalues of Pauli and Dirac Operators

This section is devoted to the proof of emptiness of the point spectrum of Pauli and Dirac
Hamiltonians.
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6.1. Warm-up in the 3d case. Even though the three dimensional setting proposed in the
introduction is clearly covered by themore general results Theorem3.5 andTheorem3.6,
we decided to dedicate to the 3d case a separate section. Indeed, due to the physical
relevance of this framework, we want to make it easier to spot the conditions which
guarantee the absence of the point spectrum in this case, avoiding the interested reader
working his/her way through the statements of the theorems in the general setting.

6.1.1. Absence of eigenvalues of Pauli operators: proof of Theorem 1.2 Let u be any
weak solution to the eigenvalue equation

HP(A, V )u = λu, (6.1)

with HP(A, V ) defined as in (1.2) and where λ is any complex constant.
Using (1.2) and the decomposition V = V (1) + V (2), problem (6.1) can be written

as an eigenvalue problem for matrix Schrödinger operators, namely

HS(A,W)u = λu,

where HS(A,W) is defined in (1.4) and where W = W (1) + W (2) with

W (1) := σ · B + V (1) and W (2) := V (2). (6.2)

In light of the assumptions in (1.8) about V (1) and B, which intrinsically are both full-
subordination conditions to the magnetic Dirichlet form, it is indeed natural to treat V (1)

and B in a unified way defining W (1) as in (6.2).
Assuming the hypotheses of Theorem 1.2 and using that |σ | = √

3 due to the fact
that the Pauli matrices have norm one, one easily verifies the bound

∫
R3

|x |2|W (1)|2|u|2 dx ≤ (a +
√
3c)2

∫
R3

|∇Au|2 dx .

Hence, hypotheses of Theorem 1.1 are satisfied (with W instead of V and with a +
√
3c

as a replacement for a in (3.28)). From this we conclude the absence of eigenvalues of
HS(A,W) and, in turn clearly of HP(A, V ), which is the thesis. ��

6.1.2. Absence of eigenvalues of Dirac operators: proof of Theorem 1.3 Now we are
in position to prove Theorem 1.3. As we will see, it follows as a consequence of the
corresponding result for Pauli operators, namely Theorem 1.2.

Let u be any solution to the eigenvalues equation

HD(A)u = ku, (6.3)

with HD(A) := HD(A, 0) the three dimensional self-adjoint Dirac operator defined
in (1.3) and where k is any real constant. A second application of the Dirac operator to
the eigenvalues problem (6.3) gives that if u is a solution to (6.3), then it satisfies

HD(A)2u = k2u.
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More explicitly, using expression (1.6) and defining u1,2 := (u1, u2) and u3,4 :=
(u3, u4) the two-vectors with components respectively the first and the second com-
ponent of u = (u1, u2, u3, u4), and the third and the fourth, one gets that u1,2 and u3,4
satisfy

{
HP(A)u1,2 + 1

4u1,2 = k2u1,2,

HP(A)u3,4 + 1
4u3,4 = k2u3,4.

In other words, the two-vectors u1,2 and u3,4 are solutions to the eigenvalue problems
associated to the shifted Pauli operators HP(A) + 1

4 with eigenvalues k2.
Notice that since (1.13) holds for anyu = (u1, u2, u3, u4), in particular it holds for the

four-vector (u1, u2, 0, 0) and (0, 0, u3, u4). This fact implies that the second condition
in (1.8) of Theorem 1.2 holds with the same constant c as in (1.13). This means that
we are in the hypotheses of Theorem 1.2 (once we set a purely magnetic framework,
namely V = 0), so HP(A) has no eigenvalues. As a consequence, the shifted operator
HP(A)+ 1

4 IC2 has no eigenvalues too. Hence u1,2 and u3,4 are vanishing and with them
u = (u1,2, u3,4) itself.

This concludes the proof of Theorem 1.3. ��

6.2. Absence of eigenvalues of Pauli operators in any dimension. Nowwe are in position
to prove the general Theorem 3.5.

Proof of Theorem 3.5. We divide the proof depending on the parity of the space dimen-
sion.

6.2.1. Odd dimensions In odd dimensions, the proof follows the same scheme as the
one presented in the three-dimensional case.

Looking at expression (2.12) and using the decomposition of V = V (1) + V (2), one
defines W = W (1) + W (2) such that

W (1) = − i

2
a · B · a + V (1) and W (2) = V (2).

It is easy to see that
∫
Rd

|x |2|W (1)|2|u|2 dx ≤
(

a +
d

2
c
)2 ∫

Rd
|∇Au|2 dx,

where we have used the validity of (3.28) and the fact that |a| = √
d (see Remark 2.1).

Thus, the proof follows exactly as the one of Theorem 1.2 using, this time, the general
result for Schrödinger operators Theorem 3.1.

6.2.2. Even dimensions Let u be any solution to the eigenvalue problem

H even
P (A, V )u = λu,

where H even
P (A, V ) is defined in (2.14) and λ is any complex constant. In passing notice

that according to (2.15), since d is even, then n′(d) = n(d).
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Defininguup := (u1, u2, . . . , un(d)/2) andudown := (un(d)/2+1, un(d)/2+2, . . . , un(d)),
the n(d)/2-vectors with components respectively the first half and the second half of the
components of u = (u1, u2, . . . , un(d)), one gets

{
HS(A,Wup)uup = λuup,

HS(A,Wdown)udown = λudown,

where Wup = W (1)
up + W (2)

up with

W (1)
up := − i

2
a∗ · B · a + V (1) ICn(d)/2 and W (2)

up := V (2) ICn(d)/2 ,

and where Wdown = W (1)
down + W (2)

down with

W (1)
down := − i

2
a · B · a∗ + V (1) ICn(d)/2 and W (2)

down := V (2) ICn(d)/2 .

Notice that here we have also used that the component V (1) and V (2) of V = V (1)+V (2)

are diagonal by the hypothesis.
It is easy to see that

∫
Rd

|x |2|W (1)
up |2|uup|2 dx ≤

(
a +

d

2
c
)2 ∫

Rd
|∇Auup|2 dx,

and
∫
Rd

|x |2|W (1)
down|2|udown|2 dx ≤

(
a +

d

2
c
)2 ∫

Rd
|∇Audown|2 dx,

where we have used (3.28) for the vector (uup, 0) and (0, udown), respectively, and the
fact that |a| = √

d.

This means that we are in the hypotheses of Theorem 3.1 (once we replace V with
Wup and Wdown and with a + d

2 c instead of a2 in (3.3)) and therefore HS(A,Wup) and
HS(A,Wdown) have no eigenvalues. Hence uup and udown are vanishing and with them
u = (uup, udown).

This concludes the proof of Theorem 3.5. ��

6.3. Absence of eigenvalues of Dirac operators in any dimension. Nowwe can conclude
our discussion by proving the absence of eigenvalues of Dirac operators in the general
case, namely proving Theorem 3.6.

Let us start commenting on the odd-dimensional case. Due to expression (2.11) for
the squared Dirac in odd dimensions and due to the analogy with (1.6) in the three-
dimensional case, one can proceed as in the proof of Theorem 1.3 using the validity of
the corresponding result Theorem 3.5 for Pauli operators to get the result.

Turning to the even-dimensional situation, one realises from (2.13) that the squared
Dirac operator equals a shifted Pauli operator. Therefore Theorem 3.6 follows as a
consequence of Theorem 3.5 for even Pauli operators.
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