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Abstract: In this paper, we consider a certain class of second order nonlinear PDEswith
damping and space-time white noise forcing, posed on the d-dimensional torus. This
class includes the wave equation for d = 1 and the beam equation for d ≤ 3. We show
that the Gibbs measure is the unique invariant measure for this system. Since the flow
does not satisfy the strong Feller property, we introduce a new technique for showing
unique ergodicity. This approach may be also useful in situations in which finite-time
blowup is possible.

1. Introduction

Consider the equation

utt + ut + u + (−�)
s
2 u + u3 = √

2ξ,

posed on the d - dimensional torus Td , where ξ is the space-time white noise on R×T
d

(defined in Sect. 2), and s > d.
By expressing this equation in vectorial notation,

∂t

(
u
ut

)
= −

(
0 −1

1 + (−�)
s
2 1

)(
u
ut

)
−
(
0
u3

)
+

(
0√
2ξ

)
, (1)

from a formal computation, we expect this system to preserve the Gibbs measure

dρ(u, ut )“ = " exp
(
− 1

4

∫
u4 − 1

2

∫
u2 + |(−�)

s
2 u|2

)
exp

(
− 1

2

∫
u2t
)
“dudut",

where “dudut" is the non-existent Lebesgue measure on an infinite dimensional vector
space (of functions). Heuristically, we expect invariance for this measure by splitting (1)
into
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1.

∂t
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)
= −
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0 −1

1 + (−�)
s
2 0

)(
u
ut

)
−
(
0
u3

)
,

which is a Hamiltonian PDE in the variables u, ut , and so it should preserve the Gibbs
measure

exp
(
− H(u, ut )

)
“dudut",

where H(u, ut ) = 1
4

∫
u4 + 1

2

∫
u2 + |(−�)

s
2 u|2 + 1

2

∫
u2t ,

2.

∂t

(
u
ut

)
= −

(
0 0
0 1

)(
u
ut

)
−
(

0√
2ξ

)
,

which is the Ornstein - Uhlenbeck process in the variable ut , and so it preserves the
spatial white noise

exp
(
− 1

2

∫
u2t
)
“dut".

For s = 1, up to the damping term exp
(
− 1

2

∫
u2t
)
dut , the measure ρ corresponds to the

well known �4
d model of quantum field theory, which is known to be definable without

resorting to renormalisation just for d = 1 (this measure will be rigorously defined - in
the case s > d - in Sect. 2).

Our goal is to study the global behaviour of the flow of (1), by proving invariance of
the measure ρ and furthermore showing that ρ is the unique invariant measure for the
flow.

Following ideas first appearing in Bourgain’s seminal paper [1] and in the works
of McKean–Vasinski [33] and McKean [34,35], there have been many developments
in proving invariance of the Gibbs measure for deterministic ispersive PDEs (see for
instance [2–7,9,24,38–40]).

A natural question that arises when an invariant measure is present is uniqueness of
the invariant measure and convergence to equilibrium starting from a “good enough"
initial data. This has been extensively studied in the case of parabolic stochastic PDEs
(see for instance [12,13,16,18,19,22,41,45] and references therein) and for stochastic
equations coming from fluid dynamics (see [14,21,46] and references therein). On the
other hand, there are not many results in the dispersive setting, and they often rely either
on some smoother version of the noise ξ , or onto some dissipative properties of the
system (see for instance [15,23,25–31,36]). Indeed, as far as the author knows, the
ergodicity result of this paper is the first that can deal with a forcing as rough as space-
time white noise in a setting without any dissipation. More precisely, we will prove the
following:

Theorem 1.1. Let s = 4, d = 3. Then the measure ρ is invariant for the Markov process
associated to the flow �t (·, ξ) of (1), in the sense that for every function F measurable
and bounded, for u = (u, ut )T,∫

E[F(�t (u, ξ))]dρ(u) =
∫

F(u)dρ(u) for every t > 0. (2)
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Moreover, there exists a Banach space Xα which contains the Sobolev Space H s
2 :=

H
s
2 ×L2, such that for every 0 < α < s−d

2 , ρ is the only invariant measure concentrated
on Xα . Furthermore, for every u0 ∈ Xα and for every F : Xα → R continuous and
bounded,

lim
T→∞

1

T

∫ T

0
E[F(�t (u0, ξ))]dt =

∫
F(u)dρ(u). (3)

We will carry out the proof in full details only in the case s = 4, d = 3, however the
same proof can be extended to the general nonsingular case s > d. We will describe in
more details how to obtain the general result in Sect. 1.4.

The proof of this theorem is heavily influenced by the recent parabolic literature,
and in particular by results that use or are inspired by the Bismut–Elworthy–Li formula,
especially [45] and [22]. A crucial step in these papers is showing that the flow of the
equation in study satisfies the Strong Feller property. However, as we will prove in
Sect. 5, the flow of (1) does not satisfy the strong Feller property, therefore a more
refined approach is needed.

While the argument in this work does not provide any information on the rate of
convergence to equilibrium, it does not rely on good long time estimates, as opposed to
works that rely on the Asymptotic strong Feller property defined in [20]. In particular,
as far as ergodicity is concerned (in the sense that (3) holds ρ-a.s.), we use just the
qualitative result of global existence of the flow, and it may be possible to extend this
approach even to situations inwhich finite-time blowup is possible, similarly to the result
in [22]. This goes in the direction of dealing with the singular case s = d. Indeed, in the
case s = d = 2, in a upcoming work by M.Gubinelli, H. Koch, T. Oh and the author, we
prove global well posedness and invariance of the Gibbs measure for the renormalised
damped wave equation

utt + ut + u −�u+ : u3 := √
2ξ.

See also [43,44] for the global existence part of the argument.
However, since the best bound availablewith the argument growsmore than exponen-

tially in time, any approach on unique ergodicity that relies on good long time estimate
has little chance to yield any result for this equation.

1.1. Structure of the argument and organisation of the paper. In order to make this
paper less notation-heavy, we will concentrate on the case d = 3, s = 4, which is the
Beam equation in 3-d

∂t

(
u
ut

)
= −

(
0 −1

1 + �2 1

)(
u
ut

)
−
(
0
u3

)
+

(
0√
2ξ

)
. (4)

Local and global well posedness for the non-damped version of this equation have been
explored in detail in an upcoming work by R. Mosincat, O. Pocovnicu, the author, and
Y. Wang (see also [43]). We will however present an independent treatment that works
for general s > d. While the case s = 2, d = 1, which corresponds to wave equation
in 1 dimension, can arguably be considered more interesting, we decide to focus on
(4) because it presents all the difficulties of the general case (namely, the definition of
the spaces Xα , and some subtleties that come from the multidimensional nature of the
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equation). At the end of this section, we will discuss how to convert the proof for this
case into the proof for the general case.

The paper and the proof of Theorem 1.1 are organised as follows:

• In the remaining of this section, we will define what we mean by the flow of (4),
and introduce the spaces Xα , the stochastic convolution t , and the notation that we
will use throughout the paper.
• In Sect. 2, we will state and prove the relevant Xα estimates of the stochastic
convolution t , as well as define rigorously the measure ρ and prove the related Xα

estimates for a generic initial data sampled according to ρ.
• In Sect. 3, we build the flow, by showing local and global well posedness of the
equation (4). Localwell posedness is shownby applying a standardBanachfixedpoint
argument, after reformulating the equation using the so-called Da Prato-Debussche
trick. Global well posedness is shown via an energy estimate, making use of an
integration by parts trick similar to the one used in [37].
• In Sect. 4, we show invariance for the measure ρ.
• Section 5 is dedicated to showing unique ergodicity of ρ. In particular, we first
recover the strong Feller property by changing the underlying topology of the space
Xα . However, with this new topology, the space ceases to be connected and separable.
Therefore, even when we combine this property with irreducibility of the flow, we
derive just the partial information that if ρ1 ⊥ ρ2 are invariant, then there exists a
Borel set V s.t.

ρ1(V +H2) = 0, ρ2(V +H2) = 1.

In order to obtain ergodicity of ρ, we combine this argument with a completely
algebraic one. We consider the projection π : Xα → Xα/H s

2 , and we show that if
ρ1, ρ2 � ρ, then π	ρ1 = π	ρ2 = π	ρ, which contradicts the existence of such V .

Finally, to conclude uniqueness, we show that for every u0 ∈ Xα , if μt is the law of
u(t) = (u(t), ut (t)), then every weak limit ν of 1

T

∫ T
0 μtdt will satisfy π	ν = π	ρ, from

which we derive ν = ρ.

1.2. Mild formulation. Before discussing ergodicity issues, we need to define the flow

of (4). Consider the linear damped beam equation with forcing f =
(
f
g

)
and initial

data u0 =
(
u0
u1

)
,

∂t

(
u
ut

)
= −

(
0 −1

1 + �2 1

)(
u
ut

)
+

(
f
g

)
.

By variation of constants, the solution to this equation is given by

u = S(t)u0 +
∫ t

0
S(t − t ′)f(t ′)dt ′, (5)
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where S(t) is the operator formally defined as

e−
t
2

⎛
⎜⎜⎜⎜⎜⎝
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,

or equivalently, is the operator that corresponds to the symbol

e−
t
2

⎛
⎜⎜⎜⎜⎜⎝
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(
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√

3
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)
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2
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√

3
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−
(√

3
4 + |n|4 − 1

4
√

3
4 +|n|4

)
sin

(
t
√

3
4 + |n|4

)
cos

(
t
√

3
4 + |n|4

)
− 1

2

sin

(
t
√

3
4 +|n|4
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√

3
4 +|n|4

⎞
⎟⎟⎟⎟⎟⎠

in Fourier series. We notice that this operator maps distributions to distributions, and for
every α ∈ R, it maps the Sobolev spaceHα := Hα×Hα−2 into itself, with the estimate
‖S(t)u‖Hα � e− t

2 ‖u‖Hα .

By the formula (5), since we formally have f = −
(
0
u3

)
+

(
0
ξ

)
, we expect the

solution of (4) to satisfy the Duhamel formulation

u = S(t)u0 +
∫ t

0
S(t − t ′)

(
0

ξ(t ′)

)
dt ′ −

∫ t

0
S(t − t ′)

(
0

u3(t ′)

)
dt ′. (6)

From the previous discussion about S(t), we have that

t (ξ) :=
∫ t

0
S(t − t ′)

(
0√

2ξ(t ′)

)
dt ′

is a well defined space-time distribution. In the following, when it is not ambiguous, we
may omit the argument ξ (i.e. t := t (ξ)). We will explore more quantitative estimates
about t in Sect. 2.

Moreover, it is helpful to consider (6) as an equation for the term

v(t) := u(t)− S(t)u0 − t (ξ) = −
∫ t

0
S(t − t ′)

(
0

u3(t ′)

)
dt ′.

This is the so called Da Prato - Debussche trick ([10,11]).With a slight abuse of notation,
the equation for v becomes

v(t) = −
∫ t

0
S(t − t ′)

(
0

(S(t ′)u0 + t ′(ξ) + v(t ′))3
)
dt ′, (7)

where (S(t ′)u0 + t ′(ξ)+v(t ′)) is actually the first component of (S(t ′)u0 + t ′(ξ)+v(t ′)).
Following this discussion, we define a solution for (4) with initial data u0 to be

S(t)u0 + t (ξ) + v(t), where v(t) solves (7).
In order to define a flow, we need a space X such that for every u0 ∈ X , we can find

a solution for (7), and S(t)u0 + t (ξ) + v(t) ∈ X as well. Due to the dispersive nature of
the equation, this choice is not as straightforward as in the parabolic case, where Hölder
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spaces satisfy all of the required properties. On the other hand, keeping track only of the
Hα regularity of the initial data would hide important information about the solution,
namely the gain in regularity of the term v. A good space for this equation turns out to
be

X
α := {

u ∈ S′(Td)× S′(Td)|S(t)u ∈ C([0,+∞);C α), ‖S(t)u‖C α � e−
t
8
}
,

‖u‖Xα := sup
t≥0

e
t
8 ‖S(t)u‖C α ,

for 0 < α < 1
2 . Here C α := Cα × Cα−2. As it is common in these situations, the

particular definition of the Hölder spaces Cβ for β �∈ (0, 1) (where they all coincide)

does not play any role. In this paper, we choose to define ‖u‖Cβ :=
∥∥∥(1−�)

β
2 u
∥∥∥
L∞

.

As it is defined, the space X
α
might not be separable, which is a helpful hypothesis

for somemeasure theoretical considerations in the following. In order to solve this issue,
we will denote by Xα the closure of trigonometric polynomials in X

α
. Since we have,

for α′ > α,

∥∥u− P≤Nu
∥∥
Xα � N− α′−α

2 ‖u‖Xα′ ,

we have that for every α′ > α, if ‖u‖Xα′ < +∞, then u ∈ Xα .

