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Abstract: We study the qualitative behavior of nonlinear Dirac equations arising in
quantum field theory on complete Riemannianmanifolds. In particular, we derive mono-
tonicity formulas and Liouville theorems for solutions of these equations. Finally, we
extend our analysis to Dirac-harmonic maps with curvature term.

1. Introduction and Results

In quantum field theory spinors are employed to model fermions. The equations that
govern the behavior of fermions are both linear and nonlinear Dirac equations. A Dirac
equationwith vanishing right hand side describes a freemassless fermion and linearDirac
equations describe free fermions having a mass. However, to model the interaction of
fermions one has to take into account nonlinearities.

In mathematical terms spinors are sections in a vector bundle, the spinor bundle,
which is defined on a Riemannian spin manifold. The spin condition is of topological
nature and ensures the existence of the spinor bundle �M . The mathematical analysis
of linear and nonlinear Dirac equations comes with two kinds of difficulties: First of all,
the Dirac operator is of first order, such that tools like the maximum principle are not
available. Secondly, in contrast to the Laplacian, the Dirac operator has its spectrum on
the whole real line.

Below we give a list of action functionals that arise in quantum field theory. Their
critical points all lead to nonlinearDirac equations. To this end let D be the classicalDirac
operator on a Riemannian spin manifold (M, g) of dimension n and ei an orthonormal
basis of T M . Furthermore, let · be the Clifford multiplication of spinors with tangent
vectors and ωC the complex volume form. Moreover, we fix a hermitian scalar product
on the spinor bundle.

(1) The Soler model [35] describes fermions that interact by a quartic term in the action
functional. In quantumfield theory thismodel is usually studied on four-dimensional
Minkowski space:
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E(ψ) =
∫

M
(〈ψ, Dψ〉 − λ|ψ |2 − μ

2
|ψ |4)dvolg.

(2) The Thirring model [36] describes the self-interaction of fermions in two-
dimensional Minkowski space:

E(ψ) =
∫

M
(〈ψ, Dψ〉 − λ|ψ |2 − μ

2

n∑
i=1

〈ψ, ei · ψ〉〈ψ, ei · ψ〉)dvolg.

(3) The Nambu–Jona-Lasinio model [33] is a model for interacting fermions with chiral
symmetry. It also contains a quartic interaction term and is defined on an even-
dimensional spacetime:

E(ψ) =
∫

M

(〈ψ, Dψ〉 + μ

4
(|ψ |4 − 〈ψ,ωC · ψ〉〈ψ,ωC · ψ〉))dvolg.

Note that thismodel does not have a termproportional to |ψ |2 in the action functional.
(4) The Gross–Neveu model with N flavors [22] is a model for N interacting fermions

in two-dimensional Minkowski space:

E(ψ) =
∫

M
(〈ψ, Dψ〉 − λ|ψ |2 + μ

2N
|ψ |4)dvolg.

The spinors that we are considering here are twisted spinors, more precisely ψ ∈
�(�M ⊗ R

N ).
(5) The nonlinear supersymmetric sigma model in quantum field theory consists of a

map φ between two Riemannian manifolds M and N and a spinor along that map.
Moreover, RN is the curvature tensor on N and /D denotes the corresponding Dirac
operator. The action functional under consideration is

Ec(φ,ψ) =
∫

M
(|dφ|2 + 〈ψ, /Dψ〉 − 1

6
〈RN (ψ,ψ)ψ,ψ〉)dvolg.

The critical points of this functional became known in the mathematics literature
as Dirac-harmonic maps with curvature term. In contrast to the physics literature
this mathematical version of the nonlinear supersymmetric sigma model employs
commuting spinors while in physics anticommuting spinors are used.

In themodels (1)–(4) fromabove the real parameterλ can be interpreted asmass,whereas
the real constant μ describes the strength of interaction. All of the models listed above
lead to nonlinear Dirac equations of the form

Dψ ∼ λψ + μ|ψ |2ψ. (1.1)

Note that in the physics literature Clifford multiplication is usually expressed as matrix
multiplication with γ μ and the complex volume element is referred to as γ 5. In contrast
to the physics literature we will always assume that spinors are commuting, whereas in
the physics literature they are mostly assumed to be Grassmann-valued. For simplicity
we will mainly focus on the Soler model.

Several existence results for equations of the form (1.1) are available: In [23] existence
results for nonlinear Dirac equations on compact spin manifolds are obtained. For n ≥ 4
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existence results for nonlinear Dirac equation with critical exponent on compact spin
manifolds, that is

Dψ = λψ + |ψ | 2
n−1 ψ

with λ ∈ R, have been obtained in [24]. For λ = 0 this equation is known as the spinorial
Yamabe equation. In particular, this equation is interesting for n = 2 since it is closely
related to conformally immersed constant mean curvature surfaces in R

3. Moreover,
existence results for the spinorial Yamabe equation have been obtained on S3 [26] and
on Sn [25] for n ≥ 2. For a spectral and geometric analysis of the spinorial Yamabe
equation we refer to [1]. The regularity of weak solutions of equations of the form (1.1)
can be established with the tools from [37] and [24], Appendix A.

Let us give an overview on the structure and the main results of the article:
In Sect. 2 we study general properties of nonlinear Dirac equations. In particular, we

recall the construction for identifying spinor bundles belonging to different metrics and
use it to derive the stress-energy tensor for the Soler model.

In Sect. 3 we study nonlinear Dirac equations on closed Riemannian surfaces. The
first main result is Theorem 3.1 which states that for solutions of equations of the form
(1.1) for which the L4-norm of ψ is sufficiently small on a disc D all W k,p norms can
be controlled on a smaller disc D′ ⊂ D. Moreover, in Proposition 3.5 we present an
estimate on the nodal set of solutions of (1.1) and Proposition 3.8 shows that solutions
of equations of the form (1.1) must be trivial if λ = 0 and |ψ |L4(M) is sufficiently small.

In Sect. 4we investigate nonlinear Dirac equations on complete noncompact Rieman-
nian manifolds. First, we will prove Theorem 4.1 which states that stationary solutions
of equations of the form (1.1) with finite energy must be trivial if M = R

n,Hn, n ≥ 3.
Moreover, in Proposition 4.5 we show that for M = R

n, n ≥ 3 for critical points of
the Soler model the quantity R2−n

∫
BR

|ψ |4dμ is almost monotone increasing in R.
Moreover, we discuss the problems that arise when trying to extend the analysis to the
case of a Riemannian manifold. Finally, in Theorem 4.13 we show that critical points
of the Soler model on a complete noncompact Riemannian manifold with positive Ricci
curvature satisfying an additional energy condition must be trivial.

In Sect. 5 we focus on Dirac-harmonic maps with curvature term from complete
manifolds. The latter consist of a pair of a map between two Riemannian manifolds
and a vector spinor defined along that map. First, we will show that stationary Dirac-
harmonic maps with curvature term from M = R

n,Hn, n ≥ 3 to target spaces with
positive sectional curvature must be trivial if a certain energy is finite (Theorem 5.5).
Moreover, in the case that M = R

n, n ≥ 3, we will establish an almost monotonicity
formula (Proposition 5.13) and also discuss its extension to the case of a Riemannian
manifold. Finally,we show thatDirac-harmonicmapswith curvature term fromcomplete
Riemannian manifolds with positive Ricci curvature to target manifolds with negative
sectional curvature must be trivial if a certain energy is finite and a certain inequality
relating Ricci curvature and energy holds (Theorem 5.18).

2. Nonlinear Dirac Equations on Riemannian Manifolds

Let (M, g) be a Riemannian spin manifold of dimension n. A Riemannian manifold
admits a spin structure if the second Stiefel–Whitney class of its tangent bundle vanishes.

We briefly recall the basic notions from spin geometry, for a detailed introduction to
spin geometry we refer to the book [31].



736 V. Branding

We fix a spin structure on themanifold M and consider the spinor bundle�M . On the
spinor bundle �M we have the Clifford multiplication of spinors with tangent vectors
denoted by ·. Moreover, we fix a hermitian scalar product on the spinor bundle and
denote its real part by 〈·, ·〉. Clifford multiplication is skew-symmetric

〈ψ, X · ξ 〉 = −〈X · ψ, ξ 〉
for all ψ, ξ ∈ �(�M) and X ∈ T M . Moreover, the Clifford relations

X · Y + Y · X = −2g(X, Y ) (2.1)

hold for all X, Y ∈ T M . The Dirac operator D : �(�M) → �(�M) is defined as the
composition of first applying the covariant derivative on the spinor bundle followed by
Clifford multiplication. More precisely, it is given by

D :=
n∑

i=1

ei · ∇�M
ei

,

where ei , i = 1 . . . n is an orthonormal basis of T M . Sometimes we will make use of the
Einstein summation convention and just sum over repeated indices. The Dirac operator
is of first order, elliptic and self-adjoint with respect to the L2-norm. Hence, if M is
compact the Dirac operator has a real and discrete spectrum.

The square of the Dirac operator satisfies the Schroedinger–Lichnerowicz formula

D2 = ∇∗∇ +
R

4
, (2.2)

where R denotes the scalar curvature of the manifold M .
After having recalled the basic definitions from spin geometry we will focus on the

analysis of the following action functional (which is the first one from the introduction)

E(ψ) =
∫

M
(〈ψ, Dψ〉 − λ|ψ |2 − μ

2
|ψ |4)dvolg. (2.3)

Its critical points are given by

Dψ = λψ + μ|ψ |2ψ. (2.4)

It turns out that L4(�M) × W 1, 43 (�M) is the right function space for weak solutions
of (2.4).

Definition 2.1. We call ψ ∈ L4(�M) × W 1, 43 (�M) a weak solution if it solves (2.4)
in a distributional sense.

The analytic structure of the other action functionals listed in the introduction is the
same as the one of (2.3). Due to this reason many of the results that will be obtained for
solutions of (2.4) can easily be generalized to critical points of the other models.

The equation (2.4) is also interesting from a geometric point of view since it interpo-
lates between eigenspinors (μ = 0) and a non-linear Dirac equation (λ = 0) that arises
in the study of CMC immersions from surfaces into R

3.
In the following we want to vary the action functional (2.3) (and later on also other

similar functionals) with respect to the metric g. There had been many isolated mathe-
matical results in the literature how to carry out this calculation before a first complete
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framework for the Riemannian case was established in [6]. Later, this was generalized
to the pseudo-Riemannian case in [4].

Wewill now give a brief survey on how to identify spinor bundles belonging to differ-
ent metrics recalling the methods that were established in [6]. However, our presentation
of these methods is motivated from the one of [30], Chapter 2.

