
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-020-03739-8
Commun. Math. Phys. 377, 2079–2158 (2020) Communications in

Mathematical
Physics

On the Mass of Static Metrics with Positive Cosmological
Constant: II

Stefano Borghini1, Lorenzo Mazzieri2

1 Uppsala Universitet, Lägerhyddsvägen 1, 752 37 Uppsala, Sweden E-mail: stefano.borghini@math.uu.se
2 Università degli Studi di Trento, Via Sommarive 14, 38123 Povo, TN, Italy
E-mail: lorenzo.mazzieri@unitn.it

Received: 7 August 2019 / Accepted: 12 February 2020
Published online: 7 April 2020 – © The Author(s) 2020

Abstract: This is the second of two works, in which we discuss the definition of an
appropriate notion ofmass for staticmetrics, in the casewhere the cosmological constant
is positive and the model solutions are compact. In the first part, we have established a
positive mass statement, characterising the de Sitter solution as the only static vacuum
metric with zero mass. In this second part, we prove optimal area bounds for horizons
of black hole type and of cosmological type, corresponding to Riemannian Penrose
inequalities and to cosmological area bounds à la Boucher–Gibbons–Horowitz, respec-
tively. Building on the related rigidity statements, we also deduce a uniqueness result
for the Schwarzschild–de Sitter spacetime.

1. Introduction and Statement of the Main Results

In this paper we continue the study started in [14] about the notion of virtual mass of
a static metric with positive cosmological constant. To make the exposition as much
self-contained as possible, we briefly recall the basic notions and definitions.

1.1. Setting of the problem and preliminaries. In this paper we consider static vacuum
metrics in presence of a positive cosmological constant. These are given by triples
(M, g0, u) where (M, g0) is an n-dimensional compact Riemannian manifold, n ≥ 3,
with nonempty smooth boundary ∂M , andu ∈ C∞(M) is a smooth nonnegative function
obeying to the following system

⎧
⎪⎪⎨

⎪⎪⎩

u Ric = D2u +
2�

n − 1
u g0, in M,

�u = − 2�

n − 1
u, in M,

(1.1)
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where Ric, D, and � represent the Ricci tensor, the Levi-Civita connection, and the
Laplace–Beltrami operator of the metric g0, respectively, and � > 0 is a positive real
number called cosmological constant. We will always assume that the boundary ∂M
coincides with the zero level set of u, so that, in particular, u is strictly positive in the
interior of M . For more detailed discussions on the legitimacy of these assumptions, we
refer the reader to [5,32]. In the rest of the paper the metric g0 and the function u will be
referred to as static metric and static (or gravitational) potential, respectively, whereas
the triple (M, g0, u) will be called a static solution. For a more complete justification of
this terminology as well as for some comments about the physical nature of the problem,
we refer the reader to the introduction of [14] and the references therein. Here, we only
recall that, having at hand a solution (M, g0, u) to (1.1), it is possible to recover a static
solution (X, γ ) to the vacuum Einstein field equations

Ricγ − Rγ

2
γ + �γ = 0, in R × M, (1.2)

just by setting X = R × M and letting γ be the Lorentzian metric defined on X by

γ = − u2dt ⊗ dt + g0.

To complete the setup of our problem, we now list some of the basic properties of
static solutions to system (1.1), whose proof can be found in [5, Lemma 3] as well as in
the indicated references.

• Concerning the regularity of the function u, we know from [23,58] that u is analytic.
In particular, by the results in [54], we have that its critical level sets are discrete.

• Since the manifold M is compact, ∂M = {u = 0} and u > 0 in M\∂M , the static
potential u achieves its maximum in the interior of M . To fix the notation, we set

umax = max
M

u and MAX(u) = {p ∈ M : u(p) = umax}.

Since u is analytic, one has that, according to [44] (see also [40, Theorem 6.3.3]),
the locus MAX(u) is a (possibly disconnected) stratified analytic subvariety whose
strata have dimensions between 0 and n − 1. More precisely, it holds

MAX(u) = �0 � �1 � · · · � �n−1,

where �i is a finite union of i-dimensional analytic submanifolds, for every i =
0, . . . , n − 1. This means that, given a point p ∈ �i , there exists a neighborhood
p ∈ � ⊂ M and an analytic diffeomorphism f : � → R

n such that

f (� ∩ �i ) = L ∩ f (�),

for some i-dimensional linear space L ⊂ R
n . In particular, the set �n−1 is a smooth

analytic hypersurface and it will play an important role in what follows. We will refer
to the hypersurface �n−1 as the top stratum of MAX(u).

• Taking the trace of the first equation in (1.1) and substituting the result into the
second one, it is immediate to deduce that the scalar curvature of the metric g0 is
constant, and more precisely it holds

R = 2�. (1.3)
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In particular, we observe that choosing a normalization for the cosmological constant
corresponds to fixing a scale for the metric g0. Throughout the paper we will choose
the following normalization

� = n(n − 1)

2
. (1.4)

So that in particular the manifold (M, g0) will have constant scalar curvature R ≡
n(n − 1).

• The boundary ∂M = {u = 0}, which is assumed to be a smooth submanifold
of M , is also a regular level set of u. In particular it follows from the equations
that it is a (possibly disconnected) totally geodesic hypersurface in (M, g0). The
connected components of ∂M will be referred to as horizons. In Definition 2 below,
we will distinguish between horizons of black hole type, horizons of cosmological
type and horizon of cylindrical type. In order to simplify the exposition of some of
the results in the paper, it is convenient to suppose that the manifold M is orientable.
This of course is not restrictive. In fact, if the manifold is not orientable, we can
consider its orientable double covering, and transfer the results obtained on this latter
to the original manifold by means of the projection. We recall that an orientation
of M induces an orientation on the boundary ∂M , therefore, in particular, if M is
orientable so are the horizons.

• Finally, one has that the quantity |Du| is locally constant and positive on ∂M . Notice
that the value of |Du| at a horizon depends on the choice of the normalization of u.
A more invariant quantity is the so called surface gravity of an horizon S, which can
be defined as the constant

κ(S) = |Du||S
umax

, (1.5)

where we recall that umax is the maximum of u in M . For a more precise explaination
of the physical motivations behind this definition, we refer the reader to [14].

Recasting all the normalizations that we have introduced so far, we are led to study the
following system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u Ric = D2u + n u g0, in M

�u = −n u, in M

u > 0, in M\∂M
u = 0, on ∂M

with M compact orientable and R ≡ n(n − 1).

(1.6)

This system is of course equivalent to (1.1), with some of the assumptions made more
explicit. In this work, we are interested in the classification of static triples up to isometry,
or at least up to a finite covering. Even though these notions are quite natural, we recall
their precise definitions in the setting of static triples.

Definition 1. We say that two triples (M, g0, u) and (M ′, g′
0, u

′) are isometric if there
exists a Riemannian isometry F : (M, g0) → (M ′, g′

0) such that, up to a normalization
of u, it holds u = u′ ◦ F . We say that (M, g0, u) is a covering of (M ′, g′

0, u
′) if there

exists a Riemannian covering F : (M, g0) → (M ′, g′
0) such that, up to a normalization

of u, it holds u = u′ ◦ F .
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It is worth remarking that, for the most part, the results in this paper allow for a
classification up to isometry of the solutions. However, as wewill discuss more precisely
in Remark 1, there is one example of a static triple that is not simply connected. In
order to include this special case in our statements, it will be occasionally necessary to
argue up to covering. We conclude this subsection introducing some more terminology,
whose meaning will be clarified in the next subsection by the detailed description of the
rotationally symmetric solutions to (1.6).

Definition 2. Let (M, g0, u) be a solution to problem (1.6). A connected component S
of ∂M is called an horizon. An horizon is said to be:

• of cosmological type if: κ(S) <
√
n,

• of black hole type if: κ(S) >
√
n,

• of cylindrical type if: κ(S) = √
n

where κ(S) is the surface gravity of S defined in (1.5). A connected component N of
M\MAX(u) is called region and we will denote by ∂N the collection of the horizons of
M that lie in N , namely

∂N = ∂M ∩ N .

A region N is said to be:

• an outer region if all of its horizons are of cosmological type, i.e., if

max
S∈π0(∂N )

κ(S) <
√
n,

• an inner region if it has at least one horizon of black hole type, i.e., if

max
S∈π0(∂N )

κ(S) >
√
n,

• a cylindrical region if there are no horizons of black hole type and there is at least
one horizon of cylindrical type, i.e., if

max
S∈π0(∂N )

κ(S) = √
n.

1.2. Rotationally symmetric solutions. In this subsection, we briefly recall the rota-
tionally symmetric solutions to (1.6). These have three different qualitative behaviour,
depending on the value of the mass parameter m, which is allowed to vary in the real
interval [0,mmax], where

mmax =
√

(n − 2)n−2

nn
. (1.7)

We observe that if the number mmax is defined as above, then for every 0 < m < mmax
the equation fm(r) = 0, where fm(r) = 1 − r2 − 2m r2−n , has exactly two positive
solutions 0 < r−(m) < r+(m) < 1. Moreover, in the interval [r−(m), r+(m)] the
function fm(r) assumes its maximum value at r0(m) = [(n − 2)m]1/n . For m = 0,
one has that r0(0) = r−(0) = 0 and r+(0) = 1, whereas for m = mmax, one has
r0(mmax) = r−(mmax) = r+(mmax) = [(n − 2)/n]1/2.
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de Sitter Schwarzschild–de Sitter Nariai(a) (b) (c)

Fig. 1. Rotationally symmetric solutions to problem (1.6). The red dot and red lines represent the set MAX(u)

for the three models

• de Sitter solution [27] (m = 0), Fig. 1a.

M = B(0, 1) ⊂ R
n, g0 = d|x | ⊗ d|x |

1 − |x |2 + |x |2gSn−1 ,

u =
√
1 − |x |2. (1.8)

It is not hard to check that both the metric g0 and the function u, which a priori are
well defined only in the interior of M\{0}, extend smoothly up to the boundary and
through the origin. This model solution can be seen as the limit of the following
Schwarzschild–de Sitter solutions (1.9), when the parameter m → 0+. The de Sitter
solution is such that the maximum of the potential is umax = 1, and it is achieved
at the origin. Moreover, this solution has only one connected horizon with surface
gravity

|Du| ≡ 1 on ∂M.

Hence, according to Definition 2 below, this horizon is of cosmological type.
• Schwarzschild–de Sitter solutions [38] (0 < m < mmax), Fig. 1b.

M = B(0, r+(m))\B(0, r−(m)) ⊂ R
n,

g0 = d|x | ⊗ d|x |
1 − |x |2 − 2m|x |2−n

+ |x |2gSn−1 ,

u =
√
1 − |x |2 − 2m|x |2−n . (1.9)

Here r−(m) and r+(m) are the two positive solutions to 1 − r2 −2mr2−n = 0. We
notice that, for r−(m), r+(m) to be real and positive, one needs (1.7). It is not hard
to check that both the metric g0 and the function u, which a priori are well defined
only in the interior of M , extend smoothly up to the boundary. This latter has two
connected components with different character

∂M+ = {|x | = r+(m)} and ∂M− = {|x | = r−(m)}.
In fact, it is easy to check (see formulæ (1.12) and (1.13)) that the normalized surface
gravities satisfy

κ(∂M+) = |Du||∂M+

umax
<

√
n and κ(∂M−) = |Du||∂M−

umax
>

√
n.
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Hence, according to Definition 2 below, one has that ∂M+ is of cosmological type,
whereas ∂M− is of black hole type. Furthermore, it holds

umax =
√

1 −
(

m

mmax

)2/n

, MAX(u) = {|x | = r0(m)} , (1.10)

where we recall that r0(m) = [(n − 2)m]1/n . Notice that M\MAX(u) has exactly
two connected components: M+ with boundary ∂M+ and M− with boundary ∂M−.
According to Definition 2, we have that M+ is an outer region, whereas M− is an
inner region.

• Nariai solution [46] (m = mmax), Fig. 1c.

M = [0, π ] × S
n−1, g0 = 1

n

[
dr ⊗ dr + (n − 2) gSn−1

]
,

u = sin(r). (1.11)

This model solution can be seen as the limit of the previous Schwarzschild–de Sitter
solutions, when the parameter m → m−

max, after an appropriate rescaling of the
coordinates and potential u (this was shown for n = 3 in [31] and then generalized
to all dimensions n ≥ 3 in [21], see also [17,18]). In this case, we have umax = 1
and MAX(u) = {π/2} × S

n−1. Moreover, the boundary of M has two connected
components with the same constant value of the surface gravity, namely

|Du| ≡ √
n on ∂M.

In Sect. 1.3, we are going to use the above listed solutions as reference configurations
in order to define the concept of virtual mass of a solution (M, g0, u) to (1.6). To this
aim, it is useful to introduce the functions k+ and k−, whose graphs are plotted, for
n = 3, in Fig. 2. They represent the normalized surface gravities of the model solutions
as functions of the mass parameter m.

• The outer surface gravity function

k+ : [ 0,mmax) −→ [ 1,√n ) (1.12)

is defined by

k+(0) = 1, for m = 0,

k+(m) =
√
√
√
√r2+(m)

[
1 − (

r0(m)/r+(m)
)n]2

1 − (m/mmax)
2/n , if 0 < m < mmax,

where r+(m) is the largest positive root of the polynomial Pm(r) = rn−2 − rn − 2m.
Loosely speaking, k+(m) is nothing but the constant value of |Du|/umax at {|x | =
r+(m)} for the Schwarzschild–de Sitter solution with mass parameter equal to m.
We also observe that k+ is continuous, strictly increasing and k+(m) → √

n, as
m → m−

max.
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Fig. 2. Plot of the surface gravities |Du|/umax of the two boundaries of the Schwarzschild–de Sitter so-
lution (1.9) as a function of the mass m for n = 3. The red line represents the surface gravity of the
boundary ∂M+ = {r = r+(m)}, whereas the blue line represents the surface gravity of the boundary
∂M− = {r = r−(m)}. Notice that for m = 0 we recover the constant value |Du| ≡ 1 of the surface
gravity on the (connected) cosmological horizon of the de Sitter solution (1.8). The other special situation
is when m = mmax. In this case the plot assigns to mmax = 1/(3

√
3) the unique value

√
3 achieved by the

surface gravity on both the connected components of the boundary of the Nariai solution (1.11)

• The inner surface gravity function

k− : (0,mmax ] −→ [√n,+∞ ) (1.13)

is defined by

k−(mmax) = √
n, for m = mmax,

k−(m) =
√
√
√
√r2−(m)

[
1 − (

r0(m)/r−(m)
)n]2

1 − (m/mmax)
2/n , if 0 < m < mmax,

where r−(m) is the smallest positive root of the polynomial Pm(r) = rn−2−rn−2m.
Loosely speaking, k−(m) is nothing but the constant value of |Du|/umax at {|x | =
r−(m)} for the Schwarzschild–de Sitter solution with mass parameter equal to m.
We also observe that k− is continuous, strictly decreasing and k−(m) → +∞, as
m → 0+.

This concludes the list of rotationally symmetric solutions. However, it is worth men-
tioning that in higher dimensions there is a simple generalization of the above model
triples. In fact, one can replace the spherical fibers in the Schwarzschild–de Sitter
solution (1.9) with any (n − 1)-dimensional Einstein manifold (En−1, gEn−1) with
RicEn−1 = (n − 2)gEn−1 . The resulting triple is still a solution to (1.6), and it will
be called generalized Schwarzschild–de Sitter solution

M = [r−(m), r+(m)] × En−1, g0 = dr ⊗ dr

1 − r2 − 2mr2−n
+ r2gEn−1,

u =
√
1 − r2 − 2mr2−n . (1.14)
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Analogously, one can define the generalized Nariai solution as the triple

M = [0, π ] × En−1, g0 = 1

n

[
dr ⊗ dr + (n − 2) gEn−1

]
,

u = sin(r), (1.15)

where, again, (En−1, gEn−1) is an (n−1)-dimensional EinsteinmanifoldwithRicEn−1 =
(n − 2)gEn−1 . Of course, the generalized solutions (1.14) and (1.15) are relevant only
for n ≥ 5, since for n = 3, 4 the only (n − 1)-dimensional Einstein manifold with
RicEn−1 = (n − 2)gEn−1 is the round sphere (Sn−1, gSn−1). We also mention that,
exploiting a previous work of Bohm about the existence of ’non round’ Einstein metrics
on spheres [12], Gibbons, Hartnoll and Pope in [29] were able to exhibit infinite families
of solutions to problem (1.6), in dimension 4 ≤ n ≤ 8. These solutions are such that their
boundary is connected and diffeomorphic to a (n − 1)-dimensional sphere. However,
they do not have a warped product structure. This suggests that a complete classification
of the solutions to problem (1.6) in dimension n ≥ 4 is a very hard task. On the other
hand, in dimension n = 3, the only known solutions are the de Sitter, Schwarzschild–de
Sitter and Nariai triple. The question of whether these are the only ones is still open,
although there are some partial results. For instance, in [37,41] it is proven that these
models are the only locally conformally flat static metrics, in [47] this result has been
extended to the Bach-flat case and in [26] the case of cyclic parallel Ricci tensor has been
discussed. Some pinching conditions implying the same classification are provided in
[5,9]. Moreover, some further characterizations of the de Sitter metric have been proven
in [16,22,32].

Since it will be of some importance in the forthcoming discussion, we conclude this
section recalling the definition of Schwarzschild metric with mass parameter equal to
m > 0. This is the simplest (and also the early) example of a non flat static metric in the
case where the cosmological constant in the Einstein Field Equations (1.2) is taken to
be zero.

• Schwarzschild solutions [51] (m > 0).

M = R
n\B(0, rs(m)) ⊂ R

n, g0 = d|x | ⊗ d|x |
1 − 2m|x |2−n

+ |x |2gSn−1 ,

u =
√
1 − 2m|x |2−n . (1.16)

Here, the so called Schwarzschild radius rs(m) = (2m)1/(n−2) is the only positive
solution to 1 − 2mr2−n = 0. It is not hard to check that both the metric g0 and the
function u, which a priori are well defined only in the interior of M , extend smoothly
up to the boundary.

1.3. The virtualmass. Asalreadydiscussed in [14], in the case of a positive cosmological
constant there does not seem to be a general consensus about what the right notion of
mass should be. For some possible approaches, as well as for more insights on the
problems posed by the case � > 0, we refer the reader to the following references
[1,6–8,24,36,45,52,53,56]. In our previous work [14], we have introduced a different
point of view, leading to a new notion of mass, that we now recall.

Definition 3 (VirtualMass). Let (M, g0, u)be a solution to (1.6) and let N be a connected
component of M\MAX(u). The virtual mass of N is denoted by μ(N , g0, u) and it is
defined in the following way:
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(i) If N is an outer region, then we set

μ(N , g0, u) = k−1
+

(

max
∂N

|Du|
umax

)

, (1.17)

where k+ is the outer surface gravity function defined in (1.12).
(ii) If N is an inner region, then we set

μ(N , g0, u) = k−1−
(

max
∂N

|Du|
umax

)

, (1.18)

where k− is the inner surface gravity function defined in (1.13).

In other words, the virtual mass of a connected component N of M\MAX(u) can be
thought as the mass (parameter) that on a model solution would be responsible for (the
maximum value of) the surface gravity measured at ∂N . In this sense the rotationally
symmetric solutions described in Sect. 1.2 are playing here the role of reference configu-
rations. As it is easy to check, if (M, g0, u) is either the de Sitter, or the Schwarzschild–de
Sitter, or the Nariai solution, then the virtual mass coincides with the explicit mass pa-
rameter m that appears in Sect. 1.2.

It is important to notice that it is not a priori guaranteed that the above definition is
well posed. In fact, it could happen that the boundary of a connected component is empty
or that the value of the normalized surface gravity does not lie in the range of either k+
or k−. The first possibility can be easily excluded arguing as in the No Island Lemma
(see [14, Lemma 5.1]), whereas to exclude the second possibility we need to invoke [14,
Theorem 2.2]. This result tells us that, on any region N of a solution (M, g0, u), it holds

max
S∈π0(∂N )

κ(S) = max
∂N

|Du|
umax

≥ 1,

and the equality is fulfilled only if (M, g0, u) is isometric to the de Sitter solution (1.8).
As an immediate consequencewe obtain the following PositiveMass Statement for static
metrics with positive cosmological constant.

Theorem 1.1. (Positive Mass Statement for Static Metrics with Positive Cosmological
Constant) Let (M, g0, u) be a solution to problem (1.6). Then, every connected com-
ponent of M\MAX(u) has well–defined and thus nonnegative virtual mass. Moreover,
as soon as the virtual mass of some connected component vanishes, the entire solution
(M, g0, u) is isometric to the de Sitter solution (1.8).

We refer the reader to [14] for a more detailed discussion about the above statement as
well as for a comparison with the classical Positive Mass Theorem proved by Schoen
and Yau [49,50] (and with a different proof by Witten [55]) for the ADM-mass of
asymptotically flat manifolds with nonnegative scalar curvature.

1.4. Area bounds. An important feature of the above positive mass statement is that it
gives a complete characterisation of the zero mass solutions. Another very interesting
and nowadays classical characterisation of the de Sitter solution is given by the Boucher–
Gibbons–Horowitz area bound [16], which in our framework can be phrased as follows
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Theorem 1.2 (Boucher–Gibbons–Horowitz Area Bound). Let (M3, g0, u) be a
3-dimensional solution to problem (1.6) with connected boundary ∂M. Then, the fol-
lowing inequality holds

|∂M | ≤ 4π. (1.19)

Moreover, the equality is fulfilled if and only if (M3, g0, u) is isometric to the de Sitter
solution (1.8).

Having at handTheorems 1.1 and 1.2, it is natural to ask if in the casewhere the virtual
mass is strictly positive and the boundary of M is allowed to have several connected
components, it is possible to provide a refined version of both statements, whose rigidity
case characterises now theSchwarzschild–deSitter solutions described in (1.9) instead of
the de Sitter solution. In accomplishing this program, we are inspired by the well known
relation between the Positive Mass Theorem and the Riemannian Penrose Inequality as
they are stated in the classical setting, where M3 is an asymptotically flat Riemannian
manifold with nonnegative scalar curvature. To be more concrete, we report a simplified
version of these statements in the case where the 3-manifold has one end and at most
one compact horizon.

Theorem 1.3. Let (M3, g0)be a3-dimensional complete asymptotically flatRiemannian
manifold with nonnegative scalar curvature and ADM-mass mADM (M3, g0) equal to
m ∈ R. Then, the following statements hold.

(i) Positive Mass Theorem (Schoen-Yau [49,50], Witten [55]). The number m is always
nonnegative

0 ≤ m.

Moreover, the equality is fulfilled if and only if (M3, g0, u) is isometric to the flat
Euclidean space with u ≡ 1.

(ii) Riemannian Penrose Inequality (Huisken-Ilmanen [33], Bray [19]). Assume that the
boundary of M is non empty andgiven by a connected, smooth and compact outermost
minimal surface. Then, the following inequality holds

√ |∂M |
16π

≤ m. (1.20)

Moreover, the equality is fulfilled if and only if (M3, g0, u) is isometric to the
Schwarzschild solution (1.8) with mass parameter equal to m.

For the precise definitions of asymptotically flat manifold and ADM-mass, we refer
the reader to the above cited references. We also observe that in the original statement of
the Positive Mass Theorem, the 3-manifold (M3, g) is a priori allowed to have a finite
number of ends and that the rigidity statement holds in a stronger way, meaning that as
soon as the mass of one end is vanishing, then the whole manifold is isometric to the
Euclidean space. Concerning the Riemannian Penrose Inequality, it is worth pointing
out that in the original statement by Huisken and Ilmanen [33, Main Theorem], the
boundary of M is a priori allowed to have a finite number of connected component,
namely ∂M = S0 � S1 � . . . � SK , and the authors are able to prove the following
inequality

√
max0≤ j≤K |S j |

16π
≤ m,
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where m = mADM (M3, g). With a different proof, Bray is able to recover in [19,
Theorem 1] a stronger version of the above inequality, namely

√ |S0| + · · · + |SK |
16π

≤ m.

Of course, when ∂M is connected, the two inequalities are the same and they re-
duce to (1.20). To introduce our first main result, we focus on this simple version of
the Riemannian Penrose Inequality and we observe that, using the definition of the
Schwarzschild radius given below formula (1.16), it can be rephrased as follows

|∂M | ≤ 16πm2 = 4π(2m)2 = 4πr20 (m),

where m = mADM (M3, g). Having these considerations in mind, we can now state one
of the main results of the present paper.

Theorem 1.4 (Refined Area Bounds). Let (M3, g0, u) be a 3-dimensional solution to
problem (1.6) and let N be a connected component of M3\MAX(u) with virtual mass

m = μ(N , g0, u) ∈
(
0, 1/(3

√
3)
]
.

Let S ⊆ ∂N be the horizon with the largest surface gravity in N, namely

κ(S) =

⎧
⎪⎨

⎪⎩

k+(m) if N is outer,

k−(m) if N is inner,√
n if N is cylindrical.