Lemma 1.2. X
α
is a Banach space.

Proof. ‖·‖Xα is clearly a norm, so we just need to show completeness. Let un be a
Cauchy sequence in X

α
. By definition, for every t , S(t)un is a Cauchy sequence in C α ,

so there exists a limit S(t)un → u(t) in C α . Moreover, S(t) is a bounded operator in
Hα , so one has that

u(t) = C α − lim S(t)un = Hα − lim S(t)un = S(t)(Hα − lim un) = S(t)u(0).

Lastly,

lim
n
‖un − u‖Xα = lim

n
sup
t

e
t
8 ‖S(t)un − S(t)u(0)‖C α

= lim
n

sup
t

lim
m

e
t
8 ‖S(t)un − S(t)um‖C α

≤ lim
n

lim
m

sup
t

e
t
8 ‖S(t)un − S(t)um‖C α

= lim
n

lim
m
‖un − um‖Xα

= 0.


�
Since the operator S(t) is not bounded on C α , the space Xα might appear mysterious.
However, in the next sections, we will see that the term t (ξ) belongs to Xα , as well
as almost every initial data according to ρ, i.e. ρ(Xα) = 1. Moreover, we have the
following embedding for smooth functions:

Lemma 1.3. For every 0 < α < 1
2 , we have H2 ⊂ Xα . Moreover, the identity id :

H2 ↪→ Xα is a compact operator.
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Proof. Let u ∈ H2. By Sobolev embeddings,

‖S(t)u‖C α � ‖S(t)u‖H2 � e−
t
2 ‖u‖H2

and given s ≥ 0, we have

lim
t→s

‖S(t)u− S(s)u‖C α � lim sup
t→s

‖S(t)u− S(s)u‖H2 = 0,

hence u ∈ Xα .
Now let un be a bounded sequence inH2. By compactness of Sobolev embeddings,

up to subsequences,un → u inC α andun ⇀ uweakly inHs for every s ≤ 2. Therefore,
S(t)un ⇀ S(t)u weakly inHs for every t ≥ 0.

By a diagonal argument, up to subsequences, we have that S(t)un is a converging
sequence in C α for every t ∈ Q

+, so by coherence of the limits, S(t)un → S(t)u in C α

for every t ∈ Q
+. By the property

∂t S(t) = −
(

0 −1
1 + �2 1

)
S(t),

we have that ‖S(t)u− S(s)u‖Hs � |t − s|ε ‖u‖Hs+4ε . Therefore, by taking ε such that
α+4ε+ 3

2 < 2, by the Sobolev embeddingH2−4ε ↪→ C α , we have that S(t)un → S(t)u
in C α for every t ≥ 0 and uniformly on compact sets. Finally, for every T we have

e
t
8 ‖S(t)un − S(t)u‖C α � e

T
8 sup
s∈[0,T ]

‖S(s)un − S(s)u‖C α + e−
3
8 T sup

n
‖un‖H2 .

For T � 1 big enough and n � 1 (depending on T ), we can make the right hand side
arbitrarily small. Therefore, we get ‖un − u‖Xα → 0 as n →∞, so id is compact. 
�
However, the space Xα is strictly bigger thanH2, and it contains functions at regularity
exactly α. Indeed, we have

Lemma 1.4. For every α1 > α > 0, there exists u0 ∈ Xα such that u0 �∈ Hα1 .

Proof. Suppose by contradiction that Xα ⊆ Hα1 . By the closed graph theorem, this
implies that

‖u‖Hα1 � ‖u‖Xα . (8)

For n ∈ Z
3, consider un :=

(
ein·x
0

)
. By definition of S(t),

S(t)un = e−
t
2

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎝cos

(
t
√

3
4 + |n|4

)
+ 1

2

sin

(
t
√

3
4 +|n|4

)
√

3
4 +|n|4

⎞
⎠ ein·x

sin

(
t
√

3
4 +|n|4

)
√

3
4 +|n|4

ein·x

⎞
⎟⎟⎟⎟⎟⎠

.

It is easy to check that ‖S(t)un‖C α ∼ e− t
2 〈n〉α , so ‖S(t)un‖Xα ∼ 〈n〉α . On the other

hand, ‖un‖Hα1 ∼ 〈n〉α1 . By (8), this implies 〈n〉α1 � 〈n〉α , which is a contradiction. 
�
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1.3. Truncated system. In order to prove invariance of the measure μ, it will be helpful
to introduce a truncated system. While many truncations are possible, for this particular
class of systems it is helpful to introduce the sharp Fourier truncation P≤N , N ∈ N∪{0}
given by

P≤Nu(x) := 1

(2π)3

∑
max j |n j |≤N

û(n)ein·x ,

i.e. the sharp restriction on the cube [−N , N ]3 in Fourier variable. Similarly, we define
P>N := 1 − P≤N . While this is a somewhat odd choice for the truncation, it has the
advantages that P>N and P≤N have orthogonal ranges, and

∥∥P≤Nu
∥∥
L p �p ‖u‖L p

uniformly in N for every 1 < p < +∞ (since it corresponds to the composition of the
Hilbert transform in every variable).

It is convenient for notation to allow also N = −1, in which case P≤N = 0 and
P>N = id. Therefore, we define the truncated system to be

⎧⎪⎪⎨
⎪⎪⎩

∂t

(
u
ut

)
= −

(
0 −1

1 + �2 1

)(
u
ut

)
− P≤N

(
0

(P≤Nu)3

)
+

(
0√
2ξ

)
,

(
u
ut

)
(0) =

(
u0
u1

)
∈ Xα.

(9)

In a similar fashion to (4), we will write solutions to this system as S(t)u0 + t (ξ) + vN ,
where v solves the equation

vN (t) = −
∫ t

0
S(t − t ′)P≤N

(
0

P≤N (S(t ′)u0 + t ′(ξ) + vN (t ′))3
)

. (10)

1.4. Notation and conversion to the general case. In the following,Hα will denote the
Sobolev space Hα × Hα−2, with norm given by

‖u‖2Hα :=
∥∥∥(1−�)

α
2 u
∥∥∥2
L2

+
∥∥∥(1−�)

α
2−1ut

∥∥∥2
L2

.

Similarly, W α,p will denote the Sobolev space Wα,p ×Wα−2,p with norm given by

‖u‖pW α :=
∥∥∥(1−�)

α
2 u
∥∥∥p

L p
+
∥∥∥(1−�)

α
2−1ut

∥∥∥p

L p

and as already discussed, C α := Cα × Cα−2, with norm given by

‖u‖C α := max
(∥∥∥(1−�)

α
2 u
∥∥∥
L∞

,

∥∥∥(1−�)
α
2−1ut

∥∥∥
L∞

)
.

In order to convert the argument presented in this paper into the one for the general case,
we make the following modifications:

Hα := Hα × Hα− s
2 , W α,p = Wα,p ×Wα− s

2 ,p, C α := Cα × Cα− s
2 ,
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with the analogous modifications of the norms. Moreover, S(t) would denote the linear
propagator for (1), and

X
α := {

u|S(t)u ∈ C([0,+∞);C α), ‖S(t)u‖C α � e−
t
8
}
,

‖u‖Xα := sup
t>0

e
t
8 ‖S(t)u‖C α

is defined for 0 < α < s−d
2 . Moreover, in the following discussion, the spaceH2 has to

be substituted by the space H s
2 , and any threshold of the regularity in the form α < 1

2
has to be substituted by α < s−d

2 .

2. Stochastic Objects

This section is dedicated to building the stochastic objects that we will need throughout
the paper and to proving the relevant estimates about them, in the case s = 4, d = 3.
More precisely, in the first subsection we prove that t ∈ C([0,+∞);C α) and t ∈ Xα

almost surely. In the second subsection, we build the Gibbs measure(s) and we prove
that they are actually concentrated on Xα .

2.1. Stochastic convolution. Wewill use that the space-timewhite noise is a distribution-
valued random variable such that, for every φ,ψ ∈ C∞c (R× T

d),

E[〈φ, ξ 〉 〈ψ, ξ 〉] = 〈φ,ψ〉L2(R×Td ) .

Proposition 2.1. For every α < 1
2 ,

E
∥∥ t

∥∥2
C α < +∞.

Moreover, t ∈ C([0,+∞);C α) almost surely.

Proof. For a test function f =
(
f
ft

)
, define

γ (t, s)[f] := E
〈
t (ξ), f

〉 〈
s(ξ), f

〉
, (11)

where 〈f, g〉 = ∫
f g +

∫
ft gt . We have that

〈
t , f

〉 =
∫ t

0

〈
S(t − t ′)

(
0√

2ξ(t ′)

)
, f
〉

= √
2
〈
ξ, π2S(t − t ′)∗f

〉
L2
t ′,x

,

where π2 is the projection on the second component. Therefore, by definition of ξ ,

γ (t, s)[f] = 2
∫ t∧s

0

〈�(π2S(t − t ′)∗f
)
,�(π2S(s − t ′)∗f

)〉
. (12)
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Hence, by boundedness of S(t), we have that γ (t, s)[f] � ‖ f ‖2H−2 + ‖ ft‖2L2 . Moreover,
since

∂t S(t) = −
(

0 −1
1 + �2 1

)
S(t),

we have Lip(γ (·, ·)[f]) � ‖ f ‖2L2 + ‖ ft‖2H2 , so by interpolation, for every 0 ≤ θ ≤ 1,
we have

∣∣γ (t, s)− γ (t ′, s′)
∣∣[f] � (‖ f ‖2H−2(1−θ) + ‖ ft‖2H2θ )(|t − t ′| + |s − s′|)θ .

Therefore, choosing θ = 1−2α−ε
4 , we have

E
∥∥ t+h(ξ)− t (ξ)

∥∥2
Hα

�
∑
n∈Z3

〈n〉2α
(
γ (t + h, t + h)− 2γ (t + h, t) + γ (t, t)

) [(
ein·x
0

)]

+
∑
n∈Z3

〈n〉2α
(
γ (t + h, t + h)− 2γ (t + h, t) + γ (t, t)

) [( 0
〈n〉−2 ein·x

)]

�
∑
n∈Z3

〈n〉2α 〈n〉−3−2α−ε |h| 1−2α−ε
4 � |h| 1−2α−ε

4 . (13)

By translation invariance of the operator S(t), we have that

E| 〈∇〉−α ( t+h − t )(x)|2 = E| 〈∇〉−α ( t+h − t )(y)|2

for every x, y ∈ T, so

E| 〈∇〉α ( t+h − t )(x)|2 ∼
∫
T

E| 〈∇〉α ( t+h − t )(x)|2dx

≤ E
∥∥ t+h − t

∥∥2
Hα

� |h| 1−2α−ε
4

and similarly

E| 〈∇〉−2+α ∂t ( t+h − t )(x)|2 � |h| 1−2α−ε
4 .

By hypercontractivity, (or since 〈∇〉−α ( t+h − t )(x) is Gaussian),

E| 〈∇〉α ( t+h − t )(x)|p �p

(
E| 〈∇〉α ( t+h − t )(x)|2

) p
2 � |h| p(1−2α−ε)

4

and

E| 〈∇〉−2+α ∂t ( t+h − t )(x)|p �p |h| p(1−2α−ε)
4
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so for p > q,

E
∥∥ t+h − t

∥∥p
W α,q

= E

( ∫
| 〈∇〉α ( t+h − t )(x)|qdx +

∫
| 〈∇〉−2+α ∂t ( t+h − t )(x)|qdx

) p
q

� E

∫
| 〈∇〉α ( t+h − t )(x)|p + E

∫
| 〈∇〉−2+α ∂t ( t+h − t )(x)|pdx

�p |h| p(1−2α−ε)
4 .

(14)

Therefore, by Kolmogorov Continuity Theorem, if α < 1
2 , by taking p big enough in

such a way that p(1−2α−ε)
4 > 1, we have t ∈ C

(1−2α−ε)
4 − 1

p
t W α,q . For every β < α,

by Sobolev embeddings we can find q < +∞ s.t. W α,q ⊂ C β . From this we get that
t ∈ CtC β . 
�
Proposition 2.2. For every t > 0, t ∈ Xα a.s. More precisely,

sup
s>0

∥∥∥e s
8 S(s) t

∥∥∥
C α

< +∞ a.s.

for every α < 1
2 .

Proof. Let f =
(
f
ft

)
be a test function, and let γ̃ to be such that

E
〈
S(r) t , f

〉 〈
S(s) t , f

〉 = e−
r+s
2 γ̃ (t, s)[f].

As for (11), we have the analogous of (12)

γ̃ (t, s)[f] = 2
∫ t

0

〈
�π2e

r
2 S(r + t − t ′)∗f,�π2e

s
2 S(s + t − t ′)∗f

〉
.