Suppose we have two spinor bundles �g M and �h M corresponding to different
metrics g and h. There exists a unique positive definite tensor field hg uniquely deter-
mined by the requirement h(X, Y ) = g(H X, HY ) = g(X, hgY ), where H := √

hg .
Let Pg and Ph be the oriented orthonormal frame bundles of (M, g) and (M, h).
Then H−1 induces an equivariant isomorphism bg,h : Pg → Ph via the assignment
Ei → H−1Ei , i = 1 . . . n. We fix a spin structure 
g : Qg → Pg of (M, g) and think
of it as a Z2-bundle. The pull-back of 
g via the isomorphism bh,g : Ph → Pg induces
a Z2-bundle 
h : Qh → Ph . Moreover, we get a Spin(n)-equivariant isomorphism
b̃h,g : Qh → Qg such that the following diagram commutes:

Qh


h

��

b̃h,g �� Qg


g

��
Ph

bh,g �� Pg

Making use of this construction we obtain the following

Lemma 2.2. There exist natural isomorphisms

bg,h : T M → T M, βg,h : �g M → �h M

that satisfy

h(bh,g X, bh,gY ) = g(X, Y ), 〈βh,gχ, βh,gψ〉�h M = 〈ψ, χ〉�g M ,

(bg,h X) · (βg,hψ) = βg,h(X · ψ)

for all X, Y ∈ �(T M) and ψ, χ ∈ �(�g M).

In order to calculate the variation of the Dirac operator with respect to the metric
we need the following objects: Let Sym(0, 2) be the space of all symmetric (0, 2)-
tensor fields on (M, g). Any element k of Sym(0, 2) induces a (1, 1)-tensor field kg via
k(X, Y ) = g(X, kgY ). We denote the Dirac operator on (M, g+ tk) by Dg+tk for a small
parameter t .Moreover,wewill use the notationψg+tk := βg,g+tkψ ∈ �(�Mg+tk), which
can be thought of as push-forward ofψ ∈ �g M toψ ∈ �g+tk M . Applying the technical
construction outlined above let us now recall the following classic result from [6]:

Lemma 2.3. The variation of the Dirac-energy with respect to the metric is given by

d

dt

∣∣
t=0〈ψg+tk, Dg+tkψg+tk〉�g+tk M = −1

4
〈ei · ∇�M

e j
ψ + e j · ∇�M

ei
ψ,ψ〉�g M ki j ,

(2.5)

where the tensor on the right hand side is the stress-energy tensor associated to the
Dirac energy.

Proof. A proof can be found in [6, Sect. III]. ��
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Definition 2.4. Aweak solutionψ ∈ L4(�M)×W 1, 43 (�M) of (2.4) is called stationary
if it is also a critical point of E(ψ) with respect to domain variations.

Proposition 2.5. A stationary solution ψ ∈ L4(�M) × W 1, 43 (�M) of (2.3) satisfies

0 =
∫

M
(〈ei · ∇�M

e j
ψ + e j · ∇�M

ei
ψ,ψ〉 − gi jμ|ψ |4)ki j dvolg, (2.6)

where ki j is a smooth element of Sym(0, 2).

Proof. Let k be a symmetric (0, 2)-tensor and t some small number. Recall that the
variation of the volume-element is given by

d

dt

∣∣
t=0dvolg+tk = 1

2
〈g, k〉gdvolg. (2.7)

Moreover, as βg,g+tk acts as an isometry on the spinor bundle we obtain

|ψg+tk |2�g+tk M = |βg,g+tkψ |2�g+tk M = |ψ |2�g M .

Now, we calculate

d

dt

∣∣
t=0

∫
M

(〈ψg+tk, Dg+tkψg+tk〉�g+tk M − λ|ψg+tk |2�g+tk M − μ

2
|ψg+tk |4�g+tk M

)
dvolg+tk

= − 1

4

∫
M

〈ei · ∇�M
e j

ψ + e j · ∇�M
ei

ψ,ψ〉ki j dvolg

+
1

2

∫
M

(〈ψ, Dψ〉 − λ|ψ |2 − μ

2
|ψ |4)〈g, k〉gdvolg

= − 1

4

∫
M

〈ei · ∇�M
e j

ψ + e j · ∇�M
ei

ψ,ψ〉ki j dvolg +
1

4

∫
M

μ|ψ |4〈g, k〉gdvolg,

where we used (2.5) in the first step and the equation for the spinor ψ , that is (2.4), in
the second step completing the proof. ��

For a smooth solution ψ of (2.4) we thus obtain the stress-energy tensor

Si j = 〈ei · ∇�M
e j

ψ + e j · ∇�M
ei

ψ,ψ〉 − gi jμ|ψ |4. (2.8)

Its trace can easily be computed to be

tr S = gi j Si j = 2λ|ψ |2 + (2 − n)μ|ψ |4.

Note that the stress-energy tensor is traceless for λ = 0 and n = 2 since it arises from
a conformally invariant action functional in that case.

Lemma 2.6. Suppose that ψ is a smooth solution of (2.4). Then the stress-energy tensor
(2.8) is symmetric and divergence-free.
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Proof. We choose a local orthonormal basis of T M such that∇ei e j = 0, i, j = 1, . . . , n
at the considered point. To show that the stress-energy tensor is divergence-free we cal-
culate

∇ j Si j =∇ j (〈ei · ∇e j ψ + e j · ∇ei ψ,ψ〉 − gi jμ|ψ |4)
=〈ei · ψ,ψ〉 + 〈ei · ∇e j ψ,∇e j ψ〉︸ ︷︷ ︸

=0

+〈D∇ei ψ,ψ〉 − 〈∇ei ψ, Dψ〉

− 4μ|ψ |2〈∇ei ψ,ψ〉.
By a direct computation we find

〈D∇ei ψ,ψ〉 = 〈ψ, e j · R�M (e j , ei )ψ〉︸ ︷︷ ︸
= 1

2 〈ψ,Ric(ei )·ψ〉=0

+〈∇ei Dψ,ψ〉 = (λ + 3μ|ψ |2)〈∇ei ψ,ψ〉,

〈∇ei ψ, Dψ〉 = (λ + μ|ψ |2)〈∇ei ψ,ψ〉,
where we used that ψ is a solution of (2.4). Thus, we obtain

∇ j Si j = 〈ei · ψ,ψ〉 − 2μ|ψ |2〈∇ei ψ,ψ〉.
Using (2.2) and (2.4) we find that

〈ei · ψ,ψ〉 = −μ〈ei · (∇|ψ |2) · ψ,ψ〉 = μg(ei ,∇|ψ |2)|ψ |2 = 2μ|ψ |2〈∇ei ψ,ψ〉,
which completes the proof. ��
Remark 2.7. Every smooth solution of (2.4) is also stationary. We will give a short proof
of this statement where we reverse the calculation performed in the proof of Lemma 2.6.

Hence, suppose we have a smooth solution of (2.4). Differentiating (2.4) with respect
to ei and taking the scalar product with ψ we find

0 = 〈ψ,∇ei Dψ〉 − λ〈ψ,∇ei ψ〉 − μ(∇ei |ψ |2)|ψ |2 − μ|ψ |2〈∇ei ψ,ψ〉
= 〈ψ,∇ei Dψ〉 − 〈Dψ,∇ei ψ〉 − μ(∇ei |ψ |2)|ψ |2.

Recall that for a solution of (2.4) we have 〈ei · ψ,ψ〉 = μ
2 ∇ei |ψ |4 and together with

the arguments used in the proof of Lemma 2.6 this leads to

0 = 〈ψ, D∇ei ψ〉 + 〈∇e j ψ, e j · ∇ei ψ〉 + 〈ei · ψ,ψ〉 − μ∇ei |ψ |4 = ∇ j Si j .

Testing this equation with a smooth function Y and using integration by parts we obtain

0 =
∫

M
∇ j Y i Si j dvolg,

which is exactly the condition of being stationary (2.6).

We will often make use of the following Bochner-type equation

Lemma 2.8. Let ψ be a smooth solution of (2.4). Then the following formula holds


1

2
|ψ |4 = ∣∣d|ψ |2∣∣2 + |ψ |2|∇ψ |2 + |ψ |4( R

4
− (λ + μ|ψ |2)2). (2.9)
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Proof. By a direct calculation we find


1

2
|ψ |4 = ∣∣d|ψ |2∣∣2 + |ψ |2|∇ψ |2 + R

4
|ψ |4 − |ψ |2〈ψ, D2ψ〉,

where we used (2.2). Moreover, we obtain

〈ψ, D2ψ〉 = 〈ψ, D(λψ)〉 + 〈ψ, D(μ|ψ |2ψ)〉
= λ2|ψ |2 + λμ|ψ |4 + μ 〈ψ, (∇|ψ |2) · ψ〉︸ ︷︷ ︸

=0

+μλ|ψ |4 + μ2|ψ |6

= |ψ |2(λ + μ|ψ |2)2, (2.10)

where we used that ψ is a solution of (2.4). ��
Let us recall the following definitions:

Definition 2.9. A spinor ψ ∈ �(�M) is called twistor spinor if it satisfies

∇�M
X ψ +

1

n
X · Dψ = 0 (2.11)

for all vector fields X . The spinor ψ is called Killing spinor if it is both a twistor spinor
and an eigenspinor of the Dirac operator, that is

∇�M
X ψ + αX · ψ = 0 (2.12)

with α ∈ R.

It is well known that Killing spinors have constant norm, that is |ψ |2 = const .
However, here we have the following

Lemma 2.10. Suppose that ψ is a solution of (2.4) and a twistor spinor. Then ψ has
constant norm.

Proof. We calculate for an arbitrary X ∈ T M

∂X
1

2
|ψ |2 = 〈∇�M

X ψ,ψ〉 = −1

n
〈X · Dψ,ψ〉 = −1

n
(λ + μ|ψ |2)〈X · ψ,ψ〉,

where we first used that ψ is a twistor spinor and then used that ψ is a solution of (2.4).
The statement then follows from the skew-symmetry of the Clifford multiplication. ��
Example 2.11. Suppose that ψ is a Killing spinor with constant α = λ+μ|ψ |2

n . Then it
is a solution of (2.4). However, this above approach is rather restrictive since only few
Riemannian manifolds admit Killing spinors [2].

Proposition 2.12. Suppose that ψ is a smooth solution of (2.4) and also a twistor spinor.
Then the stress-energy tensor (2.8) acquires the form

Si j = 1

n
gi j

(
μ(2 − n)|ψ |4 + 2λ|ψ |2). (2.13)

In particular, the stress-energy tensor is just a multiple of the metric.
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Proof. We consider the stress-energy tensor (2.8) and use the fact that ψ is a twistor
spinor, that is

Si j = 〈ei · ∇e j ψ + e j · ∇ei ψ,ψ〉 − gi jμ|ψ |4

= − 1

n
〈(ei · e j + e j · ei︸ ︷︷ ︸

=−2gi j

)Dψ,ψ〉 − gi jμ|ψ |4 = μ(
2

n
− 1)|ψ |4gi j +

2

n
λ|ψ |2gi j ,

where we used the Clifford relations (2.1) and (2.4). ��

3. Nonlinear Dirac Equations on Closed Surfaces

In this section we will derive several properties of solutions of (2.4) on closed Rieman-
nian surfaces. First, we derive a local energy estimate for smooth solutions of (2.4). Our
result is similar to the energy estimate that was obtained in [19], Theorem 2.1, which
corresponds to (2.4) with λ = 0. We obtain the following

Theorem 3.1. Let ψ be a smooth solution of (2.4). If |ψ |L4(D) < ε then

|ψ |W k,p(D′) ≤ C |ψ |L4(D) (3.1)

for all D′ ⊂ D and p > 1. The constant C depends on D′, μ, λ, k, p.

