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Abstract: By extending the concept of energy-constrained diamond norms, we obtain
continuity bounds on the dynamics of both closed and open quantum systems in infinite
dimensions, which are stronger than previously known bounds. We extensively discuss
applications of our theory to quantum speed limits, attenuator and amplifier channels,
the quantum Boltzmann equation, and quantum Brownian motion. Next, we obtain
explicit log-Lipschitz continuity bounds for entropies of infinite-dimensional quantum
systems, and classical capacities of infinite-dimensional quantumchannels under energy-
constraints. These bounds are determined by the high energy spectrum of the underlying
Hamiltonian and can be evaluated using Weyl’s law.

1. Introduction

Infinite-dimensional quantum systems play an important role in quantum theory. The
quantum harmonic oscillator, which is the simplest example of such a system, has var-
ious physical realizations, e.g. in vibrational modes of molecules, lattice vibrations of
crystals, electric and magnetic fields of electromagnetic waves, etc. Even though much
of quantum information science focusses on finite-dimensional quantum systems, the
relevance of infinite-dimensional (or continuous variable) quantum systems in quan-
tum thermodynamics, quantum computing, and various other quantum technologies,
has become increasingly apparent (see e.g. [SL,E06] and references therein).

In this paper we make a detailed analysis of the time evolution of time-independent,
infinite-dimensional quantum systems. The dynamics of such a system is described by
a quantum dynamical semigroup (QDS) (Tt )t≥0 under the Markovian approximation,
which is valid under the assumption of weak coupling between the system and its envi-
ronment. In the Schrödinger picture, this is a one-parameter family of linear, completely
positive, trace-preserving maps (i.e. quantum channels) acting on states of the quantum
system. In the Heisenberg picture, the dynamics of observables is given by the adjoint
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semigroup (T ∗
t )t≥0 where ∀ t ≥ 0, T ∗

t is a linear, completely positive, unital map on the
space of bounded operators acting on the system.1

There are different notions of continuity of QDSs. The case of uniformly continuous
QDSs is the simplest, and is easy to characterize (see Sect. 2.1 for a compendium on
semigroup theory). A semigroup is uniformly continuous if and only if the generator is
bounded. In this paper, we focus on the analytically richer case of strongly continuous
semigroups, which appear naturally when the generator is unbounded.

QDSs are used to describe the dynamics of both closed and open quantum systems.2

Open quantum systems are of particular importance in quantum information theory since
systems which are of relevance in quantum information-processing tasks undergo un-
avoidable interactions with their environments, and hence are inherently open. In fact,
any realistic quantum-mechanical system is influenced by its interactions with its en-
vironment, which typically has a large number of degrees of freedom. A prototypical
example of such a system is an atom interacting with its surrounding radiation field.
In quantum information-processing tasks, interactions between a system and its envi-
ronment leads to loss of information (encoded in the system) due to processes such as
decoherence and dissipation. QDSs are useful in describing these processes. The theory
of open quantum systems has also found applications in various other fields including
condensed matter theory and quantum optics.

Infinite-dimensional closed quantum systems to which our results apply are e.g.
described by time-independent Schrödinger operators H = −� + V , which are ubiq-
uitous in the literature. Examples of infinite-dimensional open quantum systems, to
which our results apply, include, among others, amplifier and attenuator channels, the
Jaynes–Cummings model of quantum optics, quantum Brownian motion, and the quan-
tum Boltzmann equation (which describes how the motion of a single test particle is
affected by collisions with an ideal background gas). These will be discussed in detail
in Sect. 5.

1.1. Rates of convergence for quantum evolution. Let us focus on the defining property
of a strongly continuous semigroup (Tt )t≥0 on a Banach space X , namely, the conver-
gence property for all x ∈ X

lim
t→0+

Tt x = x .

In this paper, we are interested in a refined analysis of this convergence, i.e., our aim
is to determine the rate at which Tt converges to the identity map I as t goes to zero,
and study applications of it.

The rate of convergence limt→0+ ‖Tt − I‖ of a semigroup (Tt )t on a Banach space X
is linear in time, if and only if the generator A of the semigroup is a bounded operator.
To see this, observe that by the fundamental theorem of calculus and d

ds T (s) = T (s)A

‖Tt x − x‖ =
∥
∥
∥
∥

∫ t

0

d

ds
T (s)x ds

∥
∥
∥
∥

=
∥
∥
∥
∥

∫ t

0
T (s)Ax ds

∥
∥
∥
∥

≤
∫ t

0
‖Ts Ax‖ ds

≤ ‖Ax‖ sup
s∈[0,t]

‖Ts‖ t. (1.1)

1 T ∗
t is the adjoint of Tt with respect to the Hilbert–Schmidt inner product.

2 For closed quantum system, the QDS consists of unitary operators Tt . Since T−t = T ∗
t this semigroup

extends to a group with t ∈ R.
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For general strongly continuous semigroups with unbounded generators, however, one
merely knows that limt→0 ‖Tt x − x‖ = 0 by strong continuity, and there is no infor-
mation on the rate of convergence. If the generator, A, of the semigroup is unbounded,
all elements x ∈ X that are also in the domain, D(A), of the generator still satisfy a
linear time asymptotics by (1.1). This is because ‖Ax‖ is well-defined for x ∈ D(A),
and thus (1.1) holds. However, if the generator A is unbounded, then the bound (1.1) is
not uniform for normalized x ∈ D(A), since ||Ax || can become arbitrarily large.