Therefore, exactly as for (11),wehave γ̃ (t, s)[f] � ‖ f ‖2H−2+‖ ft‖2L2 andLip(γ̃ (·, ·)[f]) �
‖ f ‖2L2 + ‖ ft‖2H2 . Therefore, proceeding as in (13),

E
∥∥S(s + h) t − S(s) t

∥∥2
Hα � e−s |h| 1−2α−ε

4 ,

and arguing as in (14), for every p > q,

E
∥∥S(s + h) t − S(s) t

∥∥p
W α,q �p e−

p
2 s |h| p(1−2α−ε)

4 .

Therefore, by Kolmogorov Continuity Theorem, S(·) t ∈ CsW α,q a.s. and

E
∥∥S(·) t

∥∥p
Cs ([N ,N+1];W α,q )

�p e−
p
2 N .

Therefore, P(
∥∥S(·) t

∥∥
Ct ([N ,N+1];W α,q )

> e− N
4 ) �p e−

p
4 N , which is summable in N , so

by Borel-Cantelli
∥∥S(·) t

∥∥
Cs ([N ,N+1];W α,q )

≤ e− N
4 definitely. Taking β < α and q big

enough, by Sobolev embeddings we have that
∥∥S(·) t

∥∥
Cs ([N ,N+1];C β)

� e− N
4 definitely.

Therefore,

lim sup
s→∞

∥∥∥e s
8 S(s) t

∥∥∥
C β

= 0 a.s.,

which in particular implies (2.2). 
�
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2.2. Invariant measure. Consider the distribution-valued random variable

u =
⎛
⎝�

(∑
n∈Z3

gn√
1+|n|4 e

inx
)

�
(∑

n∈Z3 hneinx
)

⎞
⎠ (15)

where gn, hn are independent complex-valued standard gaussians (i.e. the real and imagi-

nary parts are independent real valued standard gaussians). If f =
(
f
ft

)
is a test function,

then

E[〈u, f〉2] = 1

2

∑
n

E|gn|2
1 + |n|4 | f̂ (n)|2 + 1

2

∑
n

E|hn|2| f̂t (n)|2

=
∑
n

| f̂ (n)|2
1 + |n|4 +

∑
n

| f̂t (n)|2

=
∥∥∥(1 + �2)−

1
2 f

∥∥∥2
L2

+ ‖ ft‖2L2 .

(16)

Therefore, if μ is the law of u, we have that formally

dμ(u) = exp
(
− 1

2

∥∥∥(1 + �2)
1
2 u
∥∥∥2
L2

)
du × exp

(
− 1

2
‖ut‖2L2

)
dut

= exp
(
− 1

2

∫
u2 − 1

2

∫
(�u)2

)
du × exp

(
− 1

2

∫
u2t
)
dut .

(17)

Proposition 2.3. For every α < 1
2 , u ∈ C α a.s.

Proof. By Sobolev embeddings, it is enough to show that u ∈ W α,p a.s. for every p > 0.
We have that

E| 〈∇〉α u(x)|2 = 1

2
E

∣∣∣ ∑
n∈Z3

〈n〉α gn√
1 + |n|4 e

inx
∣∣∣2 = 1

2

∑
n∈Z3

〈n〉2α
1 + |n|4 �α 1,

and similarly

E| 〈∇〉−2+α ut (x)|2 = 1

2
E

∣∣∣ ∑
n∈Z3

〈n〉−2+α hne
inx

∣∣∣2 = 1

2

∑
n∈Z3

〈n〉−4+2α �α 1.

Therefore, by hypercontractivity, for q > p,

E ‖u‖qW α,p = E

( ∫
| 〈∇〉α u(x)|pdx +

∫
| 〈∇〉−2+α ut (x)|pdx

) q
p

≤ E

[ ∫
| 〈∇〉α u(x)|qdx +

∫
| 〈∇〉−2+α ut (x)|qdx

]

�
∫

(E| 〈∇〉α u(x)|2) q
2 dx +

∫
(E| 〈∇〉−2+α ut (x)|2) q

2 dx

�α 1,

and in particular u ∈ W α,p a.s. 
�
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Proposition 2.4. For every α < 1
2 , S(t)u ∈ CtC α a.s. Moreover,

sup
t>0

∥∥∥e t
8 S(t)u

∥∥∥
C α

< +∞

a.s. In particular, u ∈ Xα a.s.

Proof. For a test function f , we have that

E 〈S(t)u, f〉 〈S(s)u, f〉 = 〈
LS(t)∗f, S(s)∗f

〉 = 〈S(s)Lf, S(t)f〉 = e−
t+s
2 γ (t, s),

where

L
(
f
ft

)
=
(

(1 + �2)−1 f
ft

)
.

Therefore,we have γ (t, s)[f] � ‖ f ‖2H−2 +‖ ft‖2L2 andLip(γ (·, ·)[f]) � ‖ f ‖2L2 +‖ ft‖2H2 ,
so we can conclude the proof exactly in the same way as in Proposition 2.2. 
�

However, we are not interested in μ, but in the Gibbs measure ρ, which formally is
given by

dρ(u) = Z−1 exp
(
− 1

4

∫
u4 − 1

2

∫
u2 − 1

2

∫
(�u)2

)
exp

(
− 1

2

∫
u2t
)
dudut

= Z−1 exp
(
− 1

4

∫
u4
)
dμ(u),

where Z is the normalisation factor.

Proposition 2.5. The function F(u) := exp
(− 1

4

∫
u4
)
belongs to L∞(μ)and‖F‖L∞(μ) ≤

1. Moreover, if FN (u) := exp
(− 1

4

∫
(P≤Nu)4

)
, then ‖FN‖L∞(μ) ≤ 1 and FN → F in

L p(μ) for every 1 ≤ p < +∞.
In particular, the probability measures ρN := Z−1N FNμ, ρ := Z−1Fμ are well

defined, absolutely continuous with respect to μ, and, for every set E, ρN (E) → ρ(E).

Proof. By Proposition 2.3,
∫
u4 < +∞ μ-a.s., so F, FN are well defined μ-a.s. More-

over, since
∫

f 4 ≥ 0 for every f , we have that F, FN ≤ 1. Again by Proposition 2.3,
P≤Nu → u in L4, so up to subsequences, FN → F μ-a.s., therefore

∫ |FN −F |pdμ →
0 by dominated convergence. 
�

3. Local and Global Well Posedness

In this section, we will show local and global well posedness in Xα for the equations
(4), (9), relying onto the probabilistic estimates of the previous section and the Da
Prato-Debussche trick.

Local well posedness will follow by a standard Banach fixed point argument. For
global well posedness, following [8]we estimate an appropriate energy for the remainder
v, and we combine this argument with an integration by parts trick from [37].
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3.1. Local well posedness.

Proposition 3.1. The equations

v(t) = S(t)v0 −
∫ t

0
S(t − t ′)

(
0

(S(t ′)u0 + t ′(ξ) + v)3

)
dt ′, (18)

vN (t) = S(t)v0 −
∫ t

0
S(t − t ′)P≤N

(
0

P≤N (S(t ′)u0 + t ′(ξ) + vN )3

)
dt ′, (19)

where v0 ∈ H2 and u0 ∈ Xα , are locally well-posed.
More precisely, there exists T (‖v0‖H2 , ‖u0‖Xα ,

∥∥ ∥∥
C([0,1];C 0)

) > 0 such that there

exists a unique solution v(t; v0,u0, ξ) ∈ CtH2, defined on a maximal interval (respec-
tively) [0, T ∗(v0,u0, ξ)), [0, T ∗N (v0,u0, ξ)), with T ∗, T ∗N > T .

Moreover, if T ∗ < +∞, then the following blowup condition holds

lim
t→T ∗

‖v(t)‖H2 = +∞. (20)

Respectively, if T ∗N < +∞, we have

lim
t→T ∗N

‖vN (t)‖H2 = +∞.

Proof. Consider the map � = �v0,u0, given respectively by

�(v) = S(t)v0 −
∫ t

0
S(t − t ′)

(
0

(S(t ′)u0 + t ′(ξ) + v)3

)
dt ′,

�(vN ) = S(t)v0 −
∫ t

0
S(t − t ′)P≤N

(
0

P≤N (S(t ′)u0 + t ′(ξ) + vN )3

)
dt ′.

We want to show that for some universal C > 0, R = 2C(1 + ‖v0‖H2),
T = T (‖v0‖H2 , ‖u0‖Xα ,

∥∥ ∥∥
C([0,1];C 0)

) > 0, this map is a contraction on

BR ⊆ C([0, T ];H2). By the uniform boundedness of S(t) and P≤N as operators
H2 → H2, we have that, if v ∈ BR ,

‖�(v(t))‖H2 � ‖v0‖H2 + T sup
0≤t≤T

∥∥∥∥
(

0
(S(t)u0 + (ξ) + v)3

)∥∥∥∥
H2

= ‖v0‖H2 + T sup
0≤t≤T

∥∥∥(S(t)u0 + (ξ) + v)3
∥∥∥
L2

� ‖v0‖H2 + T (‖u0‖3Xα +
∥∥ (ξ)

∥∥3
C([0,T ];C 0)

+ sup
0≤t≤T

‖v‖3H2).

� ‖v0‖H2 + T (‖u0‖3Xα +
∥∥ (ξ)

∥∥3
C([0,T ];C 0)

) + T R3,

(21)

where we just used the Sobolev embedding ‖v‖L∞ � ‖v‖H2 .
Therefore, if C is the implicit constant in this inequality, for T small enough (T <

R
2C(‖u0‖3Xα+‖ (ξ)‖3

C([0,1];C 0)
+R3)

∧ 1), � maps BR into itself. Proceeding similarly,

‖�(v(t))− �(w(t))‖H2

� T (‖u0‖2Xα +
∥∥ (ξ)

∥∥2
C([0,T ];C 0)

+ R2) ‖v − w‖H2 .
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Therefore, for T small enough (T ≤ 1
2C ′(‖u0‖2Xα+‖ (ξ)‖2

C([0,1];C 0)
+R2)

∧ 1, where C ′ is the

implicit constant in the inequality),

‖�(v(t))− �(w(t))‖H2 ≤ 1

2
‖v − w‖H2 ,

so � is a contraction. This implies that the equations (18), (19) have a unique solution
in BR up to time T (‖v0‖H2 , ‖u0‖Xα ,

∥∥ ∥∥
C([0,1];C 0)

).
We notice that if v solves (18), then

v(t + s)

= S(t + s)v0 +
∫ t+s

0
S(t + s − t ′)

(
0

(S(t ′)u0 + t ′(ξ) + v)3

)
dt ′

= S(t)

(
S(s)v0 +

∫ s

0
S(s − t ′)

(
0

(S(t ′)u0 + t ′(ξ) + v)3

)
dt ′

)

+
∫ t+s

s
S(t + s − t ′)

(
0

(S(t ′)u0 + t ′(ξ) + v)3

)
dt ′

= S(t)v(s) +
∫ t

0
S(t − t ′)

(
0

(S(t ′)(S(s)u0) + s+t ′(ξ) + v(s + t ′))3
)
dt ′,

(22)

and similarly, if vN solves (19), then

vN (t + s)

= S(t)v(s) +
∫ t

0
S(t − t ′)P≤N

(
0

P≤N (S(t ′)(S(s)u0) + s+t ′(ξ) + vN (s + t ′))3
)
dt ′.

(23)

Since v(s), vN (s) ∈ H2, S(s)u0 ∈ Xα and s+·(ξ) ∈ C([0, 1];C 0), we can repeat the
same contraction argument on �v(s),S(s)u0, s+· , and we obtain that (22) and (23) have a
unique solution on the interval

[0, T (‖v0‖H2 , ‖u0‖Xα ,
∥∥ ∥∥

C([s,s+1];C 0)
)].

To show uniqueness up to time T ∗ or T ∗N , suppose we have two different solutions
v1, v2. Let s := inf{t |v1(t) �= v2(t)}. Thenwe have v1(s) = v2(s), and both v1(s+t) and
v2(s + t) solve either (22) or (23), so they have to be equal up to time
T (‖v0‖H2 , ‖u0‖Xα ,

∥∥ ∥∥
C([s,s+1];C 0)

), which is in contradiction with the definition of
s.

To show the blowup condition (20), suppose by contradiction that v solves (18) and
‖v(t)‖H2 ≤ C for every t < T ∗. Taking

T = T (C, ‖u0‖Xα ,
∥∥ ∥∥

C([0,T ∗+1];C 0)
),

let s := T ∗ − T
2 . We clearly have T ∗ ≥ T , so s > 0. Then v(s + ·) solves (22), and we

can extend the solution up to time

T (‖v(s)‖H2 , ‖S(s)u0‖Xα ,
∥∥ ∥∥

C([s,s+1];C 0)
) ≥ T .

Therefore, we can extend v as solution of (18) up to time s +T = T ∗ + T
2 , contradiction.