The statement of the above Theorem would also hold true if ψ was only a weak

solution of (2.4), that is ψ ∈ L4(�M) × W 1, 43 (�M). By the regularity theory pre-
sented in [37] a distributional solution of (2.4) with ψ ∈ L4(�M) is actually smooth if
dim M = 2.

We will divide the proof into two Lemmas, the result then follows by iterating the
procedure outlined below.

Lemma 3.2. Let ψ be a smooth solution of (2.4). If |ψ |L4(D) < ε then for all p > 1
and all D′ ⊂ D we have

|ψ |L p(D′) ≤ C |ψ |L4(D), (3.2)

where the constant C depends on D′, μ, λ, p.

Proof. Choose a cut-off function η with 0 ≤ η ≤ 1, η|D′ = 1 and supp η ⊂ D. Then
we have

D(ηψ) = ηDψ + ∇η · ψ = ηλψ + ημ|ψ |2ψ + ∇η · ψ.

We set ξ = ηψ and bymaking use of elliptic estimates for first order equations we obtain

|ξ |W 1,q (D) ≤ C(|ηψ |Lq (D) + μ
∣∣|ψ3η|∣∣Lq (D)

+ |∇η||ψ |Lq (D))

≤ C(|ψ |Lq (D) +
∣∣|ψ3η|∣∣Lq (D)

).

We set q∗ := 2q
2−q for q < 2. By the Hölder inequality we get

∣∣|ψ3η|∣∣Lq (D)
≤ |ψ |2L4(D)

|ξ |Lq∗
(D).



742 V. Branding

Applying the Sobolev embedding theorem in two dimensions we find

|ξ |Lq∗
(D) ≤ C |ξ |W 1,q (D) ≤ C(|ψ |Lq (D) + |ψ |2L4(D)

|ξ |Lq∗
(D)).

Using the small energy assumption we get

|ξ |Lq∗
(D) ≤ C |ψ |L4(D).

For any p > 1 we can find some q < 2 such that p = q∗. ��
Lemma 3.3. Let ψ be a smooth solution of (2.4). If |ψ |L4(D) < ε then for all p > 1
and all D′ ⊂ D we have

|ψ |W 1,p(D′) ≤ C |ψ |L4(D), (3.3)

where the constant C depends on D′, μ, λ, p.

Proof. Again, choose a cut-off function η with 0 ≤ η ≤ 1, η|D′ = 1 and supp η ⊂ D.
Setting ξ = ηψ we locally have
∫

D
|∇ξ |2dx =

∫
D

|Dξ |2dx =
∫

D
|ηλψ + ημ|ψ |2ψ + ∇η · ψ |2dx ≤ C

∫
D
(|ψ |2 + |ψ |6)dx .

We obtain the following inequality

|∇ξ |L2(D) ≤ C(|ψ |3L6(D)
+ |ψ |L2(D)) ≤ C |ψ |L4(D),

which yields

|∇ψ |L2(D′) ≤ C |ψ |L4(D). (3.4)

By a direct computation we find

D2ψ = λ2ψ + 2μλ|ψ |2ψ + μ2|ψ |4ψ + μ(∇|ψ |2) · ψ

and also

ξ = (η)ψ + 2∇η∇ψ + ηψ.

This yields

|ξ | ≤ C(|ψ | + |∇ψ | + |ψ |2|∇ψ | + |ψ |3 + |ψ |5).
On the disc D we have  = −D2, hence we find

|ηψ |W 2,p(D) ≤ C(|ψ |L p(D) + |∇ψ |L p(D) +
∣∣|ψ |2|∇ψ |∣∣L p(D)

+
∣∣|ψ |3∣∣L p(D)

+
∣∣|ψ |5∣∣L p(D)

). (3.5)

Using (3.2) and (3.4) we obtain
∣∣|ψ |2|∇ψ |∣∣L p(D)

≤ C |∇ψ |L2(D′)|ψ |2L8(D′) ≤ C |ψ |L4(D)

and the same bound applies to the first and the last two terms of (3.5). Thus, we obtain
by setting p = 4

3 in (3.2) and applying the Sobolev embedding theorem

|ψ |W 1,4(D′) ≤ C |ηψ |
W 2, 43 (D′)

≤ C |ψ |L4(D)
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for all D′ ⊂ D. In particular, this implies

|ψ |L∞(D′) ≤ C |ψ |L4(D).

At this point we may set p = 2 in (3.5) and find

|ψ |W 1,p(D′) ≤ C |ψ |W 2,2(D′) ≤ C |ψ |L4(D),

which proves the result. ��
Remark 3.4. In the case that λ = 0 the equation (2.4) arises from a conformally invariant
action functional and is scale invariant. This scale invariance can be exploited to show
that solutions of (2.4) cannot have isolated singularities, see [19], Theorem 3.1.

By the main result of [3] we know that the nodal set of solutions to (2.4) on closed
surfaces is discrete. The next Proposition gives an upper bound on their nodal set.

Proposition 3.5. Suppose that ψ is a smooth solution of (2.4) that is not identically
zero. Then the following inequality holds∫

M
(λ + μ|ψ |2)2dvolg ≥ 2πχ(M) + 4π N , (3.6)

where χ(M) is the Euler characteristic of the surface. Moreover, N denotes an estimate
on the nodal set

N =
∑

p∈M,|ψ |(p)=0

n p,

where n p is the order of vanishing of |ψ | at the point p.

Proof. Throughout the proof we assume that ψ �= 0. Now, we recall the following
inequality (see [12], Lemma 2.1 and references therein for a detailed derivation)

〈ψ, D2ψ〉
|ψ |2 ≥ R

4
+

|T |2
4|ψ |4 −  log |ψ |

with the stress-energy tensor for the Dirac action T (X, Y ) := 〈X · ∇Y ψ + Y · ∇Xψ,ψ〉.
Using (2.10) we find

〈ψ, D2ψ〉
|ψ |2 = (λ + μ|ψ |2)2.

We can estimate the stress-energy tensor as

|T |2 ≥ 2(λ + μ|ψ |2)2,
which yields

(λ + μ|ψ |2)2 ≥ K − 2 log |ψ |,
where K = 2R denotes the Gaussian curvature of M . By integrating over M and using
that for a function with discrete zero set∫

M
 log |ψ |dvolg = −2π

∑
p∈M,|ψ |(p)=0

n p

we obtain the result. ��
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Remark 3.6. The estimate on the nodal set (3.6) generalizes the estimates on the nodal set
for eigenspinors [12] and on solutions to non-linear Dirac equations [1], Proposition 8.4.

Corollary 3.7. (1) Due to the last Proposition we obtain the following upper bound on
the nodal set of solutions to (2.4)

N ≤ −χ(M)

2
+

1

4π

∫
M

(λ + μ|ψ |2)2dvolg.

(2) We also obtain a vanishing result for surfaces of positive Euler characteristic: More
precisely, if ∫

M
(λ + μ|ψ |2)2dvolg < 4π

then we get a contradiction from (3.6) forcing ψ to be trivial.

Using the Sobolev embedding theorem we can obtain another variant of the last
statement from the previous Corollary.

Proposition 3.8. Let ψ be a smooth solution of (2.4) with λ = 0. Suppose that there do
not exist harmonic spinors on M. There exists some ε0 > 0 depending on M, μ such
that whenever ε < ε0 and

|ψ |2L4 < ε (3.7)

we have ψ = 0.

Proof. By assumption 0 is not in the spectrum of D and we can estimate

|ψ | ≤ 1

|λ1| |Dψ |,
where λ1 denotes the smallest eigenvalue of the Dirac operator. Making use of elliptic
estimates for first order equations we find

|ψ |L4 ≤ C |ψ |
W 1, 43

≤ C(|Dψ |
L

4
3
+ |ψ |

L
4
3
)

≤ C |μ|∣∣|ψ |3∣∣
L

4
3

≤ C |μ||ψ |3L4

≤ εC |μ||ψ |L4 ,

where we made use of the assumptions. Thus, for ε small enough ψ has to vanish. ��
Remark 3.9. The regularity theory for Dirac-type equations on Riemannian manifolds
is well-established, see for example the L2-theory developed in [5]. Recently, it could
be substantially extended in [18] to also include higher L p-norms. Using this recent
regularity theory for Dirac equations [18, Theorem 1.1] it should be possible to get rid
of the requirement that M is not supposed to admit harmonic spinors in Proposition 3.8.
However, Theorem 1.1 in [18] is formulated for boundary value problems of Dirac-type
operators and it would be necessary to obtain a variant of this result for closedmanifolds.
Having such a result at hand the proof of Proposition 3.8 could be simplified in such a
way that one does not need the condition of M having no harmonic spinors.

However, it seems that a variant of [18, Theorem 1.1] on closed manifolds, which
would be a global statement, could not help to improve Theorem 3.1 as this theorem is
of a local nature and Proposition 3.8 shows that demanding |ψ |L4 < ε globally forces
ψ to be trivial.



Nonlinear Dirac Equations, Monotonicity Formulas and Liouville Theorems 745

3.1. The higher-dimensional case.

Proposition 3.10. Suppose that M is a closed Riemannian spin manifold with positive
scalar curvature. Suppose that ψ is a smooth solution of (2.4) with small energy, that is

(λ + μ|ψ |2)2 <
R

4
. (3.8)

Then ψ vanishes identically.

Proof. We use the Bochner formula (2.9) and calculate


1

2
|ψ |4 = ∣∣d|ψ |2∣∣2 + |ψ |2|∇ψ |2 + |ψ |4( R

4
− (λ + μ|ψ |2)2) > 0

using the assumption. Hence |ψ |4 is a subharmonic function and due to the maximum
principle it has to be constant. Thus, we obtain

0 = |ψ |2|∇ψ |2 + |ψ |4( R

4
− (λ + μ|ψ |2)2)

and the result follows by making use of the assumption. ��

4. Nonlinear Dirac Equations on Complete Manifolds

In this section we study the behavior of solutions of (2.4) on complete manifolds. We
will derive several monotonicity formulas and, as an application, we obtain Liouville
theorems.

4.1. A Liouville Theorem for stationary solutions. In this section we will derive a van-
ishing theorem for stationary solutions of (2.4).

Theorem 4.1. Suppose that M = R
n,Hn with n ≥ 3. Let ψ ∈ L4

loc(�M)×W
1, 43
loc (�M)

be a stationary solution of (2.4). If λμ ≤ 0 and
∫

M
(|ψ |4 + |∇ψ | 43 )dvolg < ∞ (4.1)

then ψ vanishes identically.