To obtain more refined information on the rate of convergence, we study spaces that
interpolate between the convergence with linear rate t1 [that holds for elements in the
domain D(A) ⊆ X of the generator, by (1.1)] and the convergence without an a priori
rate, which we might formally interpret as t0, for general elements of the space X . More
precisely, we consider interpolation spaces, known as Favard spaces Fα = Fα((Tt )t ) in
semigroup theory [T78], of elements x ∈ X such that for some Cx > 0

‖Tt x − x‖ ≤ Cx t
α with α ∈ (0, 1], for all t > 0.

In order to study convergence rates and analyze continuity properties of QDSs we
need to choose a suitable metric on the set of quantum channels.3 A natural metric which
is frequently used is the one induced by the so-called completely bounded trace norm
or diamond norm, denoted as ‖•‖
. However, it has been observed in [W17] that if the
underlying Hilbert space H is infinite-dimensional, then the convergence generated by
the diamond norm is, in general, too strong to capture the empirical observation that
channels whose parameters differ only by a small amount, should be close to each other.
Examples of Gaussian channels for which convergence in the diamond norm does hold
are, for example, studied in [Wi18].

In this case, a weaker norm, namely the energy-constrained diamond norm, (or ECD
norm, in short), introduced independently by Shirokov [Shi18, (2)] and Winter [W17,
Definition 3], proves more useful for studying convergence properties of QDSs in the
Schrödinger picture (see Example 1). It is denoted as ‖•‖E
 , where E characterizes the
energy constraint.

In this paper, we introduce a one-parameter family of ECD norms, ‖•‖S,E

2α ; here S

denotes a positive semi-definite operator, E is a scalar taking values above the bottom of
the spectrum of S, and α ∈ (0, 1] is a parameter (see Definition 2.3). We refer to these
norms as α-ECD norms. They reduce to the usual ECD norm for the choice α = 1/2,
when S is chosen to be the Hamiltonian of the system. A version of the α = 1/2-ECD
norm, for S being the number operator, was first introduced in the context of bosonic
channels by Pirandola et al. [PLOB17, (98)].

To illustrate the power of theα-ECDnorms over the standard diamond norm, and even
over the usual ECD norm, we discuss the example of the (single mode bosonic quantum-
limited) attenuator channel with time-dependent attenuation parameter η(t) := e−t (see
Example 5 for details):

Example 1 (Attenuator channel). Let N := a∗a be the number operator, with a∗, a being
the standard creation and annihilation operators. Consider the attenuator channel �att

t ,
with time-dependent attenuation parameter η(t) := e−t . This one is uniquely defined by
its action on coherent states |α〉 = e−|α|2/2∑∞

n=0
αn√
n! |n〉, where {|n〉}n is the standard

eigenbasis of the number operator, as follows:

�att
t (|α〉〈α|) := |e−tα〉〈e−tα|. (1.2)

3 This is because if (Tt )t≥0 is a QDS, then for any t , Tt is a quantum channel.
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The family (�att
t ) is then a QDS.

As pointed out in [W17], the diamond norm is too strong in many situations. In fact,
for any times t �= s it is shown in [W17, Proposition 1] that

∥
∥�att

t − �att
s

∥
∥
 = 2.

Thus, no matter whether t and s are close or far apart, the diamond norm is always
equal to 2. The ECD norm serves to overcome this problem, since it follows from [W17,
Sect. IV B] that

lim
t→s

∥
∥�att

t − �att
s

∥
∥
E

 = 0.

However, as we will show in Example 5, considering the entire family of α-ECD norms
provides further improvement, since it allows us to capture the rate of convergence of
the channels as t converges to s:

∥
∥�att

t − �att
s

∥
∥
N ,E

2α ≤ CαE

α |t − s|α
for some constant Cα > 0 that is explicitly given in Example 5.