The same argument holds for solutions of (19). 
�
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Proposition 3.2 (Continuity of the flow). Let v(u0) solve (18) in an interval [0, T ∗). Let
T < T ∗. Then there exists a neighbourhood U of u0 such that v(ũ0) is a solution of
(18) in the interval [0, T ] for every ũ0 ∈ U ⊆ Xα and lim‖ũ0−u0‖Xα→0 v(ũ0) = v(u0)
in C([0, T ];H2). The same holds for solutions of (19).

Proof. We prove the result just for solutions of (18), the case of (19) is completely
analogous. We want to prove that

τ ∗ := sup

⎧⎪⎪⎨
⎪⎪⎩
T
∣∣
∃U � u0 open such that

‖v(ũ0)‖C([0,T ];H2) ≤ ‖v(u0)‖C([0,T ];H2) + 1∀ṽ0 ∈ U,

lim
ũ0→u0

v(ũ0) = v(u0)

⎫⎪⎪⎬
⎪⎪⎭
≥ T ∗.

By definition, we have that τ ∗ ≥ 0 (with U = B 1
2
(u0) for T = 0). Suppose by

contradiction that τ ∗ < T ∗. Let

τ = 1

2
T (‖v(u0)‖C[0,τ∗+ε];H2 + 1, ‖u0‖ + 1,

∥∥ ∥∥
C([0,τ∗+ε];C 0)

),

where T (a, b, c) is defined as in the proof of Proposition 3.1. Proceeding as in the proof
of Proposition 3.1, v(ũ0)(t + [(τ ∗ − τ) ∨ 0]) will satisfy (22) with s = (τ ∗ − τ) ∨ 0.
Let U be the set corresponding to T = s in the definition of τ ∗. By definition of τ ,
proceeding as in the proof of Proposition 3.1,

(�ũ0v)(t + s)

:=S(t)v(ũ0)(s) +
∫ t

0
S(t − t ′)

(
0

(S(t ′)(S(s)ũ0) + s+t ′(ξ) + v(s + t ′))3
)
dt ′

will be a contraction (with Lipschitz constant 1
2 ) in the ball

BR := B2C(2+‖v(u0)‖C([0,τ∗+ε];H2)
) ⊆ C([s, (s + 2τ) ∧ (τ ∗ + ε)];H2)

for every ũ0 ∈ U . Moreover, these solutions will satisfy

�u0(v(ũ0))(s + t)− v(ũ0)(s + t)

= �u0(v(ũ0))(s + t)− �ũ0(v(ũ0))(s + t)

= S(t)(v(u0)(s)− v(ũ0)(s))

+
∫ t

0
S(t − t ′)

(
0

(S(t ′)(S(s)u0) + s+t ′(ξ) + v(s + t ′))3
)
dt ′

−
∫ t

0
S(t − t ′)

(
0

(S(t ′)(S(s)ũ0) + s+t ′(ξ) + v(s + t ′))3
)
dt ′,

so proceeding as in the proof of Proposition 3.1, and recalling that 2τ ≤ 1,

‖v(u0)− v(ũ0)‖C([s,τ∗+ε∧τ ];H2)

�
∥∥�u0(v(ũ0))(s + t)− v(ũ0)(s + t)

∥∥
� ‖v(u0)(s)− v(ũ0)(s)‖H2

+ (‖u0‖Xα + ‖ũ0‖Xα +
∥∥ (ξ)

∥∥
C([0,τ∗+ε];C 0)

+ R)2 ‖u0 − ũ0‖Xα .
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Therefore, for ‖u0 − ũ0‖Xα → 0, by definition of τ ∗ we have that

‖v(u0)(s)− v(ũ0)(s)‖H2 → 0

as well and so

‖v(u0)− v(ũ0)‖C([s,τ∗+ε];H2) → 0,

which implies that in a small neighbourhood V ∩U around u0,

‖v(ũ0)‖C([0,τ∗+ε∧τ ];H2) ≤ ‖v(u0)‖C([0,τ∗+ε∧τ ];H2) + 1

and

lim
ũ0→u0

v(ũ0) = v(ũ) in C([0, τ ∗ + ε ∧ τ ];H2),

which contradicts the maximality of τ ∗. 
�
Lemma 3.3. Let v0 ∈ H2, u0 ∈ Xα , and let vN be the solution of (19). Suppose that for
some K ∈ R,

sup
N

sup
0≤t≤T

‖vN‖H2 ≤ K < +∞.

Then the solution v to (18) satisfies T ∗ ≥ T , sup0≤t≤T ‖v‖H2 ≤ K, and
‖v(t)− vN (t)‖C([0,T ];H2) → 0 as N →∞.

Proof. Let

�(v)(t) = S(t)v0 −
∫ t

0
S(t − t ′)

(
0

(S(t ′)u0 + t ′(ξ) + v)3

)
dt ′.

In Proposition 3.1 we have shown that � is a contraction (with Lip(�) ≤ 1
2 ) in BR ⊂

C([0, T ];H2), where

R = C(‖v0‖H2 + 1) and T = T (‖v0‖H2 , ‖u0‖Xα ,
∥∥ ∥∥

C([0,1];C 0)
).

We have that

�(vN )(t)− vN (t)

= S(t)v0 −
∫ t

0
S(t − t ′)P≤N

(
0

(P≤N (S(t ′)u0 + t ′(ξ) + vN ))3

)
dt ′ − vN (t)

−
∫ t

0
S(t − t ′)P≤N

(
0

(S(t ′)u0 + t ′(ξ) + vN )3 − (P≤N (S(t ′)u0 + t ′(ξ) + vN ))3

)
dt ′

−
∫ t

0
S(t − t ′)P>N

(
0

(S(t ′)u0 + t ′(ξ) + vN )3

)
dt ′

= −
∫ t

0
S(t − t ′)P≤N

(
0

(S(t ′)u0 + t ′(ξ) + vN )3 − (P≤N (S(t ′)u0 + t ′(ξ) + vN ))3

)
dt ′

−
∫ t

0
S(t − t ′)P>N

(
0

(S(t ′)u0 + t ′(ξ) + vN )3

)
dt ′,
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so

‖�(vN )− vN‖C([0,T ];H2)

� T sup
0≤t≤T

∥∥∥P>N (S(t ′)u0 + (ξ) + vN )3
∥∥∥
L2

+ T sup
0≤t≤T

∥∥P>N (S(t ′)u0 + (ξ) + vN )
∥∥
L2

∥∥∥(S(t ′)u0 + (ξ) + vN )2
∥∥∥
Cε

.

By Bernstein’s inequalities, ‖P>Nw‖L2 � N−α ‖w‖Hα � N−α ‖w‖C α . Therefore, for
α < 1

2 ,

‖�(vN )− vN‖C([0,T ];H2) � T N−α(‖u0‖3Xα +
∥∥ ∥∥3

C([0,T ];C α)
+ ‖vN‖3C([0,T ];H2)

)

� T N−α(‖u0‖3Xα +
∥∥ ∥∥3

C([0,T ];C α)
+ R3),

therefore for N big enough, since � is a contraction, then

‖v − vN‖C([0,T ];H2) � T N−α(‖u0‖3Xα +
∥∥ ∥∥3

C([0,T ];C α)
+ R3) → 0 as N →∞.

Now let T := sup{τ > 0 s.t. ‖v(t)− vN (t)‖C([0,τ ];H2) → 0 as N → ∞}. We just
proved that T ≥ T (‖v0‖H2 , ‖u0‖Xα ,

∥∥ ∥∥
C([0,1];C 0)

). Suppose by contradiction that

T < T or that T = T but ‖v(t)− vN (t)‖C([0,T ];H2) �→ 0 as N → ∞. Let T :=
T (K , ‖u0‖Xα ,

∥∥ ∥∥
C([0,T+1];C 0)

). Let s := T − T
2 . Since s < T , we have that vN (s) →

v(s) in H2, so ‖v(s)‖ ≤ K . Then v solves (22) in (at least) the interval [s, s + T ] and
vN solves (23) in the same interval. Redefining

�(v) := S(t)v(s) +
∫ t

0
S(t − t ′)

(
0

(S(t ′)(S(s)u0) + s+t ′(ξ) + v(t ′))3
)
dt ′,

and proceeding as before, we have that

‖�(vN )− vN‖C([s,s+T ];H2) � T N−α(‖u0‖3Xα +
∥∥ ∥∥3

C([0,T+1];C α)
+ R3),

and since � is a contraction,

‖v − vN‖C([s,s+T ];H2) � T N−α(‖u0‖3Xα +
∥∥ ∥∥3

C([0,T+1];C α)
+ R3),

sowe have that vN → v uniformly in the interval [s, s+T ]. Joining thiswith convergence
in the interval [0, s], we have that

‖v(t)− vN (t)‖C([0,s+T ];H2) = ‖v(t)− vN (t)‖C([0,T + T
2 ];H2)

→ 0,

which is in contradiction with the definition of T . 
�
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3.2. Global well posedness. Consider the energy

E(v) := 1

2

∫
v2t +

1

2

∫
v2 +

1

2

∫
(�v)2 +

1

4

∫
v4 +

1

8

∫
(v + vt )

2.

Proposition 3.4. For every 0 < α < 1
2 , there exist c > 0 such that for every solution

vN of (19) we have

E(vN (t)) �α e−ct E(v0) +
(
1 + ‖u0‖

8
α

Xα +
∥∥ t

∥∥4
C α +

∫ t

0
e−c(t−t ′)

∥∥
t ′
∥∥ 8

α

C α dt
′).

Together with Lemma 3.3, this implies that

Corollary 3.5. Let v be a solution of (7) and let vN be a solution of (10). Then for every
0 < α < 1

2 and for every N > 1 we have that

‖vN‖2H2 �α

(
1 + ‖u0‖

8
α

Xα +
∥∥ t

∥∥4
C α +

∫ t

0
e−c(t−t ′)

∥∥
t ′
∥∥ 8

α

C α dt
′) < +∞ a.s..

Moreover, v is a.s. defined on the half-line [0,+∞), it satisfies the same estimate

‖v‖2H2 �α

(
1 + ‖u0‖

8
α

Xα +
∥∥ t

∥∥4
C α +

∫ t

0
e−c(t−t ′)

∥∥
t ′
∥∥ 8

α

C α dt
′) (24)

and for every T < +∞,

‖v − vN‖C([0,T ];H2) → 0 a.s..

Remark 3.6. Any solution vN of (10) actually belongs to C1([0, T ∗);C∞). Indeed, for
any t ≤ T < T ∗, proceeding like in (21),

‖vN (t)‖H2+s =
∥∥∥∥〈∇〉s

∫ t

0
P≤N S(t − t ′)

(
0

(P≤N (S(t)u0 + (ξ) + vN ))3

)
dt ′

∥∥∥∥
H2

� T sup
0≤t≤T

∥∥∥〈∇〉2 P≤N (S(t)u0 + (ξ) + vN )3
∥∥∥
L2

� T N 2 sup
0≤t≤T

∥∥∥(S(t)u0 + (ξ) + vN )3
∥∥∥
L2

< +∞,

where we just used that
∥∥〈∇〉s P≤N

∥∥
L2→L2 � Ns . Similarly,

‖∂tv(t)‖Hs � T Ns sup
0≤t≤T

∥∥∥(S(t)u0 + (ξ) + v)3
∥∥∥
L2

< +∞.

Proceeding in this way, it is actually possible to show that vN ∈ C∞t ([0, T ∗);C∞),
however, we will never need more regularity than C1 (in time).

In the remainder of this subsection, in order to make the notation less cumbersome,
we will omit the subscript N from vN whenever it is not relevant in the analysis.
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Lemma 3.7. If v solves (10), then

∂t E(v) = −1

4

(
3
∫

v2t +
∫

v2 +
∫

(�v)2 +
∫

v4
)

(25)

+ ∂t

(1
8

∫
v2t

)
(26)

− 3
∫

vtv
2( t (ξ) + S(t)u0) (27)

−
∫

(vt +
1

4
v)[(S(t)u0)3v( t (ξ) + S(t)u0)2 + ( t (ξ) + S(t)u0)3] (28)

− 3

4

∫
v3( t (ξ) + S(t)u0) (29)

+
∫

(vt +
1

4
v)P>N (v + t (ξ) + S(t)u0)3. (30)

Proof. By Remark 3.6, E(v) is differentiable, and moreover v satisfies

∂t

(
v

vt

)
= −

(
0 −1

1 + �2 1

)(
v

vt

)
−
(

0
P≤N (v + t (ξ) + S(t)u0)3

)
.

The formula follows by computing ∂t E , and using the equation to substitute the term
vt t . 
�
Lemma 3.8. If v solves (10), then

(30) = 0.

Proof. If v solves (10), then we can write v in the form v = P≤Nw for somew, therefore
P>Nv = 0. Therefore,

(30) =
∫

(vt +
1

4
v)P>N (v + t (ξ) + S(t)u0)3

=
∫

P≤N (vt +
1

4
v)P>N (v + t (ξ) + S(t)u0)3 = 0.