Proof. We will first show the result for M = R
n . Choose η ∈ C∞

0 (R) such that
η = 1 for r ≤ R, η = 0 for r ≥ 2R and |η′(r)| ≤ 4

R . In addition, we choose
Y (x) = xη(r) ∈ C∞(M,Rn), where r = |x |. Then, we set

ki j := ∂Yi

∂x j
= η(r)δi j +

xi x j

r
η′(r)

and inserting this into (2.6) we obtain
∫
Rn

(2〈ψ, Dψ〉 − nμ|ψ |4)η(r)dvolg = −
∫
Rn

(2〈ψ, ∂r · ∇∂r ψ〉 − μ|ψ |4)rη′(r)dvolg.
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Using the equation for ψ we get
∫
Rn

(2λ|ψ |2 + (
2 − n)μ|ψ |4)η(r)dvolg = −

∫
Rn

(2〈ψ, ∂r · ∇∂r ψ〉 − μ|ψ |4)rη′(r)dvolg.

The right hand side can be controlled as follows

∣∣
∫
Rn

(2〈ψ, ∂r · ∇∂r ψ〉 − μ|ψ |4)rη′(r)dvolg
∣∣ ≤ C

∫
B2R\BR

(|ψ ||∇ψ | + |ψ |4)dx .

First, we consider the case that λ ≥ 0 and μ ≤ 0. Making use of the assumptions on
λ,μ and by the properties of the cut-off function η we obtain

∫
BR

(2λ|ψ |2 + (
2 − n)μ|ψ |4)dx ≤

∫
Rn

(2λ|ψ |2 + (
2 − n)μ|ψ |4)η(r)dvolg

such that we get
∫

BR

(2λ|ψ |2 + (
2 − n)μ|ψ |4)dx ≤ C

∫
B2R\BR

(|ψ ||∇ψ | + |ψ |4)dx

≤ C
∫

B2R\BR

(|∇ψ | 43 + |ψ |4)dx .

Taking the limit R → ∞ and making use of the finite energy assumption we obtain
∫
Rn

|ψ |2(2λ + (2 − n)μ|ψ |2)dvolg ≤ 0,

yielding the result. The case λ ≤ 0 and μ ≥ 0 follows similarly. By applying the
Theorem of Cartan–Hadamard the proof carries over to hyperbolic space. ��
Remark 4.2. In particular, the last Proposition applies in the case μ = 0, which cor-
responds to ψ being an eigenspinor with eigenvalue λ. Thus, there does not exist an
eigenspinor satisfying

∫
M

(|ψ |4 + |∇ψ | 43 )dvolg < ∞

with eigenvalue λ on M = R
n,Hn for n ≥ 3.

4.2. Monotonicity formulas for smooth solutions. In this section we will derive a mono-
tonicity formula for smooth solutions of (2.4) on complete Riemannian manifolds. We
will make use of the fact that the stress-energy tensor (2.8) is divergence free, whenever
ψ is a solution of (2.4). First of all, let us recall the following facts: A vector field X is
called conformal if

LX g = f g,

where L denotes the Lie-derivative of the metric with respect to X and f : M → R is a
smooth function.
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Lemma 4.3. Let T be a symmetric 2-tensor. For any vector field X the following formula
holds

div(ιX T ) = ιX div T + 〈T,∇ X〉. (4.2)

If X is a conformal vector field, then the second term on the right hand side acquires
the form

〈T,∇ X〉 = 1

n
div X tr T . (4.3)

By integrating over a compact region U , making use of Stokes theorem, we obtain

Lemma 4.4. Let (M, g) be a Riemannian manifold and U ⊂ M be a compact region
with smooth boundary. Then, for any symmetric 2-tensor and any vector field X the
following formula holds∫

∂U
T (X, ν)dσ =

∫
U

ιX div T dx +
∫

U
〈T,∇ X〉dx, (4.4)

where ν denotes the normal to U. The same formula holds for a conformal vector field
X if we replace the second term on the right hand by (4.3).

We now derive a type of monotonicity formula for smooth solutions of (2.4) in Rn .

Proposition 4.5. (Monotonicity formula in R
n) Let ψ be a smooth solution

of (2.4) on M = R
n. Let BR(x0) be a geodesic ball around the point x0 ∈ M and

0 < R1 < R2 ≤ R. Then the following monotonicity formula holds

R2−n
2 μ

∫
BR2(x0)

|ψ |4dx − R2−n
1 μ

∫
BR1(x0)

|ψ |4dx

= −2λ
∫ R2

R1

(
r1−n

∫
Br (x0)

|ψ |2dx
)
dr

+ 2
∫ R2

R1

(
r2−n

∫
∂ Br (x0)

〈ψ, ∂r · ∇∂r ψ〉dσ
)
dr. (4.5)

Proof. For M = R
n we choose the conformal vector field X = r ∂

∂r with r = |x |. In
this case we have div(X) = n, thus

(2 − n)μ

∫
Br

|ψ |4dx + rμ

∫
∂ Br

|ψ |4dσ

= −2λ
∫

Br

|ψ |2dx + 2r
∫

∂ Br

〈ψ, ∂r · ∇∂r ψ〉dσ,

where we used (4.3) and (4.4). Making use of the coarea formula we can rewrite this as

d

dr

(
r2−nμ

∫
Br

|ψ |4dx
) = −2λr1−n

∫
Br

|ψ |2dx + 2r2−n
∫

∂ Br

〈ψ, ∂r · ∇∂r ψ〉dσ

and integrating with respect to r yields the result. ��
Remark 4.6. The previous monotonicity formula also holds if ψ was only a weak solu-

tion of (2.4), that is ψ ∈ L4(�M) × W 1, 43 (�M).
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We now aim at generalizing the monotonicity formula (4.5) to the case of a complete
Riemannian spin manifold. Note that, in general, the vector field X = r ∂

∂r will not be
conformal. We fix a point x0 ∈ M and consider a ball with geodesic radius r = d(x0, ·)
around that point, where d denotes the Riemannian distance function. Moreover, iM will
refer to the injectivity radius of M . Using geodesic polar coordinates we decompose the
metric in BiM with the help of the Gauss Lemma as

g = gr + dr ⊗ dr.

In the following we will frequently make use of the Hessian of the Riemannian dis-
tance function. Since the Hessian is a symmetric bilinear form we may diagonalize it,
its eigenvalues will be denoted by ωi , i = 1, . . . , n. Thus, we may write

n∑
i=1

Hess(r2)(ei , ei ) =
n∑

i=1

ωi := �. (4.6)

We denote its largest eigenvalue byωmax . The eigenvalues of the Hessian of the Rieman-
nian distance function depend on the geometry of the manifold M and, in general, they
cannot be computed explicitly. For some explicit estimates on � in terms of geometric
data we refer to [32], Lemma 3.2.

Lemma 4.7. Let (M, g) be a complete Riemannian spin manifold and suppose that ψ

is a smooth solution of (2.4). Then the following formula holds

(2ωmax − �)μ

∫
Br

|ψ |4dx + rμ

∫
∂ Br

|ψ |4dσ

= 2r
∫

∂ Br

〈ψ, ∂r · ∇∂r ψ〉dσ − 2ωmaxλ

∫
Br

|ψ |2dx

− 2
n∑

j=2

∫
Br

〈e j · ∇e j ψ,ψ〉(ω j − ωmax )dx . (4.7)

Proof. Inserting the stress-energy tensor (2.8) into (4.4) and choosing the vector field
X = r ∂

∂r we obtain the following equation

2r
∫

∂ Br

〈ψ, ∂r · ∇∂r ψ〉dσ − rμ

∫
∂ Br

|ψ |4dσ

=
∫

Br

〈ei · ∇e j ψ + e j · ∇ei ψ,ψ〉Hess(r2)(ei , e j )dx

− μ

∫
Br

tr Hess(r2)|ψ |4dx .

Without loss of generality we assume that ω1 = ωmax is the largest eigenvalue of
Hess(r2). Diagonalizing theHessian of theRiemannian distance functionwemay rewrite

〈ei · ∇e j ψ + e j · ∇ei ψ,ψ〉Hess(r2)(ei , e j )

= 2ωmax 〈ψ, Dψ〉 + 2
n∑

j=2

〈e j · ∇e j ψ,ψ〉(ω j − ωmax )
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= 2ωmax (λ|ψ |2 + μ|ψ |4)

+ 2
n∑

j=2

〈e j · ∇e j ψ,ψ〉(ω j − ωmax ),

which yields the claim. ��
Remark 4.8. The problematic contributions in the monotonicity-type formulas (4.5) and
(4.7) are the indefinite terms 〈ψ, ∂r · ∇∂r ψ〉 and 〈ei · ∇ei ψ,ψ〉Hess(r2)(ei , ei ). To give
them a definite sign we could assume that ψ is both a solution of (2.4) and a twistor
spinor. In this case we would have

〈ψ, ∂r · ∇∂r ψ〉 = 1

n
g(∂r , ∂r )〈ψ, Dψ〉 = 1

n
g(∂r , ∂r )(λ|ψ |2 + μ|ψ |4).

The right hand side of this equation is positive for λ,μ > 0. However, we have already
seen that under the assumptions from above |ψ |2 is equal to a constant and in this case
the monotonicity formula contains no interesting information. Moreover, regarding the
second term, we would get

〈ei · ∇ei ψ,ψ〉Hess(r2)(ei , ei ) = − 1

n
〈ei · Dψ,ψ〉Hess(r2)(ei , ei )

= − 1

n
〈ei · ψ,ψ〉(λ|ψ |2 + μ|ψ |4)Hess(r2)(ei , ei ) = 0.

Remark 4.9. It would be desirable to estimate the term 〈ei · ∇ei ψ,ψ〉Hess(r2)(ei , ei )

in (4.7) in terms of geometric data of the manifold M and the right hand side of (2.4).
Unfortunately, this only seems to be possible if all eigenvalues of the Hessian of the
Riemann distance function would be equal.

Proposition 4.10. Let (M, g) be a complete Riemannian spin manifold and suppose
that ψ is a smooth solution of (2.4). Then for all 0 < R1 < R2 ≤ R, R ∈ (0, iM ) the
following type of monotonicity formula holds

R2ωmax −�
1

∫
BR1

(μ|ψ |4 − 2〈ψ, ∂r · ∇∂r ψ〉)dx

= R2ωmax −�
2

∫
BR2

(μ|ψ |4 − 2〈ψ, ∂r · ∇∂r ψ〉)dx

+ 2(2ωmax − �)

∫ R2

R1

(
r2ωmax −�−1

∫
Br

〈ψ, ∂r · ∇∂r ψ〉dx
)
dr

+ 2ωmaxλ

∫ R2

R1

(
r2ωmax −�−1

∫
Br

|ψ |2dx
)
dr

+ 2
n∑

j=2

(ω j − ωmax )

∫ R2

R1

(
r2ωmax −�−1

∫
Br

〈e j · ∇e j ψ,ψ〉)dr, (4.8)

where � is given by (4.6).
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Proof. Using (4.7) and the coarea formula we find

d

dr
r2ωmax −�μ

∫
Br

|ψ |4dx = 2r2ωmax −�

∫
∂ Br

〈ψ, ∂r · ∇∂r ψ〉dσ − 2ωmaxλr2ωmax −�−1
∫

Br

|ψ |2dx

− 2
n∑

j=2

r2ωmax −�−1
∫

Br

〈e j · ∇e j ψ,ψ〉(ω j − ωmax )dx .