Then, S is diffeomorphic to the sphere S2. Moreover, the following inequalities hold:

(i) Cosmological Area Bound If N is an outer region, then

|S| ≤ 4πr2+(m). (1.21)

Moreover, if the equality is fulfilled and S = ∂N, then the triple (M3, g0, u) is
isometric to the Schwarzschild–de Sitter solution (1.9) with mass m.

(ii) Riemannian Penrose Inequality If N is an inner region, then

|S| ≤ 4πr2−(m). (1.22)

Moreover, if the equality is fulfilled and S = ∂N, then the triple (M3, g0, u) is
isometric to the Schwarzschild–de Sitter solution (1.9) with mass m.

(iii) Cylindrical Area Bound If N is a cylindrical region, then

|S| ≤ 4π

3
, (1.23)

Moreover, if the equality is fulfilled and S = ∂N, then the triple (M3, g0, u) is covered
by the Nariai solution (1.11).
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Remark 1. Notice that the rigidity statements are only in force when ∂N is connected.
Concerning the rigidity statement in point (iii) of the above theorem,weobserve that there
is only one orientable triple which is not isometric to the 3-dimensional Nariai solution
but that is covered by it, which is the quotient of the Nariai triple by the involution

ι : [0, π ] × S
2 → [0, π ] × S

2, ι(t, x) = (π − t,−x),

where we have denoted by −x the antipodal point of x on S
2. The existence of this

solution was pointed out in [5, Section 7].

About the previous statement some comments are in order. First, the fact that S is nec-
essarily diffeomorphic to a sphere is not a new result. In fact, a stronger result is already
known from [5, Theorem B], where it is shown that every connected component of the
boundary of a static solution to problem (1.6) is diffeomorphic to a sphere. Our approach
allows to prove the same topological result, but only in the case where the horizons of
(M3, g0, u) are somehow separated from each other by the locus MAX(u). Concerning
the area bounds, we observe that, conceptually speaking, the inequality (1.22) should be
compared with the Boucher–Gibbons–Horowitz Area Bound (1.19), since it involves the
cosmological horizons of the solution, whereas the inequality (1.22) should be compared
with (1.20) since it is a statement about horizons of black hole type.

An analogous statement holds in higher dimension, giving the natural analog of the
inequality

|∂M | ≤
∫

∂M

R∂M

(n − 1)(n − 2)
dσ, (1.24)

which has been obtained by Chrus̀ciel in [22, Section 6] in the case of connected bound-
ary, extending the Boucher–Gibbons–Horowitz method to every dimension n ≥ 3. Of
course, in the above inequality R∂M stands for the scalar curvature of the boundary.
Moreover, the equality is fulfilled if and only if (M, g0, u) coincides with the de Sitter
solution.

Theorem 1.5. Let (M, g0, u) be a solution to problem (1.6) of dimension n ≥ 3, and let
N be a connected component of M\MAX(u)with connected smooth compact boundary
∂N. We then let m ∈ (0,mmax] be the virtual mass of N , namely

m = μ(N , g0, u).

Let S ⊆ ∂N be the horizon with the largest surface gravity in N, namely

κ(S) =

⎧
⎪⎨

⎪⎩

k+(m) if N is outer,

k−(m) if N is inner,√
n if N is cylindrical.

Then, the following inequalities hold:

(i) If N is an outer region, then

|S| ≤
(∫

S

RS

(n − 1)(n − 2)
dσ

)

r2+(m). (1.25)

Moreover, if the equality is fulfilled and S = ∂N, then (M, g0, u) is isometric to
the Schwarzschild–de Sitter solution (1.9) with mass m, for n = 3, 4. Whereas for
n ≥ 5 it is isometric to some generalized Schwarzschild–de Sitter solution (1.14)
with Einstein fiber.
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(ii) If N is an inner region, then

|S| ≤
(∫

S

RS

(n − 1)(n − 2)
dσ

)

r2−(m). (1.26)

Moreover, if the equality is fulfilled and S = ∂N, then (M, g0, u) is isometric to
the Schwarzschild–de Sitter solution (1.9) with mass m, for n = 3, 4. Whereas for
n ≥ 5 it is isometric to some generalized Schwarzschild–de Sitter solution (1.14)
with Einstein fiber.

(iii) If N is a cylindrical region, then

|S| ≤
∫

S

RS

n(n − 1)
dσ. (1.27)

Moreover, if the equality is fulfilled and S = ∂N, then (M, g0, u) is covered by
the Nariai solution (1.11), for n = 3, 4. Whereas for n ≥ 5 it is covered by some
generalized Nariai solution (1.15) with Einstein fiber.

The proof of the above statement will be given in Sect. 5, except for the rigidity state-
ments, whose proof will be discussed in Sect. 6, and for the cylindrical case, that will
be discussed in Sect. 8. It is clear that Theorem 1.4 follows directly from Theorem 1.5,
applying the Gauss-Bonnet formula. We also mention that the rigidity statement for
Theorem 1.5 will be deduced by some more general statements (see Corollaries 6.1, 6.5
and 8.7) which correspond to some balancing formulas, in the case where the boundary
of N is allowed to have several connected components. The inequalities proven in The-
orem 1.5 share some analogies with the ones developed in [28,57], see in particular [57,
Theorem B].

Our approach will also allow us to prove some area lower bounds on the horizons.
These lower bounds do not require the connectedness of the boundary of our region N
and depend on the area of the hypersurface �N ⊆ MAX(u) that separates N from the
rest of the manifold.

Theorem 1.6 (Area Lower Bound). Let (M, g0, u) be a solution to problem (1.6) of
dimension n ≥ 3, and let N be a connected component of M\MAX(u) with connected
smooth compact boundary ∂N. We let m ∈ (0,mmax] be the virtual mass of N , namely

m = μ(N , g0, u).

Let �N = N ∩ M\N be the possibly stratified hypersurface separating N from the rest
of the manifold M. Then, the following inequalities hold:

(i) If N is an outer region, then

|∂N | ≥
[
r+(m)

r0(m)

]n−1

|�N |, (1.28)

and the equality is fulfilled if and only if (M, g0, u) is isometric to the Schwarzschild–
de Sitter solution (1.9) with mass m, for n = 3, 4. Whereas for n ≥ 5 it is isometric
to some generalized Schwarzschild–de Sitter solution (1.14) with Einstein fiber.
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(ii) If N is an inner region, then

|∂N | ≥
[
r−(m)

r0(m)

]n−1

|�N |, (1.29)

and the equality is fulfilled if and only if (M, g0, u) is isometric to the Schwarzschild–
de Sitter solution (1.9) with mass m, for n = 3, 4. Whereas for n ≥ 5 it is isometric
to some generalized Schwarzschild–de Sitter solution (1.14) with Einstein fiber.

(iii) If N is a cylindrical region, then

|∂N | ≥ |�N |, (1.30)

and the equality is fulfilled if and only if (M, g0, u) is covered by the Nariai solu-
tion (1.11), for n = 3, 4. Whereas for n ≥ 5 it is covered by some generalized Nariai
solution (1.15) with Einstein fiber.

In the notations of Theorem 1.6, if we also assume that ∂N is connected we can
combine the lower and upper bounds proved in Theorems 1.4 and 1.6 to obtain an area
lower bound for the hypersurface �N . The general statement of this result is given in
Theorem 5.3. Here we report the special 3-dimensional case, in which the bound turns
out to be particularly nice.

Corollary 1.7. Let (M, g0, u) be a 3-dimensional solution to problem (1.6), and let N
be a connected component of M\MAX(u) with connected smooth compact boundary
∂N. We let m ∈ (0,mmax] be the virtual mass of N , namely

m = μ(N , g0, u).

Let �N = N ∩ M\N be the possibly stratified hypersurface separating N from the rest
of the manifold M. Then it holds

|�N | ≤ 4π r20 (m),

and the equality is fulfilled if andonly if (M, g0, u) is either isometric to theSchwarzschild–
de Sitter solution (1.9) with mass 0 < m < mmax or (M, g0, u) is covered by the Nariai
solution (1.11).

Weconclude this subsectionwith a comparison of our Theorem1.4with the following
recent result due to Ambrozio.

Theorem 1.8 ([5, Theorem C]). Let (M, g0, u) be a 3-dimensional solution to prob-
lem (1.6), let S0, . . . , Sp be the connected components of ∂M and let κ0, . . . , κp be their
surface gravities. If (M, g0, u) is not isometric to the de Sitter solution (1.16), then

∑p
i=0 κi |Si |
∑p

i=0 κi
≤ 4π

3
. (1.31)

Moreover, if the equality holds, then (M, g0, u) is isometric to the Nariai solution (1.11).
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Of course Ambrozio’s result is slightly different from ours under certain aspects, as
Theorem 1.8 does not require any assumption on MAX(u) and has a global nature,
whereas our Theorem1.4 uses the locusMAX(u) to decompose themanifold into several
connected components and provides on each of these components a (local) weighted
inequality in the spirit of the above (1.31). Let us compare the two statements in a
couple of special cases. First of all, if our solution (M, g0, u) has a single horizon and
it is not isometric to the de Sitter solution, then Theorem 1.8 gives

|∂M | ≤ 4π

3
,

which is a neat improvement of the classical Boucher–Gibbons–Horowitz inequal-
ity (1.19). In this respect, our Theorem 1.4 gives the same inequality if the horizon
is of cylindrical type, a stronger inequality when the horizon is of black hole type and a
worse result if the horizon is of cosmological type.

Let us now compare the two statements in the case upon which our result is modelled,
that is, suppose that our solution (M, g0, u) is such that

M\MAX(u) = M+ � M−,

where M+ is an outer region with connected boundary ∂M+ and M− is an inner region
with connected boundary ∂M−. If we denote by

m+ = μ(M+, g0, u), m− = μ(M−, g0, u),

the virtual masses of M+ and M−, then inequality (1.31) in Theorem 1.8 writes as

k+(m+) |∂M+| + k−(m−) |∂M−| ≤ 4π

3

[
k+(m+) + k−(m−)

]
. (1.32)

On the other hand, inequalities (1.22) and (1.22) in Theorem 1.4 give

k+(m+) |∂M+| + k−(m−) |∂M−|
≤ 4π

[
k+(m+)r

2
+(m+) + k−(m−)r2−(m−)

]
. (1.33)

The two inequalities (1.32), (1.33) are compared in Fig. 3, where we have highlighted
the values of m+,m− for which our formula (1.33) improves (1.32). This comparison
suggests that our result is particularly effective when the set MAX(u) separates the
manifold into an outer region and an inner one, and motivates in turn our definition of a
2-sided solution to problem (1.6) (see Definition 4 below), providing us with the natural
setting for the uniqueness statement described in the next subsection.

1.5. Uniqueness results. In this subsection, we discuss a characterization of both the
Schwarzschild–de Sitter and the Nariai solution, which is in some ways reminiscent of
the well known Black Hole Uniqueness Theorem proved in different ways by Israel [35],
Zum Hagen et al. [59], Robinson [48], Bunting and Masood-ul Alam [20] and recently
by the second author in collaboration with Agostiniani [3]. This classical result states
that when the cosmological constant is zero, the only asymptotically flat static solutions
with nonempty boundary are the Schwarzschild triples described in (1.16). In order to
clarify what should be expected to hold in the case of positive cosmological constant, let
us briefly comment the asymptotic flatness assumption. Without discussing the physical
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Fig. 3. In this plot we have numerically analyzed the relation between formulæ (1.32) and (1.33), in function of
the values ofm+ (on the x-axis) and ofm− (on the y-axis). The red line represents the points wherem+ = m−,
so that the Schwarzschild–de Sitter solutions lie on this line. The coloured region is the one where (1.33) is
stronger than (1.32). The darker the colour, the better our formula is. To give also a quantitative idea, the black
region at the bottom is where the difference between the right hand side of (1.32) and the right hand side
of (1.33) is greater than 3

meaning of this assumption nor reporting its precise definition—which on the other
hand can be easily found in the literature—we underline the fact that it amounts to both
a topological and a geometric requirement. More precisely, each end of the manifold is
a priori forced to be diffeomorphic to [ 0,+∞)×S

n−1 and the metric has to converge to
the flat one at a suitable rate, so that, up to a convenient rescaling, the boundary at infinity
of the end is isometric to a round sphere. Another important feature of the asymptotic
flatness assumption is that the static potential approaches its maximum value at infinity.

From this last property, it seems natural to guess that the boundary at infinity of an
asymptotically flat static solution with � = 0 should correspond in our framework to
the set MAX(u). The same analogy is also proposed in [18, Appendix], where it is used
to justify the physical meaning of the normalization (1.5) for the surface gravity. Before
presenting the precise statement of this uniqueness result, it is important to underline
another feature of the set MAX(u), that is peculiar of our setting. In fact, in sharp
contrast with the � = 0 case, we observe that MAX(u) may in principle disconnect our
manifold. On the other hand, this situation is not only possible but even natural, since it
is realized in the model examples given by the Schwarzschild–de Sitter solutions (1.9)
and the Nariai solutions (1.11). Here, the set MAX(u) separates the manifold into two
regions, one of which is either outer or cylindrical, while the other is either inner or
cylindrical. Having this in mind, it is natural to introduce the notion of a 2-sided solution
to problem (1.6).

Definition 4 (2-Sided Solution). A triple (M, g0, u) is said to be a 2-sided solution to
problem (1.6) if

M\MAX(u) = M+ � M−,

where M+ is either an outer or a cylindrical region, that is

max
S∈π0(∂M+)

κ(S) = max
∂M+

|Du|
umax

≤ √
n,
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Fig. 4. The drawing represents the possible structure of a generic 2-sided solution to problem (1.6). The red
line represents the set MAX(u), with the separating stratified hypersurface� put in evidence. The blue colour
of a boundary component indicates a black hole horizon, whereas the green colour indicates a cosmological
horizon. Cylindrical horizons are not considered in this figure since they are non generic

and M− is either an inner or a cylindrical region, that is

max
S∈π0(∂M−)

κ(S) = max
∂M−

|Du|
umax

≥ √
n.

The generic shape of a 2-sided solution is shown in Fig. 4. We recall that, by a
classical theorem of Łojasiewicz [44], the set MAX(u) is given a priori by a possibly
disconnected stratified analytic subvariety of dimensions ranging from 0 to (n − 1). In
particular, it follows that a 2-sided solution contains a stratified (possibly disconnected)
hypersurface � ⊆ MAX(u) which separates M+ and M−, that is, M+ ∩ M− = �. This
hypersurface will play an important role in our analysis, as it represents the junction
between the regions M+ and M−. We are now ready to state the main result of this
subsection.

A careful analysis along �, combined with the area upper and lower bounds for the
horizons stated in Sect. 1.4, will lead to the proof of the following 3-dimensional Black
Hole Uniqueness Theorem:

Theorem 1.9. Let (M, g0, u) be a 3-dimensional 2-sided solution to problem (1.6), and
let � ⊆ MAX(u) be the stratified hypersurface separating M+ and M−. Let also

m+ = μ(M+, g0, u), and m− = μ(M−, g0, u)

be the virtual masses of M+ and M−, respectively. Suppose that the following conditions
hold

• mass compatibility m+ = m = m− for some 0 < m ≤ mmax,
• connected cosmological horizon ∂M+ is connected.

Then the triple (M, g0, u) is isometric to either the Schwarzschild–de Sitter solution (1.9)
with mass 0 < m < mmax or to the Nariai solution (1.11) with mass m = mmax.
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The hypothesis of connected cosmological horizon ismotivated by the beautiful result
in [5, Theorem B], where it is proven that any static solution (M, g0, u) admits at most
one unstable horizon. From a physical perspective, one may expect that the unstable
horizons should be the ones of cosmological type, whereas the horizons of black hole
type should be stable. This is what happens for the model solutions, as one can easily
check. This observation leads us to formulate the following conjecture, which, if proven
to be true, would allow to remove the assumption of connected cosmological horizon
from Theorem 1.9.

Conjecture. An horizon of cosmological type is necessarily unstable. In particular,
every static solution to problem (1.6) has at most one horizon of cosmological type.

1.6. Summary. In the remainder of the paper we will prove the results stated in this
introduction. We will first focus on outer and inner regions, since the analysis of these
two cases is similar. Our study is based on the so called cylindrical ansatz, introduced in
[2–4] and [15], which consists is finding an appropriate conformal change of the original
metric g0 in terms of the static potential u.

After some preliminaries (Sect. 2) in Sect. 3 we will describe this method, we will set
up the formalism and we will provide some preliminary lemmata and computations that
will be used throughout the paper. Building on this, we will prove in Sect. 4 a couple of
integral identities in the conformal setting.

In Sect. 5 wewill proceed to the proof of the inequalities in Theorems 1.4, 1.5 and 1.6,
for both the cases of outer and inner regions. In Sect. 6 we will translate the integral
identities proven in Sect. 4 in terms of the original metric g0. As a consequence, we will
prove the rigidity statements for Theorems 1.4, 1.5, together with some weighted area
inequalities for the horizons.

In Sect. 7 we will show that our analysis can be improved under the assumption
that the solution is 2-sided, and this will lead us to the proof of Theorem 1.9 stated in
Sect. 1.5, in the case where m+ < mmax.

Finally, in Sect. 8 we will focus on the cylindrical regions. The analysis of the cylin-
drical case is slightly different, as our model solution will be the Nariai triple instead of
the Schwarzschild–de Sitter triple, however the ideas behind our analysis are completely
analogous. In this section we will establish the results stated in Sect. 1.4 for cylindrical
regions andwewill complete the proof of Theorem 1.9 by studying the casem+ = mmax.

2. Analytic Preliminaries

This section is devoted to the setup of the cylindrical ansatz, which will be the starting
point of the proofs of ourmain results.Wewill work on a single region N of ourmanifold
M , and we will always suppose that N is not cylindrical, that is

max
S∈π0(∂N )

κ(S) �= √
n.

The case of equality requires a different analysis, andwill be studied separately in Sect. 8.
The cylindrical ansatz is inspired by the analogous technique used in [2–4], and

consists in an appropriate conformal change of the original triple. The idea comes from
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the observation that the Schwarzschild–de Sitter metric can be made cylindrical via a
division by |x |2. In fact, the metric

1

|x |2
(

d|x | ⊗ d|x |
1 − |x |2 − 2m|x |2−n

+ |x |2gSn−1

)

= d|x | ⊗ d|x |
|x |2(1 − |x |2 − 2m|x |2−n)

+ gSn−1,

after a rescaling of the coordinate |x |, is just the standard metric of the cylinder R ×
S
n−1. We would like to perform a similar change of coordinates on a general solution

(M, g0, u).
To this end, in Sect. 2.1 we are going to define on a region N of a general triple

(M, g0, u) a pseudo-radial function � : N → R. The function � will be constructed
starting from the static potential u, and in the case where u is as in the Schwarzschild–de
Sitter solution (1.9), it will simply coincide with |x |.

Section 2.2 is devoted to the proof of the relevant properties of the pseudo-radial
function. Most of the results in this subsection are quite technical, and the reader is
advised to simply ignore this part of the work and to come back only when needed.
However, there is one result that deserves to be mentioned. In Proposition 2.3 we will
prove that static potentials satisfy a reverse Łojasiewicz inequality. The proof does not
depend so deeply on the equations in (1.6), and can thus be adapted to a much larger
family of functions, see [13, Theorem 2.2]. For the purposes of this work, the reverse
Łojasiewicz inequality will be crucial in the Minimum Principle argument that leads
to Proposition 3.3. It is interesting to notice that Proposition 3.3, in turn, will allow to
improve the reverseŁojasiewicz inequality, as explained inRemark 5.However, since the
proof of Proposition 3.3 exploits the equations in (1.6), we do not know if the improved
Łojasiewicz inequality still holds outside the realm of static potentials.

2.1. The pseudo-radial function. Let (M, g0, u) be a solution to problem (1.6), and
let N be a connected component of M\MAX(u). As already discussed above, in this
subsection we focus on inner and outer region. In other words, the quantity

max
S∈π0(∂N )

κ(S) = max
∂N

|Du|
umax

will always be supposed to be different from
√
n. In particular, the virtual mass

m = μ(N , g0, u),

is strictly less than mmax. The special case m = mmax will be discussed later, in Sect. 8.
The aim of this subsection is that of defining a pseudo-radial function, that is, a

function that mimic the behavior of the radial coordinate |x | in the Schwarzschild–de
Sitter solution. First of all, we recall that our problem is invariant under a normalization
of u, hence we first rescale u in such a way that its maximum is the same as themaximum
of the Schwarzschild–de Sitter solution with mass m.

Notation 1. We will make use of the notations mmax, umax introduced in (1.7), (1.10).
We recall their definitions here

mmax =
√

(n − 2)n−2

nn
, umax(m) =

√

1 −
(

m

mmax

)2/n

.

We emphasize that umax = umax(m) is a function of the virtual mass m of N. We will
explicitate that dependence only when it will be significative.
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Normalization 1. We normalize u in such a way that its maximum is umax(m), where m
is the virtual mass of N and umax(m) is defined as in Notation 1.

As usual, we let r+(m) > r−(m) ≥ 0 be the two positive roots of the polynomial
Pm(x) = xn−2 − xn − 2m, we set r0(m) = [(n − 2)m]1/n and we define the function

Fm : [0, umax(m)] × [r−(m), r+(m)] −→ R

(u, ψ) �−→ Fm(u, ψ) = u2 − 1 + ψ2 + 2mψ2−n

It is a simple computation to show that ∂Fm/∂ψ = 0 if and only ifψ = 0 orψ = r0(m).
Therefore, as a consequence of the Implicit Function Theorem we have the following.

Proposition 2.1. Let u be a positive function and let umax be its maximum value. Then
there exist functions

ψ− : [0, umax] −→ [
r−(m), r0(m)

]
, ψ+ : [0, umax] −→ [r0(m), r+(m)] ,

such that Fm(u, ψ−(u)) = Fm(u, ψ+(u)) = 0 for all u ∈ [0, umax(m)].
Let us make a list of the main properties of ψ+ and ψ−, that can be derived easily from
their definition.

• First of all,we can computeψ+,ψ− and their derivatives using the following formulæ

u2 = 1 − ψ2± − 2mψ2−n± . (2.1)

ψ̇± = − u

ψ±
[
1 − (

r0(m)/ψ±
)n] , ψ̈± = n

ψ̇3±
u

+ (n − 1)
ψ̇2±
ψ±

+
ψ̇±
u

.

(2.2)

• The function ψ− takes values in [r−(m), r0(m)], hence ψn− ≤ rn0 (m) = (n − 2)m
and from (2.2) we deduce

ψ̇− ≥ 0, ψ̈− ≥ 0, lim
u→u−

max

ψ̇− = +∞.

• The function ψ+ takes values in [r0(m), r+(m)], hence ψn
+ ≥ rn0 (m) = (n − 2)m

and from the first formula in (2.2) we deduce that ψ̇+ is nonpositive and diverges as
u approaches umax. Moreover, the second formula in (2.2) can be rewritten as

ψ̈+ = ψ̇+

u

{

1 +
[
1 + (n − 1)(n − 2)mψ−n

+

]
ψ̇2
+

}

,

from which it follows ψ̈+ ≤ 0. Summing up, we have

ψ̇+ ≤ 0, ψ̈+ ≤ 0, lim
u→u−

max

ψ̇+ = −∞.

Let us now come back to our case of interest, that is, let us consider a region N ⊆
M\MAX(u).Wewant to use the functionsψ± in order to define a pseudo-radial function
on N . To this end, we distinguish between the casewhere N is an outer or an inner region,
according to Definition 2.
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• If N is an outer region, then our reference model will be the outer region of the
Schwarzschild–de Sitter solution (1.9). Accordingly, we define the pseudo-radial
function �+ as

�+ : N −→ [r0(m), r+(m)]

p �−→ �+(p) := ψ+(u(p)).
(2.3)

Notice that, if N is the outer region of the Schwarzschild–de Sitter solution (1.9)
with mass m, for every p ∈ N the value of �+(p) is equal to the value of the radial
coordinate |x | at p.

• If N is an inner region, then our reference model will be the inner region of the
Schwarzschild–de Sitter solution (1.9). Accordingly, we define the pseudo-radial
function �− as

�− : N −→ [
r−(m), r0(m)

]

p �−→ �−(p) := ψ−(u(p)).
(2.4)

Notice that, if N is the inner region of the Schwarzschild–de Sitter solution (1.9)
with mass m, for every p ∈ N the value of �−(p) is equal to the value of the radial
coordinate |x | at p.

In the case of 2-sided solutions we will need a global version of the definition above.

• If (M, g0, u) is a 2-sided solution in the sense of Definition 4, then we define the
global pseudo-radial function as

� : M −→ [
r−(m), r+(m)

]

p �−→ �(p) :=
⎧
⎨

⎩

ψ+(u(p)) if p ∈ M+,

ψ−(u(p)) if p ∈ M−,

r0(m) if p ∈ MAX(u).

(2.5)

If (M, g0, u) is isometric to the Schwarzschild–de Sitter solution (1.9) with mass
m, then � coincides with the radial coordinate |x |. The function � is continuous
by construction, but a priori we have no more information about its regularity near
the set MAX(u). However, in Sect. 2.2 we will prove that � is always Lipschitz.
Moreover, we will also show that � is C 2 at the points of the top stratum of the
hypersurface � ⊆ MAX(u) that separates M+ and M−.
By definition, we have the following relation between the derivatives of the pseudo-

radial function � and the potential u.