�
Lemma 3.9. If v solves (10), then for every 0 < α < 1

2 ,

(28) � E
3
4 (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α )

2 + E
1
2 (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α )3

Proof. By Hölder, we have that
∫

(vt +
1

4
v)3v( t (ξ) + S(t)u0)2 � (‖v‖L2 + ‖vt‖L2) ‖v‖L4

∥∥∥( t (ξ) + S(t)u0)2
∥∥∥
L4

,

so by noticing that ‖vt‖L2 � E
1
2 , ‖v‖L2 � E

1
2 , ‖v‖L4 � E

1
4 , and

∥∥∥( t (ξ) + S(t)u0)2
∥∥∥
L4

�
∥∥( t (ξ) + S(t)u0)

∥∥2
Cα � (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α )

2,
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we have that ∫
(vt +

1

4
v)3v( + S(t)u0)2 � E

3
4 (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α )

2.

Proceeding similarly,∫
(vt +

1

4
v)( t (ξ) + S(t)u0)3 � (‖v‖L2 + ‖vt‖L2)

∥∥∥( t (ξ) + S(t)u0)3
∥∥∥
L2

� E
1
2 (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α )3.


�
Lemma 3.10. If v solves (10), then for every 0 < α < 1

2 ,

(29) � E
3
4 (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α )

2.

Proof. By Hölder,

(29) � ‖v‖3L4

∥∥S(t)u0 + t (ξ)
∥∥
L4 � E

3
4 (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α )2.


�
Lemma 3.11. If v solves (10), then

(27) = −∂t

( ∫
v3( t (ξ) + S(t)u0)

)
+
∫

v3∂t ( t (ξ) + S(t)u0), (31)

and for every 0 < α < 1
2 ,∫

v3∂t ( t (ξ) + S(t)u0) � E1− α
8 (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α ).

Proof. (31) follows just from Leibniz rule. In order to prove the estimate, notice that
‖v‖L4 � E

1
4 , and ‖v‖H2 � E

1
2 . Therefore, by Hölder and fractional Leibniz respec-

tively, ⎧⎪⎨
⎪⎩

∥∥∥v3
∥∥∥
L

4
3

� E
3
4

∥∥∥v3∥∥∥
W 2,1

� E .

Therefore, by interpolation (Gagliardo - Nirenberg), if 1
p = (1 − α

2 ) + α
2 · 34 = 1 − α

8 ,

then
∥∥v3∥∥W 2−α,p � E (1− α

2 )+ α
2 · 34 = E1− α

8 . Hence
∫

v3∂t ( t (ξ) + S(t)u0) �
∥∥∥v3∥∥∥

W 2−α,p

∥∥∂t ( t (ξ) + S(t)u0)
∥∥
Wα−2,p′

�
∥∥∥v3∥∥∥

W 2−α,p

∥∥ t (ξ) + S(t)u0
∥∥
W α,p′

� E1− α
8 (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α ).


�
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Proof of Proposition 3.4. Let F(v) := E(v)− 1
8

∫
v2t +

∫
v3( t (ξ)+ S(t)u0). By Hölder

and Young’s inequalities,

∣∣∣
∫

v3( t (ξ) + S(t)u0)
∣∣∣ ≤ ‖v‖3L4

∥∥( t (ξ) + S(t)u0)
∥∥
L4

≤ E
3
4 (
∥∥ t (ξ)

∥∥
Cα + ‖u0‖Xα )

≤ 1

4
E +

27

4
(
∥∥ t (ξ)

∥∥
Cα + ‖u0‖Xα )4.

Therefore,

F ≤ 5

4
E +

27

4
(
∥∥ t (ξ)

∥∥
Cα + ‖u0‖Xα )4, (32)

E ≤ 2F +
27

2
(
∥∥ t (ξ)

∥∥
Cα + ‖u0‖Xα )4. (33)

Using Lemma 3.7 and (31), we have that

∂t F = −1

4

(
3
∫

v2t +
∫

v2 +
∫

(�v)2 +
∫

v4
)

+
∫

v3∂t ( t (ξ) + S(t)u0)

−
∫

(vt +
1

4
v)[3v( t (ξ) + S(t)u0)2 + ( t (ξ) + S(t)u0)3]

+
∫

(vt +
1

4
v)P>N (v + t (ξ) + S(t)u0)3.

Therefore, using Lemmas 3.11, 3.9, 3.10, 3.8, Young’s inequality and (32), for some
constant C (that can change line by line) we have

∂t F ≤ −1

2
E

+ E1− α
8 (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α )

+ E
3
4 (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α )

2 + E
1
2 (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α )

3

≤ −1

2
E +

1

4
E

+ C
[
(‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α )

8
α + (‖u0‖Xα +

∥∥ t (ξ)
∥∥
C α )8

+ (‖u0‖Xα +
∥∥ t (ξ)

∥∥
C α )

6
]

≤ −1

2
E + C

(
1 + ‖u0‖

8
α

Xα +
∥∥ t (ξ)

∥∥ 8
α

C α

)

≤ −2

5
F +

27

10
(
∥∥ t (ξ)

∥∥
C α + ‖u0‖Xα )4 + C

(
1 + ‖u0‖

8
α

Xα +
∥∥ t (ξ)

∥∥ 8
α

C α

)

≤ −2

5
F + C

(
1 + ‖u0‖

8
α

Xα +
∥∥ t (ξ)

∥∥ 8
α

C α

)
.
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Therefore, by Gronwall, if c := 2
5 , for some other constant C we have

F(v(t)) ≤ e−ct F(v0) + C
(
1 + ‖u0‖

8
α

Xα +
∫ t

0
e−c(t−t ′)

∥∥
t ′(ξ)

∥∥ 8
α

C α dt
′).

Hence, using (33) and (32),

E(v(t))

� F(v(t)) + (
∥∥ t (ξ)

∥∥
C α + ‖u0‖Xα )4

� e−ct F(v(0)) + 1 + ‖u0‖
8
α

Xα +
∫ t

0
e−c(t−t ′)

∥∥
t ′(ξ)

∥∥ 8
α

C α dt
′ +

∥∥ t (ξ)
∥∥4
C α + ‖u0‖4Xα

� e−ct (‖u0‖4Xα ) + 1 + ‖u0‖
8
α

Xα +
∥∥ t (ξ)

∥∥4
C α +

∫ t

0
e−c(t−t ′)

∥∥
t ′(ξ)

∥∥ 8
α

C α dt
′

� 1 + ‖u0‖
8
α

Xα +
∥∥ t (ξ)

∥∥4
C α +

∫ t

0
e−c(t−t ′)

∥∥
t ′(ξ)

∥∥ 8
α

C α dt
′.


�

4. Invariance

The goal of this section is showing that the flow of (4) is a stochastic flow which satisfies
the semigroup property, and proceed to prove that the measure ρ is invariant for the
flow of (4). Even if we will not use it explicitly in the following, the semigroup property
ensures that the maps on Borel functions

F !→ Pt F := E[F(�t (·; ξ))]
define a Markov semigroup, to which we can apply the usual theory for stationary
measures.

Recall that, if u0 ∈ Xα , the flow of (4) at time t with initial data u0 is defined as

�t (u0; ξ) = S(t)u0 + t (ξ) + v(u0, ξ ; t),
where v solves (7).

Proposition 4.1. Themap� satisfies the semigroupproperty, i.e. for every F measurable
and bounded,

E[F(�t+s(u0; ξ))] = E[F(�s(�t (u0; ξ1); ξ2))],
where ξ1, ξ2 are two independent copies of space-time white noise.

Proof. Given ξ1, ξ2 independent copies of the white noise, let ξ̃ be defined by

〈ξ̃ , φ〉 := 〈
1[0,t]ξ1, φ

〉
+
〈
1(t,+∞)ξ2(· − t), φ

〉

for every test function φ. It is easy to see that ξ̃ satisfies the universal property

E[|〈ξ̃ , f 〉|2] = ‖ f ‖2L2 ,
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so it is a copy of space-time white noise. Moreover, from a direct computation,

�s(�t (u0; ξ1), ξ2) = �t+s(u0; ξ̃ ),

and so for every F measurable and bounded,

E[F(�t+s(u0; ξ))] = E[F(�s(�t (u0; ξ1); ξ2))].

�

Proposition 4.2. Consider the flow given by

�N
t (u0; ξ) := S(t)u0 + t (ξ) + vN (u0; ξ), (34)

where vN solves (10). Then the measure

dρN (u) := 1

ZN
exp

(
− 1

4

∫
(P≤Nu)4

)
dμ(u) (35)

is invariant for the the process associated to the flow �N
t (·; ξ), where ZN =

∫
exp

(
−

1
4

∫
(P≤Nu)4

)
dμ(u) (so that ρN is a probability measure).

Proof. Let X be a random variable with law μ, independent from ξ . Invariance of (35)
is equivalent to showing that

E

[
F(�N

t (X; ξ)) exp
(
− 1

4

∫
(P≤Nπ1X)4

)]
= E

[
F(X) exp

(
− 1

4

∫
(P≤Nπ1X)4

)]

for every F : Xα → R continuous. Let M ≥ N . By definition of Xα , we have that
limM→∞ ‖u− PMu‖Xα = 0 for every u ∈ Xα′ , α′ > α. Therefore, by Proposition 2.2
and Proposition 3.2, one has that for every t ≥ 0,

lim
M→∞

∥∥∥�N
t (PMX; PMξ)−�N

t (X; ξ)

∥∥∥
Xα
= 0.

Therefore, by dominated convergence, it is enough to prove that

E

[
F(�N

t (PMX; PMξ)) exp
(
− 1

4

∫
(P≤Nπ1X)4

)]

= E

[
F(P≤MX) exp

(
− 1

4

∫
(P≤Nπ1X)4

)]
.

(36)

By (34), it is easy to check that Y = (Y,Yt )T := �N
t (·; PMξ) solves the SDE

dY =
(

0 1
−(1 + �2) −1

)
Y− P≤N

(
0

(P≤NY )3

)
+

(
0√

2dWM

)
,

where dWM := PMξ is a space-time white noise on the finite dimensional space given
by the image of the map PM . Therefore, if we show that the measure ρ̃ defined on the
image of PM ,

dρ̃(u) := exp
(
− 1

4

∫
(P≤Nu)4 − 1

2

∫
|u|2 − 1

2

∫
|�u|2 − 1

2

∫
|ut |2

)
dudut ,
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is invariant for the flowY, we get (36). SinceY solves an SDE with smooth coefficients,
this is true if and only if ρ̃ solves the Fokker-Planck equation

− div

[(( 0 1
−(1 + �2) −1

)(
u
ut

)
−
(
0
u3

))
ρ̃(u, ut )

]
= 0,

which can be shown through a direct computation. 
�
Corollary 4.3. The measure ρ is invariant by the flow of (4).

Proof. By Corollary 3.5, one has that for every t > 0 and every u0 ∈ Xα ,�N
t (u0; ξ) →

�t (u0; ξ) in Xα a.s. Let F : Xα → R be continuous and bounded. By dominated
convergence and Proposition 4.2, we have∫

E

[
F(�t (u0; ξ))

]
dρ(u0)

=
∫

E

[
F(�t (u0; ξ))

]
exp

(
− 1

4

∫
(u0)

4
)
dμ(u0)

= lim
N→∞

∫
E

[
F(�N

t (u0; ξ))
]
exp

(
− 1

4

∫
(P≤Nπ1u0)4

)
dμ(u0)

= lim
N→∞

∫
F(u0) exp

(
− 1

4

∫
(P≤Nπ1u0)4

)
dμ(u0)

=
∫

F(u0) exp
(
− 1

4

∫
(π1u0)4

)
dμ(u0)

=
∫

F(u0)dρ(u0).


�

5. Ergodicity

In this section, we proceed to show unique ergodicity for the flow �t (u0; ξ) of (4). We
recall that, as discussed in Sect. 1, the flow is naturally split as �t (u0; ξ) = t (ξ) +
S(t)u0 + v, where v = v(u0, ξ ; t) solves (7).

As discussed in the introduction, the flow of (4) does not satisfy the strong Feller
property, so more “standard” techniques are not applicable. Indeed, by taking a set
Et ⊂ Xα such that P({ t (ξ) ∈ Et }) = 1, we can see that

P(�t (0; ξ) ∈ Et +H2) = P( t + v(0, ξ ; t) ∈ Et +H2) = P( t ∈ Et +H2) = 1.

Taking 0 < α < α1 < 1
2 , let u0 ∈ Xα \Hα1 , whose existence is guaranteed by Lemma

1.4. We have that S(t)u0 �∈ Hα1 for every t1, and so for every λ �= 0,

P(�t (λu0; ξ) ∈ Et +H2) = P( t (ξ) + λS(t)u0 ∈ Et +H2).