1.1.1. Quantum speed limits. The bounds which we obtain on the dynamics of closed
and open quantum systems, immediately lead to lower bounds on the minimal time
needed for a quantum system to evolve from one quantum state to another. Such bounds
are known as quantum speed limits. Mandelstam and Tamm [MT91] were the first to
derive a bound on the minimal time, tmin, needed for a given pure state to evolve to a
pure state orthogonal to it. It is given by4

tmin ≥ π

2�E
,

where�E is the variance of the energyof the initial state. From theworkof [ML98,LT09]
it followed then that the minimal time needed to reach any state of expected energy E ,
which is orthogonal to the initial state, satisfies

tmin ≥ max

{
π

2�E
,
π

2

1

E

}

. (1.3)

Moreover, this bound was shown to be tight. If one includes physical constants and
formally studies the semiclassical limit � → 0, one discovers that the lower bound in
tmin vanishes. However, it was shown in [SCMC18] that speed limits also exist in the
classical regime. The study of speed limits was generalized in [P93] to the case of initial
and target pure states which are not necessarily orthogonal, but are instead separated
by arbitrary angles. It has also been generalized to mixed states and open systems with
bounded generators. Although the quantum speed limit for closed quantum systems that
we obtain from the ECD norm (i.e. for α = 1/2), stated in (3.11), is smaller than (1.3),
we obtain better estimates on the quantum speed limit for many states using different
α-ECD norm. In particular, the approach pursued in this article allows us to deal with:

• open quantum systems with unbounded generators,
• states with infinite expected energy, and
• systems whose dynamics is generated by an operator which is different from that
which penalizes the energy.

4 We use dimensionless notation in this paper.
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1.2. Explicit convergence rates for entropies and capacities. It is well-known that on
infinite-dimensional spaces, the von Neumann entropy is discontinuous [We78]. Hence,
in order to obtain explicit bounds on the difference of the von Neumann entropies of
two states, it is necessary to impose further restrictions on the set of admissible states. In
[W15], continuity bounds for the von Neumann entropy of states of infinite-dimensional
quantum systems were obtained by imposing an additional energy-constraint condition
on the states, and imposing further assumptions on the class of admissible Hamilto-
nians. The latter are assumed to satisfy the so-called (Gibbs hypothesis). Under the
energy-constraint condition and the Gibbs hypothesis it is true that for any energy
E above the bottom of the spectrum of the Hamiltonian H , the Gibbs state γ (E) =
e−β(E)H/ZH (β(E))5 is the maximum entropy state of expected energy E [GS11,
p. 196]. Bounds on the difference of von Neumann entropies stated in [W15] are fully
explicit up to the occurrence of the entropy of a Gibbs state of the form γ (E/ε), where
ε is an upper bound on the trace distance of the two states.

Since entropic continuity bounds are tight in the limit ε ↓ 0, we study (in Sect. 7)
the entropy of such a Gibbs state in this limit. Note that for the Gibbs state γ (E/ε),
the limit ε ↓ 0 translates into a high energy limit. By employing the so-called Weyl
law [I16], which states that certain classes of time-independent Schrödinger operators
H = −� + V have asymptotically the same high energy spectrum, we show that the
asymptotic behaviour of the entropy of the Gibbs state is universal for such classes of
operators. This in turn yields fully explicit convergence rates both for the von Neumann
entropy and for the conditional entropy (see Proposition [Entropy convergence]).

In finite dimensions, continuity bounds on conditional entropies have found various
applications, e.g. in establishing continuity properties of capacities of quantum chan-
nels [LS09] and entanglement measures [CW03,YHW08], and in the study of so-called
approximately degradable quantum channels [SSRW15]. Analogously, in infinite di-
mensions, continuity bounds on the conditional entropy for states satisfying an energy
constraint [W15], were used by Shirokov [Shi18] to derive continuity bounds for various
constrained classical capacities of quantum channels.6 These bounds were once again
given in terms of the entropy of a Gibbs state of the form γ (E/ε). Here, ε denotes the
upper bound on the ECD norm distance between the pair of channels considered, and
E denotes the energy threshold appearing in the energy constraint. Our result on the
high energy asymptotics of Gibbs states yields a refinement of Shirokov’s results, by
providing the explicit behaviour of these bounds for small ε.

The bounds that we obtain on the dynamics of closed and open quantum systems
(see Proposition 3.2 and Theorem 1) also allow us to identify explicit time intervals over
which the evolved state is close to the initial state. Since entropic continuity bounds
require such a smallness condition for the trace distance between pairs of states, we can
then bound the entropy difference between the initial state and the time-evolved state
(see Example 12).

We start the rest of the paper with some mathematical preliminaries in Sect. 2. These
include a discussion of QDSs, definition and properties of the α-ECD norms, and some
basic results from functional analysis that we use. In Sect. 3 we state our main results.
These consist of (i) rates of convergence for quantum evolution in both closed and open
quantum systems, and (ii) explicit convergence rates for entropies and certain constrained
classical capacities of quantum channels. The results concerning (i) are proved in Sects. 4
and 5, while those on (ii) are proved in Sect. 7. In Sect. 6 we discuss some interesting

5 Here ZH denotes the partition function and β denotes the inverse temperature.
6 For a discussion of these capacities see Sect. 7.
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applications of our results, in particular to generalized relative entropies and quantum
speed limits. We end the paper with some open problems in Sect. 8. Certain auxiliary
results and technical proofs are relegated to the appendices.

