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Abstract: We study metastable behavior in a discrete nonlinear Schrödinger equation
from the viewpoint of Hamiltonian systems theory. When there are n < ∞ sites in this
equation, we consider initial conditions in which almost all the energy is concentrated
in one end of the system. We are interested in understanding how energy flows through
the system, so we add a dissipation of size γ at the opposite end of the chain, and we
show that the energy decreases extremely slowly. Furthermore, the motion is localized
in the phase space near a family of breather solutions for the undamped system. We give
rigorous, asymptotic estimates for the rate of evolution along the family of breathers and
the width of the neighborhood within which the trajectory is confined.
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1. Introduction

In the present work we look at the problem of a finite, discrete nonlinear Schrödinger
equation, with dissipation, which we considered first in [1]. We need to repeat several
equations from that paper, but the aim is now to give a complete proof of the observations
and assertions in that paper. One starts with

−i
∂u j

∂τ
= −(Δu) j + |u j |2u j , j = 1, 2, . . . , n, (1.1)

where we will add dissipation later. Here (Δu) j = u j−1 − 2u j + u j+1, with free end
boundary conditions for j = 1 or n, i.e., (Δu)1 = −u1 + u2 and (Δu)n = −un + un−1.

For the convenience of the reader, the following introduction repeats the setup from
[1].

We will choose initial conditions for this system in which essentially all of the energy
is in mode u1, and will add a weak dissipative term to the last mode as in [1,2] by adding
to Eq. (1.1) a term of the form

iγ δn, j u j ,

i.e., we add dissipation to position n, at the opposite end from the energetic mode.
Eventually, this will lead to the energy of the system tending to zero, but we are

interested in what happens on intermediate time scales, and in particular, how the energy
is transported from one end of the lattice to the other.

If our initial conditions are chosen so that u1(0) = √
Ω , and all other u j (0) = 0,

then we expect that at least initially, the coupling terms between the various modes will
play only a small role in the evolution and the system will be largely dominated by the
equation for u1:

−i
du1
dτ

= |u1|2u1,
with solution u1(τ ) = √

ΩeiΩτ—i.e., we have a very fast rotation with large amplitude.
With this in mind, we introduce a rescaled dependent variable and rewrite the equation
in a rotating coordinate frame by setting:

u j (τ ) = √
ΩeiΩτ w̃ j (τ ). (1.2)

Then w̃ j satisfies

Ωw̃ j − i
∂w̃ j

∂τ
= −(Δw̃) j + Ω|w̃ j |2w̃ j .

We now add dissipation by adding a term which acts on the last variable, with γ ≥ 0,

Ωw̃ j − i
∂w̃ j

∂τ
= −(Δw̃) j + Ω|w̃ j |2w̃ j + iγ δn, j w̃ j .

Rearranging, and dividing by Ω gives

−i
1

Ω

∂w̃ j

∂τ
= − 1

Ω
(Δw̃) j − w̃ j + |w̃ j |2w̃ j + i

γ

Ω
δn, j w̃ j .

Finally, we define ε = Ω−1, and rescale time so that τ = εt . Setting w(t) = w̃(τ ), we
arrive finally at

−i
∂w j

∂t
= −ε(Δw) j − w j + |w j |2w j + iγ εδn, jw j . (1.3)
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Now that we have defined the main equation Eq. (1.3) we describe the picture that
will be proved later:

When γ = 0 and |ε| �= 0 is small, this system possesses a family of breathers, namely
solutions which in this rotating coordinate systems are stationary states in which most
of the energy is localized in site 1.1 Such solutions take the form

u(0)
ε, j ∼ (−1) j+1ε j−1, j = 1, . . . , n.

In fact, there are many such solutions, with different frequencies, which we will write
as

u(ϕ0)
ε, j = eiϕ0t p(ϕ0) j , (1.4)

for ϕ0 near zero, and p(ϕ0) j ∼ u(0)
ε, j . We will demonstrate the existence of these families

of solutions in Theorem 1.6, using the implicit function theorem, and also give more
accurate asymptotic formulas for them.As Eq. (1.3) is invariant under complex rotations,
we actually have a circle of fixed points, with a phase we call ϑ . As there is one such
circle for every smallϕ0 we represent, in Fig. 1, these solutions as a (green) cylinder, with
the direction along the cylinder corresponding to changing ϕ0 and motions “around” the
cylinder corresponding to changing ϑ .

When the dissipation is nonzero (i.e., when γ > 0) these periodic solutions are
destroyed, but they give rise to a family of time-dependent solutions which “wind”
along the cylinder, the red curves in Fig. 1. We will prove that one can accurately
approximate solutions of the dissipative equations by “modulating” the frequency and
phase of the breather, namely we prove that the solutions of the dissipative equation can
be written as:

u j (x, t) = ei(tϕ(t)+ϑ(t))u(0)
ε, j + z j (t), j = 1, . . . , n,

where

ϕ̇(t) ∼ −2γ ε2n−1,

t ϕ̇(t) + ϑ̇(t) ∼ 0,

||z(t)|| remains bounded by O(γ εn).

The higher order terms that we have omitted from these expressions are explicitly esti-
mated in Sect. 7 .

We prove that the initial values ϕ0 and ϑ0 can be chosen so that z(t) is normal to
the cylinder of breathers at the point (ϕ0, ϑ0), and that its long term boundedness is
due to the (somewhat surprising) fact that the linearized dynamics about the family of
breathers is uniformly (albeit weakly) damping in these normal directions. This is the
main new technical result of the paper and the proof of this fact takes up Sects. 3–6.
That breathers can play an important role in the non-equilibrium evolution of systems
of coupled oscillators has also been discussed (non-rigorously) in the physics literature.
For two recent examples see [5,6].

To formulate our resultsmore precisely, we need some notation: Let δ(t) ≡ ϕ(t)−ϕ0.
Let s(t) = ∫ t

0 dτ(τ ϕ̇(τ ) + ϑ̇(τ )). Let the initial condition be ϕ0, ϑ0 and z0, with z0
perpendicular to the tangent space to the cylinder at ϕ0, ϑ0. Note that δ(0) = s(0) = 0.

1 The existence and properties of breather solutions in infinite lattices of oscillators are discussed in [3] or
[4]. The proofs in those cases are easily modified (and actually somewhat simpler) in the case of finitely many
degrees of freedom.



74 J.-P. Eckmann, C. E. Wayne

Theorem 1.1. For sufficiently small ε > 0 and γ > 0 the following holds: Assume

‖z(0)‖ ≤ γ εn,

Then, there is a constant (depending only on n) such that at time T = const ε−1.

‖z(T )‖ ≤ γ εn,

while both δ(T ) and s(T ) have modulus less than 1. For all intermediate t , one has
‖z(t)‖ ≤ 2γ εn, so the trajectory never moves too far from the cylinder of breathers.
Furthermore, one can findϕ1,ϑ1, z1, with z1 in the subspace perpendicular to the tangent
space to the cylinder at ϕ1, ϑ1, with

ei(Tϕ1+ϑ1) p(ϕ1) + z1 = ei(Tϕ(T )+ϑ(T )) p(ϕ(T )) + z(T ), (1.5)

and
‖z1‖ ≤ γ εn . (1.6)

Finally,
ϕ1 − ϕ0 = −2γ ε2n−1T + h.o.t. . (1.7)

Remark 1.2. The important consequence of Theorem 1.1 is the observation that the
bounds propagate, so we can restart the evolution, using initial conditions (ϕ1, ϑ1, z1)
instead of (ϕ0, ϑ0, z0), and therefore one can move to ϕ2, ϑ2, z2, and so on, with con-
trolled bounds on ϕk , which apply at least as long as ϕ0 − ϕk ≤ γ εn . Also note that the
deviation from the cylinder is as shown in Fig. 1, namely, the orbit can get away from
‖zk‖ ≤ γ εn , during the times between the stopping times kT , k = 1, 2, . . . .

The remainder of the paper is devoted to the proof of Theorem 1.1. After some
introductory results, the first important bound is on the linear semigroup with the very
weak dissipation in Sect. 6. The generator is called Lϕγ , see Eq. (6.1) and its associated
bound (inCorollary 6.2). In Sect. 7,we study in detail the projection onto the complement
of the tangent space to the cylinder at (ϕ, ϑ). This allows, in Sect. 8, to estimate the
contraction (after time T ) of the z-component, orthogonal to the tangent space. We do
this in two steps, first we evolve z while staying in the basis defined at ϕ0, ϑ0. Then, in
Sect. 9, we re-orthogonalize so that we obtain Eq. (1.5). Finally, Sect. 10 gives some
more details about restarting the iterations from ϕ1, ϑ1, z1 to ϕ2, . . . .

The precise statement will be formulated and proved as Theorem 8.2.

Remark 1.3. From the results of [1] and Eq. (1.7) one can also conclude more details

about the windings of Fig. 1. The mth turn finishes after a time tm ≈
√

2πm
γ ε2n−1 , and the

“horizontal” spacing (in ε) between the windings is 2
√

2πγ ε2n−1(
√
m + 1 − √

m), up
to terms of higher order.

