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Abstract: In this paper, we classify non-freely acting discrete symmetries of com-
plete intersectionCalabi–Yaumanifolds and their quotients by freely-acting symmetries.
These non-freely acting symmetries can appear as symmetries of low-energy theories
resulting from string compactifications on these Calabi–Yau manifolds, particularly in
the context of the heterotic string. Hence, our results are relevant for four-dimensional
model building with discrete symmetries and they give an indication which symmetries
of this kind can be expected from string theory. For the 1695 knownquotients of complete
intersection manifolds by freely-acting discrete symmetries, non-freely-acting, generic
symmetries arise in 381 cases and are, therefore, a relatively common feature of these
manifolds. We find that 9 different discrete groups appear, ranging in group order from
2 to 18, and that both regular symmetries and R-symmetries are possible.
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1. Introduction

Finite symmetries are a widely-used tool in particle physics model building, particularly
in the context of models for fermion masses and as a way to forbid unwanted operators
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such as those inducing fast proton decay. Usually, such symmetries are required to
be discrete gauge symmetries [1] but no further theoretical constraints are placed on
them at this level. Within the framework of supersymmetric model building both regular
symmetries and R-symmetries are considered.

It is natural to ask how such discrete symmetries can arise in string theory and which
specific groups can be obtained from string compactifications. Discrete symmetries in
four-dimensional stringmodels arise from remnants of local string symmetries which re-
main unbroken by the compactification. In particular, thismeans that discrete symmetries
from string theory are always discrete gauge symmetries. Specifically, such symmetries
can arise as symmetries of the compactification manifolds and studying these manifolds
and their properties is a good way to identify discrete symmetries from string theory.
The main purpose of the present paper is to study a certain class of Calabi–Yau (CY)
three-folds from this point of view. Genuine Calabi–Yau manifolds (that is manifolds
with holonomy group SU (3)) do not have continuous symmetries but it is well-known
that discrete symmetries can arise.

Most of the literature onCY symmetries to date has been concernedwith freely-acting
symmetries. For complete intersection CY manifolds (CICY manifolds) [2], consider-
able work has been carried out to find freely-acting symmetries [3–5], culminating in the
classification of Ref. [6] which provides all freely-acting symmetries of CICYmanifolds
which descend from linear actions on the projective ambient spaces. There has been less
work on freely-acting discrete symmetries of CY manifolds defined as hyper-surfaces
in toric four-folds. In Ref. [7], all toric freely-acting symmetries have been classified
for those manifolds and have been found to exist for only 16 of the about half a billion
reflexive polytopes. A first step towards a systematic classification has recently been
made in Ref. [8]. Over the past few years there has also been considerable work on
discrete symmetries in the context of type II string compactifications [9–14].

Freely-acting symmetries of CY manifolds are useful to construct new CY man-
ifolds with a non-trivial first fundamental group by forming quotients and for CICY
manifolds much work in this direction has been carried out [4,5,15–17]. Such quotient
CY manifolds are a vital ingredient for compactifications of the heterotic string, where
the standardmodel building paradigm demands the presence of aWilson line and, hence,
a non-trivial first fundamental group of the CY manifold. Of course, freely-acting CY
symmetries which have been divided out no longer give rise to discrete low-energy sym-
metries. Those arise fromCY symmetries, both freely and non-freely acting, which have
not been divided out.

At first sight, the experience with freely-acting CY symmetries is discouraging in
view of generating low-energy discrete symmetries from string theory. CY manifolds
come with moduli spaces and in all known examples freely-acting symmetries only
appear at special lower-dimensional sub-loci in moduli space. For the corresponding
low-energy theory, this means that the discrete symmetry is generically not visible and
will only appear if the moduli fields are tuned to the relevant sub-locus. For example, the
quintic in P

4 has a complex structure moduli space of dimension 101 and a freely-acting
Z5×Z5 symmetrywhich appears only at a 5-dimensional sub-locus on thismoduli space.
This seems to suggest that discrete symmetries in four-dimensional stringmodels, at least
insofar as they originate from symmetries of the compactificationmanifold, are typically
quite non-generic and are unlikely to play a major role in phenomenology. One of the
main points of the present paper is that this statement does not apply to certain classes of
CY manifolds. This means that, contrary to expectation, low-energy symmetries which
descend from these manifolds can be generic and phenomenologically relevant.
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We will be working in the context of CICY manifolds, X , taken from the original
list in Ref. [2], and their freely-acting symmetries, Gf, as classified in Ref. [6]. More
precisely, our starting point will be all pairs (X,Gf), where Gf refers to an explicit
matrix group acting projectively on the ambient space of X . Not all Gf are inequivalent
as groups and identifying them by group isomorphisms leads to 31 classes. However,
the associated quotient CYmanifolds Y=X/Gf do not just depend on the abstract group
properties of Gf, but on the specific representation. Ultimately this leads to a substantial
dataset of 1695 pairs of (X,Gf) and the same number of quotients Y=X/Gf.

We recall that such quotient CYmanifolds are the preferred starting point for heterotic
string compactifications and CICY quotients have indeed been used extensively for
heterotic model building [3,18–23]. In this context, we are asking and answering the
following questions. Which of the CICY quotients Y have a symmetry, freely or non-
freely acting, at every point in their complex structure moduli space, which finite groups
can arise in this way and how do these groups act on themanifold?As in the classification
of freely-acting groups in Ref. [6], we will restrict ourselves to symmetries which act
linearly on the projective ambient space coordinates. The idea is that such symmetries
will not be divided out and hence may survive as symmetries of the low energy theory
obtained by compactifying on Y . It is already known, from the work in Ref. [24], that
such generic symmetries for CICY quotients do exist. In this paper, it was shown that
the quintic quotient by the freely-acting Z5 × Z5 symmetry has a generic, non-freely
actingZ2 symmetry.However, it is not clear how common the appearance of such generic
symmetries is among CICY quotients (or, indeed, more generally, among CY quotients).