By taking Et ⊆ Hα1 , (as allowed by Proposition 2.2), we have that this probability is
bounded from above by

P( t (ξ) + λS(t)u0 ∈ Hα1) = P(S(t)u0 ∈ Hα1) = 0.

1 Since S(t) in invertible inHα1 .
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Therefore, the function

�(u) := E[1{Et+H2}(�t (u, ξ))]
satisfies �(0) = 1 and �(λu0) = 0 for λ �= 0, therefore is not continuous in 0. With
the same argument, we can see that �(H2) = {1} and �(Xα \Hα1) = {0}, and since
both sets are dense in Xα , we have that � is not continuous anywhere.

5.1. Restricted strong Feller property and irreducibility of the flow. In this subsection,
we try to recover some weaker version of the strong Feller property for the flow �. The
end result will be to prove the following lemma, which will be crucial for the proof of
ergodicity:

Lemma 5.1. Let ν1, ν2 be two invariant measures (in the sense of (2)) such that ν1 ⊥ ν2.
Then there exists some V ⊂ Xα such that ν1(V ) = 1 and ν2(V +H2) = 0.

In order to prove this, it is convenient to introduce the space X α = Xα equipped
with the distance

d(u0,u1) = ‖u0 − u1‖H2 ∧ 1.

While X α is a complete metric space and a vector space, it does not satisfy many
of the usual hypotheses on ambient spaces: it is not a topological vector space, it is
disconnected, and it is not separable. Moreover, the sigma-algebra B of the Borel sets
on Xα , which is also the sigma-algebra we equip X α with, does not coincide with the
Borel sigma-algebra of X α - B is strictly smaller2. However, in this topology, we can
prove the strong Feller property.

Proposition 5.2 (Restricted strong Feller property). The process associated to the flow
�t (·; ξ) of (4) defined on X α has the strong Feller property, i.e. for every t > 0, the
function

PtG(u) := E[G(�t (u, ξ))]
is continuous as a function X α → R for every G : X α → R measurable and bounded.

We would like to point out that a phenomenon similar to the one described by this
proposition, i.e. the fact that the strong Feller property holds only with respect to a
stronger topology, has already been observed in the literature for other equations, for
instance in [17].

Before being able to prove Proposition 5.2, we need the following (completely de-
terministic) lemma, which will take the role of support theorems for ξ .

Lemma 5.3. For every t > 0, there exists a bounded operator Tt : H2 → L2([0, t]; L2)

such that for every w ∈ H2,

w =
∫ t

0
S(t − t ′)

(
0√

2(Ttw)(t ′)

)
dt ′ = t (Ttw).

2 Take u0 ∈ Xα \H2, and let E ⊆ R be not Borel. Then it is easy to see that Eu0 := {λu0|λ ∈ E} is not
inB, but it is closed in X α .
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Proof. This lemma is equivalent to proving that the operator

t : L2([0, t]; L2) → H2

has a right inverse. SinceH2 and L2([0, t]; L2) are both Hilbert spaces, we have that t
has a right inverse if and only if ∗

t has a left inverse. In Hilbert spaces, this is equivalent
to the estimate ‖w‖H2 �

∥∥ ∗
t w

∥∥
L2([0,t];L2)

. We have that

( ∗
t w)(s) = π2S(t − s)∗w,

where π2 is the projection on the second component. Therefore,

∥∥ ∗
t w

∥∥2
L2([0,t];L2)

=
∫ t

0
2
∥∥π2S(s)∗w

∥∥2
L2 .

For convenience of notation, define L :=
√

3
4 + �2, and define ‖w‖2H := ( ∫ |Lw|2) 3.

In the space H ∼= H2 given by the norm ‖w‖2H = ‖w‖2H + ‖wt‖2L2 , we have that

e
t
2 π2S(s)∗w = L sin(sL)v +

(
cos(sL)− sin(sL)

2L

)
vt .

Therefore, if λn :=
√

3
4 + |n|4, by Parseval

∥∥ ∗
t w

∥∥2
L2([0,t];L2)

∼t

∑
n∈Z3

∫ t

0

∣∣∣λn sin(sλn)ŵ(n) +
(
cos(sλn)− sin(sλn)

2λn

)
ŵt (n)

∣∣∣2ds.

Since by Parseval ‖w‖H = ‖λnŵ‖l2 and ‖wt‖L2 = ‖ŵt‖l2 , the lemma is proven if we
manage to prove that the quadratic form on R2

Bn(x, y) :=
∫ t

0

∣∣∣ sin(sλn)x +
(
cos(sλn)− sin(sλn)

2λn

)
y
∣∣∣2ds

satisfies Bn ≥ cn id, with cn ≥ ε > 0 for every n ∈ Z
3. We have that Bn > 0, since the

integrand cannot be identically 0 for (x, y) �= (0, 0) (if the integrand is 0, by evaluating
it in s = 0 we get y = 0, from which evaluating in almost any other s we get x = 0).
Therefore, it is enough to prove that cn → c > 0 as |n| → +∞. As |n| → +∞,
λn → +∞ as well, so

lim
n

∫ t

0
sin(sλn)

2 = t

2
,

lim
n

∫ t

0
cos(sλn)

2 = t

2
,

lim
n

sin(sλn)

2λn
= 0,

lim
n

∫ t

0
sin(sλn) cos(sλn) = 0.

Hence, Bn → t
2 id and so cn → t

2 > 0. 
�
3 It is easy to see that it is equivalent to the usual H2 norm

∫ |√1 + �2w|2
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Proof of Proposition 5.2. We recall the decomposition �t (u, ξ) = S(t)u + t (ξ) +
v(u, ξ ; t). For h ∈ L2

t,x , adapted to the natural filtration induced by ξ , let

E(h) := exp
(
− 1

2

∫ t

0

∥∥h(t ′)
∥∥2
L2 +

∫ t

0

〈
h(t ′), ξ

〉
L2

)
.

Let C1 � 1, E := {ξ | ∥∥ t (ξ)
∥∥
C([0,t];C α)

≤ C1}, and Tt as in Lemma 5.3. Let u0 ∈ X α

. By Corollary 3.5, as long as ξ ∈ E and C2 is big enough (depending on u0,C1), then

max(
∥∥v(u, ξ ; t ′)∥∥C([0;t];H2)

,
∥∥S(t ′)u + t ′(ξ) + v

∥∥3
C([0;t];L2)

) ≤ C2

in a neighbourhood of u0. For convenience of notation, we denote

(Ttv(u, ξ ; t))(t ′) = − 1√
2
(π1(S(t ′)u + t ′(ξ)) + v)3.

Because of (7), v satisfies v(t) = t (Ttv), and by the continuity of the flow in the
initial data, Ttv is continuous in u0. Moreover, Ttv will always be adapted to the natural
filtration induced by ξ .

By Girsanov’s theorem ([32, Theorem 1]), we have that

E[G(�t (u, ξ))]
= E[1ξ∈EcG(�t (u, ξ))] + E[1ξ∈EG(S(t)u + t (ξ) + v(u, ξ ; t))]
= E[1ξ∈EcG(�t (u, ξ))] + E[1ξ∈EG(S(t)u + t (ξ + Ttv(u, ξ ; t)))]
= E[1ξ∈EcG(�t (u, ξ))] + E[1ξ∈E+TtvG(S(t)u + t (ξ))E(Ttv(u, ξ ; t))].

Notice that Novikov condition ((2.1) in ([32, Theorem 1])) is satisfied automatically by
the estimate ‖Ttv(u, ξ ; t)‖H2 ≤ C2, which holds true on {ξ ∈ E}.4 Let v0 ∈ H2, with
‖v0‖H2 ≤ C2.

E[G(�t (u + v0, ξ))]
= E[1ξ∈EcG(�t (u + v0, ξ))]
+ E[1ξ∈EG(S(t)u + t (ξ + Tt S(t)v0 + Ttv(u + v0, ξ ; t)))]

= E[1ξ∈EcG(�t (u + v0, ξ))]
+ E[1E+Tt S(t)v0+TtvG(S(t)u + t (ξ))E(Tt S(t)v0 + Ttv)].

Up to changing v outside of E , we can assume ‖v(u, ξ ; t)‖H2 ≤ C2. Therefore, we have
(using Girsanov again)∣∣E[G(�t (u + v0, ξ))] − E[G(�t (u, ξ))]∣∣

≤ ‖G‖L∞
(
2P(ξ ∈ Ec) + E[1(E+Ttv)cE(Ttv(u, ξ ; t))]

+ E[1(E+Tt S(t)v0+Ttv)cE(Tt S(t)v0 + Ttv)]
+ E

∣∣E(Ttv(u, ξ ; t))− E(Tt S(t)v0 + Ttv((u + v0), ξ ; t))
∣∣)

= ‖G‖L∞ (4P(ξ ∈ Ec) + E
∣∣E(Tt S(t)v0 + Ttv(u + v0, ξ ; t))− E(Ttv(u), ξ ; t)∣∣).

4 To define a global adapted process that is equal to Ttv on {ξ ∈ E} and bounded by C2 everywhere, we
can for instance stop Ttv when its norm reaches C2.
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Notice that, byBurkholder–Davis–Gundy inequality, forh in the formh = Tt S(t)w+Ttv,
with both ‖v‖L2

t,x
≤ C2 and ‖w‖H2 ≤ C2,

E[exp(p 〈h, ξ 〉L2
t,x

)] ≤
∑
k≥0

pk
1

k!E[| 〈h, ξ 〉L2
t,x
|k]

≤ 1 +
∑
k≥1

pkCk k
k
2

k!
( ‖Tt S(t)w‖k

L2
t,x

+ E[‖Ttv‖kL2
t,x
])

≤ 1 + �1(‖w‖H2) ‖w‖H2 + �2(C2)E[‖Ttv‖2L2
t,x
] 12 ,

≤ �(C2).

where �1, �2, � are monotone analytic functions with infinite radius of convergence.
With the same computation, we get

E[( exp(p 〈h, ξ 〉L2
t,x

)− 1
)n] ≤ �3,n(C2)(‖w‖H2 + E[‖Ttv‖2L2

t,x
] 12 ) �n,C2 E[‖h‖2L2

t,x
] 12 .

Therefore, by continuity of the flow of (4) in the initial data, for ‖v0‖H2 � 1, we have
that

E
∣∣E(Tt S(t)v0 + Ttv(u + v0, ξ ; t))− E(Ttv(u), ξ ; t)∣∣
= E

[
exp

(
− 1

2
‖Ttv(u, ξ ; t)‖2

L2
t,x

+ 〈Ttv(u, ξ ; t), ξ〉L2
t,x

)

×
(
exp

(
− 1

2
(‖Tt S(t)v0 + Ttv(u + v0, ξ ; t)‖2L2

t,x
− ‖Ttv(u, ξ ; t)‖2

L2
t,x

)

+ 〈Tt S(t)v0 + Ttv(u + v0, ξ ; t)− Ttv(u, ξ ; t), ξ〉L2
t,x

)
− 1

)]

= E

[
exp

(
− 1

2
‖Ttv(u, ξ ; t)‖2

L2
t,x

+ 〈Ttv(u, ξ ; t), ξ〉L2
t,x

)

×
(
exp

(
− 1

2
(‖Tt S(t)v0 + Ttv(u + v0, ξ ; t)‖2L2

t,x
− ‖Ttv(u, ξ ; t)‖2

L2
t,x

)
)
− 1

)

× exp
(
〈Tt S(t)v0 + Ttv(u + v0, ξ ; t)− Ttv(u, ξ ; t), ξ〉L2

t,x

)

+ exp
(
〈Tt S(t)v0 + Ttv(u + v0, ξ ; t)− Ttv(u, ξ ; t), ξ〉L2

t,x

)
− 1

)]

≤
[
E exp

(
2 〈Ttv(u, ξ ; t), ξ〉L2

t,x

)] 1
2

×
[(

E

(
exp

(
− 1

2
(‖Tt S(t)v0 + Ttv(u + v0, ξ ; t)‖2L2

t,x
− ‖Ttv(u, ξ ; t)‖2

L2
t,x

)
)
− 1

)4) 1
4

×
(
E exp

(
4 〈Tt S(t)v0 + Ttv(u + v0, ξ ; t)− Ttv(u, ξ ; t), ξ〉L2

t,x

)) 1
4

+
(
E

(
exp

(
〈Tt S(t)v0 + Ttv(u + v0, ξ ; t)− Ttv(u, ξ ; t), ξ〉L2

t,x

)
− 1

)2) 1
2
]

�C2 [E ‖Tt S(t)v0 + Ttv(u + v0, ξ ; t)− Ttv(u, ξ ; t)‖2
L2
t,x
] 12 ,
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which is converging to 0 as ‖v0‖H2 → 0 because of dominated convergence. Therefore,

lim sup
‖v0‖H2→0

∣∣E[G(�t (u + v0, ξ))] − E[G(�t (u, ξ))]∣∣
≤ lim sup

‖v0‖H2→0
‖G‖L∞

(
4P(ξ ∈ Ec) + E

∣∣E(Tt S(t)v0 + Ttv(u + v0, ξ ; t))− E(Ttv(u), ξ ; t)∣∣)

= 4 ‖G‖L∞ P(ξ ∈ Ec).