We will study Eq. (1.3) for the remainder of this paper. We will also sometimes
rewrite this equation in the equivalent real form by definingw j = p j + iq j , which yields
the system of equations, for j = 1, . . . , n:

q̇ j = −ε(Δp) j − p j + (q2j + p2j )p j − δ j,nγ εqn,

ṗ j = ε(Δq) j + q j − (q2j + p2j )q j − δ j,nγ εpn . (1.8)
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Fig. 1. Illustration of the results: Since phase space is high-dimensional, we draw the red curve in the same
coordinate systemas the cylinder, but it really stays in a subspace ofCn which is orthogonal to the 2-dimensional
space of the cylinder. When there is no dissipation (γ = 0), then the system has a cylinder of fixed points in
rotating frames (shown in green). This cylinder is parameterized by the values of ε, i.e., the energy of the fast
coordinate u1. When γ > 0, the fixed points disappear, and instead the system hovers near the cylinder, and
spiraling around it, with a phase speed of 2γ ε2n−1. We show that the orbit of all such solutions stays within
a distance O(εn), as long as ε remains small (it actually increases with time)

Note that if γ = 0, this is a Hamiltonian system with:

H = ε

2

∑

j<n

(

(p j − p j+1)
2 + (q j − q j+1)

2
)

−
n

∑

j=1

(

1

2
(p2j + q2j ) − 1

4
(p2j + q2j )

2
)

. (1.9)

Finding a periodic solution of the form Eq. (1.2) (i.e., a fixed point in the rotating
coordinate system) reduces to finding roots of the system of equations

0 = −ε(Δp) j − p j + (q2j + p2j )p j ,

0 = ε(Δq) j + q j − (q2j + p2j )q j . (1.10)

Since we are also interested in solutions which rotate (slowly), replacing w by eiϕ0tw,
we study instead of Eq. (1.8) (resp. Eq. (1.10)) the related equation

q̇ j = −ε(Δp) j − (1 + ϕ0)p j + (q2j + p2j )p j − δ j,nγ εqn,

ṗ j = ε(Δq) j + (1 + ϕ0)q j − (q2j + p2j )q j − δ j,nγ εpn, (1.11)

where the ϕ0 dependence comes from differentiating the exponential factor eiϕ0t .

Remark 1.4. We use ϕ0 to designate a constant rotation speed, while later, ϕ will stand
for a time-dependent rotation speed.

Remark 1.5. The reader who is familiar with the paper [1] can jump to Sect. 3, since
much of thematerial in this section and the next is basically repeated from that reference.

Theorem 1.6. Suppose that the damping coefficient γ equals 0 in Eq. (1.11). There exist
constants ε∗ > 0, ϕ∗ > 0, such that for |ε| < ε∗ and |ϕ0| < ϕ∗, Eq. (1.11) has a
periodic solution of the form w j (t;ϕ0) = eitϕ0 p j (ϕ0), with p1(ϕ0) = 1+O(ε, ϕ0), and

p j (ϕ0) = O(ε j−1) for j = 2, . . . , n.



76 J.-P. Eckmann, C. E. Wayne

Proof. If we insert w j (t;ϕ0) = eitϕ0 p j (ϕ0) into Eq. (1.3), and take real and imaginary
parts, we find that the amplitudes p ∈ Rn of these periodic orbits are (for γ = 0)
solutions of

Fj (p;ϕ0, ε) = −ε(Δp) j − (1 + ϕ0)p j + p3j = 0, j = 1, . . . , n. (1.12)

Setting p0j = δ j,1, we have

Fj (p
0; 0, 0) = 0,

for all j . Furthermore, the Jacobian matrix at this point is the diagonal matrix
(

DpF(p0; 0, 0)
)

i, j
= (3δi,1 − 1)δi, j ,

which is obviously invertible.
Thus, by the implicit function theorem, for (ϕ0, ε) in someneighborhood of the origin,

Eq. (1.12) has a unique fixed point p = p(ϕ0, ε), and since F depends analytically on
(ϕ0, ε), so does p(ϕ0, ε).

It is easy to compute the first few terms of this fixed point:

p1 = 1 +
1

2
(ϕ0 − ε) +O2,

p2 = −ε +O2,

p3 = ε2 +O3,

. . .

p j = (−1) j−1ε j +O j+1, (1.13)

where Ok denotes terms of order k in ϕ0, ε together. 
�
Remark 1.7. Since Eq. (1.3) is invariant under complex rotations w j → eiϑ0w j , we
actually have a circle of fixed points (when γ = 0). However, these are the only fixed
points with |w1| ≈ 1. We will continue with ϑ0 = 0, and reintroduce ϑ0 �= 0 only in
Sect. 3.

2. The Eigenspace of the Eigenvalue 0

Consider the linearization of the system Eq. (1.11) around the periodic orbit (fixed point)
we found in Theorem 1.6. Denote by Z∗ this solution,

Z∗ = (p1, p2, . . . , pn, q1, q2, . . . , qn)
�,

where q j = 0 and p j = p j (ϕ0, ε) as found in Theorem 1.6. In order to avoid overbur-
dening the notation, we will write out the formulas which follow for the case n = 3—the
expressions for general (finite) values of n are very similar. We also omit the ε depen-
dence from p(ϕ0, ε). The linearization of the evolution Eq. (1.11) at Z∗ leads (for γ = 0)
to an equation of the form

dx

dt
= Mϕ0,εx =

(

0 Aϕ0,ε

Bϕ0,ε 0

)

x,
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and with 1ϕ0 ≡ (1 + ϕ0):

Aϕ0,ε =
⎛

⎝

1ϕ0 − ε − (p1)
2 ε 0

ε 1ϕ0 − 2ε − (p2)
2 ε

0 ε 1ϕ0 − ε − (p3)
2

⎞

⎠ , (2.1)

where the p j = p(ϕ0) j are the stationary solutions of Eq. (1.11). Similarly,

Bϕ0,ε =
⎛

⎝

−1ϕ0 + ε + 3(p1)
2 −ε 0

−ε −1ϕ0 + 2ε + 3(p2)
2 −ε

0 −ε −1ϕ0 + ε + 3(p3)
2

⎞

⎠ . (2.2)

Similar expressions hold for other values of n.
Among the key facts that we will establish below is that Mϕ0,ε has a two-dimensional

zero eigenspace, with an explicitly computable basis, for all values of ε. Then, in sub-
sequent sections we will show that the remainder of the spectrum lies on the imaginary
axis and that all non-zero eigenvalues are simple and separated from the remainder of
the spectrum of Mϕ0,ε by a distance at least Cε. All of these facts turn out to be essential
for our subsequent calculations and establishing them is complicated by the extreme
degeneracy of the eigenvalues of Mϕ0,0 about which we wish to perturb.

The following lemma will allow to simplify notation:

Lemma 2.1. One has the identity

∂ϕ p(ϕ0) = B−1
ϕ0,ε

p(ϕ0).

Proof. This follows by differentiating Eq. (1.12) and comparing to the definition of Bϕ0,ε

in Eq. (2.2). 
�
Lemma 2.2. Define Bϕ0,ε = L − ϕ01 + 3(p(ϕ)0)

2, with L = εΔ − 1. That is, we view
Bϕ0,ε as a real n × n matrix and (p(ϕ0))

2 as the diagonal matrix with components
((p(ϕ0)1)

2, . . . , (p(ϕ0)n)
2). Then the zero eigenspace of the matrix Mϕ0,ε is spanned

by the 2n-component vectors

v(1)
ϕ0

=
(

0
p(ϕ0)

)

,

v(2)
ϕ0

=
(

B−1
ϕ0,ε

p(ϕ0)

0

)

, (2.3)

Proof. To see that Mϕ0,εv
(1)
ϕ0 = 0, note that Eq. (1.1) is invariant under u → eiϑu.

Thus, viewed in Cn , the quantity eiϑ(p(ϕ0, ε) + i0) is a solution for all ϑ . Taking the
derivative w.r.t. ϑ , at ϑ = 0 and considering the real and imaginary parts of the resulting
equation shows that v(1)

ϕ0 is a solution of Mϕ0,εv
(1)
ϕ0 = 0. From the form of Mϕ0,ε and the

invertibility of Bϕ0,ε we see immediately that v(2)
ϕ0 is mapped onto the direction of v

(1)
ϕ0 .
�

We will also need the adjoint eigenvectors of M :
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Lemma 2.3. The adjoint eigenvectors are given by

n(1)
ϕ0

= (2 +O(ϕ0, ε)) · (0, B−1
ϕ0

p(ϕ0))
�,

n(2)
ϕ0

= (2 +O(ϕ0, ε)) · (p(ϕ0), 0)
�. (2.4)

They are normalized to satisfy

〈n(1)
ϕ0

|v(1)
ϕ0

〉 = 〈n(2)
ϕ0

|v(2)
ϕ0

〉 = 1,

〈n(2)
ϕ0

|v(1)
ϕ0

〉 = 〈n(1)
ϕ0

|v(2)
ϕ0

〉 = 0. (2.5)

Remark 2.4. The approximate versions are

n(1)
ϕ0

∼ (0, . . . , 0, 1, 0, . . . , 0)�,

n(2)
ϕ0

∼ (2, 0, . . . , 0)�.

Proof. Because of the block form of M and the fact that A and B are symmetric, we
have

M∗
ϕ0,ε

=
(

0 Bϕ0,ε

Aϕ0,ε 0

)

.

But then, sinceweknowfrom the computationof the eigenvectors ofM that Bϕ0,ε p(ϕ0) =
0, we can check immediately that

ñ(2)
ϕ0

= (p(ϕ0), 0)
�

satisfies M∗ñ(2)
ϕ0 = 0. Likewise,

ñ(1)
ϕ0

= (0, B−1
ϕ0,ε

p)�

satisfies

M∗
ϕ0,ε

ñ(1)
ϕ0

= (p(ϕ0), 0)
� = ñ(2)

ϕ0
.

Thus, ñ(1)
ϕ0 and ñ(2)

ϕ0 span the zero eigenspace of the adjoint matrix. The normalization is
checked from the definitions. 
�

3. Evolution Equations for γ > 0

Consider Eq. (1.3), with dissipation: Here, CΓ is not a scalar, but a diagonal matrix,
whose diagonal will be taken as (0, 0, . . . , γ ε) ∈ Cn . Thus, our evolution equation is

−iẆ = LW + |W |2W + iCΓ W, (3.1)

with L = εΔ−1, as before.We are interested in the time dependence of two real “slow”
variables which we call ϕ(t) and ϑ(t), and so we set

W (t) = ei(tϕ(t)+ϑ(t))(p
(

ϕ(t)
)

+ z(t)
)

, W, z ∈ Cn . (3.2)

Remark 3.1. Recall that the notationϕ0 stands for a constant phase speed,whileϕ = ϕ(t)
will always mean a time-dependent quantity.
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Our decomposition is inspired by modulation theory approaches to study the stability
of solitary waves and patterns with respect to perturbations [7–10]. In particular, we will
choose the initial decomposition of the solution so that the initial value of z(0) lies
in the subspace conjugate to the zero-eigenspace of the linearization. We then prove
(somewhat surprisingly) that all modes orthogonal to the zero subspace are uniformly
damped which allows us to show that the values of z(t) remain bounded for very long
times. Omitting the arguments (t), we find

Ẇ = i(ϕ + t ϕ̇ + ϑ̇)ei(tϕ+ϑ)(p(ϕ) + z)

+ ei(tϕ+ϑ)
(

∂ϕ p(ϕ) ϕ̇ + ż
)

.