2. Mathematical Preliminaries

Notation In the sequel, all Hilbert spaces H are infinite-dimensional, separable and
complex. We denote the space of trace class operators on a Hilbert space H by T1(H),
that of Hilbert–Schmidt operators by T2(H), and the q-th Schatten norm by ‖•‖q , see
e.g. [RS1, Sect. VI.6]. The set of all quantum states (i.e. positive semidefinite operators
of unit trace) on a Hilbert space H is denoted as D(H). We denote the spectrum of a
self-adjoint operator H by σ(H), and its spectral measure by EH [RS1, p. 224]. For the
state ρAB of a bipartite system AB with Hilbert spaceHA ⊗HB , the reduced state of A
is given by ρA = trB ρAB , where trB denotes the partial trace overHB . Occasionally, we
also write ρHA instead of ρA. The form domain of a positive semi-definite operator S,
i.e. 〈Sx, x〉 ≥ 0 for all x ∈ D(S), is denoted byD(S) := D(

√
S). We denote the space

of bounded linear operators between normed spaces X,Y as B(X,Y ), and as B(X) if
X = Y.

If there is a constant C > 0 such that ‖x‖ ≤ C ‖y‖ we use the notation ‖x‖ =
O(‖y‖). For closable operators A, B the tensor product A ⊗ B is also closable on
D(A) ⊗ D(B) and we denote the closure by A ⊗ B as well. For Banach spaces X,Y
one has the projective cross norm on the algebraic tensor product X ⊗ Y

π(x) = inf

{
n
∑

i=1

‖ai‖ ‖bi‖ ; x =
n
∑

i=1

ai ⊗ bi ∈ X ⊗ Y

}

.

The completion of the tensor product space with respect to the projective cross norm is
denoted by X ⊗π Y. In particular,H⊗π H is naturally identified with the space of trace
class operators on H.

Let A, B be positive operators, we write A ≥ B if D(A) ⊆ D(B) and
∥
∥
∥

√
Ax
∥
∥
∥ ≥

∥
∥
∥

√
Bx
∥
∥
∥ . Furthermore, we say B is relatively A-bounded with A-bound a and bound b,

if D(A) ⊆ D(B) and for all ϕ ∈ D(A): ‖Bϕ‖ ≤ a ‖Aϕ‖ + b ‖ϕ‖ . Strongly continuous
semigroups (Tt ) that are defined on Hilbert spaces H, can be extended to act on states
ρ =∑∞

i=1 λi |ϕi 〉〈ϕi | ∈ D(H), by setting

Tt (ρ) =
∞
∑

i=1

λi |Ttϕi 〉〈ϕi |.

We employ a version of Baire’s theorem [RS1, Theorem 3.8] in our proofs:

Theorem (Baire). Let X �= ∅ be a complete metric space and (An)n∈N a family of
closed sets covering X, then there is k0 ∈ N for which Ak0 has a non-empty interior.

2.1. Quantum dynamical semigroups (QDS). A quantum dynamical semigroup (QDS)
(Tt )t≥0 in the Schrödinger picture is a one-parameter family of bounded linear operators
Tt : T1(H) → T1(H) on some Hilbert space H with the property that T0 = id (where
id denotes the identity operator between operator spaces and I the identity acting on the
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underlying Hilbert space), and TtTs = Tt+s for all t, s ≥ 0 (the semigroup property).7

In addition, they are completely positive (CP) and trace-preserving (TP). The adjoint
semigroup is denoted as (T ∗

t ), where for each t ≥ 0, T ∗
t is a bounded linear operator on

B(H), which is CP and unital, i.e. T ∗
t (I ) = I for all t ≥ 0. Moreover, T ∗

t is the adjoint
of Tt with respect to the Hilbert Schmidt inner product. Due to unitality, the QDS (T ∗

t )

is said to be a quantum Markov semigroup (QMS).
For our purposes we consider the following notions of continuity for semigroups (St )

defined on a Banach space X :

• uniform continuity if limt↓0 supx∈X;‖x‖=1 ‖St x − x‖ = 0,
• strong continuity if for all x ∈ X : limt↓0 St x = x, and
• weak∗ continuity if for all y ∈ X∗, where X∗ is the predual Banach space of X , and
x ∈ X the map t �→ (St x)(y) is continuous.

Uniformly continuous semigroups describe the quantum dynamics of autonomous
systems with bounded generators (see e.g. [EN00, Theorem 3.7]). More precisely, every
uniformly continuous semigroup (Tt ) is of the form Tt = et A for some bounded linear
operator A. Such an operator A is called the generator of the QDS. Strongly continuous
semigroups describe the quantum dynamics of closed and open quantum systems with
unbounded generators in the Schrödinger picture, and will be the main object of interest
in this paper. The QMS in the Heisenberg picture on infinite-dimensional spaces is,
in general, only weak∗ continuous: Denoting this QMS by (�∗

t ) for an open quantum
system, we have that for all y ∈ B(H)∗ ≡ T1(H) and x ∈ B(H) the map t �→ (�∗

t x)(y)
is continuous. The predual of a weak∗ continuous semigroup is known to be strongly
continuous [EN06, Theorem 1.6].