We will search for these symmetries by analysing the symmetries of the up-stairs
CICY X , generalising a method proposed in Ref. [24]. CICY manifolds are defined as
the common zero locus of homogeneous polynomials pa , where a = 1, . . . , K , in an
ambient space of the formA = P

n1 × · · · × P
nm . A necessary condition for a symmetry

transformation of the ambient space symmetry groupG to descend to the CICY quotient
Y = X/Gf is that it normalises the freely-acting group Gf. The first step is, therefore,
to impose this condition and find the normaliser group NG(Gf) of Gf. Next, we will
find the sub-group N �

G(Gf) ⊂ NG(Gf) which leaves all Gf invariant CICY manifolds
X invariant. The desired symmetry group, GY, of the CICY quotient Y is then given by
GY = N �

G(Gf)/Gf. Clearly N �
G(Gf) normalisesGf since it is a subgroup of NG(Gf) and

containsGf. In thisway,we determine all symmetry groups of theCICYquotients. Using
a standard method, for example explained in Ref. [25], we can check the transformation
of the holomorphic (3, 0) form � to determine whether these are regular symmetries or
R-symmetries.

Our results can be summarised as follows. From the 1695 CICY quotients which
can be constructed using the original CICY list [2] and the classification of freely-acting
symmetries in Ref. [6], we find 381 have a generic symmetry of the kind described above.
Of these, 113 quotients are found to have an R-symmetry while the others have a regular
symmetry only. The groupZ2 is themost common one and it turns out that 8 other groups
can appear, namelyZ3,Z4,Z2

2,Z
3
2,D8,Z4

2,Z2×D8 and (Z3×Z3)�Z2. From these all but
Z
4
2 can appear as a regular symmetries and only Z

n
2, where n = 1, 2, 3, 4, allows for an

R-symmetry. A detailed account of the results can be found in Sect. 4 and the frequency
with which the above symmetry groups appear is provided in Table 1. In summary, this
result means that the appearance of symmetries which are present everywhere in moduli
space is, perhaps surprisingly, common among CICY quotients.

The outline of the paper is as follows. In the following section, we set up the notation
and describe the generalmethodwewill be using for the classification in detail. In Sect. 3,
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this methodwill be illustrated by a number of simple examples. Our results are presented
in Sect. 4 and we conclude in Sect. 5. “Appendix A” provides a table of automorphism
groups which enter the classification algorithm and “Appendix B” contains a detailed
account of our main result, a table which lists the symmetry groups for all 1695 CICY
quotients.

2. The Method

Webegin by setting up the basic framework and our notation. The basic arena are ambient
spaces of the form

A = P
n1 × · · · × P

nm , (2.1)

which consist of a product of m projective factors, each with dimension ni , and with a
total dimension d = ∑m

i=1 ni . The homogeneous coordinates for the t th projective factor
are denoted by xα

i , where α = 0, 1, . . . , ni or, alternatively, by xi = (x0i , . . . , x
ni
i )T and

x = (x1, . . . , xm)T refers to all homogeneous coordinates of A.
The linear automorphism group G of A is given by

G = S � (PGL(n1 + 1, C) × · · · × PGL(nm + 1, C)) , (2.2)

where S is the sub-group of the symmetric group Sm which permutes projective factors
in A with the same dimension.

The CICY manifolds X ⊂ A is defined as the common zero locus of polynomials
pa , where a = 1, . . . , K , each with multi-degree qa = (q1a , . . . , q

m
a )T . Since we are

interested in three-folds, K = d−3 such polynomials are required and in order to obtain
CYmanifolds the conditions

∑K
a=1 q

i
a = ni +1 have to be imposed for all i = 1, . . . ,m.

The information on dimensions and degrees is usually summarised by a configuration
matrix

X =
P
n1

...

P
nm

⎡

⎢
⎣

q11 · · · q1K
...

. . .
...

qm1 · · · qmK

⎤

⎥
⎦

h1,1(X),h2,1(X)

χ(X)

, (2.3)

where the Hodge numbers h1,1(X) and h2,1(X) have been attached as a superscript
and the Euler number χ(X) as a subscript. A configuration matrix represents an entire
family of CICY manifolds, parametrised by the complex structure, which is encoded in
the arbitrary coefficients which enter the defining polynomials pa .

Next, we consider a freely-acting symmetry Gf ⊂ G, taken from the classification of
Ref. [6], and assume the polynomials pa have been specialised such that Gf is indeed a
symmetry of X . We can then form the CICY quotient Y=X/Gf and it is the symmetry of
this quotient we are primarily interested in. More precisely, we would like to determine
the symmetry of Y which is present everywhere in its complex structure moduli space.

This will be done by working in the “upstairs” picture, that is, by studying the sym-
metry of Gf invariant CICY manifolds X , generalising a method proposed in Ref. [24].
As mentioned earlier, we will focus on symmetries which are linearly realised on the
ambient space A and, hence, we will be interested in symmetries contained in the am-
bient space symmetry group G in Eq. (2.2). For a symmetry g ∈ G of a Gf invariant
CICY X to descend to the quotient Y it needs to normalise Gf, that is, it needs to satisfy
g Gf = Gf g. This can be understood as follows. Consider a point x ∈ X . In the quotient
manifold Y=X/Gf, the points x and gf x are then equivalent, ∀ gf ∈ Gf. For g ∈ G to be
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a symmetry of the quotient Y , g(x) and g(gf x)must be equivalent in Y . Thus there must
exist an hf ∈ Gf such that hf g(x) = g(gf x). Since this is true ∀ x ∈ X , we must have
that g gf g−1 = hf ∈ Gf, that is, g normalises Gf and thus must lie in the normaliser
group

NG(Gf) := {g ∈ G | g Gf = Gf g}. (2.4)

Our first step will be to determine this group. Computing the normaliser directly, by
solving the defining relation

g Gf = Gf g, (2.5)

can be computationally intense since it involves the entire group Gf. In order to circum-
vent this problem, it is useful to note that every g ∈ NG(Gf) defines an automorphism
ψg : Gf → Gf via

ψg(gf) = g gf g
−1. (2.6)

The centraliser ofGf inG can be expressed asCG(Gf) = Ker(g → ψg). The normaliser
can now be expressed in terms of the automorphism group Aut(Gf) as

NG(Gf) = {g ∈ G | ∃ ψ ∈ Aut(Gf) : g gfg
−1 = ψ(gf) ∀gf ∈ Gf}. (2.7)

Since the automorphism group Aut(Gf) can be computed by purely group-theoretical
methods this provides a more practical way of computing the normaliser. For each given
automorphism ψ ∈ Aut(Gf), we find all symmetries g ∈ G which satisfy

g gf g
−1 = ψ(gf) (2.8)

for all gf ∈ Gf and the normaliser consists of all g found in thisway for all automorphisms
ψ . The centraliser CG(Gf) can be obtained by solving Eq. (2.8) for ψ = id.