Then Eq. (3.1) leads to (using again that powers and products are taken componentwise),

(ϕ + t ϕ̇ + ϑ̇)ei(tϕ+ϑ)(p(ϕ) + z) − iei(tϕ+ϑ)
(

∂ϕ p(ϕ)ϕ̇ + ż
)

= ei(tϕ+ϑ)L(p(ϕ)) + ei(tϕ+ϑ)Lz

+
(

ei(tϕ+ϑ)(p(ϕ) + z)
)2

(e−i(tϕ+ϑ)(p(ϕ) + z̄)) + iCΓ e
i(tϕ+ϑ)(p(ϕ) + z).

The factors of ei(tϕ+ϑ) cancel and we get

(ϕ + t ϕ̇ + ϑ̇)(p(ϕ) + z) − i
(

∂ϕ p(ϕ) ϕ̇ + ż
)

= L(p(ϕ)) + Lz + (p(ϕ) + z)2(p(ϕ) + z̄) + iCΓ (p(ϕ) + z).

We now expand this equation to first order in z and this leads to

(ϕ + t ϕ̇ + ϑ̇)(p(ϕ) + z) − i
(

∂ϕ p(ϕ) ϕ̇ + ż
)

= L(p(ϕ)) + Lz

+ (p(ϕ))3 + 2(p(ϕ))2z + p(ϕ)z̄

+ iCΓ (p(ϕ) + z) +O(|z|2). (3.3)

Set now z = ξ + iη.
In what follows, we will switch back and forth between the real and complex rep-

resentations of the solutions and will refer to z = ξ + iη ∈ Cn and ζ = (ξ, η) ∈ R2n

interchangeably, allowing the context to distinguish between the two ways of writing the
solution. When we consider ξ and η, which are n dimensional vectors, one should note
that ξ = (ξ1, . . . , ξn)

� while η = (η1, . . . , ηn)
�. At various points in the argument, will

use restrictions of our equations to these two spaces which we call Pξ
ϕ0 and Pη

ϕ0 .
Taking the real and imaginary components of Eq. (3.3), we obtain the following

equations in Rn :

(t ϕ̇ + ϑ̇)(p(ϕ) + ξ) + η̇ = (L − ϕ)ξ + 3(p(ϕ))2ξ − CΓ η +O2,

(t ϕ̇ + ϑ̇)η − (∂ϕ p(ϕ) ϕ̇ − ξ̇ = (L − ϕ)η + (p(ϕ))2η + CΓ (p(ϕ) + ξ) +O2, (3.4)

where O2 refers to terms that are at least quadratic in (ξ, η).
Wenext studywhat happens in the complement of the two-dimensional zero eigenspace

identified at the end of the previous section, when one adds dissipation on the coordinate
n. In the standard basis, when n = 3, the dissipation is given, as before, by

CΓ =
⎛

⎝

0 0 0
0 0 0
0 0 γ ε

⎞

⎠ .
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In the full space, we have the 2n × 2n matrix

Γ =
(

CΓ 0
0 CΓ

)

.

We fix a ϕ(0) = ϕ0 and we consider the projection

P = Pϕ0 = 1 − |v(1)
ϕ0

〉〈n(1)
ϕ0

| − |v(2)
ϕ0

〉〈n(2)
ϕ0

|.
This is the projection onto the complement of the space spanned by the 0 eigenvalue.

We will require that ζ = (ξ, η) remains in the range of Pϕ0 .As time passes, the base
point (ϕ, ϑ) will change, and this will lead to secular growth in ζ , an issue which we
discuss in detail below.

We rearrange Eq. (3.4) as

ξ̇ = Pξ
ϕ0

(

(−(L − ϕ) − (p(ϕ))2
)

η

− CΓ ξ + (t ϕ̇ + ϑ̇)η − ∂ϕ

(

p(ϕ)
)

ϕ̇ − CΓ p(ϕ) +O2

)

,

η̇ = Pη
ϕ0

(

(

(L − ϕ) + 3(p(ϕ))2
)

ξ − CΓ η − (t ϕ̇ + ϑ̇)(p(ϕ) + ξ) +O2

)

. (3.5)

We will compute these projections in detail in Sect. 7.

4. Spectral Properties of the Linearization at γ = 0

In this section, we consider the action of the matrix Mϕ0,ε, when projected (with Pϕ0 )
onto the complement of the subspace associated with the 0 eigenspace. Recall from
above that:

Pϕ0 = 1 − |v(1)
ϕ0

〉 〈n(1)
ϕ0

| − |v(2)
ϕ0

〉 〈n(2)
ϕ0

|.
We will see that this projection is very close to the projection onto the complement of
the 1st and (n + 1)st component of the vectors in R2n .

We use perturbation theory, starting from the matrix Mϕ0=0,ε=0. We write the for-
mulas for n = 4. The discussion starts with ε = ϕ0 = 0. Then, we have the quantities

A0,0 = Aϕ0=0,ε=0

⎛

⎜

⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎠
=

(

0
1

)

, (4.1)

and

B0,0 = Bϕ=0,ε=0 =
⎛

⎜

⎝

2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎠
=

(

2
−1

)

, (4.2)

which follow by substitution. We set

M0,0 ≡
(

0 A0,0
B0,0 0

)

,
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and study first the spectrum of M0,0. The spectrum (and the eigenspaces) of Mϕ,ε will
then be shown to be close to that of M0,0.

The eigenvalues of M0,0 are: A double 0, and n − 1 pairs of eigenvalues ±i. When
n = 4, the corresponding eigenvectors are:

e(1) = (0, 0, 0, 0, 1, 0, 0, 0)�,

e(3),(4) = (0,±i, 0, 0, 0, 1, 0, 0)�,

e(5),(6) = (0, 0,±i, 0, 0, 0, 1, 0)�,

e(7),(8) = (0, 0, 0,±i, 0, 0, 0, 1)�.

Note that e(2) is missing, but the vector e(2) = (1, 0, 0, 0, 0, 0, 0, 0)� is mapped onto
2e(1) and so e(1) and e(2) span the 0 eigenspace.

Since we have a symplectic problem (when γ = 0), we need to do the calculations in
an appropriate basis. This is inspired by the paper [11]. The coordinate transformation
is defined by the following matrix: Let s = 1/

√
2, and define (for the case n = 4),

X =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
s s

s s
s s

1
is −is

is −is
is −is

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.3)

The columns are the normalized eigenvectors of our problem, for ε = ϕ = 0. Empty
positions are “0”s and the second vector is mapped on the first (up to a factor of 2). With
our choice of s we have X∗X = 1, where X∗ is the Hermitian conjugate of X .

Definition 4.1. If Y is a matrix, we write its transform as X (Y ) = X∗Y X .

In the new basis, we get:

X (M0,0) = −i

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −2i
0 0

1
1
1

−1
−1

−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= −i

⎛

⎜

⎝

0 −2i
0 0

1
−1

⎞

⎟

⎠
. (4.4)

Therefore, we have diagonalized M0,0 up to its nilpotent block, and we also see that the
other parts ofX (M0,0) are imaginary, which reflects the symplectic nature of the model.

We now turn to the case of Mϕ0,ε which we view as a perturbation of M0,0 in the
following way:

Mϕ0,ε = Mϕ0,0 + E1 + E2,

where

Mϕ0,0 =
(

0 Aϕ0,0
Bϕ0,0 0

)

,
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with

Aϕ0,0 = diag(0, 1ϕ0 , . . . , 1ϕ0),

Bϕ0.0 = diag(−2 · 1ϕ0 ,−1ϕ0 , . . . ,−1ϕ0).

The matrix E1 collects the terms in Mϕ0,ε which are linear in ε, while E2 collects all
higher order terms. The matrix E1 is easily derived from Eqs. (1.13) and (4.1)–(4.2)2:

E1 = ε

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1
1 −2 1

1 −2 1
1 −1

−2 −1
−1 2 −1

−1 2 −1
−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

We now apply the coordinate transformation to Mϕ0,0 and E1. We first observe that

X (Mϕ0,0) = (1 + ϕ0)X (M0,0). (4.5)

Applying the transformation to E1, one gets (using again s = 1/
√
2):

X (E1) = iε

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2i is is
s −s

−is s −2 1
1 −2 1

1 −1
−is −s 2 −1

−1 2 −1
−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.6)

The reader should be aware that the seeming irregularities of the matrix X (E1) are
due to the differences between the expansions of p1 and the other p j in powers of ε.
We next split X (E1) = X (E11) + X (E12), where3

X (E11) = iε

⎛

⎜

⎝

0 2i
0 0

S
−S

⎞

⎟

⎠
, (4.7)

and the ±S are the tri-diagonal parts of Eq. (4.6). It is important to observe that the S is
tri-diagonal, symmetric, with non-zero off-diagonal elements. Clearly,X (E12) contains

2 The generalization to arbitrary n is obtained by “filling in”more rows of the form 1,−2, 1 resp.−1, 2, −1,
while retaining the first and last rows.

3 We maintain the somewhat redundant notation X (·) so that the reader immediately sees on which space
the object in question acts.
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only the two top rows and the first two columns of X (E1). It is thus of the form

X (E12) = iε

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (4.8)

where the “*” denote elements of at most O1, cf. Eq. (4.6).
All in all, we have decomposed

X (Mϕ0,ε) = (1 + ϕ0)X (M0,0) + X (E11) + X (E12) + X (E2). (4.9)

The term X (E2) contributes to second order, and it only remains to understand the
role of X (E12). Note now that X (E12), which is of the form of Eq. (4.8), couples the
0 block to S and −S, but only to the first component of these matrices.4 The following
argument from classical perturbation theory shows that this can only contribute to second
order in ε to the spectrum.