D�± = (ψ̇± ◦ u)Du, D2�± = (ψ̇± ◦ u)D2u + (ψ̈± ◦ u) du ⊗ du. (2.6)

Notation 2. In the following sections, we will perform several formal computations. In
order to simplify the notations, we will avoid to indicate the subscript ±, and we will
simply denote by � = ψ ◦ u the pseudo-radial function on a region N of M\MAX(u),
where we understand that � is defined by (2.4) if we are in an outer region and by (2.4)
if we are in an inner region. When there is no risk of confusion, we will also avoid to
explicitate the composition with u, namely, we will writeψ instead ofψ ◦u. For instance,
the formulæ in (2.6) will be simply written as

D� = ψ̇ Du, D2� = ψ̇ D2u + ψ̈ du ⊗ du,
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Fig. 5. Relation between u2 (on the x-axis) and the pseudo-radial functions (on the y-axis) for different values
of the virtual massm. The blue lines represent the relation withψ− whereas the red lines represent the relation
with ψ+. We have also included in the plot a dashed line showing the relation between the radial coordinate
and the static potential in the de Sitter solution (1.8), which represents the limit case when m → 0

2.2. Preparatory estimates. Here we collect some lemmata that will be useful in the
following. The first one shows an important connection between the value of the pseudo-
radial function at the boundary and the surface gravity.

Lemma 2.2. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆ M\MAX(u) be
a region with virtual mass m = μ(N , g0, u) < mmax. If N is outer, then

max
∂N

∣
∣
∣
∣
∣

Du

r+(m)
[
1 − (

r0(m)/r+(m)
)n]

∣
∣
∣
∣
∣

= 1.

If N is inner, then

max
∂N

∣
∣
∣
∣
∣

Du

r−(m)
[
1 − (

r0(m)/r−(m)
)n]

∣
∣
∣
∣
∣

= 1.

Proof. The proof is an easy computation.We recall from the definition of the virtualmass
m of N , that max∂N |Du|/umax = k±(m), where k± are the surface gravity functions
defined by (1.12) and (1.13), and the sign ± depends on whether N is an outer or inner
region. Therefore, we have

max
∂N

∣
∣
∣
∣
∣

Du

r±(m)
[
1 − (

r0(m)/r±(m)
)n]

∣
∣
∣
∣
∣

= umax

r±(m)
∣
∣1 − (

r0(m)/r±(m)
)n∣∣

max
∂N

|Du|
umax
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= umax

r±(m)
∣
∣1 − (

r0(m)/r±(m)
)n∣∣

k±(m)

= 1,

where the last equality follows from the definition of k+ and k−. ��
Remark 2. Following the proof of Lemma 2.2, it is easy to see that, if N is an outer
region, then, for every μ(N , g0, u) ≤ m ≤ mmax it holds

max
∂N

∣
∣
∣
∣
∣

Du

r+(m)
[
1 − (

r0(m)/r+(m)
)n]

∣
∣
∣
∣
∣

≤ 1.

Similarly, if N is an inner region, one can see that for every 0 ≤ m ≤ μ(N , g0, u) it
holds

max
∂N

∣
∣
∣
∣
∣

Du

r−(m)
[
1 − (

r0(m)/r−(m)
)n]

∣
∣
∣
∣
∣

≤ 1.

This remark will be useful in Sect. 7, where we will work with parameters m that do not
necessarily coincide with the virtual mass.

We now pass to discuss an estimate for the gradient of the potential u near the max-
imum points. This estimate will be an important ingredient in the proof of Lemma 2.5
below, which is the result that we will actually need in the following. However, Propo-
sition 2.3 is also interesting on its own. In fact, it can be interpreted as a reverse Ło-
jasiewicz inequality for the function u (for the original Łojasiewicz inequality, see [43,
Théorèm 4]). Proposition 2.3 is stated for solutions to problem (1.6), but we empha-
size that a similar property can be proven for a much larger class of functions, see [13,
Theorem 2.2].

Proposition 2.3. Let (M, g0, u) be a solution to problem (1.6) and let umax be the max-
imum of u. Then, for every 0 < β < 1, there exists a constant Kβ and an open neigh-
borhood �β ⊃ MAX(u) such that

|Du|2(x) ≤ Kβ [umax − u(x)]β,

for all x ∈ �β .

Proof. We consider the function

w = |Du|2 − K (umax − u)β,

where K > 0 is a constant that will be chosen conveniently later. We compute

Dw = D|Du|2 + βK (umax − u)−(1−β)Du,

and diverging the above formula

�w = �|Du|2 + βK (umax − u)−(1−β)�u + β(1 − β)K (umax − u)−(2−β)|Du|2

= 2|D2u|2 + 2Ric(Du,Du) + 2〈D�u |Du〉 + βK
�u

(umax − u)1−β

+ β(1 − β)K
|Du|2

(umax − u)2−β
,
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where in the second equality we have used the Bochner formula. Since |Du| goes to
zero as we approach MAX(u), so does the quantity h = 2Ric(Du,Du) + 2〈D�u|Du〉.
Moreover, we have |D2u| ≥ (�u)2/n = nu2 > 0 in a neighborhood of MAX(u). From
the compactness of the level sets of u, it follows that we can choose η > 0 small enough
such that

|h| ≤ 2 |D2u|2 on {umax − η ≤ u ≤ umax}.
Therefore, from the identity above we find

�w ≥ βK
�u

(umax − u)1−β
+ β(1 − β)K

|Du|2
(umax − u)2−β

= βK
�u

(umax − u)1−β
+ β(1 − β)K

w

(umax − u)2−β
+ β(1 − β)K 2 1

(umax − u)2−2β ,

where in the second equality we have used |Du|2 = w + K (umax − u)β . It follows that,
on {umax − η ≤ u ≤ umax}, it holds

�w − β(1 − β)K
1

(umax − u)2−β
w ≥ βX [�u + (1 − β)X ] , (2.7)

where

X = K

(umax − u)1−β
.

On {umax − η ≤ u ≤ umax} we have
X = K

(umax − u)1−β
≥ K

η1−β
.

Moreover, �u is continuous and thus bounded in a neighborhood of MAX(u). This
means that, for any K big enough, we have (1−β)X +�u ≥ 0 on the whole {umax−η ≤
u ≤ umax}. For such values of K , the right hand side of (2.7) is nonnegative, that is,

�w − β(1 − β)K
1

(umax − u)2−β
w ≥ 0, on {umax − η ≤ u ≤ umax}.

Therefore, we can apply the Weak Maximum Principle [30, Corollary 3.2] to w in any
open set where w is C 2 –that is, on any open set of {umax − η ≤ u ≤ umax} that does
not intersect MAX(u). Up to increasing the value of K , if needed, we can suppose

K ≥ max{u=umax−η}
|Du|2

(umax − u)β
= max{u=umax−η} |Du|2

ηβ
,

so that w ≤ 0 on {u = umax − η}. Now we apply the Weak Maximum Principle to the
function w on the open set �ε = {umax − η ≤ u ≤ umax − ε}, obtaining

w ≤ max
∂�ε

(w) = max

{

max{u=umax−ε}(w), max{u=umax−η}(w)

}

≤ max

{

max{u=umax−ε}(w), 0

}

.

Taking the limit as ε → 0, from the continuity of u and the compactness of the level
sets, we have limε→0 max{u=umax−ε}(w) = 0, hence we obtain w ≤ 0 on {umax − η ≤
u ≤ umax}. Recalling the definition of w, we have proved that the inequality

|Du|2 ≤ K (umax − u)β

holds in � = {umax − η ≤ u < umax}, which is a collar neighborhood of MAX(u). ��
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The above result can actually be improved in the following way. Take α < β < 1. In
the neighborhood �β given by Proposition 2.3, we have

|Du|2
(umax − u)α

= |Du|2
(umax − u)β

· (umax − u)β−α ≤ Kβ (umax − u)β−α,

for some constant Kβ . Since β > α, the right hand side goes to zero as we approach
MAX(u) and we obtain the following corollary.

Corollary 2.4. Let (M, g0, u)bea solution to problem (1.6)and let umax be themaximum
of u. Then, for every p ∈ MAX(u), it holds

lim
x �∈MAX(u), x→p

|Du|2
(umax − u)α

(x) = 0,

for all 0 < α < 1.

Of course, we have specified x �∈ MAX(u) in the limit above because otherwise the
function in the argument is not defined. Corollary 2.4, in turn, allows us to prove the
following useful estimate near MAX(u).

Lemma 2.5. Let (M, g0, u) be a solution to problem (1.6) and let � = ψ ◦u be defined
by (2.4) or (2.4) with respect to a parameter m ∈ (0,mmax). Then, for every p ∈
MAX(u), it holds

lim
x→p

ψ̇2α|Du|2(x) = 0,

for every 0 < α < 1.

Proof. First, we compute

umax − u
[
1 − (

r0(m)/ψ
)n]2 = 1

umax + u

u2max − u2
[
1 − (

r0(m)/ψ
)n]2

= 1

umax + u

1 − (m/mmax)
2/n − 1 + ψ2 + 2mψ2−n

[
1 − (

r0(m)/ψ
)n]2

= 1

(umax + u)
[
1 − (

r0(m)/ψ
)n]

×
[

ψ2 − n m
2
n

(n − 2)
n−2
n

1 − (
r0(m)/ψ

)n−2

1 − (
r0(m)/ψ

)n

]

.

We want to show that the quantity above has a finite nonzero limit as we approach
MAX(u). If we denote z = r0(m)/ψ , the equation above can be rewritten as

umax − u
[
1 − (

r0(m)/ψ
)n]2 = umax − u

(1 − zn)2

= r20 (m)

(umax + u)(1 − zn)

[

z−2 − n

n − 2

1 − zn−2

1 − zn

]

= r20 (m)

(umax + u)(1 − zn)

[

z−2 − n

n − 2

1 + z + · · · + zn−3

1 + z+ · · · + zn−1

]
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= r20 (m) z−2

(umax + u)(1 + z + · · · + zn−1)2

× 1 + z − 2
n−2 z

2
(
1 + z + · · · + zn−3

)

1 − z
.

It is clear that the first factor above has a finite nonzero limit as we approach MAX(u),
that is, when z goes to 1. Concerning the second factor, one easily computes

1 + z − 2
n−2 z

2
(
1 + z + · · · + zn−3

)

1 − z

= n − 2

n − 2
(1 − z)

n−2∑

k=1

(n − k − 1)(1 + z + · · · + zk−1).

Substituting, we easily obtain

umax − u
[
1 − (

r0(m)/ψ
)n]2 = r20 (m)

2numax
[1 + f (z)] , (2.8)

where f (z) is a function that is analytic near z = 1 and such that f (1) = 0. In particular,
recalling formula (2.2),wehaveproved that (umax−u)ψ̇2 has afinite limit asweapproach
the set MAX(u). Therefore, for any p ∈ MAX(u) and 0 < α < 1, we compute

lim
x→p

ψ̇2α|Du|2(x) = lim
x→p

[
(umax − u)ψ̇2

]α |Du|2
(umax − u)α

(x),

and, since (umax − u)ψ̇2 has a finite limit on MAX(u), from Corollary 2.4 we
conclude. ��
Lemma 2.5 will be crucial later in the proof of Proposition 3.3, where a Minimum
Principle argument will be used to prove a stronger result, namely, that the quantity
ψ̇ |Du| is bounded near MAX(u), see Remark 5. In particular, since (umax − u)ψ̇2 is
also bounded near MAX(u), as shown in the proof of Lemma 2.5, it follows that the
quantity

4
∣
∣
∣D
(√

umax − u
)∣∣
∣
2 = |Du|2

umax − u

is bounded near MAX(u). In other words, the function
√
umax − u is always Lipschitz

continuous on M .
It is worth remarking that, in the neighborhood of the points of the top stratum of

MAX(u), we can actually prove a much more precise result about the behavior of the
static potential u. We recall that with top stratum of MAX(u) we mean the open subset
� ⊂ MAX(u)which is a (n−1)-dimensional analytic submanifold. In other words, the
points p ∈ � are the ones such that there exists a neighborhood � of p and an analytic
function f : � → R such that MAX(u) ∩ � = f −1(0) and |d f | �= 0 in �.

Proposition 2.6. Let (M, g0, u) be a solution to problem (1.6) and let p ∈ MAX(u)

be a point in the top stratum of MAX(u). Let � be a small neighborhood of p such
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that � = � ∩ MAX(u) is contained in the top stratum and �\� has two connected
components �+,�−. We define the signed distance to � as

r(x) =
{
+ d(x, �), if x ∈ �+,

− d(x, �), if x ∈ �−.

Then the following expansion holds:

u = umax

[

1 − n

2
r2 +

n

6
H r3 − 1

24

(

2 n |h̊|2 +
n(n + 1)

n − 1
H2 − n2

)

r4 +O(r5)

]

, (2.9)

where H is the mean curvature of � with respect to the normal pointing towards �+.

Proof. Let (x1, . . . , xn) be a chart centered at p, with respect to which the metric g0 and
the function u are analytic. From the fact that p belongs to the top stratum of MAX(u),
it follows that we can choose an open neighborhood � of p in M , where the signed
distance r(x) is a well defined analytic function (see for instance [39], where this result
is discussed in full details in the Euclidean space, however the proofs extend with small
modifications to the Riemannian setting). More precisely, we have

r = φ(x1, . . . , xn),

where φ is an analytic function. Since r is a signed distance function, we have |Dr | = 1,
which implies in particular that one of the partial derivatives of φ has to be different from
zero. Without loss of generality, let us suppose ∂φ/∂x1 �= 0 in a small neighborhood �

of p. As a consequence, we have that the function

H : R
n+1 → R, H(r, x1, . . . , xn) = r − φ(x1, . . . , xn)

satisfies ∂H/∂x1 = −∂φ/∂x1 �= 0 in �. We can then apply the Real Analytic Implicit
Function Theorem (see [40, Theorem 2.3.5]), from which it follows that there exists an
analytic function h : Rn → R such that

H(r, h(r, x2, . . . , xn), x2, . . . , xn) = 0.

In other words, the change of coordinates from (r, x2, . . . , xn) to (x1, . . . , xn), which
is obtained setting x1 = h(r, x2, . . . , xn), is analytic, and in particular u is an analytic
function also with respect to the chart (r, x2, . . . , xn). In the following computation,
it is convenient to denote this new analytic chart as y = (y1, . . . , yn), where y1 = r
and yi = xi for i = 2, . . . , n. In particular, in this new chart, the smooth hypersurface
� ∩ � coincides with the points with y1 = 0. Since u is analytic, we can take its Taylor
expansion in p

umax − u(y) =
∞∑

k=2

∑

|I |=k

AI y
I , (2.10)

where I = (I1, . . . , In) is a multi-index and |I | = I1 + · · · + In . Since umax − u ≡ 0 on
� ∩ � = {y1 = 0}, the summand on the right hand side of (2.10) must be identically
zero when we set y1 = 0. From this it follows that AI = 0 whenever I1 = 0.
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We now prove that AI = 0 also when I1 = 1. In fact, suppose that this is not true,
and let k be the smallest integer such that there exists a multi-index I with |I | = k,
I1 = 1 and AI �= 0. Consider points of the form

y1 = εkσ 1, yi = ε σ i ,

where ε ∈ R, σ 1 = 1 and σ i ∈ R\{0} for all i = 2, . . . , n. Recalling that AI = 0
whenever I1 = 0 and whenever |I | < k and I1 = 1, at these points it holds

umax − u = ε2k−1
∑

|I |=k, I1=1

AI σ I + O(ε2k).

We recall that we are supposing that there are some nonzero coefficients in the sum
on the right hand side, hence we can choose the values of σ 2, . . . , σ n in such a way
that

∑
|I |=k, I1=1 AI σ I < 0. Therefore, for small values of ε > 0, we would have

umax − u < 0, against the hypothesis that umax is the maximum value of u.
From these considerations, it follows that we can write

umax − u(y) = (y1)2 · (A(2,0,...,0) + y1 f ), (2.11)

where f is an analytic function. Notice that, at the point p, we have ∂αu = 0 for all
α = 1, . . . , n, and from the second equation in (1.6) we find

−numax = �u = gαβ
0 [∂2αβu − �

γ
αβ∂γ u] = −2 g110 A(2,0,...,0) = −2 A(2,0,...,0).

It follows that A(2,0,...,0) = numax/2 > 0.
Now that we have found a good expansion of u around the point p, it is convenient to

come back to the old notation (r, x2, . . . , xn). Namely, we set again r = y1 and xi = yi

for all i = 2, . . . , n. Rewriting (2.11) recalling also that a = numax/2, we obtain the
following expansion

u(r, x) = umax − n

2
umax r

2 + r3 f. (2.12)

We now want to gather more information on the analytic function f . To this end, set
�ρ = {r = ρ} and observe that all �ρ with ρ small enough are smooth, since (r, x) =
(r, x2, . . . , xn) is an analytic chart and |Dr | = 1 �= 0. In particular, of course, we have
�0 = � ∩�. On each�ρ , the laplacian of u satisfies the following well known formula

�u = D2u(nρ, nρ) + H�ρ 〈Du | nρ〉 + ��ρu, (2.13)

where nρ = ∂/∂r is the g0-unit normal to �ρ , H�ρ is the mean curvature of �ρ with
respect to nρ and ��ρu is the laplacian of the restriction of u to �ρ with respect to the
metric induced by g0 on �ρ . Evaluating (2.13) at ρ = 0, since u ≡ umax and |Du| = 0
on �0, recalling also that �u = −nu, we immediately get

D2u(ν, ν) = �u = −numax,

in agreement with expansion (2.12). We now differentiate formula (2.13) two times with
respect to r , obtaining the following

−n
∂u

∂r
= ∂3u

∂r3
+ H�r

∂2u

∂r2
+

∂H�r

∂r

∂u

∂r
+

∂

∂r
��r u.
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−n
∂2u

∂r2
= ∂4u

∂r4
+ H�r

∂3u

∂r3
+ 2

∂H�r

∂r

∂2u

∂r2
+

∂2H�r

∂r2
∂u

∂r
+

∂2

∂r2
��r u.

Let us focus first on the terms involving ��r u. Calling g(r) the metric induced by g0 on
�r and �(r) the Christoffel symbols of g(r), we have

��r u = gi j(r)
∂2u

∂xi∂x j
+ gi j(r) �

k
(r) i j

∂u

∂xk
,

where the indices i, j, k vary between 2 and n. On the other hand, notice from (2.12)
that

∂2u

∂xi∂x j |r=0

= ∂2u

∂r∂xi |r=0

= ∂3u

∂r2∂xi |r=0

= ∂4u

∂r2∂xi∂x j |r=0

= 0,

for all i, j = 2, . . . , n. From this, it easily follows

∂

∂r
��r u|r=0 = ∂2

∂r2
��r u|r=0 = 0.

Since we also know that ∂u/∂r = 0 and ∂2u/∂r2 = −numax when r = 0, from the
expansions above we deduce

∂3u

∂r3 |r=0

= n umax H.

∂4u

∂r4 |r=0

= 2 n umax
∂H�r

∂r |r=0

− n umax H
2 + n2 umax,

where we have denoted by H the mean curvature of � ∩ � = �0 for simplicity. Fur-
thermore, from [34, Lemma 7.6] and the first equation in (1.6) we get

∂H�r

∂r |r=0

= − |h|2 − Ric(ν, ν) = −
(

|h̊|2 +
H2

n − 1

)

−
[
D2u(ν, ν)

u
+ n 〈 ν| ν〉

]

= − |h̊|2 − H2

n − 1
,

wherewe have usedD2u(ν, ν) = −numax, as proven above. Now that we have computed
the third and fourth derivative of u, we can use this information to improve (2.12) and
get the desired expansion of the static potential u. ��

Proposition 2.6 has some very useful consequences for our analysis. Let us start from
the simplest one. From expansion (2.9), we can compute the explicit formula for the
gradient of u as we approach a point p in the top stratum of MAX(u) as

lim
x �∈MAX(u), x→p

|Du|2(x)
umax − u(x)

= lim
r→0

n2 u2max r
2 + O(r3)

(n/2) umax r2 + O(r3)

= 2 n umax. (2.14)

In particular, recalling formula (2.8), at each point of the top stratum we deduce the
following identity

lim
x �∈MAX(u), x→p

|Du|2(x)
ψ2(x)

[
1 − (

r0(m)/ψ(x)
)n]2

= 1. (2.15)
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We will see that the left hand side of formula (2.15) admits an interpretation as the norm
of the gradient of a pseudo-affine function (see formula (3.10)) that will be of extreme
importance in the rest of the work.

A second important consequence of Proposition 2.6 is the following regularity result
for the pseudo-radial function �.

Proposition 2.7. Let (M, g0, u) be a solution to problem (1.6) and let p ∈ MAX(u)

be a point in the top stratum of MAX(u). Let � be a small neighborhood of p such
that � = � ∩ MAX(u) is contained in the top stratum and �\� has two connected
components �+,�−. We define the function

�(x) =
{

�+(x), if x ∈ �+,

�−(x), if x ∈ �−,

where �+ is the pseudo-radial function defined by (2.4) with respect to a parameter
m ∈ [0,mmax) and �− is the pseudo-radial function defined by (2.4) with respect to the
same parameter m. Then the function � is C 3 in �.

Proof. Let us start from formula (2.8) obtained in the proof of Proposition 2.5, where
we recall that we had set z = r0(m)/ψ . It is clear that it is possible to refine (2.8) by
expanding around z = 1 the function f (z) appearing in it. Namely, we can write

umax − u
[
1 − (

r0(m)/ψ
)n]2 = r20 (m)

2numax

[
1 + A (1 − z) + B (1 − z)2 + O

(
(1 − z)3

)]
,

(2.16)
for suitable A, B ∈ R. The computation of the precise values of the coefficients A, B is
tedious and it will not be necessary in our proof, as for our argument it is sufficient that
such coefficients exist. If we also expand 1 − (

r0(m)/ψ
)n = 1 − zn in terms of 1 − z,

from (2.16) we obtain

umax − u

(1 − z)2
= r20 (m)

2numax

[
1 + C (1 − z) + D (1 − z)2 + O

(
(1 − z)3

)]
, (2.17)

for suitable coefficients C, D ∈ R that, once again, we avoid to compute explicitly. We
want to use (2.17) in order to prove that 1− z can be expanded in terms of r close to �.
We do this by applying (2.17) repeatedly as follows

1 − z = 1 − z√
umax − u

√
umax − u

=
√
2numax

r20 (m)

√
umax − u

√

1 + C(1 − z) + D(1 − z)2 +O (
(1 − z)3

)

=
√
2numax

r20 (m)

×
√
umax − u

√

1 + C
√

2numax
r20 (m)

√
umax−u√

1+C(1−z)+O((1−z)2)
+ D 2numax

r20 (m)

umax−u
1+O(1−z) +O (

(1 − z)3
)

=
√
2numax

r20 (m)
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×
√
umax − u

√
√
√
√
1 + C

√
2numax
r20 (m)

√
umax−u

√

1+C
√

2numax
r20 (m)

√
umax−u√
1+O(1−z)

+O((1−z)2)

+ D 2numax
r20 (m)

umax−u
1+O(1−z) +O (

(1 − z)3
)
.

We observe, again from (2.17), that O(1 − z) = O(umax − u)1/2 = O(r). Now we
use Proposition 2.6 to substitute umax − u with its expansion (2.9). Using the known
expansions for square roots and fractions, the cumbersome formula above reduces to

1 − z = E + F r + G r2 + O(r3)

for suitable coefficients E, F,G. Notice that these coefficients are not necessarily con-
stant, as they can depend on H and |h̊| coming from the expansion of u. Finally, we can
substitute back in (2.16) to obtain

umax − u
[
1 − (

r0(m)/ψ
)n]2 = r20 (m)

2numax
+ P r + Q r2 + O(r3), (2.18)

for suitable coefficients P, Q (that again, may not be constant). We are now ready to
prove the regularity of �. Recalling (2.2), and using again the expansion (2.9) of u, we
compute

∂(�2)

∂r
= 2ψ ψ̇

∂u

∂r

= 2 u

1 − (r0(m)/ψ)n

∂u

∂r

= 2 u√
umax − u

√
umax − u

1 − (r0(m)/ψ)n

∂u

∂r
.

We can now expand the three factors using (2.9) and (2.18), obtaining

∂(�2)

∂r
= R + S r + T r2 + O(r3),

where the coefficients R, S, T depend only on H and |h̊|. It is then clear that ∂(�2)/∂r ,
and also its first and second derivatives, are continuous along r = 0. A completely
analogous reasoning can be done for ∂(�2)/∂xi , for all i = 2, . . . , n. It follows that
�2, and thus �, is C 3.

It should be mentioned that it is possible to compute precisely the coefficients of the
expansion of �. A sufficiently simple way of doing it is to recall that � = r0(m) on
MAX(u) and then write

� = r0(m) + W r + X r2 + Y r3 +O(r4),

where W, X,Y are functions of the coordinates x2, . . . , xn only. Now one can compute
the expansions of the left and right hand sides of the relation u2 = 1− �2 − 2m�2−n

to obtain information on the functions W, X,Y . With some lenghty (but standard) com-
putations, one obtains

� = r0(m) + umax r +
umax

12



2110 S. Borghini, L. Mazzieri

×
[

|h̊|2 + (n + 1)(n − 1)

(
H2

(n − 1)2
− u2max

r20 (m)

)

− 2 n

]

r3 +O(r4).