In practice, we compile a list of generators of all sub-groups of Aut(Gf) (and also add
ψ = id to obtained the centraliser) and then solve Eq. (2.8) for this list of automorphisms
ψ . We note that it is possible to write the RHS of Eq. (2.8) in terms of exponents of the
generators of Gf, both in the case of Abelian and non-Abelian groups. For the Abelian
case, we will demonstrate this in one of our examples (see Eq. (3.4) in Sect. 3.1). While
this method motivated the approach put forward in this paper, it is in fact not required
in order to solve Eq. (2.8) and we do not expend effort in expressing ψ(gf) in this form.
The solutions to Eq. (2.8) then provide a set of generators for the normaliser NG(Gf).

This normaliser group is frequently an infinite group and can have continuous parts.
However, we still have to impose invariance of all Gf invariant manifolds X and, as
CY manifolds do not have continuous symmetries, this will select a discrete sub-group
N �
G(Gf) ⊂ NG(Gf) of transformations which leave all such X invariant and normalise

the freely-acting groupGf. Our second step, in order to determine N �
G(Gf), is, therefore,

to find all g ∈ NG(Gf) for which we can find a permutation ρ(g) ∈ SK such that

p(x) = ρ(g)p(g−1x), (2.9)

where p = (p1, . . . , pK )T is any vector of Gf invariant defining polynomials. We also
introduce the analogous sub-group C�

G(Gf) ⊂ CG(Gf) of the centraliser.
Finally, the symmetry group GY of the CICY quotient Y is then found by dividing

out Gf, that is
GY = N �

G(Gf)/Gf. (2.10)

A summary diagram of the various groups and spaces is given in Figure 1.
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CICY X ↪−→ A = P
n1 × · · · × P

nm

Gf ↪−→ N�
G(Gf) ↪−→ NG(Gf) ↪−→ G = AutL(A)

↪−→

CG(Gf)

↪−→

C�
G(Gf)

NG(Gf)/CG(Gf) ⊂ Aut(Gf)

Gf � NG(Gf), N�
G(Gf); GY = N�

G(Gf)/Gf

Fig. 1. This diagram summarises the embeddings and relationships between the various spaces and abstract
groups in this paper. The linear automorphism group of the ambient spaceA (2.1), denoted by AutL(A), is the
infinite group G (2.2). The centraliser CG (Gf) and the normaliser NG (Gf) (2.4) are not discrete in general
and may depend on continuous parameters. The quotient NG (Gf)/CG (Gf) is known to be isomorphic to
a subgroup of the automorphism group of Gf, and is thus finite. The freely acting symmetry Gf (defined in
Sect. 1), its automorphism groupAut(Gf), the restricted centraliserC

�
G (Gf), the restricted normaliser N�

G (Gf)

(defined in Sect. 2), and the residual symmetry GY = N�
G (Gf)/Gf are discrete groups and are written in bold

We would also like to decide which g ∈ N �
G(Gf) correspond to regular symmetries

and which correspond to R-symmetries and for this purpose we should introduce the
holomorphic (3, 0) form � on X and its counterpart �̂ on the ambient space A. The
latter can be defined implicitly by the relations

�̂ ∧ dp1 ∧ . . . ∧ dpK = μ,

where μ = μ1 ∧ · · · ∧ μm and μ j = 1

n j !εβ0β1...βn j
xβ0
j dxβ1

j ∧ · · · ∧ dx
βn j
j .

(2.11)

The (3, 0) formon X is then given by the restriction� = �̂|X . Froma standard argument,
see, for example Ref. [25], symmetries which leave � invariant are regular symmetries
and those which transform� into a non-trivial multiple of itself are R-symmetries. Since
all our symmetries descend from the ambient space it is, in fact, sufficient to check this
transformation property for �̂. In other words, we would like to compute the numbers
F(g) in

g� �̂ = F(g)�̂. (2.12)

A quick inspection of Eqs. (2.11) shows that they are given by the simple formula

F(g) = det(g) det(ρ(g))

det(π(g))
, (2.13)

where ρ(g) is the permutation of polynomials which appears in Eq. (2.9) and π(g) ∈ S
is the permutation part of g which corresponds to the first factor in the definition (2.2)
of G. In practice, π(g) can be easily extracted from g, simply by discarding the parts of
g which represent transformations within projective factors and only keeping the ones
which permute projective factors as a whole. In summary, if F(g) in Eq. (2.13) equals
one then g represents a regular symmetry transformation, otherwise it is an R-symmetry
transformation.
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3. Examples

In this section, we illustrate the above procedure with a number of examples, starting
with a review of the quintic example in Ref. [24].

3.1. Global Symmetries of theZ5×Z5 Quintic Quotient. We consider the ambient space
A = P

4 with homogenous coordinates x = (x0, . . . , x4)T and symmetry group G =
PGL(5, C). The quintic, which is the entry with number 7890 in the standard CICY
list of Ref. [2], is defined as the zero locus of a single degree five polynomial p and is
represented by the configuration matrix

X = P
4
[
5
]1,101
−200 (3.1)

On a five-dimensional sub-space of the 101-dimensional complex structuremoduli space
the quintic has a well-known freely-acting symmetry Gf = Z5 × Z5. Explicitly, this
symmetry can be written as Gf = 〈S, T 〉 with the action of the generators S and T on
the homogeneous coordinates x specified by the matrices

S = diag(1, ζ, ζ 2, ζ 3, ζ 4), T =

⎛

⎜
⎜
⎜
⎝

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎠

, (3.2)

where ζ is a fifth root of unity and the associated action on the defining polynomial p
trivial, so ρ(S) = ρ(T ) = 1. Note that, while these two matrices do not commute, they
do commute projectively and, hence, seen as elements of PGL(5, C), they do indeed
generate the group Z5 × Z5. The most general defining polynomial p consistent with
this symmetry is given by

p =
6∑

κ=1

aκJκ , where

J1 =
∏

i
xi , J2 =

∑

i
x2i−1 xi x

2
i+1, J3 =

∑

i
x2i−2 xi x

2
i+2,

J4 =
∑

i
xi−2 x

3
i xi+2, J5 =

∑

i
xi−1 x

3
i xi+1, J6 =

∑

i
x5i , (3.3)

where the ai , i = 1, . . . , 6 are complex coefficients. We are interested in Z5 × Z5
symmetric quintics X , defined by polynomials of the above form, and their quotients
Y = X/(Z5 × Z5). Note that h2,1(Y ) = 5 and that this five-dimensional complex
structure moduli space of Y is described by the projectivisation of the parameters ai in
Eq. (3.3). We would now like to determine the generic symmetries of the quotient Y .