Thefirst order shift of an eigenvalue close to iwith eigenvectorv is simply 〈v|X (E12)v〉.
But, v is of the form

v = (0, 0, v1, v2, v3, 0, 0, 0)
�,

due to the form X (Mϕ0,0 + E11). Thus, X (E12)v is of the form

X (E12)v = (∗, ∗, 0, 0, 0, 0, 0, 0)�,

where “∗” denotes possibly non-zero elements. From the form of v, this implies that

〈v|X (E12)v〉 = 0.

This means that X (E12) contributes only in second order in ε to the eigenvalues.

5. Complement of the Zero Eigenspace

Recall that our goal is to write the solution of (1.3) as

w j (t) = ei(ϕ(t)t+ϑ(t))(p j (ϕ(t)) + z j (t)),

and then follow the evolution of ϕ, ϑ , and z = (ξ + iη). Since ζ(t) = (ξ(t), η(t)) is
constructed to lie in the subspace orthogonal to the tangent space of the cylinder of
breathers at (ϕ0, ϑ0), we construct the projection P onto the tangent space at ϕ0, ϑ0.
We show that, somewhat surprisingly, with the exception of the zero eigenspace, all
other eigenvalues of the linearized matrix are simple, lie on the imaginary axis, and are
separated by a distance of at leastCε from the remainder of the spectrum. It is convenient
to work directly with the transformation X (·) of Eq. (4.3).

4 This is a remnant of the nearest neighbor coupling of the model.
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Theorem 5.1. The operator X (PMϕ0,ε) has two eigenvalues which are within O(ε) of
0, and (n − 1) purely imaginary eigenvalues close to i, separated by Cε, with C > 0.
The corresponding eigenvectors (in the X (·) basis) are orthogonal. Furthermore, these
eigenvalues have non-vanishing last component (i.e., the components 2 + (n − 1) and
2 + 2(n − 1) in the X (·) representation). Analogous statements hold for the n − 1
eigenvalues near −i.

Proof. The remainder of this section is devoted to the proof of this theorem.
A calculation (using our formulas for v( j), n( j)) shows that

X (P) = X (P0) + X (P1) + X (P2), (5.1)

where

X (P0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0
0 0

1
1
1
1
1
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, X (P1) =
⎛

⎜

⎝

0 0
0 0

P1
P2

⎞

⎟

⎠
,

where the orders of the elements of Pj are

Pj =
⎛

⎝

ε2 ε3 ε4

ε3 ε4 ε5

ε4 ε5 ε6

⎞

⎠ .

Furthermore the Pj are symmetric. Note that (Pj )i,k = O(εi+k). Finally, showing orders
only,

X (P2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ε + ϕ0 0 ε 0 0 ε 0 0
0 ε + ϕ0 ε 0 0 ε 0 0
ε ε

0 0
0 0
ε ε

0 0
0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+O2.

The omitted terms are similar to those in Pj (again a symmetric matrix). Therefore, the
eigenvectors are orthogonal. (This actually follows also from the Hamiltonian nature of
the problem, but we need more information to control the γ -dependence.)

Remark 5.2. Clearly, X (P0) is the projection on the eigenspace spanned by ±i, when
ε = 0. The part X (P1) contains the couplings within the subspace of the eigenvalues
±i, while X (P2) describes the coupling between the zero-eigenspace of dimension 2
and its complement.

From Sect. 4 we also have the decomposition Eq. (4.9):

X (Mϕ0,ε) = (1 + ϕ0)X (M0,0) + X (E11) + X (E12) + X (E2).
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Combining with Eq. (5.1), we see that

X (PMϕ0,ε) = X (P)X (Mϕ0,ε)

leads to 12 terms, many of which are of second order in ε and ϕ0. We start with the
dominant ones.

SinceX (P0) is just the projection onto the complement of the first 2 eigendirections,
we get from Eq. (4.4),

X (P0Mϕ0,0) = X (P0)X (Mϕ0,0)

= i1ϕ

⎛

⎜

⎝

0 0
0 0

1
1

⎞

⎟

⎠

⎛

⎜

⎝

0 −2i
0 0

1
−1

⎞

⎟

⎠
= −i1ϕ

⎛

⎜

⎝

0 0
0 0

1
−1

⎞

⎟

⎠
,

where 1ϕ ≡ 1 + ϕ. This is clearly the leading constant term.
The next term is at the origin of the ε-splitting of Theorem 5.1. Using Eq. (4.7), we

get

X (P0E11) = X (P0)X (E11)

= iε

⎛

⎜

⎝

0 0
0 0

1
1

⎞

⎟

⎠

⎛

⎜

⎝

0 2i
0 0

S
−S

⎞

⎟

⎠
= iε

⎛

⎜

⎝

0 0
0 0

S
−S

⎞

⎟

⎠
.

Thus, to leading order, we find

X (P0(Mϕ0,0 + E11)) = −i1ϕ

⎛

⎜

⎝

0 0
0 0

1
−1

⎞

⎟

⎠
+ iε

⎛

⎜

⎝

0 0
0 0

S
−S

⎞

⎟

⎠
. (5.2)

We now use

Proposition 5.3. Consider a tri-diagonal matrix U with Ui,i+1 = Ui,i−1 �= 0 for all i
and arbitrary elements in the diagonal. Then

1. All eigenfunctions of U have their first and last components non-zero
2. All eigenvalues of U are simple.

Postponing the proof, we conclude, by applying the proposition to S and −S sepa-
rately, that: ThematrixX (P0E11) has a double eigenvalue 0, and 2(n−1) simple, purely
imaginary, eigenvalues ±λ1, . . . ,±λn−1 which are different from 0. Because S is sym-
metric, it follows from the proposition that X (P0(Mϕ0,0 + E11)) has purely imaginary
spectrum, with two eigenvalues equal to 0, and n − 1 simple eigenvalues near i(1 + ϕ)

and another n− 1 near −i(1+ϕ). Furthermore, since E11 is proportional to ε, and S has
simple eigenvalues separated by O(1), we conclude

Corollary 5.4. The eigenvalues of X (P0(Mϕ0,0 + E11)) are purely imaginary and sat-
isfy |μi − μ j | > C ′

nε when i �= j . The constant C ′
n > 0 only depends on n. The

eigenfunctions, in the X (·) basis, have non-zero component at position 2 + n − 1 and
2n.
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Wewill now show that the remaining terms ofX (PMϕ,ε) only give rise to corrections
of order O2, both in the spectrum and in the eigendirections (on the subspace spanned
by X∗(ξ, η)�). For the terms which are of orderO2, there is nothing to prove, since they
perturb a matrix whose spectrum is separated by O(ε).

But there are terms of order O(ε). They are of the form X (P2M0,0) or X (P0E12).
Here, the special form of the matrices comes into play, and the following lemma formu-
lates the key point:

Lemma 5.5. Let U, V be (r + s) × (r + s) matrices of the form

U =
(

U1
U2

)

, V =
(

V1
V2

)

,

where U1 is an r × r square matrix, U2 an s × s square matrix and V1 and V2 are s × r
and r×s matrices, respectively. Let x = (0, x2)� be an eigenvector of U (here x2 ∈ Rs ).
Then

〈x |V x〉 = 0. (5.3)

Proof. Obvious. 
�
We apply this lemma to the two matrices X (P2M0,0) and X (P0E12), which play

the role of V in the lemma. From Proposition 5.3 we conclude that the eigenvectors of
Eq. (5.2) are of the form

x1 = (0, 0, ∗, . . . , ∗, 0, . . . , 0)� or x2 = (0, 0, 0, . . . , 0, ∗, . . . , ∗)�.

Therefore Eq. (5.3) applies in this case, and thus the first order contributions of X (P2)

resp. X (E12) vanish. Thus, as the spectra are ε-separated and simple by Corollary 5.4,
we see that for small enough |ε|, the spectrum maintains the splitting properties when
the second order perturbations (in ε) are added. Note that, since X (Mϕ0,0) = (1 +
ϕ0)X (M0,0) by Eq. (4.5) and as X (M0,0) has the form Eq. (4.4), the effect of ϕ0 is to
just shift the spectrum globally, without changing the spacing of the eigenvalues within
a block. This completes the proof of Theorem 5.1. 
�

We end the section with the

Proof of Proposition 5.3. Suppose x = (x1, . . . , xn)� is an eigenfunction with eigen-
value λ. Then, from the form of U , we have

(U11x1 +U12x2) = λx1, so that x2 = 1

U12
(λ −U11)x1,

(U21x1 +U22x2 +U23x3) = λx2, so that

x3 = 1

U23

(

(λ −U22)x2 −U21x1
)

= 1

U23

(

(λ −U22)
1

U12
(λ −U11) −U21

)

x1.

Continuing in this way, we can write x j = C j x1 for some constant C j defined in terms
of theUi j and λ. But then, if x1 = 0 all other x j are 0, andwe have not found a non-trivial
eigenfunction. The same argument rules out the case xn = 0. Note that other x j can
vanish.

The proof of 2 is by the same argument: If we normalize, say, x1 = 1, the inductive
steps above show that the eigenfunctions are uniquely determined by the eigenvalues.
Hence, since there is a complete set of eigenvectors, all eigenvalues are simple. 
�
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6. The Effect of the Dissipation on the Semigroup

In order to control the evolution of ζ(t), we need to understand precisely the bounds
on the evolution of the semigroup generated by the linear part of the equation. We
find that all modes in the subspace orthogonal to the zero eigendirections are uniformly
contractedwith a rate proportional to γ ε. This is somewhat surprising due to the localized
nature of the dissipative term in the equation. However, if follows from the facts we have
demonstrated above. Namely, we have shown in Theorem 5.1 that the eigenvectors in the
X (·) representation have nonzero last component, and are isolated, and so we conclude
from standard perturbation theory that, adding dissipation Γ moves these eigenvalues
into the left half plane, by an amount proportional to γ ε (up to higher order terms).
We now check that the coefficients of the term proportional to γ ε are all non-zero (and
depend only on n).