Integrating with respect to r and using integration by parts
∫ R2

R1

(
r2ωmax −�

∫
∂ Br

〈ψ, ∂r · ∇∂r ψ〉dσ
)
dr

=
∫ R2

R1

(
r2ωmax −� d

dr

∫
Br

〈ψ, ∂r · ∇∂r ψ〉dx
)
dr

=R2ωmax −�
2

∫
BR2

〈ψ, ∂r · ∇∂r ψ〉dx − R2ωmax −�
1

∫
BR1

〈ψ, ∂r · ∇∂r ψ〉dx

+ (� − 2ωmax )

∫ R2

R1

(
r2ωmax −�−1

∫
Br

〈ψ, ∂r · ∇∂r ψ〉dx
)
dr

yields the claim. ��
Remark 4.11. If M = R

n , then ωi = 1, i = 1, . . . , n and � = n. In this case (4.8)
reduces to (4.5).

Remark 4.12. It seems very difficult to obtain a Liouville Theorem from the monotonic-
ity formula (4.8) without posing many conditions on the solution of (2.4).

4.3. A Liouville Theorem for complete manifolds with positive Ricci curvature. In this
section we will prove a Liouville theorem for smooth solutions of (2.4) on complete
noncompact manifolds with positive Ricci curvature. Our result is motivated from a
similar result for harmonic maps, see [34], Theorem 1. We set e(ψ) := 1

2 |ψ |4.
Theorem 4.13. Let (M, g) be a complete noncompact Riemannian spin manifold with
positive Ricci curvature. Suppose that

R ≥ 4(λ + μ|ψ |2)2. (4.9)

If ψ is a smooth solution of (2.4) with finite energy e(ψ) then ψ vanishes identically.

Proof. Making use of the assumption the Bochner formula (2.9) yields

e(ψ) ≥ ∣∣d|ψ |2∣∣2. (4.10)

In addition, by the Cauchy–Schwarz inequality we find

|de(ψ)|2 ≤ 2e(ψ)
∣∣d|ψ |2∣∣2. (4.11)

We fix a positive number ε > 0 and calculate


√

e(ψ) + ε = e(ψ)

2
√

e(ψ) + ε
− 1

4

|de(ψ)|2
(e(ψ) + ε)

3
2

≥
∣∣d|ψ |2∣∣2

2
√

e(ψ) + ε

(
1 − e(ψ)

e(ψ) + ε

) ≥ 0,
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where we used (4.10) and (4.11). Let η be an arbitrary function on M with compact
support. We obtain

0 ≤
∫

M
η2

√
e(ψ) + ε

√
e(ψ) + εdvolg

= − 2
∫

M
η
√

e(ψ) + ε〈∇η,∇√
e(ψ) + ε〉dvolg −

∫
M

η2|∇√
e(ψ) + ε|2dvolg.

Now let x0 be a point in M and let BR, B2R be geodesic balls centered at x0 with radii
R and 2R. We choose a cutoff function η satisfying

η(x) =
{
1, x ∈ BR,

0, x ∈ M \ B2R .

In addition, we choose η such that

0 ≤ η ≤ 1, |∇η| ≤ C

R

for a positive constant C . Then, we find

0 ≤ − 2
∫

B2R

η
√

e(ψ) + ε〈∇η,∇√
e(ψ) + ε〉dx −

∫
B2R

η2|∇√
e(ψ) + ε|2dx

≤ 2
( ∫

B2R\BR

η2|√e(ψ) + ε|2dx
) 1
2
( ∫

B2R\BR

|∇η|2(e(ψ) + ε)dx
) 1
2

−
∫

B2R\BR

η2|∇√
e(ψ) + ε|2dx −

∫
BR

|∇√
e(ψ) + ε|2dx .

We therefore obtain∫
Br

|∇√
e(ψ) + ε|2dx ≤

∫
B2R\BR

|∇η|2(e(ψ) + ε)dx ≤ C2

R2

∫
B2R

(e(ψ) + ε)dx .

We set B ′
R := BR \ {x ∈ BR | e(ψ)(x) = 0} and find

∫
B′

r

|∇(e(ψ) + ε)|2
4(e(ψ) + ε)

dx ≤ C2

R2

∫
B2R

(e(ψ) + ε)dx .

Letting ε → 0 we get
∫

B′
r

|∇(e(ψ)|2
4e(ψ)

dx ≤ C2

R2

∫
B2R

e(ψ)dx .

Now, letting R → ∞ and under the assumption that the energy is finite, we have
∫

M\{e(ψ)=0}
|∇e(ψ)|2
4e(ψ)

dvolg ≤ 0,

hence the energy e(ψ) has to be constant. If e(ψ) �= 0, then the volume of M would have
to be finite. However, by Theorem 7 of [39] the volume of a complete and noncompact
Riemannian manifold with nonnegative Ricci curvature is infinite. Hence e(ψ) = 0,
which yields the result. ��
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Note, that Theorem 4.13 also holds in the case μ = 0, which gives us the following
vanishing result for eigenspinors:

Corollary 4.14. Suppose that ψ is a smooth solution of Dψ = λψ on a complete
noncompact manifold with positive Ricci curvature. If

R ≥ 4λ2

and e(ψ) is finite then ψ vanishes identically.

5. Dirac-Harmonic Maps with Curvature Term from Complete Manifolds

Dirac-harmonic maps with curvature term arise as critical points of part of the super-
symmetric nonlinear σ -model from quantumfield theory [20], p. 268, the only difference
being that in contrast to the physics literature standard, that is commuting, spinors are
used. They form a pair of a map from a Riemann spin manifold to another Riemannian
manifold coupled with a vector spinor. For a two-dimensional domain they belong to the
class of conformally invariant variational problems. The conformal invariance gives rise
to a removable singularity theorem [10] and an energy identity [27]. Conservation laws
for Dirac-harmonic maps with curvature term were established in [11] and a vanishing
result for the latter under small-energy assumptions was derived in [13]. For Dirac-wave
maps with curvature term (which are Dirac-harmonic maps with curvature term from a
domain with Lorentzian metric) on expanding spacetimes an existence result could be
achieved in [14].

The mathematical study of the supersymmetric nonlinear σ -model with standard
spinors was initiated in [16], where the notion of Dirac-harmonic maps was introduced.
The full action of the supersymmetric nonlinear σ -model contains two additional terms:
Taking into account an additional two-form in the action functional the resulting equa-
tions were studied in [7], Dirac-harmonic maps with curvature term to target spaces with
torsion are analyzed in [9].

Most of the results presented in this section still hold true if we would consider the
full supersymmetric nonlinear σ -model. Let us give some more details in support of this
statement: The central ingredient in the derivation of various monotonicity formulas and
Liouville theorems will be the stress-energy tensor. An additional two-form contribution
in the action functional would not give a contribution to the stress-energy tensor as it
does not depend on the metric of the domain, see [7, Sect. 3] for more details. Moreover,
if we would consider a connection with torsion on the target manifold we would get
the same stress-energy tensor, see [9, Sect. 4], and all results that will be formulated in
this section still hold if we formulate the curvature assumptions taking into account the
connection with torsion.

Let us again emphasize that in the physics literature anticommuting spinors are
employedwhile themathematical references stated above and the present article consider
standard commuting spinors.

In the following we still assume that (M, g) is a complete Riemannian spin manifold
and (N , h) another Riemannian manifold. Whenever we will make use of indices we
use Latin letters for indices related to M and Greek letters for indices related to N . Let
φ : M → N be a map and let φ∗T N be the pull-back of the tangent bundle from N .
We consider the twisted bundle �M ⊗ φ∗T N , on this bundle we obtain a connection
induced from �M and φ∗T N , which will be denoted by ∇̃. Sections in �M ⊗ φ∗T N
are called vector spinors. On �M ⊗φ∗T N we have a scalar product induced from �M
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and φ∗T N , we will denote its real part by 〈·, ·〉. The twisted Dirac operator acting on
vector spinors is defined as

/D :=
n∑

i=1

ei · ∇̃ei .

Note that the operator /D is still elliptic. Moreover, we assume that the connection on
φ∗T N is metric, thus /D is also self-adjoint with respect to the L2-norm if M is compact.
The action functional for Dirac-harmonic maps with curvature term is given by

Ec(φ,ψ) = 1

2

∫
M

(|dφ|2 + 〈ψ, /Dψ〉 − 1

6
〈RN (ψ,ψ)ψ,ψ〉)dvolg. (5.1)

Here, RN denotes the curvature tensor of the manifold N . The factor 1/6 in front of the
curvature term is required by supersymmetry, see [20]. The indices are contracted as

〈RN (ψ,ψ)ψ,ψ〉 = Rαβγ δ〈ψα,ψγ 〉〈ψβ,ψδ〉,
which ensures that the functional is real valued. The critical points of the action functional
(5.1) are given by

τ(φ) = 1

2
RN (ψ, ei · ψ)dφ(ei ) − 1

12
〈(∇ RN )�(ψ,ψ)ψ,ψ〉, (5.2)

/Dψ = 1

3
RN (ψ,ψ)ψ, (5.3)

where τ(φ) ∈ �(φ∗T N ) is the tensionfield of themapφ and � : φ∗T ∗N → φ∗T N repre-
sents themusical isomorphism. For a derivation see [15], Sect. II and [8], Proposition 2.1.

Solutions (φ,ψ) of the system (5.2), (5.3) are called Dirac-harmonic maps with
curvature term.

The correct function space for weak solutions of (5.2), (5.3) is

χ(M, N ) := W 1,2(M, N ) × W 1, 43 (M, �M ⊗ φ∗T N ) × L4(M, �M ⊗ φ∗T N ).

For the domain being a closed surface it was shown in [8] that a weak solution
(φ,ψ) ∈ χ(M, N ) of (5.2), (5.3) is smooth. This was later extended to higher dimen-
sions in [28], see also [29] for the regularity of Dirac-harmonic maps with curvature
term coupled to a gravitino.

For smooth solutions of (5.2), (5.3) on a closed Riemannian surface a vanishing
result was obtained in [8], Lemma 4.9. More precisely, it was shown that a smooth
Dirac-harmonic map with curvature term with small energy

∫
M (|dφ|2 + |ψ |4)dvolg

from a closed surface that does not admit “standard” harmonic spinors must be trivial.
Using the recent regularity for vector spinors [18], Theorem 1.2 it should be possible to
prove this result without the assumption that M is not allowed to have harmonic spinors.
However, Theorem 1.2 in [18] is formulated for the case of a domain manifold with
boundary and one would require a version for closed manifolds.

Definition 5.1. A weak Dirac-harmonic map with curvature term (φ,ψ) ∈ χ(M, N ) is
called stationary if it is also a critical point of Ec(φ,ψ)with respect to domain variations.
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To obtain the formula for stationary Dirac-harmonic maps with curvature term we
make use of the same methods as before. Since the twist bundle φ∗T N does not depend
on the metric on M we can use the same methods as in Sect. 2. Thus, let k be a
smooth element of Sym(0, 2). Again, we will use the notation ψg+tk := βg,g+tkψ ∈
�(�Mg+tk ⊗ φ∗T N ).