Anyway, this expansion will not be useful in what follows. ��
Finally, we conclude this subsection with another important consequence of Propo-

sition 2.6, which is the following regularity result on the top stratum of MAX(u).

Proposition 2.8. Let (M, g0, u) be a solution to problem (1.6) and let � be the top
stratum of MAX(u). Then � is a C 1 hypersurface (possibly with boundary).

Proof. We already know that the top stratum� is an analytic hypersurface, meaning that
each point p ∈ � admits a neighborhood � such that there exists an analytic function
f : � → R with � ∩ � = f −1(0) and |d f | �= 0 on the whole �. It remains to prove
that� is aC 1 hypersurface also at the points that do not belong to�. Let then p ∈ �\�
and let � � p be a small open neighborhood. From the Łojasiewicz Structure Theorem
[40, Theorem 6.3.3], it follows that we can choose � small enough so that

� ∩ � = �1 ∪ · · · ∪ �k (2.19)

for some k ∈ N, where the �i ’s are connected analytic hypersurfaces contained in the
top stratum � and p ∈ �i for all i = 1, . . . , k. For every i = 1, . . . , k and for every
x ∈ �i , let us denote by ni (x) the unit normal to �i at the point x .

We now show that the following limit

lim
x∈�i , x→p

ni (x) (2.20)

exists for every i = 1, . . . , k. To this end, suppose that this is not the case, that is,
suppose that, for some i , there exists a sequence of points {x j } j∈N on �i with x j → p
as j → ∞ and such that the sequence of normal vectors ni (x j ) does not converge.
Considering an orthonormal basis ni (x j ), X2(x j ), . . . , Xn(x j ) of Tx j M , we easily see
from formula (2.11) that the hessian D2u at the point x j is represented by the following
matrix

⎡

⎢
⎢
⎣

−numax 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤

⎥
⎥
⎦ . (2.21)

Since the normal vectors ni (x j ) belong to Sn−1 (viewed as a subspace of Tx j M), which

is compact, we can find two subsequences {x (1)
jk

}, {x (2)
jk

} of {x j } j∈N such that the cor-

responding normal vectors ni (x
(1)
jk

), ni (x
(2)
jk

) converge to X (1), X (2) ∈ S
n−1 (viewed as

a subspace of TpM) with X (1) �= ±X (2). Up to pass to subsubsequences, we can also

suppose that X2(x
(�)
jk

), . . . , Xn(x
(�)
jk

) converge to some vectors X (�)
2 , . . . , X (�)

n in TpM

for � = 1, 2. Notice that the continuity of g0 grants us that X (1), X (1)
2 , . . . , X (1)

n and

X (2), X (2)
2 , . . . , X (2)

n are both orthonormal bases of TpM . Since u is analytic, its hes-

sian is continuous, hence passing to the limit along the subsequence {x (1)
jk

} we deduce
that D2u at the point p is represented by the matrix (2.21) with respect to the basis
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(a)Transversal point (b)Cuspidal point (c)Touching point

Fig. 6. Visual 1-dimensional representation of the possible singularities of �. The first part of the proof of
Proposition 2.8 is concerned with showing that the normal to � is well defined everywhere, thus ruling out
transversal singularities like the one pictured in (a). To exclude folding singularities (cuspidal points (b) or
multiple hypersurfaces touching tangentially (c)) one needs a different argument, which is presented in the
second part of the proof

X (1), X (1)
2 , . . . , X (1)

n . Analogously, if we take the limit of D2u along the second subse-
quence, we get that D2u at the point p is represented by the matrix (2.21) with respect to
X (2), X (2)

2 , . . . , X (2)
n . On the other hand, since X (1) �= ±X (2), it is clear that the change

of basis from X (1), X (1)
2 , . . . , X (1)

n to X (2), X (2)
2 , . . . , X (2)

n must modify the first line and
the first row of the hessian matrix, hence we have a contradiction. Therefore necessarily
the limit in (2.20) must exist. Let us also observe that the limit in (2.20) cannot depend
on the index i ∈ {1, . . . , k}, otherwise we could repeat the same argument working with
two sequences on two different hypersurfaces to obtain the same contradiction. There-
fore, up to a suitable choice of the orientation, all of the �i ’s share the same normal at
the point p ∈ �\�. In particular, the tangent space Tp� is well defined.

We are not finished yet, as it may happen that p is a cuspidal point or that there
are multiple hypersurfaces touching at p, see Fig. 6. We now show that such folding
singularities cannot happen by proving that � is uniformly distant from itself along its
normal direction. Let us start by considering a point x ∈ � and a unit speed geodesic
γ with γ (0) = x and γ̇ (0) orthogonal to �. Since M is compact and complete, there
exists a positive constant K > 0 such that every such γ (t) exists (that is, it does not
reach the boundary ∂M) and is smooth for |t | ≤ K . From the above observations on the
hessian of u, it follows that the restriction of u to γ satisfies the following

(u ◦ γ )(t) = umax − n

2
umax t

2 + σ(t),

where σ(t) is an error term such that, for all t ,

|σ(t)| ≤ (u ◦ γ )′′′(ξ)

3! |t |3,

for some ξ ∈ R with |ξ | < t . Since u and γ are smooth and M is compact, in particular
we have that the derivatives of u ◦ γ are bounded, hence there exists a constant C such
that |σ(t)| < C |t |3. But this implies that, for every |t | ≤ min{numax/(2C), K } it holds

(u ◦ γ )(t) = umax − n

2
umax t

2 + σ(t) < umax −
(numax

2C
− |t |

)
C t2 ≤ umax.

This means that every point of γ (t) with |t | ≤ min{numax/(2C), K }, t �= 0, does not
belong toMAX(u). Thismust hold for everyunit speet geodesic starting fromapoint of�
and directed orthogonally to�. From this property it follows that there cannot be folding
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pathologies at our point p. In fact, if there exist �1, �2 in the decomposition (2.19)
that form a fold, this would mean that orthogonal geodesics starting from points of
�1 arbitrarily close to p would intersect �2 (which is also contained in MAX(u)) for
arbitrarily small values of t . This is in contradiction with what we have just proven,
hence such singularities cannot exist. This concludes our proof. ��
Remark 3. We emphasize that Proposition 2.8, as it is presented here, does not contain
any information about the boundary of�, which in principle might consist of a stratified
submanifold with dimension ranging from 0 up to n − 2. On the other hand, it is worth
mentioning that in a recent joint work with P. T. Chruściel, we were able to show that
the boundary of � is actually empty. The interested reader can find the details in [13,
Theorem 3.3]. Here, we recall once again that Proposition 2.8 is however suited to
the purposes of the present paper, as it will only be employed to study the separating
hypersurface of a 2-sided solution, and it is clear that such an hypersurface has empty
boundary. In other words, Proposition 2.8 tells us that the separating hypersurface of a
2-sided solution is C 1. In Sect. 7, starting from this, we will refine the analysis to show
that such an hypersurface is actually C∞.

3. The Cylindrical Ansatz

In Sect. 3.1 we will finally use the pseudo-radial function � to set up our cylindrical
ansatz. More precisely, on a region N of our initial manifold, we will consider the new
metric

g = g0
�2 ,

and we will also define a pseudo-affine function ϕ. The definitions are chosen in such
a way that, if (M, g0, u) is isometric to the Schwarzschild–de Sitter solution, then the
metric g is just the standard cylindrical metric and ϕ is an affine function, that is, the
norm of ∇ϕ with respect to the metric g is constant on M (here we have denoted by ∇
the Levi-Civita connection of g). Conversely, the general idea in the future proofs will
be to find opportune conditions that force ϕ to be affine and g to be cylindrical, thus
proving the isometry with the Schwarzschild–de Sitter solution. The highlight of this
subsection is Proposition 3.1, where we will translate the equations in problem (1.6) in
terms of g and ϕ.

In Sect. 3.2 we will analyze the level sets of ϕ, and in particular we will write down
the relations between the mean curvature and second fundamental form of the level sets
with respect to g0 and g.

In Sect. 3.3 we will apply the Bochner formula and the equations of the conformal
reformulation of problem (1.6) written down in Proposition 3.1, in order to deduce an
elliptic inequality for the quantity

w = β
(
1 − |∇ϕ|2g

)
,

where β is a suitably chosen positive function. AMinimum Principle argument, together
with an estimate on the behavior of |∇ϕ|g nearMAX(u) (which is provided by the reverse
Łojasiewicz inequality proved in Sect. 2.2) will allow us to prove that w is positive on
our region N . This will give us an important bound from above on the norm of the
gradient of ϕ, which will be of great importance in the next sections.

As a first consequence of this bound on |∇ϕ|g , in Sect. 3.4 we will prove the mono-
tonicity along the level sets of u of the function � defined in (3.28). From this we will
deduce an area lower bound for the boundary of our region N .



On the Mass of Static Metrics 2113

3.1. Conformal reformulation of the problem. Let (M, g0, u) be a solution to prob-
lem (1.6), and let N be a connected component of M\MAX(u). As already observed,
when (M, g0, u) is the Schwarzschild–de Sitter solution, the pseudo-radial function
� = ψ ◦ u, defined by (2.4) or by (2.4) depending on whether N is outer or inner,
coincides with the radial coordinate |x |, provided the parameterm in the definition of �

coincides with the virtual mass of N . As anticipated, wewant to proceed via a cylindrical
ansatz, that is, on N we consider the following conformal change

g = g0
�2 , (3.1)

and we rephrase problem (1.6) in terms of g. We fix local coordinates in N and we
compute the relation between the Christoffel symbols �

γ
αβ,Gγ

αβ of g, g0

�
γ
αβ = Gγ

αβ − 1

ψ

(
δγ
α ∂β� + δ

γ
β ∂α� − (g0)αβ(g0)

γ η∂η�
)

. (3.2)

Denote by ∇,�g the Levi-Civita connection and the Laplace–Beltrami operator of g.
For every z ∈ C∞, we compute

∇2
αβ z = D2

αβ z +
1

ψ

(
∂αz∂β� + ∂α�∂β z − 〈Dz |D� 〉 g(0)

αβ

)
(3.3)

�gz = ψ2�z − (n − 2)ψ〈Dz |D� 〉. (3.4)

Substituting z = � in formulæ (3.3) and (3.4), and using the equations in (1.6) we
compute

∇2� = D2� +
1

ψ

(
2d� ⊗ d� − |D�|2 g0

)

= ψ̇D2u +

(
1

uψ̇
+
n + 1

ψ
+ n

ψ̇

u

)

d� ⊗ d� − |D�|2
ψ

g0

= uψ̇Ric +

(
1

uψ̇
+
n + 1

ψ
+ n

ψ̇

u

)

d� ⊗ d� − |∇�|2g
ψ

g − nuψ2ψ̇ g, (3.5)

�g� = ψ2�� − (n − 2)ψ |D�|2

= ψ2ψ̇�u +

(
ψ2

uψ̇
+ ψ + n

ψ2ψ̇

u

)

|D�|2

= −nuψ2ψ̇ +

(
1

uψ̇
+

1

ψ
+ n

ψ̇

u

)

|∇�|2g. (3.6)

On the other hand, we know from [11, Theorem 1.159] that the Ricci tensors of g0 and
g are related by the formula

Ric = Ricg − n − 2

ψ
∇2� +

2(n − 2)

ψ2 d� ⊗ d� −
(
1

ψ
�g� +

n − 3

ψ2 |∇�|2g
)

g

= Ricg − n − 2

ψ
∇2� +

2(n − 2)

ψ2 d� ⊗ d�

+

[

nuψψ̇ −
(

n − 2 + n
ψψ̇

u
+

ψ

uψ̇

) |∇�|2g
ψ2

]

g. (3.7)
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Substituting (3.7) in (3.5) we obtain

Ricg =
[
n − 2

ψ
+

1

uψ̇

]

∇2� −
[
2(n − 2)

ψ2 +
n

u2
+

1

u2ψ̇2
+
n + 1

uψψ̇

]

d� ⊗ d�

+

[

nψ
(
ψ − uψ̇

)
+

(

n − 2 + n
ψψ̇

u
+
2ψ

uψ̇

) |∇�|2g
ψ2

]

g. (3.8)

In order to simplify the above expressions, we notice that, a posteriori, in the rotationally
symmetric case we expect the equality |Du|2 = (u/ψ̇)2, or equivalently |∇�|2g =
(uψ)2, to hold pointwise on N . For this reason, it is convenient to introduce a function
ϕ ∈ C∞(N ) which satisfies |∇ϕ|2g = |∇�|2g/(uψ)2, so that, a posteriori, we expect
|∇ϕ|g = 1 pointwise on N , that is, we expect ϕ to be an affine function. Such a function
ϕ can be defined in several ways. In fact, if ϕ is such a function, also c± ϕ, with c ∈ R,
satisfies the same equality |∇ϕ|g = 1. However, all these choices are actually equivalent
for our analysis, hence we will fix ϕ now, once and for all. We define the pseudo-affine
function ϕ as

ϕ(p) =
∫ r+(m)

�(p)

dt

t
√
1 − t2 − 2mt2−n

. (3.9)

Despite the integrand has a singularity for t = r±(m), the integral in (3.9) is finite. In
fact, setting s = 1 − t2 − 2mt2−n , fixed η > [(n − 2)m]1/n , we have

∫ r+(m)

η

dt

t
√
s

=
∫ 0

1−η2−2mη2−n

−ds

2t2[1 − (n − 2)mt−n]√s

≤ 1

2η2[1 − (n − 2)mη−n]
∫ 1−η2−2mη2−n

0

ds√
s

=
√
1 − η2 − 2mη2−n

η2[1 − (n − 2)mη−n] < ∞.

The singularity of the integrand when t = r−(m) can be handled in the same way. It
follows that ϕ is well defined and smooth on N . However, a priori we do not know if
the gradient of ϕ is bounded when we approach MAX(u), because both the numerator
and the denominator of formula (3.10) below go to zero. This point will be addressed in
Proposition 3.3, where we will show that |∇ϕ|g is bounded above by 1 on the whole N .
Notice that the definition of ϕ is chosen in such a way that, when N is outer and p ∈ ∂N ,
we have ϕ = 0 on ∂N . Instead, when N is inner and p ∈ ∂N , that is, �(p) = r−(m),
the function ϕ assumes its maximum value.

For future convenience, we also write down some formulæ for the gradient and the
hessian of ϕ

|∇ϕ|2g = |∇�|2g
u2ψ2 = ψ̇2

u2
|Du|2 = |Du|2

ψ2
[
1 − (

r0(m)/ψ
)n]2 , (3.10)

∇ϕ = − ψ̇

uψ
Du = Du

ψ2
[
1 − (

r0(m)/ψ
)n] , (3.11)

∇2ϕ = − ∇2�

ψu
+

1

ψ2u2

(

u +
ψ

ψ̇

)

d� ⊗ d�
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= − ψ̇

uψ
D2u +

ψ̇2

uψ2 |Du|2g0 − n
ψ̇2

u2ψ2

(
u + ψψ̇

)
du ⊗ du. (3.12)

Combining equations (3.10), (3.12) with (3.6), (3.8), we arrive with some computations
to a conformal reformulation of system (1.6).

Proposition 3.1. Let (M, g0, u) be a solution to problem (1.6), and let N be an outer or
inner region with virtual mass

m = μ(N , g0, u).

Let also � = ψ ◦ u be the pseudo-radial function defined by (2.4) or (2.4), depending
on whether N is an outer or inner region, respectively. Then the metric g = g0/�2 and
the pseudo-affine function ϕ defined in (3.9) satisfy the following system of differential
equations

⎧
⎪⎪⎨

⎪⎪⎩

Ricg = −
[
(n − 2)u +

ψ

ψ̇

]
∇2ϕ − (n − 2)dϕ ⊗ dϕ +

[

(n − 2)|∇ϕ|2g −
(
u − ψ

ψ̇

)
�gϕ

]

g, in N ,

�gϕ = nψψ̇
(
1 − |∇ϕ|2g

)
, in N ,

(3.13)

with boundary conditions
⎧
⎪⎨

⎪⎩

ϕ = 0 on ∂N ,

ϕ = ϕ0 :=
∫ r+(m)

r0(m)

dt

t
√
1 − t2 − 2mt2−n

on N ∩ MAX(u),
if N outer, (3.14)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ = ϕmax :=
∫ r+(m)

r−(m)

dt

t
√
1 − t2 − 2mt2−n

on ∂N ,

ϕ = ϕ0 :=
∫ r+(m)

r0(m)

dt

t
√
1 − t2 − 2mt2−n

on N ∩ MAX(u),

if N inner. (3.15)

Tracing the first equation of (3.13), one obtains

Rg

(n − 1)(n − 2)
= 1 −

(

1 +
2nuψψ̇ − nψ2

n − 2

)(
1 − |∇ϕ|2g

)
(3.16)

where Rg is the scalar curvature of g. In the cylindrical situation, which is the conformal
counterpart of the Schwarzschild–de Sitter solution, Rg has to be constant. In this case,
the above formula implies that also |∇ϕ|g has to be constant and equal to 1, as already
anticipated. For these reasons, also in the situation, where we do not know a priori if
g is cylindrical, it is natural to think of ∇ϕ as to a candidate splitting direction and to
investigate under which conditions this is actually the case. A first important observation
is that the splitting is in force when ϕ is an affine function, that is, when its hessian ∇2ϕ

and the quantity 1 − |∇ϕ|g vanish everywhere in our region.

Proposition 3.2. Let (M, g0, u) be a solution to problem (1.6), and let N be an outer or
inner region with virtual mass

m = μ(N , g0, u).
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Let � = ψ ◦ u be the pseudo-radial function defined by (2.4) or (2.4), depending on
whether N is an outer or inner region, respectively. Finally, let g = g0/�2 and let ϕ

be the pseudo-affine function defined by (3.9). If ∇2ϕ ≡ 0 and |∇ϕ|g ≡ 1 on N, then
(M, g0, u) is isometric to a generalized Schwarzschild–de Sitter solution (1.14) with
mass m.

Proof. Let us suppose that N is an outer region, the inner case being completely equiv-
alent. Proceeding as in the proof of [2, Theorem 4.1], we obtain that ({0 ≤ ϕ < ϕ0}, g)
is isometric to the product

([0, ϕ0) × ∂N , dϕ ⊗ dϕ + g∂N ),

where g∂N is the metric induced by g on ∂N . From the first equation in (3.13) we deduce
that Ricg∂N = (n − 2)g∂N . Recalling the definition of ϕ and the relation between g and
g0, we deduce that g0 is isometric to

d� ⊗ d�

u2
+ ψ2g∂N .

This proves that (N , g0, u) is isometric to theouter regionof a generalizedSchwarzschild–
de Sitter solution (Ms, gs0, u

s) defined by (1.14), where � is the radial coordinate. It
remains to prove that this isometry between the outer regions extends to an isometry be-
tween the whole (M, g0, u) and the whole (Ms, gs0, u

s). To this end, we distinguish two

cases, depending on whether the (possibly stratified) hypersurface �N = N ∩ M\N ⊆
MAX(u) is orientable or not.

• Let us start by considering the case in which �N is an orientable hypersurface.
Since M is orientable by hypothesis, the hypersurface �N is orientable if and only if
it is two sided, meaning that any neighborhood of �N contains both points of N and
points outside N . Considering the corresponding chart in (Ms, gs0, u

s), by analytic
continuation we can extend the isometry between (N , g0, u) and the outer region of
(Ms, gs0, u

s) to all the points in the chart. That way, the isometry passes through �,
and we can continue to argue chart by chart until we finally cover the whole manifold
M , thus proving the global isometry of (M, g0, u) and (Ms, gs0, u

s).
• If �N is not orientable, this means that it is one sided, that is, every point of �N
has a neighborhood that is entirely contained inside N . Therefore, it easily follows
that (M, g0, u) = (N , g0, u) is isometric to (M

s
+, g

s
0, u

s)/ ∼, where ∼ is a relation
on the points of

MAXs(u) = {p ∈ Ms : us(p) = umax} ⊂ ∂M
s
+.

We first observe that this relation is induced by an involution

ι∼ : MAXs(u) → MAXs(u).
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In fact, the neighborhood of a point x ∈ MAXs(u) inside (M
s
+, g0) is isometric to

an half space Rn
+ endowed with a metric such that the boundary ∂Rn

+ is smooth. In
order for the manifold (M

s
+, g0)/ ∼ to be smooth at x it is necessary that there exists

exactly one point ι∼(x) ∈ MAXs(u), ι∼(x) �= x , such that x ∼ ι∼(x). Moreover,
ι∼ has to be continuous and to reverse the orientation. It is also clear that ι2∼ is the
identity, so that ι∼ is indeed an involution.

We now notice that the mean curvature vector H of the hypersurface MAXs(u)

has constant nonzero norm and it always points outside Ms
+ on the whole MAXs(u),

hence the same holds on MAXs(u)/ ∼. In particular, at the points x and ι∼(x) the
vectorH points outsideMs

+. Therefore, in a chart centered at x = ι∼(x) in the quotient
manifold we would have that H points in one direction according to the measure at
x , and points in the opposite direction if measured at ι∼(x), which means that the
mean curvature of �N at x is not well defined. Since the same reasoning can be
repeated at each point x ∈ �N , we would have that the mean curvature in nowhere
defined on �N , against the fact that we know that �N = MAX(u) is a stratified
hypersurface, so that in particular it is smooth H n−1-almost everywhere. We have
reached a contradiction, hence �N is necessarily oriented and the first case applies.

This concludes the proof. ��

3.2. The geometry of the level sets. In the forthcoming analysis a crucial role is played
by the study of the geometry of the level sets of ϕ, which coincide with the level sets
of u in N , by definition. Hence, we pass now to describe the second fundamental form
and the mean curvature of the regular level sets of ϕ (or equivalently of u) in both the
original Riemannian context (N , g0) and the conformally related one (N , g). To this
aim, we fix a regular level set {ϕ = s0} and we construct a suitable set of coordinates
in a neighborhood of it. Note that {ϕ = s0} must be compact, by the properness of ϕ.
In particular, there exists a real number δ > 0 such that in the tubular neighborhood
Uδ = {s0 − δ < ϕ < s0 + δ} we have |∇ϕ|g > 0 so that Uδ is foliated by regular level
sets of ϕ. As a consequence, Uδ is diffeomorphic to (s0 − δ, s0 + δ) × {ϕ = s0} and the
function ϕ can be regarded as a coordinate in Uδ . Thus, one can choose a local system of
coordinates {ϕ, ϑ1,...., ϑn−1}, where {ϑ1,...., ϑn−1} are local coordinates on {ϕ = s0}.
In such a system, the metric g can be written as

g = dϕ ⊗ dϕ

|∇ϕ|2g
+ gi j (ϕ, ϑ1,...., ϑn−1) dϑ i ⊗ dϑ j ,

where the latin indices vary between 1 and n − 1. We now fix in Uδ the g-unit vector
field νg = −∇ϕ/|∇ϕ|g . We also define ν as the g0-unit vector field that points in the
same direction as νg at every point, that is

ν =
{

−Du/|Du|, if N outer,
Du/|Du|, if N inner.

Wewill denote by h andH the second fundamental form andmean curvature with respect
to the metric g0 and the normal ν. We will denote by hg and Hg the second fundamental
form and mean curvature with respect to the metric g and the normal νg . According to
these choices, the second fundamental forms of the level sets of u or ϕ are given by
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h(0)
i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−D2
i j u

|Du| , if N outer,

D2
i j u

|Du| , if N inner,

h(g)
i j = − ∇2

i jϕ

|∇ϕ|g , for i, j = 1,...., n − 1. (3.17)

Taking the traces of the above expressions with respect to the induced metrics we obtain
the following expressions for the mean curvatures in the two ambients

H =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− �u

|Du| +
D2u(Du,Du)

|Du|3 , if N outer,

�u

|Du| − D2u(Du,Du)

|Du|3 , if N inner,

Hg = − �gϕ

|∇ϕ|g +
∇2ϕ(∇ϕ,∇ϕ)

|∇ϕ|3g
. (3.18)

Taking into account expressions (3.10), (3.12), one can show that the second fundamental
forms are related by

h(g)
i j = 1

ψ
h(0)
i j − |ψ̇ |

ψ2 |Du| g(0)
i j . (3.19)

The analogous formula for the mean curvatures reads

Hg = ψ H − (n − 1) |ψ̇ | |Du|. (3.20)

Concerning the nonregular level sets of ϕ, we first observe that, since u is analytic on
M (see [23,58]), then ϕ is analytic on the whole N . As anticipated in Sect. 1.1, it follows
from the results in [44] (see also [40, Theorem 6.3.3]) that there exists an hypersurface
S ⊆ Crit(ϕ) such that H n−1(Crit(ϕ)\S) = 0. In particular, the (n − 1)-dimensional
Hausdorff measure of the level sets of ϕ is locally finite. Moreover, the unit normal to a
level set is well-defined H n−1-almost everywhere, and so are the second fundamental
form hg and the mean curvature Hg . We now compute the relation between hg,Hg and
h,H at a point y0 ∈ S. Let ν, νg be the unit normal vector fields to S at y0 with respect to
g0, g respectively. Since |νg|2g = 1 = |ν|2 = ψ2 |ν|2g , we deduce that νg = ψ ν. Let
(∂/∂x1, . . . , ∂/∂xn−1) be a basis of Ty0 S, so that in particular (∂/∂x1, . . . , ∂/∂xn−1, νg)

is a basis of Ty0M . Recalling (3.2) and observing that the derivatives of u and � in y0
are all zero since y0 ∈ Crit(ϕ) = Crit(u), we have

h(g)
i j =

〈
∇i

∂

∂x j

∣
∣
∣ νg

〉

g
= �n

i j = Gn
i j =

〈
Di

∂

∂x j

∣
∣
∣ νg

〉

g
= 1

ψ

〈
Di

∂

∂x j

∣
∣
∣ ν
〉

= 1

ψ
h(0)
i j .