Let
Lϕ0,γ = Mϕ0,ε − Γ, X (Lϕ0,γ ) = X (Mϕ0,ε) − X (Γ ). (6.1)

An explicit calculation shows that

X (Γ ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0
0 0

0 0 0
0 0 0
0 0 γ ε

0 0 0
0 0 0
0 0 γ ε

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (6.2)

Proposition 6.1. There is a constant γ0 > 0, depending only on n such that for γ ∈
[0, γ0] one has the bound

∥

∥

∥etLϕ0,γ X∗ζ
∥

∥

∥ ≤ (1 + Cnγ )e−�nγ εt‖X∗ζ‖, (6.3)

for some �n > 0 and Cn > 0, depending only on n.

Proof. This result follows from the classical perturbation theory for eigenvalues and
eigenfunctions. By Theorem 5.1 we know that for γ = 0 the purely imaginary eigen-
values are simple, and pairwise separated by Cε, with C > 0 depending only on n.
We focus on the eigenvalues close to +i — those near −i are handled by an entirely
analogous procedure. From Prop.5.3 we see that the eigenvectors v j , j = 1, . . . , n − 1
corresponding to these eigenvalues have a non-vanishing last component, and therefore
there exists some C ′ > 0, depending only on n, such that 〈v j , Γ v j 〉 > C ′γ ε, Therefore,
up to higher order terms, standard perturbation theory for simple eigenvalues tells us
that the spectrum of X (Lϕ,γ ) has (twice) n − 1 eigenvalues in the negative halfplane at
a distance of O(γ ε) from the imaginary axis.

We next show that the eigendirections make an angle of at most O(γ ) from the
orthogonality of the eigendirections of the symmetric matrix X (Mϕ,ε), thus proving the
bound Eq. (6.3). From perturbation theory (see e.g., [12][I.§5.3]), the projection onto
one of these eigenspaces is given by

Pj = − 1

2π i

∫

C j

R(z)dz,
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where the contour C j is a circle of radius O(ε) around the eigenvalue of the problem
for γ = 0 and R is the resolvent. The perturbed eigenvalue (which moves a distance
∼ −K jγ ε ) lies inside this circle, if γ < γ0 is sufficiently small, where γ0 depends only
on n but not on ε, so long as |ε| < ε0, for some fixed ε0. Therefore,

∣

∣

∣

∣Pj
∣

∣

∣

∣ < 1 +O(γ ),
since the contour integral over the circle leads to a bound 1/ε which cancels the factor
ε in γ ε. 
�
Note that since the change of variables matrix X is orthogonal, these decay estimates
also hold in the original coordinates, i.e.,

Corollary 6.2. There is a constant Cn such that
∥

∥

∥etLϕ0,γ ζ

∥

∥

∥ ≤ (1 + Cnγ )e−�nγ εt‖ζ‖. (6.4)

7. Projecting onto the Complement of the 0 Eigenspace

In this section, we reexamine equations (3.3)–(3.5) to derive carefully, and explicitly,
the equations for the evolution of the variables ϕ, ϑ , and ζ . In particular, we look at the
constraints on these equations imposed by the requirement that ζ remains in the range
of P = Pϕ0 . As ϕ changes with time, the projection will also generate terms involving
ϕ(t) − ϕ0. We will bound these terms carefully, since they lead to secular growth in ζ .

Aswewill often have to compare p(ϕ(t)) to p(ϕ0), it is useful to bound this difference
as O(δ) with

δ = ϕ(t) − ϕ0.

We will only be interested in small δ.
We fix a ϕ0 small enough for Theorem 5.1 to apply. We next analyze the terms on

the r.h.s of Eq. (3.5), one by one, using that ζ is orthogonal to the n( j)
ϕ0 .

Lemma 7.1. Consider the linear evolution operator

U =
(

0 −(

(L − ϕ) + (p(ϕ))2
)

(L − ϕ) + 3(p(ϕ))2 0

)

.

Then,

〈n(2)
ϕ0

|Uζ 〉 = O(δ)‖ζ‖, (7.1)

〈n(1)
ϕ0

|Uζ 〉 = O(δ)‖ζ‖, (7.2)

Pϕ0Uζ = Uζ +O(δ)‖ζ‖. (7.3)

Proof. Note that
〈

n(2)
ϕ0

∣

∣

∣Uζ
〉

=
〈

U∗n(2)
ϕ0

∣

∣

∣ζ
〉

,

and so,

U∗n(2)
ϕ0

=
(

0
(

(L − ϕ) + 3(p(ϕ))2
)

−(

L − ϕ + (p(ϕ))2
)

0

) (

p(ϕ0)

0

)

=
(O(δ)

0

)

.
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We use here, and throughout, the smoothness of p(ϕ) and the expansion of p(ϕ). The
replacement of ϕ by ϕ0 therefore leads to an error term in Eq. (7.1) of the form

O(δ)||ξ || ≤ O(δ)||ζ ||.
This proves Eq. (7.1).

We next study
〈

n(1)
ϕ0

∣

∣

∣Uζ
〉

and take the adjoint
〈

U∗n(1)
ϕ0

∣

∣

∣ζ
〉

, using n(1)
ϕ0 = (2 + O(ε +

ϕ0))(0, ∂ϕ0 p(ϕ0))
�. Recall that

(

0 Bϕ0

Aϕ0 0

)

n(1)
ϕ0

= n(2)
ϕ0

,

which is orthogonal to ζ = (ξ, η)�. We write

U∗ =
(

0 Bϕ − Bϕ0

Aϕ − Aϕ0 0

)

+

(

0 Bϕ0

Aϕ0 0

)

,

and therefore
〈

n(1)
ϕ0

∣

∣

∣Uζ
〉

=
〈(

0 Bϕ − Bϕ0

Aϕ − Aϕ0 0

)

n(1)
ϕ0

∣

∣

∣

∣

ζ

〉

+

〈(

0 Bϕ0

Aϕ0 0

)

n(1)
ϕ0

∣

∣

∣

∣

ζ

〉

= O(δ)‖ζ‖,
since the second term is zero by construction. This proves Eq. (7.2). The identity Eq. (7.3)
follows. 
�
Lemma 7.2. The Γ -dependent terms of Eq. (3.5) lead to the bounds

〈

n(2)
ϕ0

∣

∣

∣

∣

(−CΓ ξ − CΓ p(ϕ)

−CΓ η

)〉

= O(γ εn)||ζ || − 2(1 +O(δ))γ ε2n−1, (7.4)

〈

n(1)
ϕ0

∣

∣

∣

∣

(−CΓ ξ − CΓ p(ϕ)

−CΓ η

)〉

= O(γ εn)||ζ ||, (7.5)

‖Pϕ0Γ ζ − Γ ζ‖≤ Cγ εn||ζ ||. (7.6)

Proof. From the definition of n(2)
ϕ0 we get

2

〈(

p(ϕ0)

0

)∣

∣

∣

∣

(−CΓ ξ − CΓ p(ϕ)

−CΓ η

)〉

= −2γ εξn p(ϕ0)n − 2γ ε(p(ϕ0))n(p(ϕ))n

= O(1)γ εξnε
n−1 − 2γ ε2n−1(1 +O(δ)),

using the expansion of p(ϕ) in powers of ε, and observing that CΓ is proportional to
γ ε.

Similarly, from the definition of n(1)
ϕ0 , we get

〈

n(1)
ϕ0

∣

∣

∣

∣

(

CΓ ξ + CΓ p(ϕ)

CΓ η

)〉

= ∂ϕ0 p(ϕ0) · CΓ η = γ ε(n(1)
ϕ0

)nηn = O(1)γ εnηn,

using the expansion for (n(1)
ϕ0 ) j = ∂ϕ0 p j (ϕ0) = O(ε j−1). The last equation follows

from the first two. 
�
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Lemma 7.3. Consider the terms involving (t ϕ̇ + ϑ̇). We have, omitting throughout the
factor (t ϕ̇ + ϑ̇):

〈

n(2)
ϕ0

∣

∣

∣

∣

(

η

−ξ − p(ϕ)

)〉

= (2 +O(ε + ϕ))||ζ ||, (7.7)

〈

n(1)
ϕ0

∣

∣

∣

∣

(

η

−ξ − p(ϕ)

)〉

= −1 +O(δ + ε) +O(1)||ζ ||, (7.8)

Pϕ0

(

η

−ξ − p(ϕ)

)

=
( O(||ζ ||)
O(δ + ε + ||ζ ||)

)

. (7.9)

Proof. Equation (7.7) follows by observing that

〈(

p(ϕ0)

0

)∣

∣

∣

∣

(

η

−ξ

)〉

= (p(ϕ0) · η),

and
〈(

p(ϕ0)

0

)∣

∣

∣

∣

(

0
−p(ϕ)

)〉

= 0,

and using ||p(ϕ0)|| = 1+O(ε+ϕ). To prove Eq. (7.8), observe that, by our normalization,

〈

n(1)
ϕ0

∣

∣

∣

∣

(

0
p(ϕ0)

)〉

=
〈

n(1)
ϕ0

∣

∣

∣v
(1)
ϕ0

〉

= 1,

and therefore,

〈

n(1)
ϕ0

∣

∣

∣

∣

(

0
−p(ϕ)

)〉

= −1 +O(δ).

On the other hand,

〈

n(1)
ϕ0

∣

∣

∣

∣

(

η

−ξ

)〉

= −∂ϕ0 p(ϕ0)ξ,

and thus Eq. (7.8) follows. Finally Eq. (7.9) follows from Eqs. (7.7) and (7.8);

Pϕ0

(

η

−ξ − p(ϕ)

)

=
(

η

−ξ − p(ϕ)

)

− (2 +O(ε))

(

∂ϕ0 p(ϕ0)

0

)

(p(ϕ0) · η)

−
(

0
p(ϕ0)

)

(−1 +O(δ + ε + ||ζ ||)).