Since the left-hand-side does not depend on C1, we can send C1 →∞, and we obtain
that

lim‖v0‖H2→0

∣∣E[G(�t (u + v0, ξ))] − E[G(�t (u, ξ))]∣∣ = 0,

i.e. E[G(�t (u, ξ))] is continuous in u in the X α topology. 
�
While the topology of X α does not allow to extend many common consequences

of the strong Feller property, we still have the following generalisation of the disjoint
supports property.

Corollary 5.4. Let ν1 ⊥ ν2 be two invariant measures. Then there exists a measurable
open set V0 ⊆ X α such that ν1(V0) = 1 and ν2(V0) = 0.

Proof. Let S1 ⊂ X α be a measurable set with ν1(S1) = 1, ν2(S1) = 0. Recall that a set
is measurable if and only if it is Borel in Xα . Consider the function

�(u) := E[1S1(�t (u, ξ))].
By the Proposition 5.2, � : X α → R is continuous. Moreover, since S1 is a Borel set
in Xα , � is also measurable. By invariance of ν j , � = 1 ν1-a.s. and � = 0 ν2-a.s. Let
V0 := {� > 1

2 }. We have that V0 ⊂ X α is open by continuity of �, it is measurable
since � is measurable,

ν1(V0) ≥ ν1({� = 1}) = 1

and

ν2(V0) ≤ ν2({� �= 0}) = 0.


�
Lemma 5.5 (Irreducibility). Suppose that ν is invariant for the flow of (4), and let E ⊂
Xα such that ν(E) = 0. Then for every w ∈ H2, ν(E + w) = 0.

Proof. Since Xα is a Polish space, by inner regularity of ν it is enough to prove the
statement when E is compact. Take C1 < +∞, and let

F := {ξ : ∥∥ ·(ξ)
∥∥
C([0,t];C α)

≤ C1}.

Proceeding in a similar way to Proposition 5.2, we have that by the compactness of
E , the boundedness of t (ξ) and Proposition 3.5, Ttv satisfies Novikov’s condition on
{ξ ∈ F} and
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0 = ν(E) =
∫

E[1E (S(t)u + t (ξ) + v])dν(u)

≥
∫

E[1F (ξ)1E (S(t)u + t (ξ) + v)]dν(u)

=
∫

E[1F+Ttv(ξ)1E (S(t)u + t (ξ))E(Ttv)]dν(u).

Since E > 0 P× ν−a.s., this implies that 1F+Ttv(ξ)1E (S(t)u + t (ξ)) = 0 P× ν−a.s.
By sending C1 →∞, by monotone convergence we obtain that 1E (S(t)u + t (ξ)) = 0
P× ν−a.s.

Let w ∈ H2. Then, proceeding similarly,∫
E[1F (ξ)1E+w(S(t)u + t (ξ) + v)]dν(u)

=
∫

E[1F (ξ)1E (S(t)u + t (ξ) + v − w)]dν(u)

=
∫

E[1F+Ttv−Ttw(ξ)1E (S(t)u + t (ξ))E(Ttv − Ttw)]dν(u) = 0,

since the integrand is 0 P× ν−a.s. By taking C1 →∞, by monotone convergence we
get

0 =
∫

E[1E+w(S(t)u + t (ξ) + v)]dν(u)

= ν(E + w).


�
Proof of Lemma 5.1. Let ν1 ⊥ ν2 be two invariant measures, let V = V0 be the set
given by Corollary 5.4, and let {wn}n∈N be a countable dense subset of H2. We have
that, by definition, ν1(V ) = 1 and ν2(V ) = 0. By Lemma 5.5, ν2(V +wn) = 0 for every
wn . Therefore, ν2(

⋃
n(V + wn)) = 0. Moreover, since V is open in X α , we have that⋃

n(V + wn) = V +H2. Therefore, ν2(V +H2) = 0. 
�

5.2. Projected flow. In this subsection, we will bootstrap ergodicity of the measure ρ

from ergodicity of the flow of the linear equation

∂t

(
u
ut

)
= −

(
0 −1

1 + �2 1

)(
u
ut

)
+

(
0√
2ξ

)
. (37)

The measure μ defined in (17) is invariant for the flow of this equation (which can be
seen as a special case of Proposition 4.2 for N = −1). Let L(t)u be the flow of (37),
i.e.

L(t)u := S(t)u + t (ξ).

Lemma 5.6. The measure μ is the only invariant measure for (37). Moreover, for every
u0 ∈ Xα , the law of L(t)u0 is weakly converging to μ as t →∞.
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Proof. Let u0,u1 ∈ Xα , and let F : Xα → R be a Lipschitz function. We have that∣∣E[F(L(t)u0)− F(L(t)u1)]
∣∣ = ∣∣E[F(S(t)u0 + t (ξ))− F(S(t)u1 + t (ξ))]∣∣
≤ E[min(Lip(F) ‖S(t)u0 − S(t)u1‖Xα , ‖F‖L∞)]
≤ min(e−

t
8 Lip(F) ‖u0 − u1‖Xα , ‖F‖L∞).

Therefore by invariance of μ, we have that∣∣∣E[F(L(t)u0)] −
∫

F(u1)dμ(u1)
∣∣∣

=
∣∣∣
∫ (

E[F(L(t)u0)− E[F(L(t)u1)]
)
dμ(u1)

∣∣∣
≤
∫

min(e−
t
8 Lip(F) ‖u0 − u1‖Xα , ‖F‖L∞)dμ(u1),

which is converging to 0 by dominated convergence. Since Lipschitz functions are dense
in the set of continuous functions, this implies that the lawof L(t)u0 isweakly converging
to μ. Similarly, if ν is another invariant measure,∣∣∣

∫
F(u0)dν(u0)−

∫
F(u1)dμ(u1)

∣∣∣
=
∣∣∣
∫∫ (

E[F(L(t)u0)− E[F(L(t)u1)]
)
dν(u0)dμ(u1)

∣∣∣
≤
∫∫

min(e−
t
8 Lip(F) ‖u0 − u1‖Xα , ‖F‖L∞)dν(u0)dμ(u1),

which is converging to 0 by dominated convergence. Since the left hand side does not
depend on t , one gets that

∫
F(u0)dν(u0) =

∫
F(u1)dμ(u1) for every F Lipschitz, so

μ = ν. 
�
Consider the (algebraic) projection π : Xα → Xα/H2. While the quotient space

does not have a sensible topology, we can define the quotient sigma-algebra,

A := {F ⊆ Xα/H2 s.t. π−1(F) ⊆ Xα Borel},
which corresponds to the finest σ -algebra that makes the map π measurable. While this
will not be relevant in the following, we can see that A is relatively rich: if E ⊂ Xα is
closed and B is the closed unit ball in H2, since B is compact in Xα , E + nB is closed
for every n, so E +H2 =⋃

n E + nB is Borel. Therefore, π(E) ∈ A.
Since S(t)mapsH2 into itself, is it easy to see that if π(u) = π(v), then π(L(t)u) =

π(L(t)v). Therefore, π(L(t)u) is a function of π(u), and we define

L(t)π(u) := π(L(t)u).

Moreover, if �t (u; ξ) = S(t)u + t (ξ) + v(u, ξ ; t) is the flow of (4), where v solves (7),
since v belongs toH2, we have that

π(�t (u; ξ)) = π(S(t)u + t + v(u, ξ ; t)) = π(S(t)u + t ) = π(L(t)u) = L(t)π(u).

Therefore, also π(�t (u; ξ)) is a function of π(u), and moreover

π(�t (u; ξ)) = L(t)π(u), (38)

so the projections of the flows for (37) and (4) coincide.
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Proposition 5.7. The measure π	(μ) is ergodic for the process associated to L(t) :
Xα/H2 → Xα/H2.

Proof. If G : Xα/H2 → R is a bounded measurable function, then by invariance of μ,∫
E[G(L(t)x)]dπ	μ(x) =

∫
E[G(L(t)π(u))]dμ(u)

=
∫

E[G(π(L(t)u))]dμ(u)

=
∫

G(π(u))dμ(u)

=
∫

G(x)dπ	μ(x),

(39)

so π	μ is invariant.
Let now G be a function such that E[G(L(t)x)] = G(x) for π	μ-a.e. x ∈ Xα/H2.

Then

E[G ◦ π(L(t)u)]E[G(π(L(t)u))] = E[G(L(t)π(u))] = G(π(u)),

so G ◦π is μ-a.s. constant by ergodicity of μ. Therefore, G is π	μ-a.s. constant, so π	μ

is ergodic. 
�
Remark 5.8. We can see μ as the law of the random variable u defined in (15). In this
way, for every E ⊂ Xα , by definition μ(E) = P({u ∈ E}). If E = E + H2, then the
event {u ∈ E} is independent from {gn, hn||n| < N } for every N , since H2 contains
every function with finite Fourier support. Therefore, E ∈ ⋂

N σ(gn, hn||n| ≥ N ). By
Kolmogorov’s 0-1 theorem, this implies that μ(E) = 0 or μ(E) = 1.

Since by definition π	μ(F) = μ(π−1(F)) and π−1(F) = π−1(F) + H2, then for
every set F ∈ A we have π	μ(F) ∈ {0, 1}, therefore trivially any invariant set has
measure 0 or 1, hence the measure π	μ is ergodic.

Proposition 5.9. Let ν be an invariant measure for the flow of (4) such that π	ν � π	μ.
Then ν = ρ.5

Proof. Suppose by contradiction that ν �= ρ. Let

ρ1 = 1

(ρ − ν)+(Xα)
(ρ − ν)+

ρ2 = 1

(ν − ρ)+(Xα)
(ν − ρ)+.

Since ρ, ν are invariant, it is easy to see that ρ1, ρ2 are both invariant probabilities.
Moreover, ρ1 ⊥ ρ2, and ρ j � ρ + ν, so π	ρ j � π	ρ + π	ν � π	μ.

Proceeding as for (39), and using (38), we have∫
E[G(L(t)x)]dπ	ρ j (x) =

∫
E[G(L(t)π(u))]dρ j (u)

=
∫

E[G(π(�t (u; ξ)))]dρ j (u)

5 Notice that since ρ � μ, then π	ρ � π	μ.
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=
∫

G(π(u))dρ j (u)

=
∫

G(x)dπ	ρ j (x),

therefore π	ρ j is invariant. Moreover, since π	ρ j � π	μ, by invariance of π	ρ j and
ergodicity of π	μ, we must have π	ρ j = π	μ. Let now V be the set given by Lemma
5.1, i.e. ρ1(V ) = 1, ρ2(V +H2) = 0. We have

0 = ρ2(V +H2) = π	ρ2(π(V +H2)) = π	μ(π(V +H2))

= π	ρ1(π(V +H2)) = ρ1(V +H2) ≥ ρ1(V ) = 1,

contradiction. 
�
Remark 5.10. Using Remark 5.8, it is possible to show π	ρ j = π	μ without using
the ergodicity of π	μ. We have indeed that ρ j � μ implies π	ρ j � π	μ. Let E be
any set with π	ρ j (E) > 0. Then by absolute continuity, π	μ(E) > 0 as well, and by
Remark 5.8, π	μ(E) = 1 ≥ π	ρ j (E). Therefore π	ρ j ≤ π	μ, and since they are both
probabilities, we must have π	ρ j = π	μ.

Corollary 5.11. The measure ρ is ergodic for the Markov process associated to the flow
�t (·, ξ) : Xα → Xα of (4).

Proof. Let ν � ρ, ν invariant. We have that π	ν � π	ρ � π	μ. Hence, by Proposition
5.9, ν = ρ. Therefore, ρ is ergodic. 
�

We conclude this section by proving unique ergodicity for the measure ρ. This will
be the only part of this paper for which we require the good long-time estimates for the
flow given by (24) (up to this point, whenever we used Corollary 3.5, we needed just the
qualitative result of global existence and time-dependent bounds on the growth of the
solution).

In particular, we will prove the following version of Birkhoff’s theorem for this
process, which in particular implies Theorem 1.1.