The generator of a strongly continuous semigroup (Tt ) on a Banach space X is the
operator A on X such that

Ax= lim
t↓0

1

t
(Tt − I )x, ∀ x ∈D(A), where D(A)=

{

x ∈ X : lim
t↓0

1

t
(Tt x − x) exists

}

.

In this case, d
dt Tt x = ATt x = Tt Ax and by integrating we obtain for all x ∈ D(A)

Tt x − x =
∫ t

0
Ts Ax ds =

∫ t

0
ATsx ds. (2.1)

A semigroup (Tt ) is called a contraction semigroup if ‖Tt‖ ≤ 1 for all t ≥ 0 and for any
λ > 0 the generator A of such a semigroup satisfies the dissipativity condition

∥
∥
∥λ(λI − A)−1

∥
∥
∥ ≤ 1. (2.2)

Forλ > 0 the resolvent of the generator of a contraction semigroup can then be expressed
by

(λI − A)−1x =
∫ ∞

0
e−λsTs x ds. (2.3)

QDSs in the Schrödinger picture are examples of contraction semigroups.

7 For notational simplicity, we will henceforth suppress the subscript t ≥ 0 in denoting a QDS.
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2.2. Functional analytic intermezzo. An (unbounded) operator A on someBanach space
X with domain D(A) is called closed if its graph, that is {(x, Ax); x ∈ D(A)} ⊆ X×X,

is closed. For a closed operator, a vector space Y ⊆ D(A) is a core if the closure of the
operator A restricted to subspace Y coincides with A. The spectrum of a closed operator
A is the set

σ(A) := {λ ∈ C; λI − A is not bijective} .

Its complement is the resolvent set r(A), i.e. the set of λ for which (λI − A)−1 exists
as a bounded operator. Let A, B be two operators defined on the same space and λ ∈
r(A) ∩ r(B) then the following resolvent identity holds

(λI − A)−1 − (λI − B)−1 = (λI − A)−1(B − A)(λI − B)−1. (2.4)

For any self-adjoint operator S on some Hilbert space H there is, by the spectral
theorem, a spectral measure E S mapping Borel sets to orthogonal projections such that
the self-adjoint operator S can be decomposed as [RS1, Sect. VII]

〈Sx, y〉 =
∫

σ(S)

λ d
〈

E S
λ x, y

〉

.

In particular, this representation allows us to define a functional calculus for S, i.e.
we can define operators f (S), by setting for any Borel measurable function f : R → C

〈 f (S)x, y〉 :=
∫

σ(S)

f (λ) d
〈

E S
λ x, y

〉

,

with domain D( f (S)) :=
{

x ∈ H : ∫
σ(S)

| f (λ)|2 d 〈E S
λ x, x

〉

< ∞
}

. In particular, if f

is bounded, then f (S) is a bounded operator as well.
The dynamics of a closed quantum system is described by strongly continuous one-

parameter QDSs8 according to the following definition:

Definition 2.1. Let H be a Hilbert space. The unitary one-parameter group (T S
t ) (S for

Schrödinger) on H is defined through the equation |ϕ(t)〉 = T S
t |ϕ0〉 := e−i t H |ϕ0〉,

where |ϕ(t)〉 satisfies the Schrödinger equation with initial state |ϕ0〉

∂t |ϕ(t)〉 = −i H |ϕ(t)〉, |ϕ(0)〉 = |ϕ0〉 . (2.5)

The unitary one-parameter group (T vN
t ) (vN for von Neumann) is defined through the

equation ρ(t) = T vN
t (ρ0) := e−i t Hρ0eit H , where ρ(t) satisfies the von Neumann

equation (on the space of trace class operators T1(H)) with initial state ρ0

∂tρ(t) = −i[H, ρ(t)], ρ(0) = ρ0. (2.6)

Since the self-adjoint time-independent Hamiltonian H fully describes the above QDSs,
we will refer to both T S

t and T vN
t as H-associated QDSs.

8 As mentioned earlier, since a QDS for a closed system consists of unitary operators, it extends to a group.
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2.3. A generalized family of energy-constrained diamond norms. Motivated by the ECD
norm introduced in [Shi18,W17] we introduce a generalized family of such energy-
constrained norms labelled by a parameter α ∈ (0, 1], which coincides with the ECD
norm for α = 1/2. We refer to these norms as α-energy-constrained diamond norms, or
α-ECD norms in short. The notion of a regularized trace is employed in the definition
of these norms.

Definition 2.2 (Regularized trace). For positive semi-definite operators S : D(S) ⊆
H → H and ρ ∈ D(H), we recall that SαE S[0,n] for any α > 0 is a bounded operator

and thus SαE S[0,n]ρ is a trace class operator for which the regularized trace

tr(Sαρ) := sup
n∈N

tr(SαE S[0,n]ρ) ∈ [0,∞] is well-defined.