Taking the trace we obtain Hg = ψH. This proves that formulæ (3.19) and (3.20) hold
also at any point y0 ∈ S, so that in particular they hold H n−1-almost everywhere on
any level set.
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3.3. Consequences of the Bochner formula. Starting from the Bochner formula and
using the equations in (3.13), we find

�g|∇ϕ|2g = 2|∇2ϕ|2g + 2Ricg(∇ϕ,∇ϕ) + 2〈∇�gϕ | ∇ϕ〉
= 2|∇2ϕ|2g −

[

(n − 2)u +
ψ

ψ̇
+ 2nψψ̇

]

〈∇|∇ϕ|2g | ∇ϕ〉g

− 2

[

(n + 1)u + nψψ̇

]

|∇ϕ|2g �gϕ. (3.21)

We will use (3.21) to compute the laplacian of the function

w = β
(
1 − |∇ϕ|2g

)
, where β = ψ2

∣
∣1 − (n − 2)mψ−n

∣
∣ = ψ2

∣
∣
∣
∣
u

ψψ̇

∣
∣
∣
∣ .

Since the function � = ψ ◦ u is smooth and nonzero in the interior of N , so is β. We
will denote by β ′ the derivative of β with respect to ϕ, more precisely, β ′ ∈ C∞(N ) is
the function that satisfies ∇β = β ′∇ϕ. One computes

β ′

β
= nψψ̇ + (n − 2)u, (3.22)

∇w = −β∇|∇ϕ|2g +
β ′

β
w∇ϕ. (3.23)

In order to compute the laplacian of w, we take the divergence of (3.23)

�gw = −β ′

β

〈
β∇|∇ϕ|2g

∣
∣∇ϕ

〉

g − β�g|∇ϕ|2g +
(β ′

β

)′
w|∇ϕ|2g

+
β ′

β
〈∇w | ∇ϕ〉g + β ′

β
w�gϕ

and using formula (3.21) we obtain

�gw = −2β

[

|∇2ϕ|2g − (�gϕ)2

n

]

−
[

(n − 2)u +
ψ

ψ̇
+ 2nψψ̇ − 2

β ′

β

]

〈∇w|∇ϕ〉g

+ nψψ̇

(
β ′

β
− 2ψψ̇

)

w

+

[(β ′

β

)′ −
(β ′

β

)2
+

(

(n − 2)u +
ψ

ψ̇
+ nψψ̇

)
β ′

β

+ 2n(n + 1)uψψ̇ + 2n(n + 1)ψ2ψ̇2
]

|∇ϕ|2gw

≤
[

(n − 2)u − ψ

ψ̇

]

〈∇w | ∇ϕ〉g + n(n − 2)mψ2−nψ̇2[(n − 2) + (n + 2)|∇ϕ|2g
]
w.

(3.24)

In particular, w satisfies an elliptic inequality on our connected component N and, as a
consequence of the Minimum Principle, we obtain the following relevant bound on the
gradient of the pseudo-affine function ϕ.
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Proposition 3.3. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆ M\MAX(u)

be an outer or inner region with virtual mass m = μ(N , g0, u). Let also g, ϕ be defined
by (3.1), (3.9). Then it holds

|∇ϕ|g ≤ 1, (3.25)

on the whole N. Moreover, if |∇ϕ|g = 1 at a point in the interior of N , then |∇ϕ|g ≡ 1
on the whole N and (M, g0, u) is isometric to a generalized Schwarzschild–de Sitter
solution (1.14) with mass m.

Proof. We start by noticing that β = ψ2|1 − (r0(m)/ψ)n| has a finite nonzero limit as
ψ → r±(m). It follows that the function w = β(1 − |∇ϕ|2g) is continuous up to the
boundary ∂N . We recall from (3.10) that it holds

|∇ϕ|g = |Du|
ψ
∣
∣1 − (

r0(m)/ψ
)n∣∣

,

therefore, from Lemma 2.2 we deduce that w ≥ 0 on ∂N . On the other hand, we can
also write w as follows:

w = β(1 − |∇ϕ|2g) = ψ2
∣
∣
∣
∣
u

ψψ̇

∣
∣
∣
∣ −

∣
∣
∣
∣
ψψ̇

u

∣
∣
∣
∣ |Du|2.

Since by definition β goes to 0 as we approach MAX(u), and ψ̇ |Du|2 goes to 0 by
Lemma 2.5, we have w → 0 as we approach MAX(u).

After these preliminary remarks, we now recall that u is analytic, hence, as observed
in Sect. 1.1, this implies that the critical level sets of u are discrete. Therefore there exists
η > 0 such that for any 0 < ε < η the level sets {u = ε} and {u = umax − ε} are regular.
In particular, the submanifold

Nε = N ∩ {ε ≤ u ≤ umax − ε}
is a compact domain with smooth boundary. Since Nε is contained in the interior of N ,
in particular the coefficients of the elliptic inequality (3.24) are bounded in Nε and we
can apply the Weak Minimum Principle (see for instance [30, Corollary 3.2]) to deduce
that

min
Nε

w ≥ min
∂Nε

w = min

{

min
N∩{u=ε} w, min

N∩{u=umax−ε} w

}

. (3.26)

Since inequality (3.26) holds for all 0 < ε < η, we can take its limit as ε → 0. We have
already observed thatw ≥ 0 on ∂N and thatw → 0 as we approach MAX(u), therefore
at the limit we get minN w ≥ 0. It follows that w is nonnegative, and this proves (3.25).

Now we pass to the proof of the second part of the statement. Let x be a point in
the interior of N such that |∇ϕ|g(x) = 1. In particular it holds w(x) = 0 and we have
proved above that w ≥ 0 on the whole N . Applying the Strong Minimum Principle on
an open set � containing x , we obtain w ≡ 0, or equivalently |∇ϕ|g ≡ 1, on �. From
the arbitrariness of � we deduce |∇ϕ|g ≡ 1 on N , and plugging this information inside
the Bochner formula (3.21), we obtain |∇2ϕ|g ≡ 0. We can now invoke Proposition 3.2
to conclude. ��
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Remark 4. Proposition 3.3 should be compared with [10, Proposition 1], where an anal-
ogous result is obtained for a vast class of static perfect fluid solutions. The proof in [10]
is based on the application of the Maximum Principle to an elliptic inequality which
seems to be closely related to the one used in our proof.

Remark 5. Translating the thesis of Proposition 3.3 back in terms of u, g0, we have
that ψ̇ |Du| is bounded in N , and recalling formula (2.8), we deduce that the quantity
|Du|2/(umax − u) is bounded on N . In particular, for any p ∈ N ∩MAX(u) there exists
a collar neighborhood p ∈ �p ⊂ N and a constant Kp such that

|Du|2(x) ≤ Kp [umax − u(x)] (3.27)

for any x ∈ �p. The same proof can be repeated on each inner and outer region, and a
similar result will also be shown for cylindrical regions, see Proposition 8.2. It follows
from these considerations that inequality (3.27) is always in force in a neighborhood of
any p ∈ MAX(u). This is an improvement of Proposition 2.3 proved above.

3.4. Area lower bound. In this subsection, we will study the function

�(s) =
∫

{ϕ=s}
|∇ϕ|g dσg, (3.28)

which is definedon s ∈ [0, ϕ0)or s ∈ (ϕ0, ϕmax]dependingonwhethermax∂N |Du|/umax
is less or greater than

√
n, respectively. As an application of Proposition 3.3, one can

prove the following monotonicity result for �.

Proposition 3.4. Let (M, g0, u) be a solution to problem (1.6), let N be a connected
component of M\MAX(u) with virtual mass m < mmax, and let �(s) be the function
defined by (3.28), with respect to the metric g and the pseudo-affine function ϕ defined
by (3.1), (3.9).

(i) If N is an outer region, then the function �(s), defined for s ∈ [0, ϕ0), is monotoni-
cally nonincreasing. Moreover, if �(s1) = �(s2) for two different values 0 ≤ s1 <

s2 < ϕ0, then the triple (M, g0, u) is isometric to a generalized Schwarzschild–de
Sitter triple (1.14) with mass m.

(ii) If N is an inner region, then the function �(s), defined for s ∈ (ϕ0, ϕmax], is
monotonically nondecreasing. Moreover, if �(s1) = �(s2) for two different val-
ues ϕ0 < s1 < s2 ≤ ϕmax, then the solution (M, g0, u) is isometric a generalized
Schwarzschild–de Sitter triple (1.14) with mass m.

Proof. Consider the case N outer, that is, max∂N |Du|/umax <
√
n. In particular, the

determination of ψ is (2.4), ϕ ∈ [0, ϕ0), ψ̇ ≤ 0 and �gϕ ≤ 0 (this last inequality is a
consequence of the second equation of system (3.13) and of Proposition 3.3). Integrating
�gϕ ≤ 0 in {s1 ≤ ϕ ≤ s2} for any 0 ≤ s1 < s2 < ϕ0, we get

∫

{s1≤ϕ≤s2}
�gϕ dσg ≤ 0. (3.29)

Applying the Divergence Theorem to inequality (3.29), we easily obtain�(s2) ≤ �(s1),
therefore � is nonincreasing. To prove the rigidity statement, we observe that, if the
equality �(s1) = �(s2) holds for some 0 ≤ s1 < s2 < ϕ0, then �gϕ ≡ 0 on {s1 ≤ ϕ ≤



2122 S. Borghini, L. Mazzieri

s2}, hence by the analyticity of ϕ we deduce �gϕ ≡ 0 on N . Recalling the definition of
�gϕ, this in turn implies |∇ϕ|g ≡ 1 on N . Substituting this information in the Bochner
formula (3.21) we obtain |∇2ϕ|g ≡ 0, hence we can apply Proposition 3.2 to conclude.

If instead N is an inner region, that is, max∂N |Du|/umax >
√
n, thenψ is as in (2.4),

ϕ ∈ (ϕ0, ϕmax] and �gϕ ≥ 0. Proceeding in the same way as above, we obtain the
opposite monotonicity for �. The rigidity statement is proved in the same way as in the
preceding case. ��

If the limit of �(s) exists as s → ϕ0, then this limit is finite since |∇ϕ|g is bounded
(this is a consequence of Proposition 3.3) and the level sets are compact. Therefore, from
the monotonicity of � we can deduce the following global monotonicity property.

Corollary 3.5. Let (M, g0, u) be a solution to problem (1.6), let N be a connected
component of M\MAX(u) with virtual mass m < mmax, and let g and ϕ be defined

by (3.1), (3.9). Let �N = N ∩ M\N be the possibly stratified hypersurface separating
N from the rest of the manifold M. Then

|�N |g ≤ |∂N |g. (3.30)

Moreover, if the equality holds, then (M, g0, u) is isometric to ageneralizedSchwarzschild–
de Sitter triple (1.14) with mass m.

Proof. If N is outer, then we know that the function �(s), defined for 0 ≤ ϕ < ϕ0, is
monotonically nonincreasing by Proposition 3.4, hence lims→ϕ0 �(s) ≤ �(0). More-
over, from Lemma 2.2, we know that |∇ϕ|g ≤ 1 on ∂N , thus�(0) ≤ ∫

∂N dσg = |∂N |g .
This proves the following

|∂N |g ≥ lim
s→ϕ0

∫

{ϕ=s}
|∇ϕ|g dσg.

It remains to show that the right hand side is greater than or equal to |�N |g . To this end,
for a small value ε > 0, consider a set Sε ⊂ �N such that |Sε|g < ε and �N\Sε is
contained in the top stratum of �N . From Proposition 2.7 and formula (3.10) we know
that g, ϕ are C 2 and

|∇ϕ|2g = |Du|2
ψ2

[
1 − (

r0(m)/ψ
)n]2

→ 1

as we approach the top stratum of �N . In particular, for every value s close enough
to ϕ0, the flow of ∇ϕ gives a diffeomorphism between �N\Sε and an open subset
Vs ⊂ {ϕ = s}. Therefore, from the continuity of g and |∇ϕ|g , we get

lim
s→ϕ0

∫

{ϕ=s}
|∇ϕ|g dσg ≥ lim

s→ϕ0

∫

Vs
|∇ϕ|g dσg = |�N\Sε|g.

Taking the limit as ε → 0 we obtain the wished inequality. The case N inner is proved
in the exact same way. ��
Recalling the definition of g, if we rewrite formula (3.30) in terms of g0, we obtain

|∂N | ≥
[
r±(m)

r0(m)

]n−1

|�N |,
where the sign ± depends on whether N is outer or inner. This proves Theorem 1.6,
stated in the introduction, except for the case where N is a cylindrical region, which will
be studied in Sect. 8.
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4. Integral Identities

In this section we will construct vector fields Y and Yα (see (4.1), (4.12)) having nonneg-
ative divergence in N . These vector fields will be defined in terms of the pseudo-affine
function ϕ, in such a way that it will be clear that Y and Yα vanish if the solution is
isometric to the Schwarzschild–de Sitter triple (1.9). As an application of the Divergence
Theorem, we will then deduce a couple of interesting sharp integral inequalities, whose
equality cases force the rotational symmetry of the solution.

We will need to address the outer and inner case separately, as they need a slightly
different analysis. The outer case will be studied in Sect. 4.1 and the inner case will be
studied in Sect. 4.2.

4.1. Integral identities in the outer regions. We start by considering the case where N
is an outer region, that is, in this subsection we will suppose

max
S∈π0(∂N )

κ(S) = max
∂N

|Du|
umax

<
√
n,

and the pseudo-radial function � = ψ ◦ u is chosen as in (2.4). Consider the vector
field

Y = ∇|∇ϕ|2g + �gϕ∇ϕ. (4.1)

It is worth remarking that, if N is isometric to the outer region of the Schwarzschild–de
Sitter solution, then |∇ϕ|g ≡ 1 and �gϕ ≡ 0, hence Y vanishes pointwise. From the
Bochner formula (3.21) and the equations in (3.13) we compute

divg(Y ) = �g|∇ϕ|2g + divg(�gϕ∇ϕ)

= −
[

(n − 2)u +
ψ

ψ̇
+ 3nψψ̇

]

〈∇ϕ |Y 〉g + 2|∇2ϕ|2g + (�gϕ)2

− 2n(n + 2)uψψ̇ |∇ϕ|2g(1 − |∇ϕ|2g).
Since

uψψ̇ = ψ2ψ̇2
(

u

ψψ̇

)

= −ψ2ψ̇2[1 − (n − 2)mψ−n]

is negative when the chosen determination of ψ is (2.4), we have

divg(Y ) +

[

(n − 2)u +
ψ

ψ̇
+ 3nψψ̇

]

〈∇ϕ |Y 〉g
= 2|∇2ϕ|2g + (�gϕ)2 − 2n(n + 2)uψψ̇ |∇ϕ|2g(1 − |∇ϕ|2g) ≥ 0. (4.2)

Now consider the function

γ = −u2ψ2n−1

ψ̇3
= ψ2(n+1)

u

[
1 − (n − 2)mψ−n]3 (4.3)
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(notice that γ ≥ 0 when � = ψ ◦ u is as in (2.4)). We compute

γ ′

γ
= ψ̇3

u2ψ2n−1 · du
dϕ

·
[

2
uψ2n−1

ψ̇3
+ (2n − 1)

u2ψ2n−2ψ̇

ψ̇3
− 3

u2ψ2n−1ψ̈

ψ̇4

]

= − ψ̇2

uψ2n−2

[

2
uψ2n−1

ψ̇3
+ (2n − 1)

u2ψ2n−2ψ̇

ψ̇3
− 3

u2ψ2n−1ψ̈

ψ̇4

]

= −2
ψ

ψ̇
− (2n − 1)u + 3

uψψ̈

ψ̇2

= −2
ψ

ψ̇
− (2n − 1)u + 3nψψ̇ + 3(n − 1)u + 3

ψ

ψ̇

= (n − 2)u +
ψ

ψ̇
+ 3nψψ̇.

Therefore, formula (4.2) rewrites as

divg(γY ) = γ
[
2|∇2ϕ|2g + (�gϕ)2 − 2n(n + 2)uψψ̇ |∇ϕ|2g

(
1 − |∇ϕ|2g

)]

≥ 0. (4.4)

Integrating (4.4) in N , we obtain the following proposition.

Proposition 4.1. Let (M, g0, u) be a solution to problem (1.6), let N ⊆ M\MAX(u)

be an outer region with virtual mass m = μ(N , g0, u), and let �, g and ϕ be defined
by (2.4), (3.1) and (3.9). For any 0 ≤ s < ϕ0 it holds

∫

∂N
|∇ϕ|g

[

Ricg(νg, νg) − 3

2
nr2+(m)(1 − |∇ϕ|2g)

]

dσg

= − 1

C

∫

N
γ

[

|∇2ϕ|2g +
1

2
(�gϕ)2 − n(n + 2)uψψ̇ |∇ϕ|2g(1 − |∇ϕ|2g)

]

dσg ≤ 0.

(4.5)

where C = C(m, n) = r2n+1+ (m)[1 − (n − 2)mr−n
+ (m)]2 and γ is the function defined

by (4.17). Moreover, if the equality

∫

∂N
|∇ϕ|g

[

Ricg(νg, νg) − 3

2
nr2+(m)(1 − |∇ϕ|2g)

]

dσg = 0, (4.6)

holds, then the solution (M, g0, u) is isometric to a generalized Schwarzschild–de Sitter
triple (1.14) with mass m.

Proof. Let us recall from Sect. 1.1 that u is an analytic function. In particular, also ϕ is
analytic in the interior of N , hence its critical level sets are discrete. It follows that we
can choose 0 < s < S < ϕ0, with s arbitrarily close to zero and S arbitrarily close to ϕ0
such that both s and S are regular values for ϕ. Integrating divg(γY ) on {s ≤ ϕ ≤ S}
and using the Divergence Theorem we obtain
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∫

{s≤ϕ≤S}
divg(γY )dσg =

∫

{ϕ=S}
γ (S)

〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
dσg

−
∫

{ϕ=s}
γ (s)

〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
dσg. (4.7)

First of all, we notice that it holds

lim
S→ϕ0

γ (S)

∫

{ϕ=S}

〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
dσg = 0. (4.8)

In fact, using formulæ (3.10), (3.12) and (3.13) to translate the integrand in terms of
u, g0, we find

γ
〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g

= γ

( 〈∇|∇ϕ|2g | ∇ϕ〉g
|∇ϕ|g + �gϕ |∇ϕ|g

)

= γ |∇ϕ|g
[
2∇2ϕ(νg, νg) + �gϕ

]

= ψ2n

ψ̇
|Du|

[

− 2D2u(ν, ν) − 2
ψ̇

uψ

(

n − 1 + n
ψψ̇

u

)

|Du|2 + n

(

1 − ψ̇2

u2
|Du|2

)]

,

where ν = Du/|Du|, νg = ∇ϕ/|∇ϕ|g = ψ ν are the unit normals to {ϕ = S}, which
exist everywhere because {ϕ = S} is a regular level set. Since |∇ϕ|2g = (ψ̇2/u2)|Du|2 ≤
1 by Proposition 3.3, we deduce that the limit of the term in square bracket as S → ϕ0
(or equivalently u → umax) is bounded from above. Therefore, in order to prove (4.8),
it is enough to show that

lim
t→1−

∫

{u=t}∩N

1

ψ̇
|Du| dσ = 0.

But this can be done proceeding exactly as in the proof of [14, Theorem 4.4], via a simple
argument using the coarea formula and the facts that (ψ̇2/u2)|Du|2 ≤ 1 and ψ̇ → +∞
as u → umax. Therefore, taking the limit as S → ϕ0 of (4.21), we deduce

∫

{ϕ=s}
γ (s)

〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
dσg = −

∫

{s≤ϕ<ϕ0}
divg(γY )dσg ≤ 0, (4.9)

where in the last inequality we have used (4.4). Now we compute the integral on the left
hand side. Using the equations in (3.13), we obtain

1

ψ̇

〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g

= 2
∇2ϕ(∇ϕ,∇ϕ)

|∇ϕ|g + �gϕ|∇ϕ|g

= |∇ϕ|g
[

− 2

(n − 2)u + (ψ/ψ̇)
Ricg(νg, νg) +

(

1 − 2
u − (ψ/ψ̇)

(n − 2)u + (ψ/ψ̇)

)

�gϕ

]

,
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and taking the limit as s → 0, since u → 0, ψ → r+(m) and ψ̇ → 0, we get

lim
s→0

[
1

ψ̇

〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g

]

|{ϕ=s}

=
{

|∇ϕ|g
[

− 2

r+(m)
Ricg(νg, νg) + 3nr+(m)

(
1 − |∇ϕ|2g

)]}

|∂N
. (4.10)

Moreover, recalling from (2.2) the relation between ψ , ψ̇ and u, we find

lim
s→0

(ψ̇γ )|{ϕ=s} = − lim
s→0

(
u2

ψ̇2
ψ2n−1

)

|{ϕ=s}

= − lim
s→0

{
ψ2n+1[1 − (n − 2)mψ−n]2

}

|{ϕ=s}

= − r2n+1+ (m)[1 − (n − 2)mr−n
+ (m)]2. (4.11)

Taking the limit of (4.22) as s → 0 and using the information given by (4.23) and (4.24),
we obtain te desired inequality (4.5).

To prove the rigidity statement, we start by observing that, if the equality (4.6) holds,
then necessarily the right-hand side of (4.5) is null. In particular, |∇ϕ|g ≡ 1 on N .
Substituting this information in the Bochner formula (3.21) we obtain |∇2ϕ|g ≡ 0,
hence we can apply Proposition 3.2 to conclude. ��

4.2. Integral identities in the inner regions. In this subsection, we deal with the case in
which N is an inner region, that is,

max
S∈π0(∂N )

κ(S) = max
∂N

|Du|
umax

>
√
n,

and the pseudo-radial function � = ψ ◦ u is defined by (2.4). This case is slightly more
complicated than the outer one, and requires a generalization of the computations of the
previous subsection. Let

Yα = ∇|∇ϕ|2g + α�gϕ∇ϕ, (4.12)

where α ∈ R. In analogy with the outer case discussed in the previous subsection, we
notice that Yα has been chosen in such a way that it vanishes pointwise if N is the inner
region of a Schwarzschild–de Sitter solution. From the Bochner formula (3.21) and the
equations in (3.13) we compute

divg(Yα) +

[

(n − 2)u +
ψ

ψ̇
+ 3nψψ̇

]

〈∇ϕ |Yα 〉g

= 2|∇2ϕ|2g + α(�gϕ)2 + nψ2ψ̇2
[

n(α − 1)(α + 2) − 2(n + α + 1)
u

ψψ̇

]

|∇ϕ|2g(1 − |∇ϕ|2g).
In order for the term 2|∇2ϕ|2g + α(�gϕ)2 to be positive, we want α ≥ −2/n. Recalling

u

ψψ̇
= −[1 − (n − 2)mψ−n],
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we have

divg(Yα) +

[

(n − 2)u +
ψ

ψ̇
+ (α + 2)nψψ̇

]

〈∇ϕ |Yα 〉g

= 2|∇2ϕ|2g + α(�gϕ)2 + nψ2ψ̇2
[

n(nα + 2)(α + 1) − 2(n + α + 1)(n − 2)
m

ψn

]

|∇ϕ|2g(1 − |∇ϕ|2g). (4.13)

The term in square brackets is positive if and only if

ψn

m
≥ 2(n − 2)

n + α + 1

(nα + 2)(α + 1)
. (4.14)

Since the term on the right hand side goes to zero as α → ∞, there exists an α big
enough so that

rn−(m)

m
= 2(n − 2)

n + α + 1

(nα + 2)(α + 1)
. (4.15)

Notice that the value of α that satisfies (4.15) is greater than or equal to 1 (in fact, if
we set α = 1 in (4.14) we have ψn ≥ (n − 2)m, which is never satisfied on N ). If
we choose α as in (4.15), we have that the square bracket above is positive for any
ψ ∈ [r−(m),

(
(n − 2)m

)1/n]. In particular, for that α we have

divg(Yα) +

[

(n − 2)u +
ψ

ψ̇
+ (α + 2)nψψ̇

]

〈∇ϕ |Yα 〉g ≥ 0, (4.16)

on the whole N . Now we choose

γ = uα+1ψnα+n−α

ψ̇α+2
= ψnα+n+2

u

[
1 − (n − 2)mψ−n]α+2 ≥ 0, (4.17)

(notice that γ ≥ 0 when � = ψ ◦ u is as in (2.4)). We compute

γ ′

γ
= ψ̇α+2

uα+1ψnα+n−α
· du
dϕ

·
[

(α + 1)
uαψnα+n−α

ψ̇α+2
+ (nα + n − α)

uα+1ψnα+n−α−1ψ̇

ψ̇α+2

− (α + 2)
u2ψnα+n−αψ̈

ψ̇α+3

]

= − ψ̇α+1

uαψnα+n−α−1

[

(α + 1)
uαψnα+n−α

ψ̇α+2
+ (nα + n − α)

uα+1ψnα+n−α−1ψ̇

ψ̇α+2

− (α + 2)
u2ψnα+n−αψ̈

ψ̇α+3

]

= −(α + 1)
ψ

ψ̇
− (nα + n − α)u + (α + 2)

uψψ̈

ψ̇2

= −(α + 1)
ψ

ψ̇
− (nα + n − α)u + (α + 2)nψψ̇ + (α + 2)(n − 1)u + (α + 2)

ψ

ψ̇

= (n − 2)u +
ψ

ψ̇
+ (α + 2)nψψ̇.
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From formulæ (4.13), (4.16) we deduce

divg(γYα) = 2|∇2ϕ|2g + α(�gϕ)2

+ nψ2ψ̇2
[

n(nα + 2)(α + 1) − 2(n + α + 1)(n − 2)
m

ψn

]

|∇ϕ|2g(1 − |∇ϕ|2g) ≥ 0. (4.18)

Integrating (4.18) on N , we obtain the following statement.