Followingour general procedure,webeginby imposing thenormaliser condition (2.5)
on 5 × 5 matrices g ∈ NG(Gf). In terms of the generators S and T this condition can
be stated more explicitly as

g S g−1 = Sα(g)T β(g), g T g−1 = Sγ (g)T δ(g), (3.4)

where α(g), β(g), γ (g), δ(g) ∈ Z5. The idea is simply that, with g an element of the
normaliser, conjugation of S and T by g must lead to another Z5 × Z5 group element
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which is then parametrised by the expressions on the right-hand sides in Eq. (3.4). It
is straightforward to show from Eq. (3.4) that (α(g)δ(g) − β(g)γ (g)) = 1 mod 5 and,
hence, that

M(g):=
(
α(g) β(g)
γ (g) δ(g)

)

∈ SL(2, Z5). (3.5)

In fact, the abovematricesM(g) provide an explicit realisation of the automorphism (2.6)
defined by each g ∈ NG(Gf), that is, ψg = M(g) and we have SL(2, Z5) ⊂ Aut(Z5 ×
Z5) = GL(2, Z5). Conversely, for each matrix

M =
(
α β

γ δ

)

∈ SL(2, Z5) (3.6)

we can solve the matrix equations

g S g−1 = SαT β, g T g−1 = Sγ T δ (3.7)

in order to find the elements g of the normaliser. The centraliser CG(Gf) is obtained by
solvingEq. (3.7) for thematrixM = 12 and found to beCG(Gf) = Gf = Z5×Z5. Given
an arbitrary SL(2, Z5)matrix of the form (3.6), it turns out the solutions to Eqs. (3.7) are
unique up to multiplication with elements of the centraliser. In practice, following our
discussions in Sect. 2, we only need to solve Eqs. (3.7) for the generators of SL(2, Z5),
which are identical to the generators of SL(2, Z) and are given by

M1 =
(
0 −1
1 0

)

, M2 =
(
1 1
0 1

)

. (3.8)

For these two SL(2, Z5) matrices, the solutions g1 and g2 to the Eqs. (3.7) (up to multi-
plication of elements in the centraliser) are

g1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 1 1
1 ζ ζ 2 ζ 3 ζ 4

1 ζ 2 ζ 4 ζ ζ 3

1 ζ 3 ζ ζ 4 ζ 2

1 ζ 4 ζ 3 ζ 2 ζ

⎞

⎟
⎟
⎟
⎟
⎠

, g2 =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 ζ ζ 3 ζ

ζ 1 1 ζ ζ 3

ζ 3 ζ 1 1 ζ

ζ ζ 3 ζ 1 1
1 ζ ζ 3 ζ 1

⎞

⎟
⎟
⎟
⎟
⎠

. (3.9)

These matrices along with the generators S, T of the centraliser CG(Gf) = Gf generate
the normaliser NG(Gf), which turns out to be a group of order 3000. Imposing Eq. (2.9),
we find only a (Z5×Z5)�Z2 sub-group of this group leaves all Gf invariant quintics
invariant and, hence, we have

N �
G(Gf) = (Z5×Z5)�Z2. (3.10)

It follows that
GY = 〈g〉 ∼= Z2, (3.11)

where the generator g is explicitly given by

g =

⎛

⎜
⎜
⎜
⎝

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎞

⎟
⎟
⎟
⎠

. (3.12)
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This matrix g solves Eq. (3.7) for M = −12.
Since we have only one projective factor, there is no permutation involved so that

ρ(g) = 1 and, since the single defining polynomial is invariant under g we also have
π(g) = 1. Since det(g) = 1, it follows from Eq. (2.13) that

F(g) = 1, (3.13)

so that we have found a regular Z2 symmetry, rather than an R-symmetry. We have
computed the automorphism group Aut(Z5×Z5) and its generators using the package
GAP [26] (see also, [27]). We have also used GAP to determine the abstract group struc-
tures of all the various groups here. We have used Mathematica [28] for the remainder
of the computations.

3.2. A CICY quotient with a non-Abelian symmetry. Our next example is for the CICY
with number 14 in the standard list of Ref. [2], a manifold which can be viewed as a
split of the bi-cubic in P

2 × P
2. It is defined in the ambient space A = P

1 × P
2 × P

2

with symmetry group

G = S2 � (PGL(2, C) × PGL(3, C) × PGL(3, C)) , (3.14)

where the S2 group permutes the two P
2 factors of the ambient space. The homogeneous

coordinates of A are denoted by x = (x0, x1, y0, y1, y2, z0, z1, z2)T . The CICY is
defined as the common zero locus of two polynomials, p1 and p2, whose degrees are
specified by the configuration matrix

X =
P
1

P
2

P
2

⎡

⎣
1 1
3 0
0 3

⎤

⎦

19,19

0

. (3.15)

On a three-dimensional sub-space of the 19-dimensional complex structure moduli
space, this manifold has a freely-acting symmetry Gf = Z3×Z3 = 〈S, T 〉, whose
generators S, T act on the homogeneous coordinates x as

S =
⎛

⎝
12 0 0
0 D(ω) 0
0 0 D(ω)

⎞

⎠ , T =
⎛

⎝
12 0 0
0 P 0
0 0 P

⎞

⎠ , P =
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ , (3.16)

where D(ω) = diag(1, ω2, ω) and ω is a nontrivial cube root of unity. These actions on
the coordinates are combined with trivial actions on the polynomials, so that ρ(S) =
ρ(T ) = 12. The most general defining polynomials consistent with this symmetry are

p1 = (a1x0 + a2x1) z0z1z2 + (a3x0 + a4x1) (z30 + z31 + z32)
p2 = (a5x0 + a6x1) y0y1y2 + (a7x0 + a8x1) (y30 + y31 + y32),

(3.17)

whereai ∈ C are arbitrary coefficients.We are interested inZ3×Z3 symmetricmanifolds
X defined by polynomials of this type and the associated quotients Y=X/Z3×Z3, whose
Hodge number is h2,1(Y ) = 3.