Definition 2.3 (α-Energy-constrained diamond (α-ECD) norms). Let S be a positive
semi-definite operator and E > inf(σ (S)) (where σ(S) denotes the spectrum of S) then
we define for quantum channels T , acting between spaces of trace class operators, the
α-energy constrained diamond norms induced by S for α ∈ (0, 1] as follows:

‖T ‖S,E

2α = sup

n∈N

sup
ρ∈D(H⊗Cn);E2α≥tr(S2αρH)

∥
∥T ⊗ idB(Cn)(ρ)

∥
∥
1 ,

where ρH = trCn ρ. Moreover, any α-ECD norm can be expressed as a standard ECD

norm by rescaling both the operator and parameter E as ‖T ‖S,E

2α = ‖T ‖S2α,E2α


1 . The
diamond norm is obtained by setting E = ∞ in the above definition. The maximum
distance of the α-ECD norm between two quantum channels is two.

Of particular interest to us will be (i) the 1/2-ECD norm ‖•‖S,E

1 , which reduces to

the ECD norm ‖•‖E
 considered in [Shi18,W17] when S is chosen to be the underlying
Hamiltonian, as well as (ii) the 1-ECD norm ‖•‖S,E


2 , since they penalize the first and
second moments of the operator S, respectively. Although the operator S in the ECD
norm is not necessarily an energy observable (i.e. Hamiltonian), we will refer to the
condition E2α ≥ tr(S2αρH) as an energy-constraint.

We show that by studying the entire family of norms,weobtain amore refined analysis
for convergence rates of QDSs. Moreover, we allow the generator of the dynamics
of the QDS to be different from the operator penalizing the states in the condition
E2α ≥ tr(S2αρH). This does not only allow greater flexibility but also enables us to
study open quantum systems since the generator of the dynamics of an open quantum
system is not self-adjoint in general and therefore also not positive.

By extending the properties for the ECD norm with α = 1/2 stated in [W17,
Lemma 4], we conclude that:

• The α-ECD norm ‖•‖S,E

2α defines a norm on the space of hermitian preserving

superoperators.
• The α-ECD norm ‖•‖S,E


2α is increasing in the energy parameter E and satisfies for
E ′ ≥ E > inf(σ (S))

‖•‖S,E

2α ≤ ‖•‖S,E ′


2α ≤
(
E ′

E

)2α

‖•‖S,E

2α .
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• In the limit E → ∞ we recover the actual diamond norm

sup
E>inf(σ (S))

‖•‖S,E

2α = ‖•‖
 .

• The following calculation shows that the topology, for α ≤ β, induced by the 
β

norm is not stronger than the topology induced by 
α , i.e. ‖T ‖S,E

2β � ‖T ‖S,E


2α

tr
(

S2αρ
)

(1)=
∫

σ(S)

∞
∑

i=1

(s2βλi )
α
β λ

(β−α)
β

i d〈E S
s ϕi , ϕi 〉

(2)≤
(
∫

σ(S)

∞
∑

i=1

s2βλi d〈E S
s ϕi , ϕi 〉

)α/β
(3)= tr

(

S2βρ
)α/β − . (2.7)

We used the spectral decomposition ρ = ∑i∈N
λi |ϕi 〉 〈ϕi | in (1), applied Hölder’s

inequality such that 1 = α
β
+ (β−α)

β
in (2), and rearranged in (3).9

3. Main Results

3.1. Rates of convergence for quantumevolution. Ourfirst set of results concerns bounds
on the dynamics of both closed and open quantum systems. The following quantities
arise in the bounds for α ∈ (0, 1]:

ζα :=
(

2α
1−α

)1−α

+ 2
(

2α
1−α

)−α

where ζ1 := 1

gα := ζα(1 − α)
1−α
2 α

α
2 . (3.1)

When α = 1/2, the above two expressions reduce to ζ1/2 = 2
√
2 and g1/2 = 2. Our

first Proposition provides a bound on the dynamics of the Schrödinger equation (2.5),
both in the time-independent and time-dependent setting:

Proposition 3.1 (Closed systems 1). Consider a closed quantum systemwhose dynamics
is governed by an unbounded self-adjoint time-independent Hamiltonian H according
to (2.5). Let |ϕ0〉 ∈ D(|H |α) with α ∈ (0, 1]. Then the one-parameter group (T S

t ) (c.f.
(2.5) of Definition 2.1) satisfies, with gα as in (3.1) and t, s ≥ 0

∥
∥T S

t |ϕ0〉 − T S
s |ϕ0〉

∥
∥ ≤ gα

∥
∥|H |α |ϕ0〉

∥
∥ |t − s|α . (3.2)

For the non-autonomous Schrödinger equation

∂t |ϕ(t)〉 = −i(H0 + V (t)) |ϕ(t)〉 , |ϕ(0)〉 = |ϕ0〉 , (3.3)

where H0 and V (t) are self-adjoint and
∫ T
0 ‖V (t)‖ dt < ∞, the time-dependent evo-

lution operators (Ut )t≥0 defined by |ϕ(t)〉 = Ut |ϕ(0)〉 for any 0 ≤ s ≤ t ≤ T, and
|ϕ(0)〉 ∈ D(|H0|α) satisfy