Proposition 4.2. Let (M, g0, u) be a solution to problem (1.6), let N ⊆ M\MAX(u)

be an inner region with virtual mass m = μ(N , g0, u), and let �, g and ϕ be defined
by (2.4), (3.1) and (3.9). For any 0 ≤ s < ϕ0 it holds

∫

∂N
|∇ϕ|g

[

Ricg(νg, νg) − α + 2

2
nr2−(m)(1 − |∇ϕ|2g)

]

dσg

= − 1

C

∫

N
γ

[

|∇2ϕ|2g +
α

2
(�gϕ)2

+ ψψ̇

(
1

2
n(nα + 2)(α + 1) − (n + α + 1)(n − 2)

m

ψn

)

|∇ϕ|2g�gϕ

]

dσg ≤ 0,

(4.19)

where α ≥ 1 is the solution of equation (4.15), γ is the function defined by (4.17) and
C = C(α,m, n) = r (α+1)n+1

− (m)[1 − (n − 2)mr−n− (m)]α+1. Moreover, if the equality

∫

∂N
|∇ϕ|g

[

Ricg(νg, νg) − α + 2

2
nr2−(m)(1 − |∇ϕ|2g)

]

dσg = 0, (4.20)

holds, then the solution (M, g0, u) is isometric to a generalized Schwarzschild–de Sitter
triple (1.14) with mass m.

Proof. Let us recall from Sect. 1.1 that u is an analytic function. In particular, also ϕ

is analytic in the interior of N , hence its critical level sets are discrete. It follows that
we can choose ϕ0 < S < s < ϕmax, with S arbitrarily close to ϕ0 and s arbitrarily
close to ϕmax such that both s and S are regular values for ϕ. Integrating divg(γYα) on
{S ≤ ϕ ≤ s} and using the Divergence Theorem we obtain

∫

{S≤ϕ≤s}
divg(γYα)dσg =

∫

{ϕ=s}
γ (s)

〈
Yα

∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
dσg

−
∫

{ϕ=S}
γ (S)

〈
Yα

∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
dσg. (4.21)

First of all, with analogous computations to the ones employed in the proof of Proposi-
tion 4.1, we obtain

lim
S→ϕ0

γ (S)

∫

{ϕ=S}

〈
Yα

∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
dσg = 0.
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Therefore, taking the limit as S → ϕ0 of (4.21), we deduce

∫

{ϕ=s}
γ (s)

〈
Yα

∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
dσg =

∫

{ϕ0<ϕ≤s}
divg(γYα)dσg ≥ 0, (4.22)

where in the last inequality we have used (4.18). Now we compute the integral on the
left hand side. Using the equations in (3.13), we obtain

1

ψ̇

〈
Yα

∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g

= 2
∇2ϕ(∇ϕ,∇ϕ)

|∇ϕ|g + �gϕ|∇ϕ|g

= |∇ϕ|g
[

− 2

(n − 2)u + (ψ/ψ̇)
Ricg(νg, νg) +

(

α − 2
u − (ψ/ψ̇)

(n − 2)u + (ψ/ψ̇)

)

�gϕ

]

,

and taking the limit as s → ϕmax, since u → 0, ψ → r−(m) and ψ̇ → 0, we get

lim
s→ϕmax

[
1

ψ̇

〈
Yα

∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g

]

|{ϕ=s}

=
{

|∇ϕ|g
[

− 2

r−(m)
Ricg(νg, νg) + (α + 2)nr−(m)

(
1 − |∇ϕ|2g

)]}

|∂N
. (4.23)

Moreover, recalling from (2.2) the relation between ψ , ψ̇ and u, we find

lim
s→ϕmax

(ψ̇γ )|{ϕ=s} = lim
s→ϕmax

(
uα+1

ψ̇α+1ψα+1
ψ(α+1)n+1

)

|{ϕ=s}

= lim
s→ϕmax

{
ψ(α+1)n+1[1 − (n − 2)mψ−n]α+1

}

|{ϕ=s}

= r (α+1)n+1
− (m)[1 − (n − 2)mr−n− (m)]α+1. (4.24)

Taking the limit of (4.22) as s → ϕmax and using (4.23) and (4.24), we obtain the desired
inequality (4.19).

The rigidity statement is proved in the same way as in Proposition 4.1. If the equality
in (4.20) holds, then necessarily the right hand side of (4.19) is null. In particular,
|∇ϕ|g ≡ 1 on N . Substituting this information in the Bochner formula (3.21) we obtain
|∇2ϕ|g ≡ 0, hence we can apply Proposition 3.2 to conclude. ��

5. Area Bounds

Section 5.1 is devoted to the proof of the inequalities in Theorems 1.4 and 1.5 for outer
and inner regions. The proof of the corresponding rigidity statements will be discussed
in Sect. 6, whereas the cylindrical case will be addressed in Sect. 8. In Sect. 5.2 we will
discuss some area bounds for the hypersurface separating our region from the rest of the
manifold. In particular, we will recover Corollary 1.7.
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5.1. Area bounds for the horizons. Let N be a connected component of M\MAX(u),
let μ = μ(N , g0, u) be its virtual mass and let S ⊆ ∂N be an horizon with maximum
surface gravity. We now follow [25] (see also [42, Section 4]) to prove area bounds for
the horizon S. We start by noticing that, if we define g, �, ϕ as usual with respect to the
mass m, the definitions are chosen in such a way that

|∇ϕ|2g(p) =
∣
∣
∣
∣
∣

Du

ψ
[
1 − (n − 2)mψ−n

]

∣
∣
∣
∣
∣

2

(p) = |Du|2(p)
W (u(p))

,

where W (t) is the constant value of |Du|2 on the level set {u = t} ∩ M± of the
Schwarzschild–de Sitter solution, where of course the sign ± depends on whether we
are on an outer or inner region.

From Lemma 2.2 we have |∇ϕ|g = 1 on S, whereas Proposition 3.3 tells us that
|∇ϕ|g ≤ 1 on the whole N . In other words, we have |Du|2 ≤ W (u) on the whole N
and the equality holds on S. Let now p ∈ S and γ : [0, ε) → R be a geodesic such that
γ (0) = p and γ ′(0) = ν, where ν is the unit normal to S pointing inside N . Applying
[5, (11)] in N we have

|Du|2 ◦ γ (s) = W (0)
[
1 + (Ric(ν, ν) − n)s2 +O(s4)

]

= W (0)

[

1 +

(
n(n − 3)

2
− RS

2

)

s2 +O(s4)

]

, (5.1)

where in the second identity we have used the Gauss-Codazzi equation and the fact that
the horizon S is totally geodesic. Of course we can apply the same formula on the model
solution, obtaining the same expansion with R∂M± in place of RS . Since |Du|2 ≤ W as
observed above, necessarily we have RS ≥ R∂M± . In other words, we have proven the
following:

Theorem 5.1. Let (M, g0, u) be a solution to problem (1.6), let N ⊆ M\MAX(u) be
a region with virtual mass m = μ(N , g0, u). Let also S ⊂ ∂N be an horizon with
maximum surface gravity. Then

• If N is outer, it holds

RS ≥ (n − 1)(n − 2)r−2
+ (m).

• If N is inner, it holds

RS ≥ (n − 1)(n − 2)r−2− (m).

Integrating the inequalities in Theorem 5.1 on S, we obtain the following formula
∫

S

RS

(n − 1)(n − 2)
dσ ≥ r−2± (m)|S|. (5.2)

This gives a particularly nice result in the case n = 3.

Theorem 5.2. Let (M, g0, u) be a 3-dimensional solution to problem (1.6), and let N ⊆
M\MAX(u) be a region with virtual mass m = μ(N , g0, u). Let also S ⊂ ∂N be an
horizon with maximum surface gravity in N. Then S is diffeomorphic to S2 and it holds

|S| ≤ 4πr2±(m),

where the sign ± depends on whether N is an outer or inner region.
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Proof. Substituting n = 3 in inequality (5.2) and using the Gauss-Bonnet formula, we
immediately obtain

4πχ(S) ≥ 2r−2± (m) |S|.
In particular, χ(S) has to be positive, hence S is necessarily a sphere and we obtain the
thesis. ��

5.2. Area bounds for the disconnecting hypersurface. Combining the results of this sec-
tion with Corollary 3.5, it is straightforward to obtain an area bound on the hypersurface
�N that separates N from the rest of the manifold.

Theorem 5.3. Let (M, g0, u) be a solution to problem (1.6), let N ⊆ M\MAX(u) be
a region of M with connected boundary ∂N and with virtual mass m < mmax. Let

�N = N ∩ M\N be the hypersurface separating N from the rest of the manifold M.

• If N is an outer region, then

|�N | ≤
(∫

∂N

R∂N

(n − 1)(n − 2)
dσ

)
rn−1
0 (m)

rn−3
+ (m)

, (5.3)

and, if the equality holds, then (M, g0, u) is isometric to a generalized Schwarzschild–
de Sitter triple (1.14) with mass m.
• If N is an inner region, then

|�N | ≤
(∫

∂N

R∂N

(n − 1)(n − 2)
dσ

)
rn−1
0 (m)

rn−3− (m)
, (5.4)

and, if the equality holds, then (M, g0, u) is isometric to a generalized Schwarzschild–
de Sitter triple (1.14) with mass m.

Proof. Let us study the casewhere N is outer, the inner case being completely analogous.
From Corollary 3.5, recalling the definitions of g, ϕ, we get

r1−n
0 (m)|�N | = |�N |g ≤ |∂N |g = r1−n

+ (m)|∂N |.
Now we conclude using formula (5.2). ��

This result becomes particularly nice in dimension n = 3. Combining Theorem 5.2
with Corollary 3.5 we immediately obtain Corollary 1.7, which we recall here for the
reader’s convenience.

Corollary 5.4. Let (M, g0, u) be a 3-dimensional solution to problem (1.6), let N ⊆
M\MAX(u) be a region with connected boundary ∂N and with virtual mass m < mmax.

Let �N = N ∩ M\N be the hypersurface separating N from the rest of the manifold
M. Then

|�N | ≤ 4π r20 (m). (5.5)

Moreover, if the equality holds, then (M, g0, u) is isometric to the Schwarzschild–de
Sitter triple (1.9) with mass m.
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6. Balancing Inequalities and Rigidity of Area Bounds

Here we translate the integral identities obtained in Sect. 4 in terms of u and g0. Some
computations will lead to the proof of the rigidity statements in Theorem 1.5 in the
case where N is outer (Theorem 6.3) and inner (Theorem 6.7). As a consequence of the
Gauss-Bonnet formula we will then deduce Theorem 1.4 (see Theorems 6.2 and 6.6).
We will also prove some more general statements, in the cases where N has more than
one horizon.

6.1. Area bounds for outer regions. Here we focus on the case where our region N is
outer and translate Proposition 4.1, proved in Sect. 4.1, in terms of u, g0. To do that, it is
useful to let A : ∂N → (0, 1] be the locally constant function defined for every x ∈ ∂N
by

A(x) = |Du|
max∂N |Du| (x). (6.1)

Theorem 6.1. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆ M\MAX(u)

be an outer region with virtual mass m = μ(N , g0, u). Then it holds
∫

∂N
A3 dσ ≤

(∫

∂N
A

R∂N

(n − 1)(n − 2)
dσ

)

r2+(m)

− n(n − 4)

(n − 1)(n − 2)

(∫

∂N
A
(
1 − A2

)
dσ

)

r2+(m).

where R∂N is the scalar curvature of the metric induced by g0 on ∂N and A is the step
function defined in (6.1). Moreover, if the equality holds, then the solution (M, g0, u) is
isometric to a generalized Schwarzschild–de Sitter triple (1.14) with mass m.

Proof. It is enough to translate formula (4.5) in terms of u and g0, using the relations
developed in Sect. 3.1. In particular, let us notice that

|∇ϕ|2g = ψ̇2

u2
|Du|2, and max

∂N
|∇ϕ|g = 1,

where the second identity follows from Lemma 2.2. Therefore

( ψ̇2

u2

)

|∂N
max
∂N

|Du|2 = 1,

which in turn implies |∇ϕ|2g = |Du|2/max∂N |Du|2. Now we translate Ricg(νg, νg)
in terms of Ric(ν, ν), where ν = Du/|Du| and νg = ∇ϕ/|∇ϕ|g = ψν are the unit
normals to the level sets of u with respect to g0 and g. Recalling the equations in
systems (1.6), (3.13), using also formula (3.12) and the fact that ψ̇ → 0 as u → 0, we
obtain that on ∂N = {u = 0} ∩ N it holds

Ricg(νg, νg)

= −
[

(n − 2)u +
ψ

ψ̇

]

∇2ϕ(νg, νg) −
(

u − ψ

ψ̇

)

�gϕ
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= ψ2 D
2u(ν, ν)

u
+

[

(n − 1)u
ψ

ψ̇
+ nψ2

]
ψ̇2

u2
|Du|2 + nψ2

(

1 − ψ̇2

u2
|Du|2

)

= ψ2
[

Ric(ν, ν) − n + n
ψ̇2

u2
|Du|2 + (n − 1)

u

ψψ̇

ψ̇2

u2
|Du|2 + n

(

1 − ψ̇2

u2
|Du|2

)]

= ψ2
[

Ric(ν, ν) + (n − 1)
u

ψψ̇

|Du|2
max∂N |Du|2

]

.

Substituting the above computations inside formula (4.5), and recalling that ψ = r+(m)

on ∂N (because N is an outer region and ψ is defined as specified in (2.4)), we obtain
∫

∂N

|Du|
[

Ric(ν, ν) + (n − 1)
u

ψψ̇
−
(
3

2
n + (n − 1)

u

ψψ̇

)(

1 − |Du|2
max∂N |Du|2

)]

dσ

≥ 0,

where we recall that the equality holds if and only if the solution is isometric to the
Schwarzschild–de Sitter solution. Notice that the above formula is slightly imprecise,
as, rigorously, the quantity u/(ψψ̇) is not defined on ∂N , because ψ̇ → 0 as u → 0.
However, from formula (2.2) that quantity can be explicitated as

u

ψψ̇
= − [

1 − (n − 2)mψ−n] ,

which has a finite value on the boundary, as ψ = r+(m) on ∂N . Moreover, using the
Gauss-Codazzi equation we have 2Ric(ν, ν) = R − R∂N = n(n − 1) − R∂N , and
substituting in the inequality above we get
∫

∂N
|Du|

[

R∂N − (n − 1)(n − 2)
(
1 + 2mr−n

+ (m)
)
]

dσ

≥ −
∫

∂N
|Du|

[(
n + 2 + 2(n − 1)(n − 2)mr−n

+ (m)
)(

1 − |Du|2
max∂N |Du|2

)]

dσ.

Moreover, since r+(m) satisfies 1 − r2+(m) − 2mr2−n
+ (m) = 0, we have

1 + 2m r−n
+ (m) = r−2

+ (m),

hence the integral inequality above becomes
∫

∂N
A

[

R∂N − (n − 1)(n − 2)r−2
+ (m)

]

dσ

≥ −
∫

∂N
A

[(
(n + 2) + 2(n − 1)(n − 2)mr−n

+ (m)
) (

1 − A2
) ]

dσ.

where A is the function defined in (6.1). The thesis follows from this inequality with
some straightforward algebra. ��
Notice that A ≤ 1 on ∂N by definition, hence for n ≥ 4 Theorem 6.1 gives the following
formula

∫

∂N
A3 dσ ≤

(∫

∂N
A

R∂N

(n − 1)(n − 2)
dσ

)

r2+(m).

Instead, in dimension n = 3, we can make Theorem 6.1 more explicit by means of
the Gauss-Bonnet formula.
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Theorem 6.2. Let (M, g0, u) be a 3-dimensional solution to problem (1.6) and let N ⊆
M\MAX(u) be an outer region with virtual mass m = μ(N , g0, u). Then

∑p
i=0

[(
κi
κ0

)2 − 3
2r

2
+(m)

(
1 −

(
κi
κ0

)2)
]

κi |Si |
∑p

i=0 κi
≤ 4πr2+(m)

where ∂N = S0 � · · · � Sp and κ0 ≥ · · · ≥ κp are the surface gravities of S0, . . . , Sp.
Moreover, if the equality holds then ∂N is connected and (M, g0, u) is isometric to the
Schwarzschild–de Sitter solution with mass m.

Proof. For n = 3, the formula in Corollary 6.1 rewrites as
p∑

i=0

∫

Si
κi

[

RSi − 2r−2
+ (m) +

[
5 + 4mr−3

+ (m)
]
(

1 − κ2
i

κ2
0

)]

dσ ≥ 0.

Since 1 − r2+(m) − 2mr−1
+ (m) = 0 by definition, we compute 5 + 4mr−3

+ (m) = 3 +
2r−2

+ (m). Moreover, from the Gauss-Bonnet formula, we have
∫

Si
RSi dσ = 4πχ(Si )

for all i = 0, . . . , p. From [5, Theorem B], we also know that each Si is diffeomorphic
to a sphere, hence χ(Si ) = 2. Substituting these pieces of information inside the above
formula, with some manipulations we arrive to the thesis. ��

The local formula proven in Theorem 6.2 may be compared with Theorem 1.8 by
Ambrozio [5]. Although our result has the virtue of being sharp for the Schwarzschild–
de Sitter solutions, the formula that we obtain is much more cumbersome. On the other
hand, our results become particularly nice when the boundary ∂N is connected. In fact,
in this case, the constancy of the quantity |Du| on the whole boundary allows to obtain
the following stronger results.

Corollary 6.3. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆ M\MAX(u)

be an outer region with virtual mass m. If ∂N is connected, then it holds

|∂N | ≤
(∫

∂N

R∂N

(n − 1)(n − 2)
dσ

)

r2+(m).

Moreover, if the equality is fulfilled, then the solution (M, g0, u) is isometric to a gen-
eralized Schwarzschild–de Sitter triple (1.14) with mass m.

Proof. The result is an immediate consequence of Corollary 6.1 and the fact that |Du|
is constant on ∂N . ��
Theorem 6.4. Let (M, g0, u) be a 3-dimensional solution to problem (1.6) and let N ⊆
M\MAX(u) be an outer region with virtual mass m. If ∂N is connected, then ∂N is
diffeomorphic to S

2 and it holds

|∂N | ≤ 4πr2+(m).

Moreover, if the equality holds, then the solution (M, g0, u) is isometric to the
Schwarzschild–de Sitter triple (1.9) with mass m.

Proof. Substituting n = 3 in Corollary 6.3 and using the Gauss-Bonnet formula, we
immediately obtain

4πχ(∂N ) ≥ 2r−2
+ (m) |∂N |.

In particular, χ(∂N ) has to be positive, hence ∂N is necessarily a sphere and we obtain
the thesis. ��
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6.2. Area bounds for inner regions. Here we proceed as in Sect. 6.1 to prove analogous
integral identities when N is an inner region.

Theorem 6.5. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆ M\MAX(u)

be an inner region with virtual mass m = μ(N , g0, u). Then it holds

∫

∂N
A3 dσ ≤

(∫

∂N
A

R∂N

(n − 1)(n − 2)
dσ

)

r2−(m)

− n[n − (α + 3)]
(n − 1)(n − 2)

(∫

∂N
A
(
1 − A2

)
dσ

)

r2−(m),

where R∂N is the scalar curvature of the metric induced by g0 on ∂N, α ≥ 1 is the
solution of (4.15) and A is the step function defined in (6.1). Moreover, if the equality
holds, then the solution (M, g0, u) is isometric to a generalized Schwarzschild–de Sitter
triple (1.14) with mass m.

Proof. As in the proof of Corollary 6.1, it is enough to translate formula (4.19) in terms
of u and g0, using the relations developed in Sect. 3.1. Again one starts by noticing that

|∇ϕ|2g = ψ̇2

u2
|Du|2, and max

∂N
|∇ϕ|g = 1,

where the second identity follows from Lemma 2.2. In particular we have

( ψ̇2

u2

)

|∂N
max
∂N

|Du|2 = 1,

which in turn implies |∇ϕ|2g = |Du|2/max∂N |Du|2. Translating also Ricg in terms of
Ric, with similar computations to the ones done in the proof of Corollary 6.1, from
formula (4.5) we obtain

∫

∂N

|Du|
[

− Ric(ν, ν) − (n − 1)
u

ψψ̇
+

(
α + 2

2
n + (n − 1)

u

ψψ̇

)(

1 − |Du|2
max∂N |Du|2

)]

dσ ≥ 0,

where we recall that the equality holds if and only if the solution is isometric to the
Schwarzschild–de Sitter solution). We remark that the above formula is not completely
rigorous, as the quantity u/(ψψ̇) is not defined on ∂N , because ψ̇ → 0 as u → 0.
However, from formula (2.2) that quantity can be explicitated as

u

ψψ̇
= − [

1 − (n − 2)mψ−n] ,

which has a finite value on the boundary, as ψ = r−(m) on ∂N (because N is an
inner region and ψ is defined as specified in (2.4)). Moreover, using the Gauss-Codazzi
equation we have 2Ric(ν, ν) = R − R∂N = n(n − 1) − R∂N , hence we can rewrite the
above inequality as
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∫

∂N
|Du|

[

R∂N − (n − 1)(n − 2)
(
1 + 2mr−n− (m)

)
]

dσ

≥ −
∫

∂N

[(
αn + 2 + 2(n − 1)(n − 2)mr−n− (m)

)(

1 − |Du|2
max∂N |Du|2

)]

dσ.

We also recall that r−(m) satisfies 1 − r2−(m) − 2mr2−n− (m) = 0, hence we easily
compute

1 + 2m r−n− (m) = r−2− (m).

Substituting in the integral inequality above we obtain
∫

∂N
A

[

R∂N − (n − 1)(n − 2)r−2− (m)

]

dσ

≥
∫

∂N

[(
(αn + 2) + 2(n − 1)(n − 2)mr−n− (m)

) (
1 − A2

) ]

dσ,

where A is the step function defined in (6.1). The thesis follows with some easy
algebra. ��
Since A ≤ 1 on ∂N by definition, for n ≥ 4 Theorem 6.5 gives the following formula

∫

∂N
A3 dσ ≤

(∫

∂N
A

R∂N

(n − 1)(n − 2)
dσ

)

r2−(m).

Concerning dimension n = 3, the above result can be made more explicit using the
Gauss-Bonnet formula.

Theorem 6.6. Let (M, g0, u) be a 3-dimensional solution to problem (1.6) and let N ⊆
M\MAX(u) be an inner region with virtual mass m = μ(N , g0, u). Then

∑p
i=0

[(
κi
κ0

)2 − 3
2αr

2−(m)
(
1 −

(
κi
κ0

)2)
]

κi |Si |
∑p

i=0 κi
≤ 4πr2−(m)

whereα ≥ 1 is the solution to equation (4.15), ∂N = S0�· · ·�Sp and κ0 ≥ · · · ≥ κp are
the surface gravities of S0, . . . , Sp. Moreover, if the equality holds then ∂N is connected
and (M, g0, u) is isometric to the Schwarzschild–de Sitter solution with mass m.

Proof. For n = 3, the formula in Corollary 6.5 rewrites as

p∑

i=0

∫

Si
κi

[

RSi − 2r−2− (m) +
(
3α + 2 + 4mr−3− (m)

)
(

1 − κ2
i

κ2
0

)]

dσ ≥ 0.