Lemma 5.2. The following formula for the variation of the twisted Dirac-energy with
respect to the metric holds

d

dt

∣∣
t=0〈ψg+tk, /Dg+tkψg+tk〉�g+tk M⊗φ∗T N

= − 1

4
〈ei · ∇�g M⊗φ∗T N

e j ψ + e j · ∇�g M⊗φ∗T N
ei ψ,ψ〉�g M⊗φ∗T N ki j

(5.4)

with the stress-energy tensor associated to the twisted Dirac energy on the right hand
side.

At this point we are ready to compute the variation of the action functional (5.1) with
respect to the metric.

Proposition 5.3. Let the pair (φ,ψ) ∈ χ(M, N ) be a weak Dirac-harmonic map with
curvature term. Then (φ,ψ) is a stationary Dirac-harmonic map with curvature term if
for any smooth symmetric (0, 2)-tensor k the following formula holds
∫

M

(
2〈dφ(ei ), dφ(e j )〉 − gi j |dφ|2 + 1

2
〈ψ, ei · ∇�g M⊗φ∗T N

e j ψ + e j · ∇�g M⊗φ∗T N
ei ψ〉

− 1

6
gi j 〈RN (ψ,ψ)ψ,ψ〉)ki j )dvolg = 0. (5.5)

Proof. We calculate

d

dt

∣∣
t=0Ec(φ,ψ, g + tk) = 0,

where k is a symmetric (0, 2)-tensor and t some small number. Using the variation of
the volume-element (2.7) we obtain the variation of the Dirichlet energy

d

dt

∣∣
t=0

∫
M

|dφ|2g+tkdvolg+tk =
∫

M

( − 〈h(dφ(ei ), dφ(e j )), ki j 〉dvolg +
1

2
|dφ|2〈g, k〉gdvolg

)
.

Note that we get a minus sign in the first term since dφ ∈ �(T ∗M ⊗ φ∗T N ) such that
we have to vary the metric on the cotangent bundle. As a second step, we compute the
variation of the Dirac energy using (5.4) and (2.7) yielding

d

dt

∣∣
t=0

∫
M

〈ψg+tk, /Dg+tkψg+tk〉dvolg+tk

=
∫

M
−1

4
〈ei · ∇�g M⊗φ∗T N

e j ψ + e j · ∇�g M⊗φ∗T N
ei ψ,ψ〉�g M ki j dvolg

+
1

2

∫
M

〈ψ, /Dψ〉〈g, k〉gdvolg.
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Finally, for the term involving the curvature tensor of the target and the four spinors we
obtain

d

dt

∣∣
t=0

∫
M

〈RN (ψg+tk, ψg+tk)ψg+tk,ψg+tk〉g+tkdvolg+tk

= d

dt

∣∣
t=0

∫
M

〈RN (ψ,ψ)ψ,ψ〉�g+tk M⊗φ∗T N dvolg+tk

= 1

2

∫
M

〈RN (ψ,ψ)ψ,ψ〉�g M⊗φ∗T N 〈g, k〉gdvolg,

where we used that β acts as an isometry on the spinor bundle in the first step. Adding
up the three contributions and using the fact that (φ,ψ) is a weak Dirac-harmonic map
with curvature term yields the result. ��

5.1. A Liouville Theorem for stationary solutions. It is well known that a stationary
harmonic mapRq → N with finite Dirichlet energy is a constant map [21], Sect. 5. This
result was generalized to stationary Dirac-harmonic maps and here we generalize it to
stationary Dirac-harmonic maps with curvature term by adding a curvature assumption.

A similar result for smooth Dirac-harmonic maps with curvature term was already
obtained in [15], Theorem 1.2. Let us point out in some more detail the similarities
and differences between the methods of proof used in [15] and in the present article. In
the proof of Theorem 1.2 in [15] the authors calculate the Lie-derivative of the energy
density of (5.1) with respect to a conformal vector field X . In order to carry out the
Lie-derivative of the terms involving spinors in (5.1) they also apply the methods of [6].
After having obtained a formula for the Lie-derivative of the energy density of (5.1)
they multiply it with a suitable cutoff function and the result follows after integration by
parts. Although our method of proof formally looks very different it has the same core
ideas. At its heart is on the one hand the stress-energy tensor which was also derived
using the methods of [6] and on the other hand we also crucially require the existence
of a conformal vector field. However, it seems that the advantage of our method is that
we do not require to have a smooth solution of (5.2), (5.3). On the other hand both
proofs require the existence of a conformal vector field such that they can only work on
Riemannian manifolds with a sufficient amount of symmetry.

First, we will give the following remark following the proof of Theorem 3.1 in [13].

Remark 5.4. In this section we will often consider the quantity

|dφ|2 + 1

6
〈RN (ψ,ψ)ψ,ψ〉 (5.6)

and it will be crucial for our arguments that this expression is positive.

(1) In the case that φ : M → N is a constant map we can consider v ∈ φ∗T N , � ∈
�(�M) and set ψ := � ⊗ v. It is easy to check that this pair (φ,ψ) satisfies

〈RN (ψ,ψ)ψ,ψ〉 = 〈RN (v, v)v, v〉|�|4 = 0

due to the skewsymmetry of theRiemanncurvature tensor regardless of any curvature
assumptions on the target. Hence, in this case the system (5.2), (5.3) would reduce to

Dψα = 0, 1 ≤ α ≤ dim N ,

where D denotes the standard Dirac operator on �M .
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(2) However, for a pair (φ,ψ) that is not of the form from above the term
〈RN (ψ,ψ)ψ,ψ〉 will be different from zero. A careful inspection reveals that for
N having positive sectional curvature we have

|dφ|2 + 1

6
〈RN (ψ,ψ)ψ,ψ〉 ≥ 0,

see [15, Proof of Theorem 1.2] for more details.

Theorem 5.5. Let M = R
n,Hn with n ≥ 3 and suppose that (φ,ψ) ∈ W 1,2

loc (M, N ) ×
W

1, 43
loc (M, �M ⊗φ∗T N )×L4

loc(M, �M ⊗φ∗T N ) is a stationary Dirac-harmonic maps
with curvature term satisfying∫

Rn
(|dφ|2 + |∇�Mψ | 43 + |ψ |4)dvolg < ∞. (5.7)

If N has positive sectional curvature then φ is constant and ψ vanishes identically.

Proof. Let η ∈ C∞
0 (R) be a smooth cut-off function satisfying η = 1 for r ≤ R, η = 0

for r ≥ 2R and |η′(r)| ≤ C
R . In addition, we choose Y (x) := xη(r) ∈ C∞

0 (Rn,Rn)

with r = |x |. Hence, we find

ki j = ∂Yi

∂x j
= δi jη(r) +

xi x j

r
η′(r).

Inserting this into (5.5) and using that (φ,ψ) is a weak solution of the system (5.2),
(5.3) we obtain

(2 − n)

∫
Rn

(|dφ|2 + 1

6
〈RN (ψ,ψ)ψ,ψ〉)η(r)dvolg =

∫
Rn

(|dφ|2 − 2
∣∣∂φ

∂r

∣∣2 − 〈ψ, ∂r · ∇̃∂r ψ〉

+
1

6
〈RN (ψ,ψ)ψ,ψ〉)rη′(r)dvolg.

By the properties of the cut-off function η we find (see the proof of Theorem 4.1 for
more details)

(2 − n)

∫
Rn

(|dφ|2 + 1

6
〈RN (ψ,ψ)ψ,ψ〉)η(r)dvolg

≤ C
∫

B2R\BR

(|dφ|2 + |ψ ||∇̃ψ | + |ψ |4)dx

≤ C
∫

B2R\BR

(|dφ|2 + |∇�Mψ | 43 + |ψ |4)dx .

Due to the finite energy assumption and the fact that n ≥ 3, taking the limit R → ∞
yields ∫

Rn
(|dφ|2 + 1

6
〈RN (ψ,ψ)ψ,ψ〉)dvolg = 0.

At this point we need to make a case distinction as in Remark 5.4. In the first case the
statement follows from Theorem 4.1 with λ = μ = 0 and in the second case we are
done since N has positive sectional curvature. To obtain the result for hyperbolic space
we again apply the theorem of Cartan–Hadamard. ��
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5.2. Monotonicity formulas and Liouville Theorems. In this section we derive a mono-
tonicity formula for Dirac-harmonic maps with curvature term building on their stress-
energy tensor. For simplicity, we will mostly assume that (φ,ψ) is a smooth Dirac-
harmonic map with curvature term. From (5.5) we obtain the stress-energy tensor for
the functional Ec(φ,ψ) as

Si j = 2〈dφ(ei ), dφ(e j )〉 − gi j |dφ|2

+
1

2
〈ψ, ei · ∇�M⊗φ∗T N

e j
ψ + e j · ∇�M⊗φ∗T N

ei
ψ〉 − 1

6
gi j 〈RN (ψ,ψ)ψ,ψ〉.

(5.8)

It is well-known that the stress-energy tensor (5.8) is divergence free in the case of a
two-dimensional domain whenever (φ,ψ) solves the equation for Dirac-harmonic maps
with curvature term. This question was first addressed in [8], Proposition 3.2. However,
in the calculation carried out in that reference a real-part in front of the third term is
missing. This issue was later clarified and corrected in [27], Lemma 4.1.

For the sake of completeness and in order to also include the case of a higher-
dimensional domain manifold we will give another proof that (5.8) is divergence free.

Lemma 5.6. Suppose that (φ,ψ) is a smooth solution of (5.2), (5.3). Then the stress-
energy tensor (5.8) is divergence-free.

Proof. First, we replace the last term in (5.8) using (5.3). To shorten the notation we
will write ∇̃ for the connection on�M ⊗φ∗T N . Then the stress-energy tensor acquires
the form

Si j = 2〈dφ(ei ), dφ(e j )〉 − gi j |dφ|2 + 1

2
〈ψ, ei · ∇̃e j ψ + e j · ∇̃ei ψ〉 − 1

2
gi j 〈 /Dψ,ψ〉.

We choose a local orthonormal basis of T M such that ∇ei e j = 0, i, j = 1, . . . , n at the
considered point. By a direct calculation we find

∇ j (2〈dφ(ei ), dφ(e j )〉 − gi j |dφ|2) = 2〈dφ(ei ), τ (φ)〉
= 〈dφ(ei ), RN (ψ, er · ψ)dφ(er )〉

− 1

6

〈
dφ(ei ), 〈(∇ RN )�(ψ,ψ)ψ,ψ〉〉, (5.9)

where we have used (5.2) in the second step. Then, we calculate

∇ j (1
2
〈ψ, ei · ∇̃e j ψ + e j · ∇̃ei ψ〉 − 1

2
gi j 〈 /Dψ,ψ〉)

= 1

2
〈∇̃e j ψ, ei · ∇̃e j ψ〉︸ ︷︷ ︸

=0

+
1

2
〈ψ, ei · ̃ψ〉 + 1

2
〈∇̃e j ψ, e j · ∇̃ei ψ〉 + 1

2
〈ψ, /D∇̃ei ψ〉

− 1

2
〈∇̃ei ψ, /Dψ〉 − 1

2
〈ψ, ∇̃ei

/Dψ〉

= 1

2
〈ψ, ei · ̃ψ〉 − 〈 /Dψ, ∇̃ei ψ〉 + 1

2
〈ψ, /D∇̃ei ψ − ∇̃ei

/Dψ〉. (5.10)

Recall that

/D∇̃ei ψ = er · R�M (er , ei )ψ + er · RN (dφ(er ), dφ(ei ))ψ + ∇̃ei
/Dψ
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such that

〈ψ, /D∇̃ei ψ − ∇̃ei
/Dψ〉 = 1

2
〈ψ,Ric(ei ) · ψ〉︸ ︷︷ ︸

=0

+〈ψ, er · RN (dφ(er ), dφ(ei ))ψ〉.