‖Ut |ϕ0〉 −Us |ϕ0〉‖ ≤ gα

∥
∥|H0|α |ϕ0〉

∥
∥ (t − s)α +

∫ t

s
‖V (r)‖ dr. (3.4)
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Fig. 1. The dependence of the prefactor gα , in the bound of Proposition 3.1 on the Schrödinger dynamics

The bound (3.2) shows that the dynamics governed by the Schrödinger equation is α-
Hölder continuous in time on sets of |ϕ〉 ∈ H with uniformly bounded ‖|H |α |ϕ〉‖ . The
bound is also tight, at least for α = 1, as the prefactor becomes exactly one as α → 1
which is illustrated in Fig. 1. From the bound on the dynamics of the Schrödinger
equation in Proposition 3.1, we obtain an analogous result for the dynamics of the von
Neumann equation (2.6). The latter result generalizes and improves the bound in [W17,
Theorem 6], by providing a bound with rate t1/2 rather than t1/3 for the ECD norm,
which implies faster convergence to zero [see (3.6) of the following Proposition and
Fig. 2]:

Proposition 3.2 (Closed systems2). Letα ∈ (0, 1]. The one-parameter group T vN
t (ρ) =

e−i t Hρeit H solving the von Neumann equation [(2.6) of Definition 2.1] is α-Hölder
continuous in time with respect to the α-ECD norm introduced in Definition 2.3 for
E > inf(σ (|H |)) where σ(|H |) is the spectrum of |H |:

∥
∥
∥T vN

t − T vN
s

∥
∥
∥

|H |,E

2α ≤ 2gαE

α |t − s|α. (3.5)

In particular, when α = 1/2 we find for the ECD norm

∥
∥
∥T vN

t − T vN
s

∥
∥
∥

|H |,E

1 ≤ 4E1/2 |t − s|1/2. (3.6)

Moreover, for times |t − s|α ≤ 1/(
√
2gα), any n ∈ N, and pure states |ϕ〉 〈ϕ| ∈

D(H⊗C
n) satisfying the energy constraint condition tr

(|ϕ〉 〈ϕ| (|H |2α ⊗ ICn )
) ≤ E2α

one can slightly ameliorate (3.5) such that

∥
∥
∥((T vN

t − T vN
s ) ⊗ idB(Cn)) |ϕ〉 〈ϕ|

∥
∥
∥
1

≤ 2gαE
α |t − s|α

√

1 − g2αE
2α |t−s|2α

4 . (3.7)

In Fig. 2 we see that estimate (3.5) globally improves the estimate stated in [W17,
Theorem 6]. For times larger than the time interval [0, 1/4] that is shown in Fig. 2 the
estimates [W17, Theorem 6] and (3.5) exceed the maximal diamond norm distance two

9 We assume here that all vectors ϕi are in the operator domain D(Sβ), as otherwise the traces are infinite
by Proposition A.1.
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0.0 0.1 0.2 0.3 0.4 0.5t0.0

0.5

1.0
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2.0

Fig. 2. The t1/3-bound obtained in [W17, Theorem 6], the t1/2-bound (3.5), and the ameliorated bound for
pure states (3.7) for E = 1

of two quantum channels and therefore only provide trivial bounds. The bound on the
pure states (3.7) however, is especially an improvement over the other two (3.5) for large
times.

The above results which are proved in Sect. 4 provide estimates on the dynamics of
closed quantum systems. In Sect. 5 we develop perturbative methods to obtain bounds
on the evolution of open quantum systems which have the same time-dependence, i.e. α-
Hölder continuity in time, as the estimates on the dynamics of closed quantum systems
stated in Proposition 3.2.

We focus on open quantum systems governed by a QDS (�t )with a generator which
is unbounded but still has a GKLS-type form. The latter is obtained by a direct extension
of Theorem GKLS under some straightforward assumptions, which are discussed in
detail in Sect. 5. To state our results on open systems, we define

ωH (α, a, b, c, E) := 4ζα max
{

2cα, 3bcα−1 + (1 + 3a)(1 − α)(1−α)/2αα/2Eα
}

and

ωK (α, a, b, c.E) := 4ζα max
{

2cα, 3bcα−1 + (1 + 3a)(1 − α)(1−α)ααEα
}

. (3.8)

In the sequel, we write ω• to denote either one of them.

Theorem 1 (Open systems). Let H be a self-adjoint operator on a Hilbert spaceH and
(Ll)l∈N a family of Lindblad-type operators, generalizing the Lindblad operators Ll of
Theorem (GKLS): Ll : D(Ll) ⊆ H → Hwith domains satisfying D(H) ⊆⋂l∈N

D(Ll)

such that K = − 1
2

∑

l∈N
L∗
l Ll is dissipative10 and self-adjointwith D(K ) ⊆⋂l∈N

D(Ll).
Then, let α ∈ (0, 1] and let either of the following conditions be satisfied:

1. Assume that K is relatively H-bounded with H-bound a and bound b. If G :=
K − i H on D(H) is the generator of a contraction semigroup, then for energies
E > inf(σ (|H |)) the QDS (�t ) of the open system in the Schrödinger picture,
generated by L as in (5.6), satisfies, for any c > 0 the α-Hölder continuity estimate

‖�t − �s‖|H |,E

2α ≤ ωH (α, a, b, c, E)|t − s|α.