We begin by computing the centraliser C∗
G(Gf) by solving the normaliser condi-

tion (2.8) for ψ = id, that is,

g S g−1 = S, g T g−1 = T (3.18)
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and then imposing the invariance condition (2.9). This yields

C∗
G(Gf) = Z

4
3 = 〈S, T, g1, g2〉 , (3.19)

where the generators gi act on the homogeneous co-ordinates of A as,

g1 =
⎛

⎝
12 0 0
0 P 0
0 0 P D(ω2)

⎞

⎠ , g2 =
⎛

⎝
12 0 0
0 P 0
0 0 13

⎞

⎠ . (3.20)

To compute the normaliser, we first note that Aut(Gf) = GL(2, Z3), a group of order
48. Unlike in the case of the previous example of the quintic quotient, we do not know
at this stage, automorphisms from which subgroup of Aut(Gf) will yield solutions to
the normaliser condition (2.8). Therefore, we solve Eq. (2.8) using all automorphisms
ψ from a minimal list of generators of all subgroups of GL(2, Z3). We then impose the
invariance condition (2.9). These solutions are then combined with the elements of the
restricted centraliser C∗

G(Gf) to generate the normaliser N∗
G(Gf). We arrive at,

N∗
G(Gf) = Z

4
3�Z2 = 〈S, T, g1, g2, g3〉 , (3.21)

where the generator g3 acts on A as,

g3 =
⎛

⎝
12 0 0
0 P̃ 0
0 0 ω P̃

⎞

⎠ with P̃ =
⎛

⎝
0 0 1
0 ω2 0
ω 0 0

⎞

⎠ . (3.22)

This is a non-Abelian group of order 162. In order to find the symmetry group of Y we
take the quotient by Gf = Z3×Z3 to find

GY = Z
2
3�Z2 = 〈g1, g2, g3〉, (3.23)

a non-Abelian group of order 18. Each generator is combined with the trivial action
on the polynomials, so ρ(gi ) = 12, for i = 1, 2, 3. Since the above generators do not
permute any projective factors we have π(gi ) = 13 and since det(gi ) = 1 we have from
Eq. (2.13) that

F(gi ) = 1 (3.24)

for i = 1, 2, 3. Thismeans that the symmetry groupGY = Z
2
3�Z2 is a regular symmetry,

rather than anR-symmetry. Like in the first example, we have used the packageGAP [26]
to compute the automorphism group Aut(Z3×Z3) and its generators, and the abstract
group structures of all the various groups here. We have used Mathematica [28] for the
remainder of the computations.

3.3. A CICY quotient with an R-symmetry. This example is for a co-dimension four
CICY, number 7861 in the list of Ref. [2], defined in the ambient space A = P

7 with
coordinates x = (x0, . . . , x7)T and symmetry group

G = PGL(8, C). (3.25)

The CICY X ⊂ A is given by the common zero locus of four quadrics pi , where
i = 1, 2, 3, 4, and it is characterised by the configuration matrix

X = P
7
[
2 2 2 2

]1,65
−128 . (3.26)
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On a nine-dimensional subspace of the 65-dimensional complex structure moduli space,
this CICY has a freely-actingGf = Z2×Z2×Z2 = 〈S, T,U 〉 symmetry with the action
of the three generators on the homogeneous coordinates x given by

S = diag(1,−1, 1,−1, 1,−1, 1,−1)

T = diag(1,−1,−1, 1, 1,−1,−1, 1)

U = diag(1,−1,−1,−1,−1, 1, 1, 1), (3.27)

and corresponding trivial actions on the defining polynomials, that is, ρ(S) = ρ(T ) =
ρ(U ) = 14. The most general set of defining equations consistent with this symmetry
is given by

pi =
∑

j

ai j x
2
j , (3.28)

for i ∈ {1, 2, 3, 4}, where ai j ∈ C are arbitrary coefficients. We would like to consider
Gf = Z

3
2 invariant CICY manifolds X defined by polynomials of this form and the

associated quotients Y = X/Z
3
2.

In this example, Aut(Gf) = PSL(3, Z2), a group of order 168. Imposing the nor-
maliser condition (2.8) using ψ ∈ PSL(3, Z2) and following the prescription in Sect. 2,
as well as the invariance (2.9) of the defining equations, we find

C�
G(Gf) = N �

G(Gf) = Z
7
2 = 〈S, T, U, g1, g2, g3, g4〉 (3.29)

where the four generators gi of this symmetry act on the homogeneous coordinates as,

g1 = diag(1,−1,−1,−1,−1, 1, 1,−1)

g2 = diag(1,−1,−1,−1,−1, 1,−1, 1)

g3 = diag(1,−1,−1,−1,−1,−1, 1, 1)

g4 = diag(1,−1,−1,−1, 1, 1, 1, 1). (3.30)

For the symmetry group of Y we divide by Gf = Z
3
2 and find

GY = Z
4
2 = 〈g1, g2, g3, g4〉. (3.31)

The gi all have trivial actions on the polynomials, soρ(gi ) = 14. There is no permutation
of projective factors involved, so that π(gi ) = 1 and, since det(gi ) = −1 it follows from
Eq. (2.13) that

F(gi ) = −1, (3.32)

for i = 1, 2, 3, 4. This means that GY = Z
4
2 is, in fact, an R-symmetry. Like in the pre-

vious two examples, we have used the package GAP [26] to compute the automorphism
group Aut(Z2×Z2×Z2) and its generators, and the abstract group structures of all the
various groups here. We have used Mathematica [28] for the remaining computations.
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Table 1. Symmetry groups of CICY quotients and their frequency

GY Z2 Z3 Z4 Z
2
2 Z

3
2 D8 Z

4
2 Z2×D8 (Z3×Z3)�Z2

Regular symmetries 155 35 5 31 36 11 0 2 4
R-symmetries 52 0 0 33 25 0 3 0 0

4. Practical Implementation and Results

We would like to find the symmetry groups, GY, for all 1695 CICIY quotients which
can be constructed from the standard CICY list in Ref. [2] and the classification of
freely-acting symmetries in Ref. [6]. The data for both the CICY manifolds and the
freely-acting symmetries is available for download and we will use the version of this
dataset available at [29]. An entry in this dataset consists of a pair, (X,Gf), of a CICY
manifold and a freely-acting symmetry.Wewill first computeAut(Gf) using the package
GAP [26]. IfG were to be a finite group, we could have then directly computedCG(Gf),
NG(Gf), which would then be finite as well, using GAP itself. However, as we have
seen earlier, G might depend on continuous parameters, so that the utility of GAP for
computing CG(Gf), NG(Gf) is limited. Instead we will use Mathematica [28] following
themethods explained in Section (2), to compute, for each given pair (X,Gf), the groups
C�
G(Gf), N �

G(Gf) and the symmetry group GY of the CICY quotient Y = X/Gf. The
abstract group structures of all the groups are then computed using GAP. In summary,
the practical implementation of this computation involves the dataset [29], the package
GAP [26] for many of the group-theoretical tasks, and Mathematica [28] together with
the CICY package [30] based on [20,31–34] for all remaining tasks.