Since 1−r2−(m)−2mr−1− (m) = 0 by definition, we compute 3α+2+4mr−3− (m) = 3α+
2r−2− (m). Moreover, from the Gauss-Bonnet formula, we have

∫

Si
RSi dσ = 4πχ(Si )

for all i = 1, . . . , p. From [5, Theorem B], we also know that each Si is diffeomorphic
to a sphere, hence χ(Si ) = 2. Substituting this information inside the above formula,
with some manipulations we arrive to the thesis. ��
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As in the outer case, when ∂N is connected, the constancy of the quantity |Du| on the
whole boundary allows to obtain stronger results.

Corollary 6.7. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆ M\MAX(u)

be an inner region with virtual mass m. If ∂N is connected, then it holds

|∂N | ≤
(∫

∂N

R∂N

(n − 1)(n − 2)
dσ

)

r2−(m).

Moreover, if the equality is fulfilled, then the solution (M, g0, u) is isometric to a gen-
eralized Schwarzschild–de Sitter triple (1.14) with mass m.

Proof. The result is an immediate consequence of Corollary 6.5 and the fact that |Du|
is constant on ∂N . ��
Theorem 6.8. Let (M, g0, u) be a 3-dimensional solution to problem (1.6) and let N ⊆
M\MAX(u) be an inner region with virtual mass m. If ∂N is connected, then ∂N is
diffeomorphic to S

2 and it holds

|∂N | ≤ 4πr2−(m).

Moreover, if the equality holds, then the solution (M, g0, u) is isometric to the
Schwarzschild–de Sitter triple (1.9) with mass m.

Proof. Substituting n = 3 in Corollary 6.7 and using the Gauss-Bonnet formula, we
immediately obtain

4πχ(∂N ) ≥ 2r−2− (m) |∂N |.
In particular, χ(∂N ) has to be positive, hence ∂N is necessarily a sphere and we obtain
the thesis. ��

7. Black Hole Uniqueness Theorem

In this section we will prove the Black Hole Uniqueness Theorem 1.9 stated in Sect. 1.5,
in the case where m+ < mmax. The case m+ = mmax requires a different analysis, as
the model solution will be the Nariai triple (1.11), and it will be studied in Sect. 8. The
hypothesis m+ < mmax allows us to use the metric g and the functions �,ϕ defined in
the previous sections by formulæ (3.1), (2.1), (3.9). We recall the definitions here, for
the reader convenience. The function � = ψ ◦ u is defined as

� : M −→ [
r−(m), r+(m)

]

p �−→ �(p) :=
⎧
⎨

⎩

ψ+(u(p)) if p ∈ M+,

ψ−(u(p)) if p ∈ M−,

r0(m) if p ∈ MAX(u),

where we recall that ψ+ : M+ → [r+(m), r0(m)] and ψ− : M− → [r0(m), r−(m)] are
defined implicitly as the two determinations of the equation

u2 = 1 − ψ2 − 2mψ2−n .
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In turn, the metric g and the function ϕ are defined as

ϕ(p) =
∫ r+(m)

�(p)

dt

t
√
1 − t2 − 2mt2−n

g = g0
�2 .

We start by stating a lemma on the regularity of the pseudo-radial function along the
hypersurface separating the two regions M+ and M−.

Lemma 7.1. Let (M, g0, u) be a 2-sided solution to problem (1.6), let � be the global
pseudo-radial function defined by (2.5) with respect to a parameter m ∈ [0,mmax) and
let g, ϕ be defined by (3.1) and (3.9). Then, at each point in the top stratum of �, we
have that g, � and ϕ are C 3 and that |∇ϕ|g = 1.

Proof. Proposition 2.7 tells us that � is C 3 at each point of the top stratum of �.
The regularity of g and ϕ follows immediately from their definition. Finally, recalling
formula (2.15), we get

|∇ϕ|2g = |Du|2
ψ2

[
1 − (n − 2)mψ−n

]2 = 1.

This concludes the proof. ��
Lemma 7.1 will play an important role in the proof of the following theorem. which

will be a crucial step in the proof of Theorem 1.9.

Theorem 7.2. Let (M, g0, u) be a 3-dimensional 2-sided solution to problem (1.6), and
let � ⊆ MAX(u) be the stratified hypersurface separating M+ and M−. Let also

m+ = μ(M+, g0, u), and m− = μ(M−, g0, u)

be the virtual masses of M+ and M−, respectively. Then

m− ≤ m+.

Moreover, if m+ = m− then � is a C∞ hypersurface and it holds

H = 2
√

m−2/3
+ − 3, (7.1)

h =
√

m−2/3
+ − 3 g�

0 , (7.2)

R� = 2m−2/3
+ , (7.3)

Ric(ν, ν) = 0, (7.4)

where ν is the g0-unit normal to� pointing towards M+,H and h are the mean curvature
and second fundamental form of � with respect to ν, R� is the scalar curvature of the
metric g�

0 induced on � by g0.
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Proof. If m+ = mmax the first part of the statement is trivial, whereas the second part
will be proved in Sect. 8. Therefore, from now on we focus on the case m+ < mmax.
To prove the first part of the statement let us suppose that m+ < m− and then deduce
from this a contradiction. Fix a valuem ∈ [m+,m−] and define the global pseudo-radial
function � = ψ ◦ u with respect to this parameter. We recall from Lemma 7.1 that the
function � is C 3 in a neighborhood of the points in the top stratum of �. In turn, also
the pseudo-affine function ϕ defined by (3.9) is C 3 in a neighborhood of �, and so is
the metric g = g0/�2. In particular, the scalar curvature Rg is continuous, and from
formula (3.16) we deduce that

lim
x→p, x∈M+

ψ̇(1 − |∇ϕ|2g) = lim
x→p, x∈M−

ψ̇(1 − |∇ϕ|2g)

for every p in the top stratum of �. As observed in Remark 2, following the proof of
Lemma 2.2 it is easily seen that, since m ∈ [m+,m−], it holds

|∇ϕ|g =
∣
∣
∣
∣

Du

ψ(1 − mψ−3)

∣
∣
∣
∣ ≤ 1

on the whole boundary ∂M = ∂M+ � ∂M−. We can then apply the Minimum Principle
to the elliptic inequality (3.24) on M+ and M−, as we have done in Proposition 3.3. This
proves that |∇ϕ|g ≤ 1 on the whole M\MAX(u). Furthermore, we recall that ψ̇ has
positive sign on M− and negative sign on M+. Therefore ψ̇(1 − |∇ϕ|2g) has to change
sign when passing through �, hence

lim
x→p

ψ̇(1 − |∇ϕ|2g) = 0

for every p in the top stratum of �. In particular, �gϕ = 0 and |∇ϕ|g = 1 on
�. Moreover, |∇ϕ|g has a maximum on �, hence ∇|∇ϕ|2g = 0 on �. In particular,
∇2ϕ(νg, νg) = 〈∇ϕ | ∇|∇ϕ|2g〉g/|∇ϕ|2g = 0, where νg = ∇ϕ/|∇ϕ|g = ∇ϕ is the g-
unit normal vector field to �. At the points in the top stratum of �, the mean curvature
Hg of � with respect to g and the normal νg can be computed using formulæ (3.17)
and (3.18). Using the fact that �gϕ = ∇2ϕ(νg, νg) = 0 on �, from (3.18) we deduce

Hg = 0, (7.5)

on�. Translating (7.5) in terms of g0 using (3.20), and recalling that |∇ϕ|g = |ψ̇/u| |Du|
= 1 on �, we obtain

H = 2
umax(m)

r0(m)
= 2

√
m−2/3 − 3. (7.6)

Notice that the formula for H depends on the parameterm, which can be chosen freely in
the range [m+,m−]. But this is a contradiction, as the value of H cannot vary depending
on m but depends only on the geometry of �. This proves that m+ cannot be smaller
than m−.

To prove the second part of the statement, let us define �,ϕ, g with respect to the
parameterm+ = m−.Wehave already observed that�,ϕ and g areC 3 in a neighborhood
of the points of the top stratum of �. We also recall that, as computed above, on the top
stratum of � we have �gϕ = ∇2ϕ(νg, νg) = Hg = 0. Now we choose a point p in the
top stratum of � and we consider an embedding

F0 : B2 → M
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such that �0 = F0(B2) is contained in the top stratum of �. We know from Lemma 7.1
that |∇ϕ|g = 1 at each point in the top stratum of�. Given a small enough number ε > 0

we can use the gradient ∇ϕ to extend the map F0 to a cartesian product [−ε, ε] × B2,
obtaining a new map

F : [−ε, ε] × B2 ↪→ M, (s, θ1, θ2) �→ F(s, θ1, θ2),

satisfying the initial value problem

dF

ds
= ∇ϕ

|∇ϕ|2g
◦ F, F(0, ·) = F0(·).

It is not hard to check that ϕ(F(s, θ1, θ2)) = ϕ0 + s, so that, for all s ∈ [−ε, ε], the
image �s = F(s, B2) belongs to the level set {ϕ = ϕ0 + s}. Let us denote by Cε the
cylinder F([−ε, ε] × B2). Integrating Bochner’s formula on Cε, we obtain

∫

Cε

|∇2ϕ|2gdμg =
∫

Cε

[
1

2
�g|∇ϕ|2g − Ricg(∇ϕ,∇ϕ) − 〈∇ϕ | ∇�gϕ〉g

]

dμg

= 1

2

∫

∂Cε

〈∇|∇ϕ|2g | ng〉gdσg −
∫

Cε

Ricg(∇ϕ,∇ϕ)dμg

+
∫

Cε

(�gϕ)2dμg −
∫

∂Cε

�gϕ〈∇ϕ | ng〉gdσg

where ng is the g-unit outward normal vector field to ∂Cε and in the second equality we
have integrated by parts. We can rewrite the above formula as follows:

1

2ε

∫

Cε

[
|∇2ϕ|2g − (�gϕ)2 + Ricg(∇ϕ,∇ϕ)

]
dμg

= 1

4ε

∫

∂Cε

[
〈∇|∇ϕ|2g | ng〉g − 2�gϕ〈∇ϕ | ng〉g

]
dσg. (7.7)

Let us study in more details the right hand side of this formula. First of all, we notice
that the integrand goes to zero as we approach �0. We also know that ng = ∇ϕ/|∇ϕ|g
on �ε = F(ε, B2) and ng = −∇ϕ/|∇ϕ|g on �−ε = F(−ε, B2). Moreover, from
the second equation in (3.13) it follows that �gϕ is positive on M− and negative on
M+, so that in particular �gϕ > 0 on �ε and �gϕ < 0 on �−ε. Concerning the
function 〈∇|∇ϕ|2g | ∇ϕ〉g , we first notice that it is differentiable since ϕ, g are C 3. We
now distinguish two cases: either its gradient∇〈∇|∇ϕ|2g | ∇ϕ〉g is zero in p or it is not. If
its gradient is zero, this means that the function 〈∇|∇ϕ|2g | ∇ϕ〉g goes to zero at the first
order as we approach p, which in turn implies that 〈∇|∇ϕ|2g | ∇ϕ〉g = o(ε). If instead
∇〈∇|∇ϕ|2g | ∇ϕ〉g(p) �= 0, then up to restrictingCε we can assume∇〈∇|∇ϕ|2g | ∇ϕ〉g �=
0 on the whole Cε. This implies that inside Cε the level sets of 〈∇|∇ϕ|2g | ∇ϕ〉g form a
foliation of regular hypersurfaces, the zero level set corresponding to �0. Since |∇ϕ|g
assumes its maximum value 1 on �0, it is easily seen that 〈∇|∇ϕ|2g | ∇ϕ〉g ≤ 0 on M−
(in particular on �ε) and 〈∇|∇ϕ|2g | ∇ϕ〉g ≥ 0 on M+ (in particular on �−ε). In other
words, we have 〈∇|∇ϕ|2g | ng〉g ≤ 0 on �ε and on �−ε. In particular, in both cases we
have shown that the integrand on the right hand side over �ε ∪ �−ε is bounded from
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above by a function going to zero faster than ε as we approach p. We also notice that
theH n−1-measure of ∂Cδ\(�−ε ∪�ε) is of the order of ε. Therefore, using the coarea
formula on the left hand side, equation (7.7) gives

1

2ε

∫ ε

−ε

[∫

�s

1

|∇ϕ|g
(
|∇2ϕ|2g − (�gϕ)2 + Ricg(∇ϕ,∇ϕ)

)
dσg

]

ds < δ, (7.8)

where δ → 0 as ε → 0. Since ϕ is C 3, we can use the mean value property on the
function

s �→
∫

�s

1

|∇ϕ|g
(
|∇2ϕ|2g − (�gϕ)2 + Ricg(∇ϕ,∇ϕ)

)
dσg

to deduce that there exists a value χ ∈ (−ε, ε) such that
∫

�χ

1

|∇ϕ|g
(
|∇2ϕ|2g − (�gϕ)2 + Ricg(∇ϕ,∇ϕ)

)
dσg

= 1

2ε

∫ ε

−ε

[∫

�s

1

|∇ϕ|g
(
|∇2ϕ|2g − (�gϕ)2 + Ricg(∇ϕ,∇ϕ)

)
dσg

]

ds < δ.

Recalling that �gϕ = ∇2ϕ(νg, νg) = 0 on �, from the first equation in (3.13) we find
Ricg(νg, νg) = 0 on �. Therefore, taking the limit as ε → 0 of the above inequality,
we get

∫

�0

|∇2ϕ|2g dσg ≤ 0.

It follows that ∇2ϕ ≡ 0 on �0, which we recall is a neighborhood of p in �. Therefore,
from formula (3.19) we also deduce that hg ≡ 0 at each point in the top stratum of �.
Since the points in the top stratum of � are dense in �, it follows that hg ≡ 0 at each
point where hg is well defined, that is, at each point where� is aC 2 hypersurface. Since
later we will show that � is C∞, a posteriori we will have that hg ≡ 0 on the whole �.

Substituting formula (7.6) in (3.19), we also find 0 = |hg|2g = m2/3
+ |h̊|2. Therefore,

h̊ = 0 and it follows

h = H

2
g�
0 =

√
m−2/3 − 3 g�

0 .

Nowwepass to compute the scalar curvature of�.Wehaveproven above thatRicg(νg, νg)
= |hg|g = Hg = 0 on the top stratum of �. Moreover, from (3.16) we have Rg = 2 on
�. Therefore, from the Gauss-Codazzi equation we find

R�
g = Rg − 2Ricg(νg, νg) − |hg|2g + H2

g = 2. (7.9)

Noticing that R�
g = m2/3

+ R� , where R� is the scalar curvature of the metric induced
by g0 on �, from identity (7.9) we obtain

R� = m−2/3
+ R�

g = 2m−2/3
+ .

Finally, recalling that D2u(ν, ν) = −3umax on �, we obtain

Ric(ν, ν) = D2u(ν, ν)

u
+ 3〈ν | ν〉 = 0.
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This concludes the proof of the formulæ stated in Theorem 7.2.
It remains to show that, under the hypothesis m+ = m−, the hypersurface � is

necessarily C∞. We start by recalling from Proposition 2.8 that � is a C 1 hypersurface,
so that in particular its unit normal vector is defined everywhere. Let us start by computing
the derivative of the normal vector ν at a point p of the top stratum of �. Let ν, X2, X3
be an orthonormal basis of TpM . Differentiating the identity |ν|2 = 1 we deduce that

0 = 〈Dνν | ν〉,
0 = 〈DXi ν | ν〉 = 〈DνXi | ν〉 = −〈Xi |Dνν〉, for i = 2, 3,

at each point in the top stratum of �. This shows that Dνν = 0. Moreover, from our
previous computations we get

〈DXi ν | X j 〉 = h(Xi , X j ) =
√
m−2/3 − 3 δi j .

Now that we know the components of Dν on the top stratum, since the points in the
top stratum are dense in �, it is clear that the limit of Dν exists when we approach
every point of �. It follows that the normal vector is differentiable, that is, � is C 2.
Differentiating again the formulæ

〈DXi ν | ν〉 = 0, 〈DXi ν | X j 〉 =
√
m−2/3 − 3 δi j , and Dνν = 0,

we easily get D2ν ≡ 0 on the top stratum. From this it follows that Dkν ≡ 0 on the
top stratum for every k ≥ 2, hence the limit of all the derivatives of ν exist when we
approach every point of �. This proves that the normal vector is smooth, which in turn
implies that � is C∞. ��
The next result follows combining Theorem 7.2 with Corollary 3.5, in order to obtain
lower bound on |∂M+|.
Proposition 7.3. Let (M, g0, u) be a 2-sided solution to problem (1.6), and let � ⊆
MAX(u) be the stratified hypersurface separating M+ and M−. Let also

m+ = μ(M+, g0, u), m− = μ(M−, g0, u)

be the virtual masses of M+ and M−. Suppose m+ = m− < mmax. Then it holds

∫

�

R�

2
dσ = |�|

m2/3
+

≤ |∂M+|
r2+(m+)

.

Moreover, if the equality holds in the latter inequality, then (M, g0, u) is isometric to a
generalized Schwarzschild–de Sitter solution (1.14) with mass m+ = m−.

Proof. The proof is just a collection of the previous results. From formula (7.3), we get

m2/3
+

∫

�

R�

2
dσ = |�|.

We also recall that |∇ϕ|g → 1 as we approach �, as proven in Theorem 7.2 above.
Therefore, from Corollary 3.5 we deduce

|�|g ≤ |∂M+|g,
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where we recall that the metric g is defined by g = g0/�2. In particular, it holds

|∂M+|g = |∂M+|
r2+(m+)

, |�|g = |�|
m2/3

+

.

Putting together these formulæ we easily obtain the thesis. ��
If we also assume the hypothesis that ∂M+ is connected, we can use Corollary 6.3 to
obtain a bound from above on ∂M+. Combining this bound with the bound from below
given by Proposition 7.3, we obtain the chain of inequalities

∫

�

R�

2
dσ ≤ |∂M+|

r2+(m+)
≤

∫

∂M+

R∂M+

2
dσ. (7.10)

Combining this inequality with the Gauss-Bonnet formula, we obtain the following
uniqueness theorem.

Theorem 7.4. Let (M, g0, u) be a 3-dimensional 2-sided solution to problem (1.6), and
let � ⊆ MAX(u) be the stratified hypersurface separating M+ and M−. Let also

m+ = μ(M+, g0, u), m− = μ(M−, g0, u)

be the virtual masses of M+ and M−. If the following conditions are satisfied

• mass compatibility m+ = m− < mmax,
• connected cosmological horizon ∂M+ is connected,

then (M, g0, u) is isometric to the Schwarzschild–de Sitter triple (1.9) with mass m+ =
m−.

Proof. The chain of inequalities (7.10) tells us that
∫

�

R� dσ ≤
∫

∂M+

R∂M+ dσ,

and the equality holds if and only if (M, g0, u) is isometric to the Schwarzschild–de
Sitter solution (1.9). Applying the Gauss-Bonnet formula to both sides of the above
inequality, we obtain

4π
k∑

i=1

χ(�i ) ≤ 4πχ(∂M+).

We recall from Theorem 6.4 that if ∂M+ is connected then ∂M+ is diffeomorphic to a
sphere, hence we get

k∑

i=1

χ(�i ) ≤ 2, (7.11)

where �1, . . . , �k are the connected components of �. Moreover, the equality holds
in (7.11) if and only if (M, g0, u) is equivalent to the Schwarzschild–de Sitter solution.

On the other hand, from formula (7.3) we get

R� = 2m−2/3
+ > 0,
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hence
k∑

i=1

χ(�i ) =
∫

�

R�dσ > 0.

Since � is a separating surface, � is necessarily orientable, therefore its Euler charac-
teristic is necessarily an even number. Since χ(�) > 0, it follows χ(�) ≥ 2. Therefore,
the equality must hold in (7.11) and this triggers the rigidity statement. ��

8. The Cylindrical Case

In this section we deal with the case where the virtual mass of a region N is equal
to mmax. We notice that the metric and the static potential of the Schwarzschild–de
Sitter solution (1.9) collapse as the mass m approaches mmax. Nevertheless, it is well
known (see for instance [17,18,21,31]) that, if one rescales the static potential and the
coordinates during the limit process in order to avoid singularities, then the limit of the
Schwarzschild–de Sitter solution as the mass m approaches mmax can be seen to be the
Nariai triple (1.11). Therefore, in this section, the Nariai triple will play the role of the
reference model. While the following computations are different from the ones shown
in the preceding sections, the ideas and the conclusions will be analogue.

Normalization 2. According to the Nariai solution (1.11), throughout all this section,
the static potential u is normalized in such a way that umax := maxM (u) = 1.

8.1. Conformal reformulation. Let (M, g0, u) be a solution to system (1.6), and let N
be a connected component ofM\MAX(u) such that max∂N |Du| = √

n. On N , consider
the metric

g = n

n − 2
g0. (8.1)

We want to reformulate problem (1.6) in terms of g.

Remark 6. Wenotice that this conformal change is analogue to the conformal change (3.1)
(in fact, the value of the pseudo-radial function� defined in Sect. 2.1 goes to

√
(n − 2)/n

as m → mmax). In this case, the conformal change (8.1) is just a rescaling of the metric,
hence it is not really necessary for the following analysis. However, we have preferred to
introduce it, since it allows for an easier comparison between the following computations
and the ones shown in the previous sections for m �= mmax.

We fix local coordinates in M and we denote by �
γ
αβ,Gγ

αβ the Christoffel symbols

of g, g0. It is clear that �
γ
αβ = Gγ

αβ . Denote by ∇,�g the Levi-Civita connection and
the Laplace–Beltrami operator of g. For every z ∈ C∞, we compute

∇2
αβ z = D2

αβ z (8.2)

�gz = n − 2

n
�z (8.3)

Moreover, since the Ricci tensor is invariant under rescaling, we have Ricg = Ric.
Consider now the function

ϕ = arcsin(u)√
n − 2

. (8.4)
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Since u is normalized in such a way that umax = 1, the function ϕ is well defined, is zero
on ∂N and goes to π/(2

√
n − 2) when we approach MAX(u). Moreover, the gradient

and hessian of ϕ satisfy the following identities

|∇ϕ|2g = 1

n

|Du|2
1 − u2

, (8.5)

∇2ϕ = 1√
n − 2

√
1 − u2

[

D2u +
u

1 − u2
du ⊗ du

]

. (8.6)

Some more calculations show that, with respect to (ϕ, g), the equations in (1.6) rewrites
in N as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ricg =
√
n − 2

tan(
√
n − 2 ϕ)

∇2ϕ − (n − 2)dϕ ⊗ dϕ + (n − 2) g, in N

�gϕ = −√
n − 2 tan(

√
n − 2ϕ)

(
1 − |∇ϕ|2g

)
, in N

ϕ = 0, on ∂N

ϕ = ϕ0 := π

2
√
n − 2

on N ∩ MAX(u).

(8.7)

We observe that, since g is just a rescaling of g0, we have Ricg = Ric. In particular the
scalar curvature of g is constant and more precisely

Rg = (n − 1)(n − 2). (8.8)

We can also prove the analogue of Proposition 3.2.

Proposition 8.1. Let (M, g0, u) be a solution to problem (1.6), and let N be a cylindrical
region. Let g = [n/(n − 2)]g0 and let ϕ be the pseudo-affine function defined by (8.4).

If ∇2ϕ ≡ 0 and |∇ϕ|g ≡ 1 on N, then (M, g0, u) is covered by a generalized Nariai
solution (1.15).

Proof. Proceeding as in the proof of Proposition 3.2 one shows that (N , g0, u) is iso-
metric to a region (Mn

+ , gn0 , u
n) of a Nariai solution (1.11), that we denote in this proof

as (Mn, gn0 , u
n). We then distinguish two cases, depending on whether the hypersurface

�N = N ∩ MAX(u) is two-sided or one-sided.

• If �N is two sided, then one can proceed exactly as in Proposition 3.2 to prove that
the isometry extends beyond �N . Therefore, (M, g0, u) is isometric to the Nariai
solution (1.11).

• If � is one sided then, reasoning as in Proposition 4.1, we have that (M, g0, u) =
(N , g0, u) is isometric to (M

n
+, g

n
0 , u

n)/ ∼, where ∼ is a relation on the points of

MAXn(u) = {p ∈ Mn : un(p) = umax} ⊂ ∂M
n
+.

induced by an involution ofMAXn(u). Notice thatMAXn(u), with themetric induced
by gn0 , is isometric to an Einstein manifold (E, gE ), hence the relation ∼ gives rise
to an isometric involution ι∼ : E → E . But then one can check that

(M
n
+, g

n
0 , u

n)/ ∼= (Mn, gn0 , u
n)/ι
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where ι : Mn → Mn is the involution defined, for any (r, x) ∈ [0, π ] × E = Mn ,
by

ι(r, x) = (π − r, ι∼(x)).

In particular, (M
n
+, g

n
0 , u

n)/ ∼ is covered by the Nariai solution (1.11) with fiber E ,
and so the same holds for our initial manifold (M, g0, u) = (N , g0, u).