Proposition 5.12. Let �t (u; ξ) be the flow of (4). For every u0 ∈ Xα , we have that
ρt ⇀ ρ as t →∞, where ρt is defined by

∫
F(u)dρt (u) := 1

t

∫ t

0
E[F(�t ′(u0, ξ))]dt ′.

Proof. Consider the usual decomposition

�t (u0; ξ) = S(t)u0 + t (ξ) + v(u0, ξ ; t).
We have that the law μt of S(t)u0 + t (ξ) = L(u0) is tight in Xα , because by Lemma
5.6, μt ⇀ μ as t → ∞. Therefore, there exists compact sets Kε ⊆ Xα such that
P({S(t)u0 + t (ξ) ∈ Kε}) ≥ 1− ε. Moreover, by the estimate (24) and the compactness
of the embedding H2 ↪→ Xα , we have that also the law of v is tight; more precisely,
there exists constants cε such that P({‖v‖H2 ≤ cε}) ≥ 1− ε, uniformly in t . Therefore,

P(
{
�t (u0, ξ) ∈ Kε + {‖·‖H2 ≤ cε}

}
) ≥ 1− 2ε,

so also the law of �t (u0, ξ) is tight. By averaging in time, we obtain that also the
sequence ρt is. Hence it is enough to prove that every weak limit point ρ of ρt satisfies
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ρ = ρ. Notice that, by definition, ρ is invariant. Let tn → ∞ be a sequence such that
ρtn ⇀ ρ. Consider the random variable

Yt := (S(t)u0 + t (ξ), v(u0, ξ ; t)) ∈ Xα × Xα.

By the same argument, the law Yt is tight in Xα × Xα , with compact sets Cε of the form
Cε = Kε × {‖y‖H2 ≤ cε} such that P(Yt ∈ Cε) ≥ 1 − ε uniformly in t . Therefore,
tightness with the same associated compact sets will hold for the measure νt given by

∫
F(u1,u2)dνt (u1,u2) = 1

t

∫ t

0
E[F(Yt )]dt.

Hence, up to subsequences, νtn ⇀ ν, with ν concentrated on Xα ×H2. Define the maps
S, π1 : Xα × Xα → Xα by

S(x, y) := x + y,

π1(x, y) := x .

SinceS(Yt ) = �t (u0, ξ), thenS	ν = ρ. Moreover, since π1(Yt ) = S(t)u0 + t (ξ), we
have that (π1)	νt = μt , so (π1)	ν = μ. Recall the projection π : Xα → Xα/H2. On
Xα×H2, we have that π ◦S = π ◦π1. Therefore, since ν is concentrated on Xα×H2,

π	ρ = π	S	ν = π	(π1)	ν = π	μ.

Hence, by Proposition (5.9), we get ρ = ρ. 
�
Remark 5.13. If we could improve Proposition 5.7 to unique ergodicity for the measure
π	μ, we would automatically improve the result of Corollary 5.11 to unique ergodicity,
without using at all the long time estimates for the growth of v. Indeed, in the proof
of Proposition 5.9, the only point in which we used the condition ρ j � ρ was for
showing that π	ρ j = π	μ. If we knew that the measure π	μ was uniquely ergodic, then
π	ρ j = π	μ will follow automatically from invariance, without the need for the extra
condition ρ j � ρ.

Acknowledgements. OpenAccess funding provided by Projekt DEAL. The author would like to thank his PhD
supervisor Tadahiro Oh for suggesting this problem and his continuous help and support in the preparation
of this work. He would also like to thank J. Forlano and P. Sosoe for reading the draft of this paper, and their
many useful suggestions and corrections, and the unnamed referees, for their many suggestions on how to
improve the paper and make it more readable.
The author was supported by the European Research Council (grant no. 637995 “ProbDynDispEq”) and by
TheMaxwell Institute Graduate School in Analysis and its Applications, a Centre for Doctoral Training funded
by the UK Engineering and Physical Sciences Research Council (grant EP/L016508/01), the Scottish Funding
Council, Heriot-Watt University and the University of Edinburgh.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/


1346 L. Tolomeo

References

1. Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys.
166(1), 1–26 (1994)

2. Bourgain, J.: Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Commun. Math.
Phys. 176(2), 421–445 (1996)

3. Bourgain, J.: Invariant measures for the Gross–Piatevskii equation. J. Math. Pures Appl. 76(8), 649–702
(1997)

4. Bourgain, J., Bulut, A.: Invariant Gibbs measure evolution for the radial nonlinear wave equation on the
3d ball. J. Funct. Anal. 266(4), 2319–2340 (2014)

5. Bourgain, J., Bulut, A.: Almost sure global well posedness for the radial nonlinear Schrödinger equation
on the unit ball I: the 2D case. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(6), 1267–1288 (2014)

6. Bourgain, J., Bulut, A.: Almost sure global well posedness for the radial nonlinear Schrödinger equation
on the unit ball II: the 3D case. J. Eur. Math. Soc. (JEMS) 16(6), 1289–1325 (2014)

7. Burq, N., Thomann, L., Tzvetkov, N.: Remarks on the Gibbs measures for nonlinear dispersive equations.
Ann. Fac. Sci. Toulouse Math. (6) 27(3), 527–597 (2018)

8. Burq, N., Tzvetkov, N.: Probabilistic well-posedness for the cubic wave equation. J. Eur. Math. Soc.
(JEMS) 16(1), 1–30 (2014)

9. de Suzzoni, A.S., Cacciafesta, F.: Invariance of Gibbs measures under the flows of Hamiltonian equations
on the real line. arXiv:1512.02069

10. Da Prato, G., Debussche, A.: Two-dimensional Navier-Stokes equations driven by a space-time white
noise. J. Funct. Anal. 196(1), 180–210 (2002)

11. Da Prato, G., Debussche, A.: Strong solutions to the stochastic quantization equations. Ann. Probab.
31(4), 1900–1916 (2003)

12. Da Prato, G., Elworthy, K.D., Zabczyk, J.: Strong Feller property for stochastic semilinear equations.
Stoch. Anal. Appl. 13(1), 35–45 (1995)

13. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems. London Mathematical Society
Lecture Note Series, vol. 229, p. xii+339. Cambridge University Press, Cambridge (1996)

14. Debussche, A.: Ergodicity Results for the Stochastic Navier-Stokes equations: An Introduction. Topics
in Mathematical Fluid Mechanics Lecture Notes in Mathematics, pp. 23–108 (2013)

15. Debussche, A., Odasso, C.: Ergodicity for a weakly damped stochastic non-linear Schrödinger equation.
J. Evol. Equ. 5(3), 317–356 (2005)

16. Eckmann, J.-P., Hairer,M.: Uniqueness of the invariantmeasure for a stochastic PDE driven by degenerate
noise. Commun. Math. Phys. 219(3), 523–565 (2001)

17. Flandoli, F., Romito,M.:Markov selections for the 3D stochasticNavier-Stokes equations. Probab. Theory
Relat. Fields 140, 407–458 (2008)

18. Funaki, T., Quastel, J.: KPZ equation, its renormalization and invariant measures. Stoch. Part. Differ.
Equ. Anal. Comput. 3(2), 159–220 (2015)

19. Hairer, M.: Ergodic Properties of a Class of Non-Markovian Processes. Trends in Stochastic Analysis.
London Mathematical Society Lecture Note Series, vol. 353, pp. 65–98. Cambridge University Press,
Cambridge (2009)

20. Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic
forcing. Ann. Math. (2) 164(3), 993–1032 (2006)

21. Hairer, M., Mattingly, J.C.: A theory of hypoellipticity and unique ergodicity for semilinear stochastic
PDEs. Electron. J. Probab. 16(23), 658–738 (2011)

22. Hairer,M.,Mattingly, J.: The strongFeller property for singular stochastic PDEs.Ann. Inst.Henri Poincaré
Probab. Stat. 54(3), 1314–1340 (2018)

23. Ibrahim, E., Igor, K., Mohammed, Z.: Existence of invariant measures for the stochastic damped
Schrödinger equation. Stoch. Part. Differ. Equ. Anal. Comput. 5(3), 343–367 (2017)

24. Killip, R., Murphy, J., Visan, M.: Invariance of white noise for KdV on the line. arXiv:1904.11910
25. Kuksin, S.: On exponential convergence to a stationary mesure for nonlinear PDEs. The M. I. Viishik

Moscow PDE seminar. Translations of the AmericanMathematical Society-Series (2), vol 206. American
Mathematical Society (2002)

26. Kuksin, S., Piatnitski, A., Shirikyan, A.: A coupling approach to randomly forced randomly forced PDE’s
II. Commun. Math. Phys. 230(1), 81–85 (2002)

27. Kuksin, S., Shirikyan, A.: Stochastic dissipative PDE’s and Gibbs measures. Commun. Math. Phys. 213,
291–330 (2000)

28. Kuksin, S., Shirikyan, A.: A coupling approach to randomly forced randomly forced PDE’s I. Commun.
Math. Phys. 221, 351–366 (2001)

29. Kuksin, S., Shirikyan, A.: Coupling approach to white-forced nonlinear PDEs. J. Math. Pures Appl. 1,
567–602 (2002)

http://arxiv.org/abs/1512.02069
http://arxiv.org/abs/1904.11910


Unique Ergodicity for a Class of Stochastic Hyperbolic Equations 1347

30. Kuksin, S., Shirikyan, A.: Randomly forced CGL equation: stationary measure and the inviscid limit. J.
Phys. A 37(12), 2822–3805 (2004)

31. Kuksin, S., Vahagn, N.: Stochastic CGL equations without linear dispersion in any space dimension.
Stoch. Part. Differ. Equ. Anal. Comput. 1(3), 389–423 (2013)

32. Loges,W.: Girsanov’s theorem in Hilbert space and an application to the statistics of Hilbert space-valued
stochastic differential equations. Stoch. Process. Appl. 17(2), 243–263 (1984)

33. McKean, H.P., Vaninsky, K.L.: Statistical mechanics of nonlinear wave equations. In: Trends and Per-
spectives in Applied Mathematics, pp. 239–264 (1994)

34. McKean, H.P.: Statistical mechanics of nonlinear wave equations. III. Metric transitivity for hyperbolic
sine-Gordon. J. Stat. Phys. 79(3–4), 731–737 (1995)

35. McKean, H.P.: Statisticalmechanics of nonlinearwave equations. IV. Cubic Schrödinger. Commun.Math.
Phys. 168(3), 479–491 (1995)

36. Odasso, C.: Ergodicity for the stochastic complex Ginzburg–Landau equations. Ann. Inst. H. Poincaré
Probab. Statist. 42(4), 417–454 (2006)

37. Oh, T., Pocovnicu, O.: Probabilistic global well-posedness of the energy-critical defocusing quintic non-
linear wave equation on R

3. J. Math. Pures Appl. 105, 342–366 (2016)
38. Oh, T., Thomann, L.: Invariant Gibbs measures for the 2-d defocusing nonlinear wave equations. Ann.

Fac. Sci. Toulouse Math. (to appear)
39. Oh, T., Tzvetkov, N., Wang, Y.: Solving the 4NLS with white noise initial data. arXiv:1902.06169
40. Richards, G.: Invariance of the Gibbs measure for the periodic quartic gKdV. Ann. Inst. H. Poincaré Anal.

Non Linéaire 33(3), 699–766 (2016)
41. Röckner, M., Zhu, R., Zhu, X.: Ergodicity for the stochastic quantization problems on the 2D-torus.

Commun. Math. Phys. 352, 1061–1090 (2017)
42. Thomann, L., Tzvetkov, N.: Gibbs measure for the periodic derivative nonlinear Schrödinger equation.

Nonlinearity 23(11), 2771–2791 (2010)
43. Tolomeo, L.: Stochastic dispersive PDEs with additive space-time white noise. Ph.D. thesis, University

of Edinburgh, 2019. https://era.ed.ac.uk/handle/1842/36113
44. Tolomeo, L.: Global well-posedness of the two-dimensional stochastic nonlinear wave equation on an

unbounded domain. arXiv:1912.08667
45. Tsatsoulis, P.,Weber, H.: Spectral gap for the stochastic quantization equation on the 2-dimensional torus.

Ann. Inst. H. Poincaré Probab. Statist. 54(3), 1204–1249 (2018)
46. Zhu, R., Zhu, X.: Three-dimensional Navier-Stokes equations driven by space-time white noise. J. Differ.

Equ. 259(9), 4443–4508 (2015)

Communicated by M. Hairer

http://arxiv.org/abs/1902.06169
https://era.ed.ac.uk/handle/1842/36113
http://arxiv.org/abs/1912.08667

	Unique Ergodicity for a Class of Stochastic Hyperbolic Equations with Additive Space-Time White Noise
	Abstract:
	1 Introduction
	1.1 Structure of the argument and organisation of the paper
	1.2 Mild formulation
	1.3 Truncated system
	1.4 Notation and conversion to the general case

	2 Stochastic Objects
	2.1 Stochastic convolution
	2.2 Invariant measure

	3 Local and Global Well Posedness
	3.1 Local well posedness
	3.2 Global well posedness

	4 Invariance
	5 Ergodicity
	5.1 Restricted strong Feller property and irreducibility of the flow
	5.2 Projected flow

	Acknowledgements.
	References