The results can be summarised as follows. Of the 1695 CICY quotients Y , a total
of 381 were found to admit nontrivial generic discrete symmetry groups GY. Of these,
113 CICY quotients have an R-symmetry (which, in some cases, consists only of a Z2
sub-group of the full symmetry group GY) and 187 CICY quotients have a symmetry
group GY = Z2. Eight further groups GY, with a maximal group order of 18, appear
within the dataset, and the full list of possibilities is

GY ∈
{
Z2, Z3, Z4, Z

2
2, Z

3
2, D8, Z

4
2, Z2×D8, (Z3×Z3)�Z2

}
. (4.1)

The frequency with which each of these groups appears in the dataset is provided in
Table 1.

A more detailed account of the results for all 381 non-trivial cases can be found in
Table 3 in “Appendix B”. The table lists the freely-acting symmetry group Gf in the first
column, provides a list of identifiers (CICY#, SYMM#) for pairs (X,Gf)which indicate
the position in the dataset [29] in the second column and provides the groups C�

G(Gf),
N �
G(Gf) and GY = N �

G(Gf)/Gf in the remaining three columns. The data for the matrix
generators g acting on the homogeneous ambient space coordinates and the matrices
ρ(g) for the corresponding actions on the polynomials for all these symmetries is too
lengthy to be reproduced on paper. It consists of 381 symmetries many with multiple
generators, which can be downloaded from the hyperlink in Ref. [35]. A table with the
automorphism groups Aut(Gf) of the freely-acting symmetry groupsGf which enter the
computation can be found in the appendix.
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5. Conclusion

In this paper, we have considered CICY quotients Y = X/Gf, obtained as quotients of
CICYmanifolds X by freely-acting symmetriesGf, and we have studied the symmetries
GY, freely and non-freely acting, of these quotients. Such symmetries GY can lead to
discrete gauge symmetries in low-energy theories obtained by string compactification on
Y and are, therefore, of phenomenological relevance.More specifically, we have focused
on those GY which are symmetries everywhere in the moduli space of the quotient Y .
Only those “generic” symmetries can lead to low-energy symmetries which are manifest
for all values of the moduli fields, rather than just for special values of those fields.

The experience so far, particularly from the classification of freely-acting symme-
tries, suggests that such generic symmetries of CY manifolds typically do not exist.
Put simply, CY manifolds are too complicated to display symmetries at a generic point
in moduli space - only at lower-dimensional sub-loci in moduli space do symmetries
appear. However, this expectation is derived from the study of (freely-acting) symme-
tries for CY manifolds with a non-trivial first fundamental group. The main result of the
present paper is that the situation is quite different for CY quotient manifolds and non-
freely acting symmetries. Our classification strongly suggests that generic, non-freely
acting symmetries for CY quotients arise relatively frequently. For the 1695 CICY quo-
tients Y = X/Gf which can be constructed from the CICY manifolds X in the standard
list [2] and freely-acting symmetries Gf as classified in Ref. [6] we find such generic,
non-freely acting symmetries on about 23% of these quotient manifolds. This figure
should, for example, be compared with the frequency of freely-acting symmetries for
CICY manifolds which, from the classification of Ref. [6], stands at about 2.5%, but
with each of these symmetries appearing only at non-generic points in moduli space.

CY quotient manifolds are the preferred compactification manifolds for realistic
model building in the context of the heterotic string. Hence, our results suggest that
low-energy discrete symmetries which originate from the compactification space are a
common occurrence for heterotic string models.

On the 381 CICY quotients Y with non-trivial generic symmetry group, we find that
9 different symmetry groups GY can arise, namely

GY ∈
{
Z2, Z3, Z4, Z

2
2, Z

3
2, D8, Z

4
2, Z2×D8, (Z3×Z3)�Z2

}
.

For 113 of those CICY quotients all or part of GY corresponds to an R-symmetry, for
the others GY is a regular symmetry.

There are several obvious extensions of the present work. In the present paper, we
have classified symmetries GY which leave the CICY quotients Y invariant for each
choice of complex structure. This means that resulting low-energy discrete symmetries
will act trivially on the complex structure moduli. It is also possible to consider sym-
metries which map between manifolds Y corresponding to different choices of complex
structure, leading to low-energy symmetries with a non-trivial action on the complex
structure moduli. We expect that such symmetries can be found by methods similar
to the ones described here, subject to a suitable modification of the invariance condi-
tion (2.9) for the defining polynomials. Another possible extension would be to find
non-generic symmetries which only arise at a sub-locus in the complex structure moduli
space of a CICY quotient. Since the present method heavily relies on the invariance of
the entire family of polynomials describing the quotient CICY, finding such non-generic
symmetries will likely require a different set of methods, possibly a modification of the
approach taken in Ref. [6]. For the specific case of the quintic CY, work in this direction
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is under way [36]. It would also be interesting to know if results similar to the present
ones arise for free quotients of CY manifolds constructed as hyper-surfaces in toric
four-folds. However, this requires a classification of freely-acting symmetries for these
CY manifolds which, to date, has been achieved only partially [7,8].