(5.11)

In order to manipulate the term involving the connection Laplacian on �M ⊗ φ∗T N
we recall the Weitzenböck formula for the twisted Dirac operator /D which is given by

/D2
ψ = −̃ψ +

1

4
Rψ +

1

2
er · es · RN (dφ(er ), dφ(es))ψ.

This allows us to conclude that

〈ψ, ei · ̃ψ〉 = −〈ψ, ei · /D2
ψ〉 + R

4
〈ψ, ei · ψ〉︸ ︷︷ ︸

=0

+
1

2
〈ψ, ei · er · es · RN (dφ(er ), dφ(es))ψ〉.

We proceed by calculating

〈ψ, ei · /D2
ψ〉 = 1

3
〈ψ, ei · /D

(
RN (ψ,ψ)ψ

)〉
= 1

3
〈ψ, ei · (∇̃(RN (ψ,ψ))

) · ψ〉 + 1

3
〈ψ, ei · RN (ψ,ψ) /Dψ〉

︸ ︷︷ ︸
=−〈 /Dψ,ei · /Dψ〉=0

,

where we have used that ψ is a solution of (5.3) twice. The first term on the right hand
side can further be manipulated as

〈ψ, ei · (∇̃(RN (ψ,ψ))
) · ψ〉 = −〈ψ, ∇̃ei

(
RN (ψ,ψ)

)
ψ〉

= −〈
dφ(ei ), 〈(∇ RN )�(ψ,ψ)ψ,ψ〉〉

− 2〈∇̃ei ψ, RN (ψ,ψ)ψ〉.
In addition, we find

〈ψ, ei · er · es · RN (dφ(er ), dφ(es))ψ〉 = Rαβγ δ〈ψα, ei · er · es · ψβ〉�M
∂φγ

∂xr

∂φδ

∂xs

= Rαβγ δ〈ei · er · es · ψα,ψβ〉�M
∂φγ

∂xr

∂φδ

∂xs
.

A careful inspection of this term reveals that it is both real and imaginary and thus has
to vanish except in the cases i = r or i = s. Consequently, we find

〈ψ, ei · er · es · RN (dφ(er ), dφ(es))ψ〉 = −2〈ψ, er · RN (dφ(ei ), dφ(er ))ψ〉.
Combining the previous equations we find

〈ψ, ei · ̃ψ〉 = − 〈ψ, er · RN (dφ(ei ), dφ(er ))ψ〉
+
1

3

〈
dφ(ei ), 〈(∇ RN )�(ψ,ψ)ψ,ψ〉〉 + 2

3
〈∇̃ei ψ, RN (ψ,ψ)ψ〉. (5.12)

Putting together (5.9), (5.10), (5.11) and (5.12) then yields the claim. ��
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For a Dirac-harmonic map with curvature term the trace of (5.8) can easily be com-
puted and gives

gi j Si j = (2 − n)(|dφ|2 + 1

6
〈RN (ψ,ψ)ψ,ψ〉).

Hence, we will consider the following energy

ec(φ,ψ) := |dφ|2 + 1

6
〈RN (ψ,ψ)ψ,ψ〉

and study its monotonicity. Note that we need tomake a case distinction as in Remark 5.4
in order to obtain the positivity of ec(φ,ψ).

Proposition 5.7 (Monotonicity formula inRn).Let (φ,ψ) be a smooth solution of (5.2),
(5.3) for M = R

n. Let BR(x0) be a geodesic ball around the point x0 ∈ M and
0 < R1 < R2 ≤ R. Then the following following monotonicity formula holds

R2−n
1

∫
BR1

ec(φ,ψ)dx =R2−n
2

∫
BR2

ec(φ,ψ)dx

−
∫ R2

R1

(
r2−n

∫
∂ Br

(2
∣∣∂φ

∂r

∣∣2 + 〈ψ, ∂r · ∇̃∂r ψ〉)dσ
)
dr.

(5.13)

Proof. For M = R
n we choose the conformal vector field X = r ∂

∂r with r = |x |. In
this case we have div(X) = n, thus we obtain

r
∫

∂ Br (x0)
(2

∣∣∂φ

∂r

∣∣2 + 〈ψ, ∂r · ∇̃∂r ψ〉 − ec(φ,ψ))dσ

= (2 − n)

∫
Br (x0)

(|dφ|2 + 1

6
〈RN (ψ,ψ)ψ,ψ〉)dx,

where we used (4.3) and (4.4). This can be rewritten as

(2 − n)

∫
Br (x0)

ec(φ,ψ) + r
∫

∂ Br (x0)
ec(φ,ψ) = r

∫
∂ Br (x0)

(2
∣∣∂φ

∂r

∣∣2 + 〈ψ, ∂r · ∇̃∂r ψ〉)dx

and by applying the coarea formula we find

d

dr

(
r2−n

∫
Br

ec(φ,ψ)dx
) = r2−n

∫
∂ Br

(2
∣∣∂φ

∂r

∣∣2 + 〈ψ, ∂r · ∇̃∂r ψ〉)dσ.

The result then follows by integration with respect to r . ��
Remark 5.8. The last statement also holds if (φ,ψ) is a weak Dirac-harmonic map with
curvature term, that is (φ,ψ) ∈ χ(M, N ) for M = R

n . It this case we can require higher
integrability assumptions on ψ as in [38], Proposition 4.5 to get the following result:
Let the pair (φ,ψ) be a weak Dirac-harmonic map with curvature term in some domain
D ⊂ R

n . In addition, suppose that ∇ψ ∈ L p(D) for 2n
3 < p ≤ n, then

R2−n
1

∫
BR1

ec(φ,ψ)dx ≤ R2−n
2

∫
BR2

ec(φ,ψ)dx + C0R
3− 2n

p
2 .
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Here, the constant C0 only depends on |∇ψ |L p(D).
A possible application of this monotonicity formula for stationary Dirac-harmonic

maps with curvature term is to calculate the Hausdorff dimension of their singular set.
For Dirac-harmonic maps this has been carried out in [38], Proposition 4.5 and was
recently extended to Dirac-harmonic maps with curvature term in [28] and furthermore
to Dirac-harmonic maps with curvature term coupled to a gravitino in [29].

To derive a monotonicity formula on a Riemannian manifold we again fix a point
x0 ∈ M and consider a ball with geodesic radius r = d(x0, ·) around that point, where
d denotes the Riemannian distance function.

Lemma 5.9. Let (φ,ψ) be a smooth solution of the system (5.2), (5.3). Then the follow-
ing formula holds

−�

∫
Br

ec(φ, ψ)dx + r
∫

∂ Br

ec(φ, ψ)dσ = r
∫

∂ Br

(
2
∣∣∂φ

∂r

∣∣2 + 〈ψ, ∂r · ∇̃∂r ψ〉)dσ

−
∫

Br

Hess(r2)(ei , ei )〈ψ, ei · ∇̃ei ψ〉dx

− 2
∫

Br

Hess(r2)(ei , ei )〈dφ(ei ), dφ(ei )〉
)
dx,

(5.14)

where � := tr Hess(r2).

Proof. We apply (4.4) using (5.8), which yields

r
∫

∂ Br

(
2
∣∣∂φ

∂r

∣∣2 + 〈ψ, ∂r · ∇̃∂r ψ〉)dσ − r
∫

∂ Br

ec(φ,ψ)dσ

= −
∫

Br

tr Hess(r2)ec(φ,ψ)dx

+
∫

Br

Hess(r2)(ei , e j )
(1
2
〈ψ, ei · ∇̃e j ψ + e j · ∇̃ei ψ〉 + 2〈dφ(ei ), dφ(e j )〉

)
dx .

Diagonalizing the Hessian of the Riemann distance function then yields the claim. ��
Again, the presence of the Dirac-Term on the right hand side of (5.14) is an obstacle

to amonotonicity formula.We can try to improve the result if we assume that the solution
ψ of (5.3) has some additional structure.

Definition 5.10. We call ψ ∈ �(�M ⊗ φ∗T N ) a vector twistor spinor if it satisfies

∇̃Xψ +
1

n
X · /Dψ = 0 (5.15)

for all vector fields X .

Remark 5.11. If we assume that ψ is both a vector twistor spinor and a solution of (5.3)
we find

∇̃Xψ = − 1

3n
RN (ψ,ψ)X · ψ,
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for all vector fields X . Moreover, a direct calculation yields

∂X
1

2
|ψ |2 = 〈∇̃Xψ,ψ〉 = − 1

3n
〈RN (ψ,ψ)X · ψ,ψ〉

= − 1

3n
Rαβγ δ〈ψα,ψδ〉〈ψβ, X · ψγ 〉.

On the other hand we find

Rαβγ δ〈ψα,ψδ〉〈ψβ, X · ψγ 〉 = Rαβγ δ〈ψδ,ψα〉〈X · ψγ ,ψβ〉
= −Rαβγ δ〈ψα,ψδ〉〈ψβ, X · ψγ 〉.

Consequently the above expression is both purely imaginary and also purely real and
thus has to vanish, meaning that |ψ |2 has constant norm. Thus, this approach does not
lead to an interesting monotonicity formula.

Only the last term on the right hand side of (5.14) has a definite sign and we can
estimate it as follows

0 ≤ Hess(r2)(ei , ei )〈dφ(ei ), dφ(ei )〉 ≤ ωmax |dφ|2,

where ωmax denotes the largest eigenvalue of Hess(r2).
Without loss of generality we assume that ω1 = ωmax and rewrite

Hess(r2)(ei , ei )〈ψ, ei · ∇̃ei ψ〉 = ωmax 〈ψ, /Dψ〉 +
n∑

j=2

〈ψ, e j · ∇̃e j ψ〉(ω j − ωmax ).