The term involving η cancels by the normalization of v(2) and n(2). The term −p(ϕ0) ·
(−1) cancels with −p(ϕ) up to O(δ + ε), and thus, Eq. (7.9) follows. 
�
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Lemma 7.4. The terms involving ϕ̇ are bounded as follows (omitting the factor ϕ̇):
〈

n(2)
ϕ0

∣

∣

∣

∣

(−∂ϕ p(ϕ)

0

)〉

= −1 +O(δ), (7.10)

〈

n(1)
ϕ0

∣

∣

∣

∣

(−∂ϕ p(ϕ)

0

)〉

= 0, (7.11)

Pϕ0

(−∂ϕ p(ϕ)

0

)

=
(O(δ)

0

)

. (7.12)

Proof. Recall that
(

∂ϕ p(ϕ)

0

)

∼ (1/2, 0, . . . , 0)�,

and so, since n(2)
ϕ0 ∼ 2(p(ϕ0), 0)�, we find
〈

n(2)
ϕ0

∣

∣

∣

∣

(−∂ϕ p(ϕ)

0

)〉

=
〈

2

(

p(ϕ0)

0

)∣

∣

∣

∣

(−∂ϕ p(ϕ)

0

)〉

= −2p(ϕ0) · ∂ϕ p(ϕ) = −1 +O(δ),

which is Eq. (7.10). From the form of n(1), Eq. (7.11) is obvious. Finally,

Pϕ0

(−∂ϕ p(ϕ)

0

)

=
(−∂ϕ p(ϕ)

0

)

+

(

∂ϕ0 p(ϕ0)

0

)

+

(O(δ)

0

)

.


�
We now combine the Lemmas 7.1–7.4. Note that Qϕ0 ≡ 1 − Pϕ0 projects on a

two-dimensional space. Let Q( j) = |v( j)
ϕ0 〉〈n( j)

ϕ0 |, j = 1, 2.
For j = 2, we get contributions:

From Eq. (7.1), we have Q(2)Uζ = O(δ)||ζ ||.
From Eq. (7.4) we get Q(2)

(

CΓ (ξ + p(ϕ))

CΓ η

)

= −2(1 +O(δ))γ ε2n−1 +O(γ εn)||ζ ||.

From Eq. (7.7) we get (t ϕ̇ + ϑ̇)Q(2)
(

η

−ξ − p(ϕ)

)

= (t ϕ̇ + ϑ̇)O(||ζ ||), and

from Eq. (7.10) we get ϕ̇Q(2)
(−∂ϕ p(ϕ)

0

)

= ϕ̇(−1 +O(δ)).

Similarly, for j = 1, we get contributions:
From Eq. (7.2), we have Q(1)Uζ = O(δ)||ζ ||.
From Eq. (7.5) we get Q(1)

(

CΓ (ξ + p(ϕ))

CΓ η

)

= O(γ εn)||ζ ||.
From Eq. (7.8) we get

(t ϕ̇ + ϑ̇)Q(1)
(

η

−ξ − p(ϕ)

)

= (t ϕ̇ + ϑ̇)(−1 +O(δ + ε + ||ζ ||), and

from Eq. (7.11) we get ϕ̇Q(1)
(−∂ϕ p(ϕ)

0

)

= 0.

By construction we have thatQϕ0 ≡ 1−Pϕ0 projects on the null-space, and therefore

Qϕ0 ζ̇ = 0.
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Since Qϕ0 ζ̇ = 0, we find, upon summing, for the “1” component (and recalling the
nonlinear terms in (3.5)), we find

0 = O(δ)||ζ || + (−2 +O(δ))γ ε2n−1

+O(γ εn||ζ ||) + (t ϕ̇ + ϑ̇)O(||ζ ||) + ϕ̇(−1 +O(δ)) +O(‖ζ‖2), (7.13)

and for the “2” component:

0 = (O(δ) +O(γ εn)||ζ || − (t ϕ̇ + ϑ̇)(1 +O(δ + ε + ||ζ ||)) +O(‖ζ‖2). (7.14)

Finally, using the projection Pϕ0 , we find:
From Eq. (7.3), Pϕ0Uζ = Uζ +O(δ)‖ζ‖,
from Eq. (7.6), Pϕ0Γ ζ = Γ ζ +O(γ εn)‖ζ‖,
from Eq. (7.9), (t ϕ̇ + ϑ̇)Pϕ0

(

η

−ξ − p(ϕ)

)

= (t ϕ̇ + ϑ̇)

(

0
O(δ + ε)

)

,

and finally from Eq. (7.12), ϕ̇Pϕ0

(−∂ϕ p(ϕ)

0

)

= ϕ̇

(O(δ)

0

)

.

Summing these terms, we get

ζ̇ = Lϕ0,γ ζ + (t ϕ̇ + ϑ̇)

(

0
O(δ + ε)

)

+ ϕ̇

(O(δ)

0

)

+O(‖ζ‖2). (7.15)

Simplifying the notation somewhat, and substituting Eq. (7.14) into Eq. (7.13) we
formulate Eqs. (7.13)–(7.15) as a proposition:

Proposition 7.5. One has

t ϕ̇ + ϑ̇ = O(δ + γ εn)||ζ || +O(‖ζ‖2),
ϕ̇ = −(2 +O(δ))γ ε2n−1 +O(δ + γ εn)||ζ || +O(‖ζ‖2),
ζ̇ = Lϕ0,γ ζ +O(δ + γ εn)||ζ ||

(

0
O(δ + ε)

)

−
(

(2 +O(δ))γ ε2n−1O(δ)

0

)

+O(‖ζ‖2). (7.16)

Here, as ζ = (ξ, η)�,

Lϕ0,γ ζ =
(

0 Aϕ0

Bϕ0 0

) (

ξ

η

)

−
(

CΓ 0
0 CΓ

) (

ξ

η

)

.

8. Bounds on the Evolution of ζ

In principle, ‖ζ‖ can grow as the system evolves, and there are two possible causes.
First, for short times, the bound Eq. (6.4)

∥

∥

∥etLϕ0,γ ζ

∥

∥

∥ ≤ (1 + Cnγ )e−�nγ εt‖ζ‖,
does not contract. Secondly, ζ(t) is orthogonal to the cylinder of breathers at the initial
point (ϕ0, ϑ0), but as ϕ and ϑ evolve with time, this is no longer the case. We must
periodically reorthogonalize ζ(t) by a procedure which we detail in the next section,
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and which replaces ζ(T ) by ̂ζ . As we will show in Eq. (9.4), this leads to a growth
which is bounded by

‖̂ζ‖ ≤ (1 + CR(ϕ(T ) − ϕ0)γ εn)‖ζ(T )‖. (8.1)

In this sectionwe show that the contraction in the semigroup generated by the dissipa-
tive terms in the equation is sufficient to overcome those growths, if wewait a sufficiently
long time. We will show (up to details spelled out below) that if ||ζ(0)|| ≤ γ εn , and
T = CT /ε, then (1 +CR |ϕ(T ) − ϕ0|γ εn)||ζ(T )|| ≤ γ εn . Furthermore for all t ∈ [0, T ]
one has ||ζ(t)|| ≤ 2γ εn . To prove such statements, we reconsider the equations of
Proposition 7.5 which we rewrite in a slightly simplified way: We define

δ(t) = ϕ(t) − ϕ0,

and then

ṡ = O(δ + γ εn)||ζ || +O(‖ζ(t)‖2), (8.2)

δ̇ = −(2 +O(δ))γ ε2n−1 +O(δ + γ εn)||ζ || +O(‖ζ(t)‖2) , (8.3)

ζ̇ = Lϕ0,γ ζ + ṡ

(

0
O(δ + ε)

)

+ δ̇

(O(δ)

0

)

+O(‖ζ(t)‖2). (8.4)

Here, as ζ = (ξ, η)�,

Lϕ0,γ ζ =
(

0 Aϕ0

Bϕ0 0

)(

ξ

η

)

−
(

CΓ 0
0 CΓ

)(

ξ

η

)

.

Definition 8.1. We define the arrival time T by

T = 8Cn

�nε
≡ CT ε−1. (8.5)

This definition ensures that

(1 +
3

2
Cnγ )e−�nγ εT/4 ≤ 1. (8.6)

The remaining factor e−�nγ εT/4 will be used to bound (1 + CR |δ|γ εn), while another
e−�nγ εT/2 will be used to bound the contributions from the mixed terms in Eqs. (8.2)–
(8.4).

Since we have a coupled system, we introduce a norm over times in [0, T ]. Let x =
(s, δ, ζ ), and consider a family of functions

{x}T = {x(τ )}τ∈[0,T ].

We define

|||{x}t ||| = max
(

sup
τ∈[0,t]

|s(τ )|, sup
τ∈[0,t]

|δ(τ )|,Cζ ||ζ(τ )||), with C−1
ζ = γ εn .

The equations Eqs. (8.2)–(8.4) define an evolution t �→ F t .
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Theorem 8.2. Let t �→ x(t) be a family of functions (not necessarily a solution of the
system above) which satisfies |||{x}T ||| ≤ 2. Define Fx = {F τ x}τ∈[0,T ] as the family
evolving from x(0). If |||{x}0||| ≤ 2 and s(0) = δ(0) = 0, then the solution of the system
above satisfies

|||{Fx}t ||| ≤ 4,

for all t ∈ [0, T ]. In other words, F maps such initial conditions into the sphere of
radius 4.

Furthermore, when |||{x}0||| ≤ 1 (this means in particular ||ζ(0)|| ≤ γ εn) then the
solution of the above system satisfies at time T 5:

|δ(T ) + 2γ ε2n−1T | ≤ 2γ ε2n−1/2T,

||ζ(T )|| ≤ e−�nγ εT/4e−�nγ εT/2(1 − γ ε)−1(1 +
3

2
Cnγ )γ εn

≤ e−�nγ εT/4γ εn .

Corollary 8.3. Referring to Eq. (8.1) (i.e., Eq. (9.4)), we get the bound

‖̂ζ‖ ≤ (1 + CR(ϕ(T ) − ϕ0)γ εn)‖ζ(T )‖
≤ e−�nγ εT/4(1 + CR(ϕ(T ) − ϕ0)γ εn)γ εn ≤ γ εn .

In other words, ‖̂ζ‖ (at time T ) stays within the region γ εn.