Finally, the symmetries found in this papermay be of direct relevance for the heterotic
line bundle standard models on CICY quotients found in Ref. [21,22]. It would be
interesting to analyse this in more detail and, in particular, check if some of the present
symmetries lift to the gauge bundle.
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A. Automorphism groups

The automorphism group Aut(G) of a group G is the set of all group automorphisms
ψ : G → G which forms a group under the composition of maps. In the main part of
the paper, we consider quotients Y = X/Gf of CICY manifolds X by groups Gf which
act freely on X . The computation of the symmetry groups GY of these CICY quotients
requires the automorphism groups Aut(Gf) for all freely-acting groups Gf which arise
in the classification of Ref. [6]. These automorphism groups can be computed with the
package GAP [26] and the results for all relevant groups Gf are listed in Table 2.

http://creativecommons.org/licenses/by/4.0/
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Table 2. Automorphism groups Aut(Gf) of groups Gf acting freely on CICY manifolds, computed using
GAP

# Gf GAP ID Aut(Gf) GAP ID

1 Z2 [2, 1] 1 [1, 1]
2 Z3 [3, 1] Z2 [2, 1]
3 Z4 [4, 1] Z2 [2, 1]
4 Z2×Z2 [4, 2] S3 [6, 1]
5 Z5 [5, 1] Z4 [4, 1]
6 Z6 [6, 2] Z2 [2, 1]
7 Z8 [8, 1] Z2×Z2 [4, 2]
8 Z4×Z2 [8, 2] D8 [8, 3]
9 Z

3
2 [8, 5] PSL(3,2) [168, 42]

10 Q8 [8,4] S4 [24, 12]
11 Z3×Z3 [9, 2] GL(2,3) [48, 29]
12 Z10 [10, 2] Z4 [4, 1]
13 Dic3 [12, 1] D12 [12, 4]
14 Z12 [12, 2] Z2×Z2 [4, 2]
15 Z4×Z4 [16, 2] (Z2

2×A4)�Z2 [96, 195]
16 Z8×Z2 [16, 5] Z2×D8 [16, 11]
17 Z4×Z

2
2 [16, 10] [((Z2×D8)�Z2)�Z3]�Z2 [192, 1493]

18 Z4�Z4 [16, 4] Z
4
2�Z2 [32, 27]

19 Z8�Z2 [16, 6] Z2×D8 [16, 11]
20 Z2×Q8 [16, 12] ((Z4

2�Z3)�Z2)�Z2 [192, 955]
21 Z10×Z2 [20, 5] Z4×S3 [24, 5]
22 Z5×Z5 [25, 2] GL(2,5) [480, 218]
23 (Z4×Z2)�Z4 [32, 2] (Z2×Z2×(Z4

2�Z3))�Z2 [384, 20100]
24 Z8�Z4 [32, 4] [Z2×(((Z4×Z2)�Z2) [128, 753]
25 (Z8×Z2)�Z2 [32, 5] Z2×(Z4

2�Z2) [64, 202]
26 Z8�Z4 [32, 13] (Z3

2×D8)�Z2 [128, 1735]
27 Z2×(Z4�Z4) [32, 23] [((Z2×Z2×((Z4×Z2)�Z2))�Z2)�Z2]�Z2 [512, *]
28 Z4�Q8 [32, 35] [(Z2×((((Z4×Z2)�Z2)�Z2)�Z2))�Z2]�Z2 [512, *]
29 Z2×Z2×Q8 [32, 47] * [9216, *]
30 Z8×Z4 [32, 3] [Z2×(((Z4×Z2)�Z2)�Z2)]�Z2 [128, 753]
31 Z

2
4×Z2 [32, 21] [((Z2

2×(Z4
2�Z2))�Z2)�Z3]�Z2 [1536, *]

For convenience, we also list the GAP identifiers for all groups, a pair of two numbers, the first of which
represents the group order. For some groupswith large order, the complete identifier or the structure description
of the automorphism group was not available

B. Symmetries of CICY quotients

See Table 3.
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Table 3. Global symmetry groups of smooth CICY quotients

Gf (CICY#, SYMM#) C∗
G(Gf ) N∗

G(Gf ) N∗
G(Gf )/Gf

Z2 (19, 1), (21, 3), (27, 1),
(28, 2), (30, 1)

Z
2
2 Z

2
2 Z2

(6836, 11) Z
4
2 Z

4
2 Z

3
2

Z3 (6, 33) Z3 S3 Z2
(14, 1), (18, 1), (26, 1) Z

2
3 Z

2
3 Z3

Z4 (19, 4), (20, 5) Z
2
4 Z

2
4 Z4

(19, 7 − 8), (20, 3 −
6), (21, 7 − 8)

Z4×Z2 Z4×Z2 Z2

(19, 9), (21, 9)(30, 4),
(2568, 8)

Z4 D8 Z2

(21, 6) Z
2
4 Z

2
4�Z2 D8

(6836, 14) Z4×Z2 Z2×D8 Z
2
2

Z2×Z2 (19, 10), (20, 8), (21, 10)a Z
6
2 Z

6
2 Z

4
2

(19, 11 − 16), (6836,
{15 − 17, 30 − 31,
38, 42, 46, 50, 52, 59, 62,
69, 71, 74, 85, 88, 92})

Z
4
2×Z2 Z

4
2×Z2 Z

3
2

(20, 9 − 14), (6836,
{18† −
20, 22, 24, 27, 32†, 33, 34,
36, 39†, 40†,
41†, 43, 44†,
45, 47, 49†, 51, 54, 55, 57†,
58, 61, 63, 66, 68†, 70, 73,
77, 78, 81, 83†,
84, 87, 91})

Z
4
2 Z

4
2 Z

2
2

(21, 11 −
16), (2564, 4),
(2566, 4 − 10), (2568, {9−
36, 40}),
(5302, 5 − 20), (6788, 4 − 6),
(6836, {21, 23, 25, 26, 28,
29, 35, 37, 48, 53, 56, 60,
64, 65, 67, 72, 75, 76,
79, 80, 82, 86, 89, 90}),
(7491, 5 − 19), (7735, {4, 5}),
(7823, 2), (7861, 3)

Z
3
2 Z

3
2 Z2

Z6 (6, 34 − 41) Z6 D12 Z2
Z8 (19, 17), (6836, 93) Z8 Z8�Z2 Z2

(21, 17) Z8 (Z2×D8)�Z2 Z
2
2

Z4×Z2 (19, {18, 20}), (2564, 6),
(6836, {95, 97, 101,
103, 109, 111})