This concludes the proof. ��
Proceeding as in Sect. 3.2, from identity (8.6) one can also prove the following

formulæ for the second fundamental form and mean curvature of a level set {ϕ = s}

hg |∇ϕ|g = 1√
n − 2

|Du|√
1 − u2

h, Hg |∇ϕ|g =
√
n − 2

n

|Du|√
1 − u2

H. (8.9)

Furthermore, starting from the Bochner formula and using the equations in (8.7), we
find

�g|∇ϕ|2g − √
n − 2

[
1 + 2 tan2(

√
n − 2 ϕ)

tan(
√
n − 2 ϕ)

]

〈∇|∇ϕ|2g | ∇ϕ〉g
= 2|∇2ϕ|2g − 2(n − 2) tan2(

√
n − 2 ϕ) |∇ϕ|2g (1 − |∇ϕ|2g). (8.10)

Let w = β(1 − |∇ϕ|2g), where β = cos(
√
n − 2 ϕ). With computations analogous

to the ones shown in Sect. 3.3, we arrive to the following equation

�gw −
√
n − 2

tan(
√
n − 2 ϕ)

〈∇ϕ | ∇w〉 − (n − 2) tan2(
√
n − 2 ϕ)

[
(n + 2)|∇ϕ|2g + (n − 2)

]
w

= −2 cos(
√
n − 2 ϕ)

[

|∇2ϕ|2g − (�gϕ)2

n

]

≤ 0. (8.11)

In particular, we can apply a Minimum Principle to find the following analogue of
Proposition 3.3.

Proposition 8.2. Let (M, g0, u) be a solution to problem (1.6), let N be a connected
component of M\MAX(u) with virtual mass m = mmax, and let g, ϕ be defined
by, (8.1), (8.4). Then

|∇ϕ|g ≤ 1

on the whole N.
Moreover, if |∇ϕ|g = 1 at a point in the interior of N , then |∇ϕ|g ≡ 1 on the whole

N and (M, g0, u) is isometric to a generalized Nariai solution (1.15).

Proof. The proof is completely analogue to the proof of Proposition 3.3 for the case
m �= mmax, so we will not give all the details.

Since max∂N |Du| = √
n, from (8.5) we deduce w ≥ 0 on ∂N . Moreover, again

from (8.5), and Lemma 2.5, we have that w goes to zero as we approach MAX(u). In
particular, since cos(

√
n − 2ϕ) → 0 as ϕ → ϕ0, we have w → 0 as we approach

MAX(u). In particular, for any ε > 0 we can find a small neighborhood �ε of MAX(u)
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such that w ≥ −ε on ∂(N\�ε). The thesis follows applying the Minimum Principle in
N\�ε, and then letting ε and the volume of �ε go to zero.

Now we pass to the proof of the second part of the statement. Let x be a point in
the interior of N such that |∇ϕ|g(x) = 1. In particular it holds w(x) = 0 and we have
proved above that w ≥ 0 on the whole N . Applying the Strong Minimum Principle on
an open set � containing x , we obtain w ≡ 0, or equivalently |∇ϕ|g ≡ 1, on �. From
the arbitrariness of � we deduce |∇ϕ|g ≡ 1 on N , and plugging this information inside
the Bochner formula (8.10), we obtain |∇2ϕ|g ≡ 0. We can now invoke Proposition 8.1
to conclude. ��

Now we consider the function

�(s) =
∫

{ϕ=s}
|∇ϕ|g dσg, (8.12)

which is defined on s ∈ [0, ϕ0], where we recall that we have set ϕ0 = π/(2
√
n − 2).

Proceeding as in the proof of Proposition 3.4, as an application of Proposition 8.2 one
can prove the following monotonicity result for �.

Proposition 8.3. Let (M, g0, u) be a solution to problem (1.6), let N ⊆ M\MAX(u) be
a cylindrical region, and let �(s) be the function defined by (8.12), with respect to the
metric g and the pseudo-affine function ϕ defined by (8.1), (8.4). Then the function �(s)
is monotonically nonincreasing. Moreover, if �(s1) = �(s2) for two different values
0 ≤ s1 < s2 < ϕ0, then the solution (M, g0, u) is isometric to a generalized Nariai
triple (1.15).

From Proposition 2.7 and formula (2.14) we also know that |∇ϕ|g goes to 1 as we
approach the points where MAX(u) is an analytic hypersurface. Proceeding as in the
proof of Corollary 3.5 we obtain the following.

Corollary 8.4. Let (M, g0, u) be a solution to problem (1.6), let N ⊆ M\MAX(u) be a

cylindrical region, and let g and ϕ be defined by (8.1), (8.4). Let also �N = N ∩ M\N
be the hypersurface separating N from the rest of the manifold M. Then

|∂N |g ≥ |�N |g.
Moreover, if the equality holds, then (M, g0, u) is isometric to a generalized Nariai
triple (1.15).

In order to make use of Corollary 8.4, we need some information on the set MAX(u)

and on the behavior of ∇ϕ at the limit ϕ → ϕ0. In Sect. 8.4 we will see how to recover
some more explicit information from Corollary 8.4 in the case where our solution is
2-sided according to Definition 4.

8.2. Integral identities. Consider the vector field Y = ∇|∇ϕ|2g +�gϕ∇ϕ. As in Sect. 4,
this vector field has been chosen because it vanishes if N is a region of themodel solution
(the Nariai triple (1.11), in this case) and because it can be used to construct a vector
field with nonnegative divergence. Starting from the Bochner formula (8.10), we easily
compute

divg(Y ) − √
n − 2

[
1 + 3 tan2(

√
n − 2ϕ)

tan(
√
n − 2ϕ)

]

〈∇ϕ | Y 〉g = 2|∇2ϕ|2g + (�gϕ)2 ≥ 0.
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If we introduce the function

γ = cos3(
√
n − 2 ϕ)

sin(
√
n − 2 ϕ)

, (8.13)

the identity above can be rewritten as

divg(γ Y ) = γ
[
2 |∇2ϕ|2g + (�gϕ)2

]
≥ 0. (8.14)

As an application of the Divergence Theorem, we obtain the following result, which is
the analogue of Propositions 4.1 and 4.2.

Proposition 8.5. Let (M, g0, u) be a solution to problem (1.6), let N ⊆ M\MAX(u) be
a cylindrical region, and let g and ϕ be defined by (8.1) and (8.4). For any 0 ≤ s < ϕ0
it holds

∫

∂N
|∇ϕ|g

[

Ricg(νg, νg) − 3

2
(n − 2)(1 − |∇ϕ|2g)

]

dσg

= −√
n − 2

∫

N
γ

[

|∇2ϕ|2g +
1

2
(�gϕ)2

]

≤ 0, (8.15)

where γ is the function defined by (8.13). Moreover, if the equality
∫

∂N
|∇ϕ|g

[

Ricg(νg, νg) − 3

2
(n − 2)(1 − |∇ϕ|2g)

]

dσg = 0, (8.16)

holds, then the solution (M, g0, u) is covered by a generalized Nariai triple (1.15).

Proof. Let us recall from Sect. 1.1 that u is an analytic function. In particular, also ϕ is
analytic in the interior of N , hence its critical level sets are discrete. It follows that we
can choose 0 < s < S < ϕ0, with s arbitrarily close to 0 and S arbitrarily close to ϕ0
such that both s and S are regular values for ϕ. Integrating divg(γY ) on {s ≤ ϕ ≤ S}
and using the Divergence Theorem we obtain

∫

{S≤ϕ≤s}
divg(γY )dσg =

∫

{ϕ=S}
γ (S)

〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
dσg

−
∫

{ϕ=s}
γ (s)

〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
dσg. (8.17)

First of all, we notice that it holds

lim
S→ϕ0

γ (S)

∫

{ϕ=S}

〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
dσg = 0. (8.18)

In fact, using formulæ (8.5), (8.6) and (8.7) to translate the integrand in terms of u, g0,
we find

γ
〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
= γ

( 〈∇|∇ϕ|2g | ∇ϕ〉g
|∇ϕ|g + �gϕ |∇ϕ|g

)

= γ |∇ϕ|g
[
2∇2ϕ(νg, νg) + �gϕ

]
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=
√
n − 2

n

√
1 − u2

u
|Du|

[
2

n

(

D2u(ν, ν) +
u

1 − u2
|Du|2

)

−
(

1 − 1

n

|Du|2
1 − u2

) ]

,

where ν = Du/|Du|, νg = ∇ϕ/|∇ϕ|g = √
(n − 2)/n ν are the unit normals to {ϕ =

S} which exist everywhere because {ϕ = S} is a regular level set. Since |∇ϕ|2g =
(1/n)|Du|2/(1 − u2) ≤ 1 by Proposition 8.2, we deduce that the limit of the term in
square bracket as S → ϕ0 (or equivalently u → 1) is bounded from above. Therefore,
in order to prove (8.18), it is enough to show that

lim
u→1

∫

{u=t}
(1 − u2) |Du| dσ = 0.

But this can be done proceeding exactly as in the proof of [14, Theorem 4.4], via a
simple argument using the coarea formula and the fact that u → 1 and |Du| → 0 (more
precisely |Du|2/(1 − u2) is bounded) as u → 1. Therefore, taking the limit as S → ϕ0
of (8.17), we deduce

∫

{ϕ=s}
γ (s)

〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g
dσg = −

∫

{s≤ϕ<ϕ0}
divg(γY )dσg ≤ 0, (8.19)

where in the last inequality we have used (8.14). Now we compute the integral on the
left hand side. Using the equations in (8.7), we obtain

1

tan(
√
n − 2 ϕ)

〈
Y
∣
∣
∣

∇ϕ

|∇ϕ|g
〉

g

= 1

tan(
√
n − 2 ϕ)

[

2
∇2ϕ(∇ϕ,∇ϕ)

|∇ϕ|g + �gϕ|∇ϕ|g
]

= |∇ϕ|g
[

2√
n − 2

Ricg(νg, νg) − 3
√
n − 2

(
1 − |∇ϕ|2g

) ]

. (8.20)

Moreover, recalling the definition (8.13) of γ , we find

lim
s→0

[
tan(

√
n − 2 ϕ) γ

]

|{ϕ=s} = lim
s→0

[
cos2(

√
n − 2 ϕ)

]

|{ϕ=s}
= 1. (8.21)

Taking the limit of (8.19) as s → 0 and using (8.20) and (8.21), we obtain the desired
inequality (8.15).

Concerning the rigidity statement, if the equality in (8.16) holds, then necessarily
the right hand side of (8.15) is null. In particular, |∇ϕ|g ≡ 1 on N . Substituting this
information in the Bochner formula (8.10) we obtain |∇2ϕ|g ≡ 0, hence we can apply
Proposition 8.1 to conclude. ��

8.3. Proof of the area bounds. The area bounds for cylindrical regions is proven in
the exact same way as in the outer and inner case discussed in Sect. 5.1. Namely, one
compares formula (5.1) with the gradient estimate proven in Proposition 8.2, obtaining
that the scalar curvature of ∂N is necessarily greater that or equal to the one of the
sections of the Nariai solution.
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Theorem 8.6. Let (M, g0, u) be a solution to problem (1.6) of dimension n ≥ 3, and let
N ⊆ M\MAX(u) be a cylindrical region. Then

R∂N ≥ n(n − 1). (8.22)

We pass now to discuss the consequences of Proposition 8.5 proved above. First of
all, translating it in terms of u and g0, we obtain the following result.

Corollary 8.7. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆ M\MAX(u)

be a cylindrical region. Then it holds
∫

∂N
A
[
R∂N − n(n − 1) + 3n

(
1 − A2

)]
dσ ≥ 0,

where R∂N is the scalar curvature of the metric induced by g0 on ∂N. Moreover, if
the equality holds, then the solution (M, g0, u) is covered by a generalized Nariai
triple (1.15).

Proof. It is enough to translate formula (8.15) in terms of u and g0, using the relations
developed in Sect. 8.1. In particular, let us notice that

|∇ϕ|2g = 1

n

|Du|2
1 − u2

, and max
∂N

|∇ϕ|g = 1,

where the second identity follows from Lemma 2.2. Therefore

1

n
max
∂N

|Du|2 = 1,

which in turn implies |∇ϕ|2g = |Du|2/max∂N |Du|2. Since we have already observed
that Ricg = Ric and νg = √

(n − 2)/n ν, from formula (8.15) we obtain

∫

∂N
|Du|

[

−1

n
Ric(ν, ν) +

3

2

(

1 − |Du|2
max∂N |Du|2

)]

dσ ≥ 0,

where we remark that the equality holds if and only if the solution is covered by the
Nariai triple.

Using theGauss-Codazzi equationwe have 2Ric(ν, ν) = R−R∂N = n(n−1)−R∂N .
Substituting in the inequality above we easily obtain the thesis. ��

In dimension n = 3, the above formula can be made more explicit using the Gauss-
Bonnet formula.

Theorem 8.8. Let (M, g0, u) be a 3-dimensional solution to problem (1.6) and let N ⊆
M\MAX(u) be a cylindrical region. Then

∑p
i=0

[(
κi
κ0

)2 − 1
2

(
1 −

(
κi
κ0

)2)
]

κi |Si |
∑p

i=0 κi
≤ 4π

3

where ∂N = S0 � · · · � Sp and κ0 ≥ · · · ≥ κp are the surface gravities of S0, . . . , Sp.
Moreover, if the equality holds then ∂N is connected and (M, g0, u) is covered by the
Nariai triple (1.11).
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Proof. For n = 3, the formula in Corollary 8.7 rewrites as

p∑

i=0

∫

Si
κi

[

RSi − 6 + 9

(

1 − κ2
i

κ2
0

)]

dσ ≥ 0.

From the Gauss-Bonnet formula, we have
∫

Si
RSi dσ = 4πχ(Si ) for all i = 0, . . . , p.

From [5, Theorem B], we also know that each Si is diffeomorphic to a sphere, hence
χ(Si ) = 2. Substituting these pieces of information inside formula above, with some
manipulations we arrive to the thesis. ��

In the case when ∂N is connected, the constancy of the quantity |Du| on the whole
boundary allows to obtain the following stronger results.

Corollary 8.9. Let (M, g0, u) be a solution to problem (1.6) and let N ⊆ M\MAX(u)

be a cylindrical region. If ∂N is connected, then it holds
∫

∂N
R∂N dσ ≥ n(n − 1)|∂N |.

Moreover, if the equality holds, then the solution (M, g0, u) is covered by a generalized
Nariai triple (1.15).

Proof. The result is an immediate consequence of Corollary 8.7 and the fact that |Du|
is constant on ∂N . ��
Theorem 8.10. Let (M, g0, u) be a 3-dimensional solution to problem (1.6) and let
N ⊆ M\MAX(u) be a cylindrical region. If ∂N is connected, then ∂N is diffeomorphic
to S2 and it holds

|∂N | ≤ 4π

3
.

Moreover, if the equality holds, then the solution (M, g0, u) is covered by the Nariai
triple (1.11).

Proof. Substituting n = 3 in Corollary 8.9 and using the Gauss-Bonnet formula, we
immediately obtain

4πχ(∂N ) ≥ 6 |∂N |.
In particular, χ(∂N ) has to be positive, hence ∂N is necessarily a sphere and we obtain
the thesis. ��

We now pass to investigate the hypersurface �N that separates N from the rest of the
manifold. Combining the results of this section with Corollary 8.4, it is straightforward
to obtain the following area bound.

Theorem 8.11. Let (M, g0, u) be a solution to problem (1.6), let N be a cylindrical

regionwith smooth compact boundary ∂N. Let�N = N∩M\N be the possibly stratified
hypersurface separating N from the rest of the manifold M. Then

|�N | ≤
∫

∂N

R∂N

n(n − 1)
dσ, (8.23)

and, if the equality holds, then (M, g0, u) is covered by a generalizedNariai triple (1.15).
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Proof. Let us study the casewhere N is outer, the inner case being completely analogous.
From Corollary 8.4, recalling the definitions of g, ϕ, we get

(
n

n − 2

)n−1
2 |�N | = |�N |g ≤ |∂N |g =

(
n

n − 2

)n−1
2 |∂N |.

Now we conclude using Corollary 8.9. ��
In particular, in dimension n = 3, applying Gauss Bonnet Theorem to the right hand

side of formula (8.23), we obtain the cylindrical case of Corollary 1.7, which we recall
here for the reader’s convenience.

Corollary 8.12. Let (M, g0, u) be a 3-dimensional solution to problem (1.6), let N ⊆
M\MAX(u) be a cylindrical region with connected boundary ∂N. Let�N = N ∩M\N
be the possibly stratified hypersurface separating N from the rest of the manifold M.
Then

|�N | ≤ 4π

3
. (8.24)

Moreover, if the equality holds, then (M, g0, u) is covered by a generalized Nariai
triple (1.14).

8.4. Black hole uniqueness. In this section we will complete the proof of Theorem 1.9,
started in Theorem 7.4, by discussing the missing case m+ = mmax. To this end, on
M = M+ ∪ M− we define the metric g as in (8.1), and the function ϕ as follows

ϕ =

⎧
⎪⎪⎨

⎪⎪⎩

arcsin(u)√
n − 2

, on M+,

π − arcsin(u)√
n − 2

, on M−.

(8.25)

The function ϕ defined here is equal to 0 on ∂M+, it is equal to ϕ0 = π/(2
√
n − 2)

on � = M+ ∩ M− and is equal to ϕmax = π/
√
n − 2 on ∂M−. Moreover, it is easily

checked that ϕ, g satisfy the equations in (8.7) on M+ and M−. In particular, the elliptic
inequality (8.11) holds on every connected component of M+ and M−, and this leads
to the following global estimate for the gradient of ϕ (which is defined a priori only on
M− ∪ M+ and not on �).

Proposition 8.13. Let (M, g0, u) be a 2-sided solution to problem (1.6) such that the
virtual masses m+ = μ(M+, g0, u), m− = μ(M−, g0, u) satisfy m+ = m− = mmax,
and let g, ϕ be defined by (8.1), (8.25). Then |∇ϕ|g ≤ 1 on the whole M\MAX(u).

Proof. The proof is an easy adjustment of the proof of Proposition 3.3. First of all, we
notice that our function ϕ satisfies formula (8.5) hence, thanks to the assumption, we
have

|∇ϕ|g = 1

n
|Du|2 ≤ 1

on the whole boundary ∂M = ∂M+ � ∂M−. The thesis follows applying the Minimum
Principle to the elliptic inequality (8.11) on each connected component of M+ and M−.
��
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A second important remark is that the regularity of
√
umax − u implies the regularity of

ϕ.

Proposition 8.14. Let (M, g0, u) be a 2-sided solution to problem (1.6), and let ϕ be
defined by (8.25). Then the function ϕ is C 3 in a neighborhood of each point in the top
stratum of �.

Proof. From the definition of ϕ, it is clear that it is enough to show that arcsin(u) is
C 3. This is an easy exercise of analysis starting from the expansion (2.9) for u proven
before. ��
As an easy consequence of the above results, we obtain the following analogue of
Theorem 7.2.

Theorem 8.15. Let (M, g0, u) be a 3-dimensional 2-sided solution to problem (1.6),
and let � ⊆ MAX(u) be the stratified hypersurface separating M+ and M−. Suppose
that the virtual masses of M+ and M− satisfy

μ(M+, g0, u) = μ(M−, g0, u) = mmax.

Then � is a C∞ hypersurface and it holds

H = 0, (8.26)

h = 0, (8.27)

R� = 6, (8.28)

Ric(ν, ν) = 0, (8.29)

where ν is the g0-unit normal to� pointing towards M+,H and h are the mean curvature
and second fundamental form of � with respect to ν, R� is the scalar curvature of the
metric g�

0 induced on � by g0.

Proof. This proof follows the scheme of the proof of Theorem 7.2. Define ϕ and g as
in (8.25) and (8.1), consider a point p ∈ � and consider a neighborhood � � p such
that � ∩ � is contained in the top stratum of �. From Proposition 8.14 we know that
ϕ is C 3 in �. Therefore �gϕ is continuous in �, thus from the second formula in (8.7)
we deduce that also tan(ϕ)(1 − |∇ϕ|2g) can be extended to a continuous function along
� ∩ �. We also notice that |∇ϕ|g ≤ 1 everywhere by Proposition 8.13, whereas tan(ϕ)

has positive sign on M+ and negative sign on M−. Therefore, tan(ϕ)(1 − |∇ϕ|2g) has
to change sign when passing through �, hence tan(ϕ)(1 − |∇ϕ|2g) = 0 on � ∩ �. In
particular,�gϕ = 0 and |∇ϕ|g = 1 on�∩�. Furthermore, |∇ϕ|g has amaximumon�,
hence∇|∇ϕ|2g = 0 on�∩�. In particular,∇2ϕ(νg, νg) = 〈∇ϕ | ∇|∇ϕ|2g〉g/|∇ϕ|2g = 0,
where νg = ∇ϕ/|∇ϕ|g = ∇ϕ is the g-unit normal vector field to �, and substituting in
the first formula in (8.7), we obtain Ricg(νg, νg) = 0 on�∩�. The second fundamental
form hg and the mean curvature Hg of � can be computed using formulæ (8.9). Since
�gϕ = ∇2ϕ(νg, νg) = 0 on � ∩ �, from (8.9) we deduce

Hg = 0, (8.30)

on � ∩ �. Proceeding exactly as in Proposition 7.2, one also shows that |hg| ≡ 0 and
that � is C∞.
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Moreover, from the Gauss-Codazzi equation we find

R�
g = Rg − 2Ricg(νg, νg) − |hg|2g + H2

g

= Rg

= 2, (8.31)

where in the last equality we have used from (8.8).
Translating (8.30) in terms of g0 recalling (8.9), and using the fact that |∇ϕ|2g =

(1/3) |Du|2/(1 − u2) = 1 on �, we obtain

H = 0, |h̊|2 = |h|2 = 1

3
|hg|2g = 0.

Finally, noticing that R�
g = R�/3,whereR� is the scalar curvature of themetric induced

by g0 on �, from identity (8.31) we obtain

m2/3
max

(
R� + |h̊|2

)
= R� + |h̊|2

3
= R�

g + |hg|2g = 2.

This concludes the proof. ��
The next result follows combining Propositions 8.3, 8.15 and the results in Sect. 8.3.

Proposition 8.16. Let (M, g0, u) be a 3-dimensional 2-sided solution to problem (1.6),
and let � ⊆ MAX(u) be the stratified hypersurface separating M+ and M−. Suppose
that the virtual masses of M+ and M− satisfy

μ(M+, g0, u) = μ(M−, g0, u) = mmax.

Then it holds

∫

�

R�

6
dσ = |�| ≤ |∂M+|.

Moreover, if the equality holds, then (M, g0, u) is isometric to the Nariai solution (1.11).

Proof. The proof is just a collection of the previous results. From (8.28), we immediately
get

∫

�

R�

6
dσ = |�|.

Since μ(M+, g0, u) = mmax, we have |∇ϕ|2g = (1/3)|Du|2 ≤ 1 on ∂M+. Moreover, we
recall from the proof of Proposition 8.15 that |∇ϕ|g , where g and ϕ are defined by (8.1)
and (8.4) as usual, goes to 1 as we approach�. Therefore, from Corollary 8.4 we obtain

3 |�| = |�|g ≤ |∂M+|g = 3 |∂M+|.
This concludes the proof of the inequality. The rigidity statement follows from the
corresponding rigidity statements in Proposition 8.3. ��
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If we also assume that ∂M+ is connected, then we can combine Proposition 8.16 with
Corollary 8.9 and we obtain the following inequality

∫

�

R� dσ ≤
∫

∂M+

R∂M+ dσ. (8.32)

Combining this inequalitywith theGauss-Bonnet formulawe obtain the following result,
which concludes the proof of the Black Hole Uniqueness Theorem 1.9 by addressing
the cylindrical case.

Theorem 8.17. Let (M, g0, u) be a 3-dimensional 2-sided solution to problem (1.6),
and let � ⊆ MAX(u) be the stratified hypersurface separating M+ and M−. Let also

m+ = μ(M+, g0, u), m− = μ(M−, g0, u)

be the virtual masses of M+ and M−. If the following conditions are satisfied

• mass compatibility m+ = m− = mmax,
• connected cylindrical horizon ∂M+ is connected,

then (M, g0, u) is isometric to the Nariai triple (1.11).

Proof. Inequality (8.32) tells us that
∫

�

R� dσ ≤
∫

∂M+

R∂M+ dσ,

and the equality holds if and only if (M, g0, u) is isometric to the Nariai solution (1.11).
Recalling that � has no conical singularities as proved in Theorem 7.2, applying the
Gauss-Bonnet formula to both sides of the above inequality, we obtain

4π
k∑

i=1

χ(�i ) ≤ 4πχ(∂M+).

We recall from Theorem 8.10 that if ∂M+ is connected then ∂M+ is diffeomorphic to a
sphere, hence we obtain

k∑

i=1

χ(�i ) ≤ 2, (8.33)

where the equality holds if and only if the solution is isometric to the Nariai solution.
On the other hand, in dimension n = 3, formula (8.28) gives

R� = 6.

In particular, again from the Gauss-Bonnet formula, it follows

k∑

i=1

χ(�i ) = 1

4π

∫

�

R�dσ > 0,

but
∑k

i=1 χ(�i ) can only assume even integer values, hence
∑k

i=1 χ(�i ) ≥ 2. Therefore
the equality holds in (8.33), as wished. ��
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23. Chruściel, P.T.: On analyticity of static vacuum metrics at non-degenerate horizons. Acta Phys. Pol. B
36(1), 17–26 (2005)
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