Remark 8.4. The norm |||·||| was introduced to allow for an a priori bound on ζ(t) which
is needed because of our way to estimate the evolution of the coupled system Eqs. (8.2)–
(8.4).

Remark 8.5. We assumed δ(0) = 0 since that is the case which interests us. Also, by the
gauge invariance, we may assume that ϑ0 = ϑ(0) = 0.

Proof. We first study δ.

Lemma 8.6. Assume |||{x}T ||| ≤ 2. Then, we have, for t ≤ T = CT /ε,

|δ(t) + 2γ ε2n−1t | ≤ 2γ ε2n−1/2t. (8.7)

Remark 8.7. Note that this means that to lowest order in ε, δ(t) ∼ 2γ ε2n−1t for 0 ≤ t ≤
T , which is the rate we found in [1].

Proof of Lemma 8.6. It is here that we use the a priori bound, and later we will see
that the actual orbit of ζ(τ ) indeed satisfies this bound. By the assumption, we have
||ζ(τ )|| ≤ 2/Cζ = 2γ εn for τ ∈ [0, T ]. Therefore, we can bound δ(τ ) as follows: The
Eq. (8.3) is of the form (with local names) and finite constants CB and CC :

δ̇(t) = −A + B(t)δ(t) + C(t),

A = 2γ ε2n−1,

|B(t)| ≤ CB(γ ε2n−1 + ||ζ(t)||),
|C(t)| ≤ CC (γ εn||ζ(t)|| + ‖ζ(t)‖2).

We have δ(0) = 0. The equation for u(t) ≡ δ(t) + At reads

u̇ = B(t)u(t) + (C(t) − At · B(t)). (8.8)

5 We are not claiming that such bounds hold for all t ≤ T . The effect of the dissipation needs time to set
in (at least if we want to re-project onto a new axis after some time).
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Lemma 8.8. If |||{x}T ||| ≤ 2, then

|u(t)| ≤ Atε1/2.

This clearly proves Eq. (8.7) and hence Lemma 8.6. 
�
Proof of Lemma 8.8. The solution of Eq. (8.8) is

u(t) =
∫ t

0
dτ

(

C(τ ) − Aτ B(τ )
)

e
∫ t
τ dτ ′B(τ ′). (8.9)

Let Bmax = maxτ∈[0,t] |B(τ )|, and Cmax = maxτ∈[0,t] |C(τ )|. From the assumptions,
we have, for sufficiently small ε,

Bmaxt ≤ CTCB2(γ ε2n−1 + C−1
ζ )/ε

≤ CTCB2(γ ε2n−2 + εn−1/2) � 2ε,

Cmax ≤ CC2(γ εnC−1
ζ + 4C−2

ζ ) ≤ 4CCγ ε2n,

(where we have assumed that γ < 1/2). The term coming from C(τ ) in Eq. (8.9) is
bounded by

Cmax
|1 − eBmaxt |

Bmax
≤ 2Cmaxt,

since Bmaxt � 1.
This leads to a bound for 2Cmaxt of the form

2Cmaxt ≤ 8CCγ ε2nt,

which is much smaller than At = 2γ ε2n−1t (when ε is small enough). The term in the
integral coming from At · B(t) can be bounded as:

∫ t

0
dτ Aτ · Bmaxe

(t−τ)Bmax = A
|Bmaxt − eBmaxt + 1|

Bmax

≤ At

(

Bmaxt

2
+O((Bmaxt)

2)

)

≤ At Bmaxt,

since we already showed Bmaxt � 2ε. Collecting terms, we get, for t ≤ CT /ε,

|u(t)| ≤ (8CCγ ε2n + 2εA)t ≤ Atε1/2,

which completes the proof of Lemma 8.8. 
�
We continue the proof of Theorem 8.2. The evolution of s is bounded in much the

same way as that of δ, and this is left to the reader. (We actually do not make use of these
bounds.) We finally analyze the evolution of ζ , Eq. (8.4), which controls the motion of
the distance from the cylinder. By the estimates Eqs. (8.3) and (8.7) on δ and δ̇, we see
that

O(δδ̇) = O(γ 2ε4n−2t) +O(γ ε2n−1t + γ εn)||ζ ||.
Therefore, the equation for ζ̇ takes the form

ζ̇ = Lϕ,γ ζ +O(δ + ε) · O(δ + γ εn)||ζ || +O(‖ζ‖2) +O(γ 2ε4n−2t). (8.10)
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Using Eq. (8.7), this simplifies to

ζ̇ = Lϕ,γ ζ +O(γ εn+1 + γ ε2n−1t)||ζ || +O(‖ζ‖2) +O(γ 2ε4n−2t).

From the estimates on the semigroup generated by Lϕ,γ from Proposition 6.1 we con-
clude that

||ζ(t)|| ≤ (1 + Cnγ )e−�nγ εt/2||ζ0|| + R2(1 + Cnγ )

∫ t

0
e−�nγ ε(t−s)/2‖ζ(s)‖2ds

+(1 + Cnγ )

∫ t

0
dτ e−�nγ ετ/2X, (8.11)

where X = O(γ 2ε4n−2(t − τ)) bounds the contribution from the last term in Eq. (8.10).
We note that the contribution from O(γ εn+1 + γ ε2n−1t) which also multiplies ζ , has
been absorbed into half the decay rate �nγ ε.

Define
Z(t) = sup

0≤τ≤t
e�nγ ετ/2‖ζ(τ )‖.

Then, from (8.11), we see that

Z(t) ≤ (1 + Cnγ )‖ζ0‖
+ R2(1 + Cnγ )

∫ t

0
e−�nγ εsds(Z(t))2 + CX (γ 2ε4n−2t2e�nγ εt/2)

≤ (1 + Cnγ )‖ζ0‖ +
2R2(1 + Cnγ )

�nγ ε
(e�nγ εt/2 − 1)(Z(t))2

+ CX (γ 2ε4n−2t2e�nγ εt/2).

Suppose that ‖ζ0‖ ≤ γ εn . Then, by continuity, for t small, we have

2R2(1 + Cnγ )

�nγ ε
Z(t) ≤ γ ε.

Define T ∗ to be the largest value such that

sup
0≤t≤T ∗

2R2(1 + Cnγ )

�nγ ε
Z(t) ≤ γ ε.

Then,
(

1 − 2R2(1 + Cnγ )

�nγ ε
Z(t)

)

Z(t) ≤ (1 + Cnγ )‖ζ0‖ + CX (γ 2ε4n−2t2e�nγ εt/2),

or
Z(t) ≤ (1 − γ ε)−1

[

(1 + Cnγ )‖ζ0‖ + CX (γ 2ε4n−2t2e�nγ εt/2)
]

,

for 0 ≤ t ≤ T ∗.
Since T = 8Cn

�ε
, if n > 2, and if ε is sufficiently small, then T ≤ T ∗ and we have for

0 ≤ t ≤ T ,

Z(t) ≤ (1 − γ ε)−1
(

1 +
3

2
Cnγ

)

γ εn .
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From the definition of Z(t), this implies

‖ζ(t)‖ ≤ e−�nγ εt/2(1 − γ ε)−1
(

1 +
3

2
Cnγ

)

γ εn,

or
‖ζ(T )‖ ≤ γ εn,

using the definition of T . 
�

9. Re-orthogonalization

As the system evolves, the solution will remain close (at least for some time) to the
cylinder of breather solutions for the γ = 0 equations. However, it will drift, so that the
base point on the cylinder changes with time, while the vector ζ stays orthogonal to the
tangent space to the cylinder at the initial base point. In the first subsection we show
that we can periodically choose new coordinates in such a way that ζ remains small
for a very long time, while the frequency ϕ of the base point in the cylinder changes in
a controlled and computable way. The change in the base point manifests itself in the
presence of the terms proportional to δ in the equation for ζ . To counteract this secular
growth, we will stop the evolution after a long, but finite, interval and “reset” the initial
data so that the “new” initial datâζ is again orthogonal to the tangent space at the “new”
initial point (ϕ̂,̂ϑ) on the cylinder. Our approach in this section is inspired by the work of
Promislow [10] on pattern formation in reaction-diffusion equations, but is complicated
by the very weak dissipative properties of the semigroup etLϕ,γ . In particular, we will
not be able to show that the normal component, ζ of the solution is strongly contracted,
but we will prove that it remains small for a very long period, during which the solution
evolves close to the cylinder of breathers.

Key to this approach is the fact that in a sufficiently small neighborhood of the cylinder
of breathers, the angle and phase of the point on the cylinder and the normal direction
at that point provide a smooth coordinate system. More precisely, one has:

Proposition 9.1. Fix 0 < Φ0 � 1. There exists μ > 0 such that for any ϕ̄ ∈ [1 −
Φ0, 1 + Φ0], ϑ̄ ∈ [0, 2π), ‖ζ̄‖ < μ, there exists (ϕ̂,̂ϑ,̂ζ ) such that

eiϑ̄ p(ϕ̄) + ζ̄ = ei
̂ϑ p(ϕ̂) +̂ζ ,

and̂ζ is normal to the tangent space of the family of breathers at (ϕ̂,̂ϑ).

Remark 9.2. The utility of this proposition is that if we choose any point near our fam-
ily of breathers, we can find (ϕ̂,̂ϑ,̂ζ ) to use as initial conditions for our modulation
equations (7.16) witĥζ ∈ Range(Pϕ̂ ).

Proof. The proof is an application of the implicit function theorem. Begin by rescaling
ζ̄ → μζ̄ , with ‖ζ̄‖ = 1. Then we havêζ = eiϑ̄ p(ϕ̄)+μζ̄ −eîϑ p(ϕ̂). We wish to choose
(ϕ̂,̂ϑ) so that̂ζ is orthogonal to the tangent space at (ϕ̂,̂ϑ). Thus, we define

F(ϕ̂,̂ϑ;μ) =
( 〈n(1)

ϕ̂,̂ϑ
|̂ζ 〉

〈n(2)
ϕ̂,̂ϑ

|̂ζ 〉

)

=
( 〈n(1)

ϕ̂,̂ϑ
|(eiϑ̄ p(ϕ̄) + μζ̄ − eîϑ p(ϕ̂))〉

〈n(2)
ϕ̂,̂ϑ

|(eiϑ̄ p(ϕ̄) + μζ̄ − eîϑ p(ϕ̂))〉

)

,

and the theorem follows by finding zeros of this function.
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Note that F(ϕ̄, ϑ̄; 0) = 0. To compute the derivative of F with respect to (ϕ̂,̂ϑ) we
recall from the previous sections that the derivatives of eiϑ p(ϕ) with respect to ϕ and ϑ

give precisely the two vectors v
( j)
ϕ,ϑ ( j = 1, 2) which span the zero eigenspace. Thus, by

the normalization of the vectors n( j)
ϕ̂,̂ϑ

, we see that

Dϕ,ϑ F |μ=0 =
(

1 0
0 1

)

.