Z4×Z
2
2 Z

2
2×D8 Z

2
2

(19, 19), (21, 31) Z4×Z
2
2 Z2×(Z4

2�Z2) Z
3
2

(21, {18 − 20, 26})(7861, 5) Z4×Z
2
2 Z4×Z

2
2 Z2

(21, 21) Z
2
4×Z

2
2 Z

2
2×(Z2

4�Z2) Z2×D8
(21, {22, 24}) Z4×Z

3
2 Z

3
2×D8 Z

3
2

(21, {23, 25, 27, 28}) Z
2
4×Z2 Z2×(Z2

4�Z2) D8
(21, 29 − 30), (2568, 41 −
42), (6836, {96, 98,
99, 100, 102, 104 −
106}), (7735, 6 −
7), (7861, 6)

Z4×Z2 Z2×D8 Z2

(6836, {94, 107, 108, 110}) Z4×Z
2
2 Z2×((Z4×Z2)�Z2) Z

2
2



Discrete Symmetries of Complete Intersection Calabi–Yau Manifolds 863

Table 3. continued

Gf (CICY#, SYMM#) C∗
G(Gf ) N∗

G(Gf ) N∗
G(Gf )/Gf

Z
3
2 (7861, 8) Z

7
2 Z

7
2 Z

4
2

Q8 (19, {21, 22, 24, 25, 27, 28}),
(21, {33, 34}), (2564, 7 − 9)

Z4 (Z4×Z2)�Z2 Z2

(19, {23, 26, 29}) Z4 Z
2
4�Z2 Z4

(21, 32) Q8 (Z2
4�Z2)�Z2 D8

(6836, 112 − 113) Q8 (Z2×D8)�Z2 Z
2
2

Z3×Z3 (14, 4 − 7) Z
4
3 Z

4
3�Z2 Z

2
3�Z2

(14, 8 − 39) Z3×Z3 Z
3
3 Z3

(7878, 2 − 3) Z
2
3 Z

2
3�Z2 Z2

Z10 (7447, 4) Z10 D20 Z2
Z3�Z4 (7246, 21 − 23) Z2 (Z6×Z2)�Z2 Z2
Z4×Z4 (21, 35 − 37) Z

2
4 (Z3

2×D8)�Z2 Z
3
2

(7861, {9, 10}), (7862, 7) Z
2
4 Z

2
4�Z2 Z2

(7861, 11) Z
2
4×Z2 Z2×(Z2

4�Z2) Z
2
2

Z4�Z4 (21, 38 − 40) Z4×Z2 (Z3
2×D8)�Z2 Z

3
2

(6836, 114 − 115) Z
2
2 (Z2

2×D8)�Z2 Z
2
2

(7861, 12), (7862, 8) Z
2
2 (Z4×Z

2
2)�Z2 Z2

Z8×Z2 (21, 41) Z8×Z2 (Z3
2×D8)�Z2 Z

3
2

(21, 42 − 43) Z8×Z2 Z2×((Z2×D8)�Z2) Z
2
2

(6836, 116−117), (7861, 13) Z8×Z2 Z2×(Z8�Z2) Z2
(7862, 9) Z8×Z2 Z2×D16 Z2

Z8�Z2 (21, 44 − 45) Z4×Z2 Z2×((Z2×D8)�Z2) Z
2
2

(21, 46) Z4×Z2 (Z2×((Z2×D8)�Z2))�Z2 D8
Z2×Q8 (21, {47, 48, 50}) Z2×Q8 Z2×((Z2

4�Z2)�Z2) D8
(21, 49) Z2×Q8 (Z2

2×(Z2
4�Z2))�Z2 Z2×D8

(21, 51) Z2×Q8 Z2×(((Z2×D8)�Z2)�Z2) D8
(21, 52 − 53) Z2×Q8 (Z3

2×D8)�Z2 Z
3
2

(7861, 17 − 19) Z4×Z2 Z2×((Z4×Z2)�Z2) Z2
(7862, 11) Z2×Q8 Z2×((Z2×D8)�Z2) Z

2
2

Z4×Z
2
2 (7861, 14 − 16) Z4×Z

3
2 Z

2
2×(Z4

2�Z2) Z
3
2

Z10×Z2 (7447, 5) Z10×Z2 Z
2
2×D10 Z2

Z5×Z5 (7890, 2 − 5) Z5×Z5 (Z5×Z5)�Z2 Z2
(Z4×Z2)�Z4 (7861, 20) (Z4×Z2)�Z4 (Z2

2×(Z4
2�Z2))�Z2 Z

3
2

(7861, 21 − 23) Z
3
2 (Z2

2×((Z2×D8)�Z2))�Z2 Z
3
2

Z8×Z4 (7861, 24 − 25) Z8×Z4 (Z2×((Z2×D8)�Z2))�Z2 Z
2
2

Z8�Z4 (7861, 26)b Z
2
4 (Z2×((Z2×D8)�Z2))�Z2 Z

2
2

Z8�Z4 (7861, 28)b Z
2
2 (Z2×D16)�Z2 Z2

(Z8×Z2)�Z2 (7861, 27) Z4×Z2 (((Z8×Z2)�Z2)�Z2)�Z2 Z
2
2

Z
2
4×Z2 (7861, 29 − 36) Z

2
4×Z2 (Z2

2×(Z4
2�Z2))�Z2 Z

3
2

Z4�Q8 (7861, 39) Z4×Z2 (Z2×((Z2×D8)�Z2))�Z2 Z
2
2

Z2×(Z4�Z4) (7861, 37 − 38) Z
3
2 (Z2

2×(Z4
2�Z2))�Z2 Z

3
2

Z
2
2×Q8 (7861, 40 − 45) Z

2
2×Q8 (Z2

2×((Z2×D8)�Z2))�Z2 Z
3
2

A pair (X,Gf) of a CICY X and a freely-acting symmetryGf is referred to by the numbers (CICY#, SYMM#).
Further, the centralizerC∗

G (Gf), the normalizer N∗
G (Gf) and the generic symmetry group GY = N∗

G (Gf)/Gf
of the quotient Y = X/Gf is listed. Bold numbers (CICY #, SYMM #) indicate manifolds with global R-
symmetries. For manifolds that appear with a superscript †, only a Z2 subgroup of the entire global symmetry
group N∗

G (Gf)/Gf is an R-symmetry
a For this manifold, only a Z2×Z2 subgroup of the entire N∗

G (Gf)/Gf = Z
4
2 is an R-symmetry

b The two distinct semi-direct productsZ8�Z4 correspond to the presentations 〈a, b | a8 = b4 = e, bab−1 =
a3〉 and 〈a, b | a8 = b4 = e, bab−1 = a5〉
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