Using (5.3) this gives us the following inequality

−2Hess(r2)(ei , ei )〈dφ(ei ), dφ(ei )〉 − Hess(r2)(ei , ei )〈ψ, ei · ∇̃ei ψ〉

≥ −2ωmax ec(φ,ψ) −
n∑

j=2

〈ψ, e j · ∇̃e j ψ〉(ω j − ωmax ). (5.16)

Proposition 5.12. Let (φ,ψ) be a smooth solution of the system (5.2), (5.3). Then for
all 0 < R1 < R2 ≤ R, R ∈ (0, iM ) the following monotonicity type formula holds

R2ωmax −�
1

∫
BR1

(
ec(φ,ψ) − 〈ψ, ∂r · ∇̃∂r ψ〉)dx

≤R2ωmax −�
2

∫
BR2

(
ec(φ,ψ) − 〈ψ, ∂r · ∇̃∂r ψ〉)dx

+ (2ωmax − �)

∫ R2

R1

(
r2ωmax −�−1

∫
Br

〈ψ, ∂r · ∇̃∂r ψ〉dx
)
dr

+
∫ R2

R1

(
r2ωmax −�−1

n∑
j=2

∫
Br

〈ψ, e j · ∇̃e j ψ〉(ω j − ωmax )dx
)
dr. (5.17)
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Proof. Combining (5.14) and (5.16) we find

(2ωmax − �)

∫
Br

ec(φ,ψ)dx + r
∫

∂ Br

ec(φ,ψ)dσ

≥ r
∫

∂ Br

(
2
∣∣∂φ

∂r

∣∣2 + 〈ψ, ∂r · ∇̃∂r ψ〉)dσ

−
n∑

j=2

∫
Br

〈ψ, e j · ∇̃e j ψ〉(ω j − ωmax )dx .

Making use of the coarea formula this can be rewritten as

d

dr
r2ωmax −�

∫
Br

ec(φ,ψ)dx ≥ r2ωmax −�

∫
∂ Br

(
2
∣∣∂φ

∂r

∣∣2 + 〈ψ, ∂r · ∇̃∂r ψ〉)dσ

− r2ωmax −�−1
n∑

j=2

∫
Br

〈ψ, e j · ∇̃e j ψ〉(ω j − ωmax )dx

≥ r2ωmax −�

∫
∂ Br

〈ψ, ∂r · ∇̃∂r ψ〉dσ

− r2ωmax −�−1
n∑

j=2

∫
Br

〈ψ, e j · ∇̃e j ψ〉(ω j − ωmax )dx .

Integrating with respect to r and using integration by parts
∫ R2

R1

(
r2ωmax −�

∫
∂ Br

〈ψ, ∂r · ∇̃∂r ψ〉dσ
)
dr

=
∫ R2

R1

(
r2ωmax −� d

dr

∫
Br

〈ψ, ∂r · ∇̃∂r ψ〉dσ
)
dr

= R2ωmax −�
2

∫
BR2

〈ψ, ∂r · ∇̃∂r ψ〉dx − R2ωmax −�
1

∫
BR1

〈ψ, ∂r · ∇̃∂r ψ〉dx

− (2ωmax − �)

∫ R2

R1

r2ωmax −�−1
∫

Br

〈ψ, ∂r · ∇̃∂r ψ〉dx

completes the proof. ��
Remark 5.13. In the case of M = R

n we have ωi = 1, i = 1 . . . , n and � = n. In this
case we have equality in (5.17) and (5.17) reduces to (5.13).

Remark 5.14. Again, it seems very difficult to obtain a Liouville Theorem from the
monotonicity formula (5.17) without posing a lot of restrictions on the solution.

5.3. A Liouville Theorem for a domain with positive Ricci curvature. In this section
we derive a vanishing theorem for Dirac-harmonic maps with curvature term under an
energy and curvature assumption, similar to Theorem 4.13. To this end we set

e(φ,ψ) := 1

2
(|dφ|2 + |ψ |4).
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Lemma 5.15 (Bochner formulas). Let (φ,ψ) be a smooth solution of the system (5.2),
(5.3). Then the following Bochner formulas hold


1

2
|ψ |4 = ∣∣d|ψ |2∣∣2 + 2|ψ |2|∇̃ψ |2 + 2

9
|ψ |2|RN (ψ,ψ)ψ |2 + R

2
|ψ |4

+
1

2
|ψ |2〈ei · e j · RN (dφ(ei ), dφ(e j ))ψ,ψ〉, (5.18)


1

2
|dφ|2 = |∇dφ|2 + 〈dφ(RicM (ei )), dφ(ei )〉 − 〈RN (dφ(ei ), dφ(e j ))dφ(e j ), dφ(ei )〉

+
1

2
〈(∇dφ(e j ) RN )(ψ, ei · ψ)dφ(ei ), dφ(e j )〉

+ 〈RN (ψ, ei · ∇̃e j ψ)dφ(ei ), dφ(e j )〉
+
1

2
〈RN (ψ, ei · ψ)∇e j dφ(ei ), dφ(e j )〉

+
1

12
〈〈(∇dφ(ei )(∇ RN )�)(ψ,ψ)ψ,ψ〉, dφ(ei )〉

+
1

3
〈〈(∇ RN )�(∇̃ei ψ,ψ)ψ,ψ〉, dφ(ei )〉, (5.19)

where ei , i = 1 . . . , n is an orthonormal basis of T M.

Proof. We choose a local orthonormal basis of T M such that∇ei e j = 0, i, j = 1, . . . , n
at the considered point. The fist equation follows by a direct calculation using the
Weitzenböck formula for the twisted Dirac-operator /D, that is

/D2
ψ = −̃ψ +

1

4
Rψ +

1

2
ei · e j · RN (dφ(ei ), dφ(e j ))ψ,

where ̃ denotes the connection Laplacian on the vector bundle�M ⊗φ∗T N . To obtain
the second equation we recall the following Bochner formula for a map φ : M → N


1

2
|dφ|2 = |∇dφ|2 + 〈dφ(RicM (ei )), dφ(ei )〉

−〈RN (dφ(ei ), dφ(e j ))dφ(e j ), dφ(ei )〉 + 〈∇τ(φ), dφ〉.
Moreover, by a direct calculation we obtain

∇̃e j

(1
2

RN (ψ, ei · ψ)dφ(ei )
)

= 1

2
(∇dφ(e j ) RN )(ψ, ei · ψ)dφ(ei ) + RN (ψ, ei · ∇̃e j ψ)dφ(ei )

+
1

2
RN (ψ, ei · ψ)∇e j dφ(ei ),

∇̃e j

( 1

12
〈(∇ RN )�(ψ,ψ)ψ,ψ〉)

= 1

12
〈(∇dφ(e j )(∇ RN )�)(ψ,ψ)ψ,ψ〉

+
1

3
〈(∇ RN )�(∇̃e j ψ,ψ)ψ,ψ〉,

which concludes the proof. ��



764 V. Branding

Corollary 5.16. Let (φ,ψ) be a smooth solution of the system (5.2), (5.3). Then the
following estimate holds:

e(φ,ψ) ≥ c1(|∇dφ|2 + ∣∣d|ψ |2∣∣2) − c2e(φ,ψ) − c3(e(φ,ψ))2, (5.20)

where ci , i = 1, 2, 3 are positive constants that depend only on the geometry of M and N.

Proof. Making use of the Bochner formulas we find

e(φ,ψ) ≥|∇dφ|2 + κM |dφ|2 + κN |dφ|4

− |∇ RN |L∞
√

n

2
|ψ |2|dφ|3 − |RN |L∞

√
n|ψ ||∇̃ψ ||dφ|2

− |RN |L∞
√

n

2
|ψ |2|∇dφ||dφ| − |∇2RN |L∞

12
|ψ |4|dφ|2

− |∇ RN |L∞

3
|∇̃ψ ||ψ |3|dφ|

+
∣∣d|ψ |2∣∣2 + 2|ψ |2|∇̃ψ |2 + 2

9
|ψ |2|RN (ψ,ψ)ψ |2 + R

2
|ψ |4

− n|RN |L∞

2
|ψ |4|dφ|2,

where κM denotes a lower bound for the Ricci curvature of M and κN an upper bound
for the sectional curvature of N . By application of Young’s inequality we find

e(φ,ψ) ≥(1 − δ1)|∇dφ|2 + |ψ |2|∇̃ψ |2(2 − δ2 − δ3) +
∣∣d|ψ |2∣∣2

+
2

9
|ψ |2|RN (ψ,ψ)ψ |2 + R

2
|ψ |4 + κM |dφ|2

− |dφ|4(−κN +
1

δ2

n

4
|RN |2L∞ + δ4)

− |ψ |4|dφ|2( n

8δ1
|RN |2L∞ +

1

δ3

|∇ RN |2L∞
36

+
|∇2RN |L∞

12
+

n|RN |L∞

2

+
n

8δ4
|∇ RN |2L∞

)
(5.21)

with positive constants δi , i = 1, . . . 4. The statement then follows by applying Young’s
inequality again. ��
Remark 5.17. (1) The analytic structure of (5.20) is the same as in the case of harmonic

maps.
(2) If we want to derive a Liouville Theorem from (5.20) making only assumptions on

the geometry of M and N we would require that both c2 ≤ 0 and c3 ≤ 0. However,
it can easily be checked that we cannot achieve such an estimate since the curvature
tensor of N appears on the right hand side of the system (5.2) and (5.3).

However, we can give a Liouville theorem under similar assumptions as in Theo-
rem 4.13. A similar Theorem for Dirac-harmonic maps was obtained in [17], Theorem 4.
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Theorem 5.18. Let (M, g) be a complete noncompact Riemannian spin manifold and
(N , h) be a Riemannian manifold with nonpositive curvature. Suppose that (φ,ψ) is a
Dirac-harmonic map with curvature term with finite energy e(φ,ψ). If

RicM ≥ (c1|ψ |4 + c2|dφ|2)g, (5.22)

with the constants

c1 = n

2
|RN |L∞ +

n

16
|RN |2L∞ +

( 1

36
+

n

8

)|∇ RN |2L∞ +
|∇2RN |L∞

12
,

c2 = n

4
|RN |2L∞ + 1

then φ maps to a point and ψ vanishes identically.

Proof. First of all we note that

|de(φ,ψ)|2 = |1
2

d(|dφ|2 + |ψ |4)|2 ≤ (|dφ|2|∇dφ|2 + |ψ |4∣∣d|ψ |2∣∣2
+ 2|dφ||∇dφ||ψ |2∣∣d|ψ |2∣∣)

≤ 2e(φ,ψ)(|∇dφ|2 + ∣∣d|ψ |2∣∣2). (5.23)

If we put δ1 = 1
2 , δ2 = δ3 = δ4 = 1 in (5.21) we find

e(φ,ψ) ≥1

2
(|∇dφ|2 + ∣∣d|ψ |2∣∣2)

+ |dφ|2
(

κM − |ψ |4(n

2
|RN |L∞ +

n

16
|RN |2L∞

+
( 1

36
+

n

8

)|∇ RN |2L∞ +
|∇2RN |L∞

12

)

+ |dφ|2(1 + n

4
|RN |2L∞

))
.

Making use of the assumption (5.22) this yields

e(φ,ψ) ≥ δ(|∇dφ|2 + ∣∣d|ψ |2∣∣2) (5.24)

for a positive constant δ. We fix a positive number ε > 0 such that


√

δe(φ,ψ) + ε = δe(φ,ψ)

2
√

e(φ,ψ) + ε
− 1

4

δ2|∇e(φ,ψ)|2
(e(φ,ψ) + ε)

3
2

≥δ2
|∇dφ|2 + ∣∣d|ψ |2∣∣2
2
√

e(φ,ψ) + ε

(
1 − e(φ,ψ)

e(φ,ψ) + ε

) ≥ 0,

wherewe used (5.23) and (5.24). The rest of the proof is identical to the proof of Theorem
4.13. ��
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