Thus, the implicit function theorem implies that there exists μ0 > 0 such that for any
|μ| < μ0, we have a solution F(ϕ̂,̂ϑ;μ) = 0. 
�
Remark 9.3. Note that the size of the neighborhood μ0 on which we have a solution is
independent of the base point (ϕ, ϑ) — thus we have good coordinates on a uniform
neighborhood of our original family of breathers.

Remark 9.4. Note that the constructive nature of the proof of the implicit function theo-
rem also results in good estimates of the size of the solutions of the equation. In particular,
for small μ, there exists a constant C > 0 such that the change in the angle and phase
can be estimated as:

|ϕ̄ − ϕ̂| + |ϑ̄ − ̂ϑ | ≤ Cμ(|〈n(1)
ϕ̄,ϑ̄

|ζ̄ 〉| + |〈n(2)
ϕ̄,ϑ̄

|ζ̄ 〉|). (9.1)

9.1. The intuitive picture. Suppose thatwe start fromapoint near our family of breathers,
with coordinates (ϕ0, ϑ0, ζ0), with ζ0 ∈ Range(Pϕ0). We allow the system to evolve for
a time T to be specified below. After this time, we will have reached a point (ϕ1 =
ϕ(T ), ϑ1 = ϑ(T ), ζ1 = ζ(T )). In terms of our original variables, this point will be

w1 = ei(ϕ1T+ϑ1)(p(ϕ1) + z1),

where z1 = (ξ1+iη1), with (ξ1, η1)
� = ζ1. The point is that ζ1 is no longer orthogonal to

the tangent space to the cylinder of breathers at the point (ϕ1, ϑ1). This leads to secular
growth in ζ , and eventually, we would loose control of this evolution. To prevent this,
we re-express the point w1 in terms of new variables (ϕ̂,̂ϑ,̂ζ ), with ̂ζ orthogonal to
the tangent space at (ϕ̂,̂ϑ), and restart the evolution of (7.16) with these new initial
conditions. The only complication is that we must keep careful track of how much we
change the various variables in the course of this re-orthogonalization process. We now
explain how this is done.

Without loss of generality assume that we have chosen the “stopping time” T so that
the phase ei(ϕ1T+ϑ1) = 1. (If this is not the case, we can always use the phase invariance
of the equation to rotate the solution so that this does hold.) Then, after time T , the
trajectory of our system will have reached the point

w1 = p(ϕ1) + z1.

By Proposition 9.1 we know that there exists (ϕ̂,̂ϑ,̂ζ ) with

w1 = p(ϕ1) + z1 = ei
̂ϑ p(ϕ̂) +̂ζ ,

and̂ζ is normal to the cylinder of breathers at (ϕ̂,̂ϑ). We now restart the evolution of
the modulation equations (7.16) and follow the evolution as before.
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The last thing we need to control the long-time evolution of the system is to estimate
by how much we change ϕ and ζ in the course of this re-orthogonalization. (The change
in ϑ is inconsequential since it does not affect the magnitude of the solution, and since
the phase-invariance of the equations of motion allows to always rotate the system back
to zero phase if needed.) The change from ϕ1 to ϕ̂ is estimated with the aid of the implicit
function theorem.

We know that the vectors 〈n( j)
ϕ,ϑ | depend smoothly on ϕ and hence

|〈n(1)
ϕ1

|ζ1〉 ≤ |〈n(1)
ϕ1

|ζ1〉 − 〈n(1)
ϕ0

|ζ1〉| + |〈n(1)
ϕ0

|ζ1〉|
≤ |〈n(1)

ϕ1
|ζ1〉 − 〈n(1)

ϕ0
|ζ1〉| ≤ Cδ(T )‖ζ1‖ ≤ Cδ(T )γ εn . (9.2)

Here, the first inequality just uses the triangle inequality, the second the fact that ζ1

is orthogonal to n(1)
ϕ0 by construction, the third uses Cauchy-Schwarz, plus the smooth

dependence of the normal vectors on ϕ, and the last, the estimate on ζ1 coming from
Theorem 8.2. If we combine this estimate with (9.1), we see that the change in ϕ from
ϕ1 to ϕ̂ produced by the re-orthogonalization is extremely small.

It remains to estimate the corresponding change in ζ when we replace ζ1 bŷζ . We
have

p(ϕ1) + z1 = ei
̂ϑ p(ϕ̂) + ẑ,

where as usual ẑ = ̂ξ + îη, witĥζ = (̂ξ, η̂)�. Again, using the fact that p(ϕ) depends
smoothly on ϕ, plus estimates on the difference in ϕ1 and ϕ̂ given by (9.2) and similar
estimates for the ̂ϑ , we see that

‖ζ1 −̂ζ‖ ≤ CRδ(T )γ εn, (9.3)

or
‖̂ζ‖ ≤ (1 + CRδ(T )γ εn)‖ζ1‖, (9.4)

for some finite R2.

10. Iterating

The estimates of the previous section show that if we take initial conditions for (1.3)
close to the cylinder of breathers for the undamped equations, and if we express that
initial point as

w0 = p(ϕ0) + z0,

with ζ0 = (�(z0),�(z0))� ∈ Range(P0) and ‖ζ0‖ ≤ γ εn , then ϕ, ϑ , and ζ will evolve
via (8.2)–(8.4) and after a time T = 4Cn

�nε
we will have

ϕ(T ) − ϕ0 = −2γ ε2n−1T (1 +O(ε1/2)), (10.1)

‖ζ(T )‖ ≤ (1 − γ ε)−1(1 +
3

2
Cnγ )εn . (10.2)

As usual we ignore the evolution of ϑ since any ϑ dependence of the solution can be
removed using the phase invariance of the problem.

As discussed in Sect. 9, ζ(T ) will not lie in Range(Pϕ(T )). Thus, we now re-
orthogonalize. To see what is involved, consider again Fig. 2.
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Fig. 2. Illustration of the re-orthogonalization process. At time 0, the orbit starts at a distance ‖ζ‖ from the
base point p(ϕ), which lies on the cylinder (shown as a line). ζ is orthogonal to the tangent at the point p(ϕ)

on the cylinder (this is the 2-dimensional subspace of 0 eigenvalues). At time T , the solution has moved to
p(ϕ̄) + ζ̄ , with ζ̄ still orthogonal to the tangent space at p(ϕ). The re-orthogonalization consists of finding a
new base point ϕ̂ in such a way that p(ϕ̄) + ζ̄ = p(ϕ̂) +̂ζ and̂ζ is orthogonal to the tangent space at p(ϕ̂).
This solution is found by the implicit function theorem. Note that ‖̂ζ‖ might be larger than ‖ζ‖, but this is
compensated by the contraction induced by semigroup due to the dissipation

This means we reexpress

w(T ) = eiϕ(T )T p(ϕ(T )) + z(T ) = ei(ϕ̂T+
̂ϑ) p(ϕ̂) + ẑ, (10.3)

where as usual, ẑ = (̂ξ + îη), with (̂ξ, η̂) = ̂ζ and̂ζ ∈ Range(Pϕ̂ ).
Wenowrecall the estimates for the change inϕ and ζ producedby the re-orthogonalization.

First, from (9.2), plus the estimate on δ(T ) from Lemma 8.6, we have

|ϕ(T ) − ϕ̂| ≤ Cδ(T )εn,

and hence by the triangle inequality we see that

|(ϕ0 − ϕ̂) + 2γ ε2n−1T | ≤ 4γ ε2n−1/2T,

i.e., to leading order ϕ0 − ϕ̂ ≈ ϕ0 − ϕ(T ).
Likewise, from (9.3), we have

‖̂ζ‖ ≤ ‖ζ(T )‖ + ‖ζ(T ) −̂ζ‖
≤ e−�nγ εT/2(1 − γ ε)−1(1 +

3

2
Cnγ )εn + 4γ ε2n−1T

≤ γ εn,

for ε sufficiently small. If we look at the second line above, we see how the contraction,
and the “waiting” for a time T come in: Namely, the first factor contracts,because of the
estimates on the semigroup (and the dissipation), while the next two factors come from
the reprojection and the prefactor from the bound on the semigroup.
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Thus, we can begin to evolve our equation of motion starting from the point w(T ),
but now expressed as

w(T ) = ei(T ϕ̂+̂ϑ) p(ϕ̂) +̂ζ ,

where ̂ζ ∈ Range(Pϕ̂), and ‖̂ζ‖ ≤ γ εn . Thus, the new representation for w(T ) has
the same properties as the representation of w0 that we started with, and hence we can
continue to evolve our trajectory which will remain close to the cylinder of breathers.

11. Conclusions and Future Directions

We have proven that the presence of breather solutions leads to very slow energy de-
cay in discrete nonlinear Schrödinger equations. There are many other types of lattice
dynamical systems that possess breather solutions such as discrete Klein–Gordon equa-
tions or Fermi–Pasta–Ulam–Tsingou models. (For a recent survey of such results see
[13].) It would be interesting to see if breathers play a similar role in the transport of
energy through lattices governed by such equations. In addition, it is clear that, at least
intuitively, the reason for the slow energy decay induced by the breathers is related to
their strong localization properties which means that most of the energy of the system is
localized far from the region in which the dissipation acts. Thus it would also be inter-
esting to investigate systems whose breathers are either more or less strongly localized
than those of the NLS system studied here [14,15].
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