10 ∀x ∈ D(K ) : 〈Kx, x〉 ≤ 0.
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For α = 1/2 the above inequality reduces to

‖�t − �s‖|H |,E

1 ≤ 8

√
2max

{

2
√
c, 3b√

c
+ (1 + 3a)

√

E
2

}
√|t − s|. (3.9)

For α = 1 one can take c ↓ 0 to obtain ωH (1, a, b, 0, E) = 4(3b + (1 + 3a)E).

2. Assume that H is relatively K -bounded with K -bound a and bound b. If G :=
K − i H on D(K ) is the generator of a contraction semigroup, then for energies
E > inf(σ (|K |)) theQDS (�t ) of the open system in the Schrödinger picture satisfies,
for any c > 0, the α-Hölder continuity estimate

‖�t − �s‖|K |,E

2α ≤ ωK (α, a, b, c, E)|t − s|α.

In particular, if a < 1 then G automatically generates, in either case, a contraction
semigroup on D(H).

While many open quantum systems describe the effect of small dissipative perturba-
tions on Hamiltonian dynamics which is the situation of framework (1) of Theorem 1,
there are also examples of open quantum systems which do not have a Hamiltonian
dynamics such as the attenuator channel discussed in Example 5. These systems can be
analyzed by case (2) in Theorem 1. From these bounds on the dynamics, one can then
derive new quantum speed limits which outperform and extend the currently established
quantum speed limits in various situations (see also Remark 1):

Theorem 2 (Quantum speed limits).

(A) Consider a closed quantum system with self-adjoint Hamiltonian H and fix E >

inf(σ (|H |)) and α ∈ (0, 1].
• The minimal time needed for an initial state |ϕ(0)〉 = |ϕ0〉, for which E2α ≥

tr(|H |2α |ϕ0〉〈ϕ0|), to evolve under the Schrödinger equation (2.5) to a state |ϕ(t)〉
with relative angle θ := arccos (Re〈ϕ(0)|ϕ(t)〉) ∈ [0, π ], satisfies

tmin ≥
(
2 − 2 cos(θ)

g2α

)1/(2α) 1

E
. (3.10)

For α = 1/2 this expression reduces to

tmin ≥ (1 − cos(θ))/2
1

E
. (3.11)

• Consider an initial state ρ(0) = ρ0 to the von Neumann equation (2.6) with
E2α ≥ tr(|H |2α ρ0). The minimal time for it to evolve to a state ρ(t) which is at
a Bures angle

θ := arccos
(∥
∥
∥

√

ρ(0)
√

ρ(t)
∥
∥
∥
1

)

∈ [0, π/2] (3.12)

relative to ρ(0), satisfies

tmin ≥
(
1 − cos(θ)

gα

)1/α 1

E
. (3.13)
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(B) Consider an open quantum system governed by a QDS (�t ) satisfying the conditions
of Theorem 1. Let ρ0 denote an initial state, with purity pstart = tr(ρ2

0 ), for which
E2α ≥ tr(|H |2α ρ0) (or E2α ≥ tr(|K |2α ρ0)). Then the minimal time needed for this
state to evolve to a state with Bures angle θ , satisfies either for ωH or ωK as in (3.8),
where the choice of ω• depends on whether one considers the situation (1) or (2) in
Theorem 1,

tmin ≥
(
2 − 2 cos(θ)

ω•

)1/α

. (3.14)

Moreover, the minimal time to reach a state with purity pfin satisfies

tmin ≥
( |pstart − pfin|

2ω•

)1/α

. (3.15)

3.2. Explicit convergence rates for entropies and capacities. Our next set of results
comprises explicit convergence rates for entropies of infinite-dimensional quantum states
and several classical capacities of infinite-dimensional quantum channels, under energy
constraints. See Sect. 7 for definitions, details and proofs. The Hamiltonian arising in
the energy constraint is assumed to satisfy the Gibbs hypothesis. Continuity bounds on
these entropies and capacities rely essentially on the behaviour of the entropy of the
Gibbs state γ (E) := e−β(E)H/ZH (β(E)) ∈ D(H) (where ZH (β(E)) is the partition
function, for some positive semi-definite Hamiltonian H ) in the limit E → ∞. This
asymptotic behaviour is studied in Theorem 3, and discussed for standard classes of
Schrödinger operators in Example 11.

Assumption 1 (Gibbs hypothesis). A self-adjoint operator H satisfies the Gibbs hypoth-
esis, if for all β > 0 the operator e−βH is of trace class such that the partition function
ZH (β(E)) = tr(e−βH ) is well-defined.

The asymptotic behaviour of the entropy of the Gibbs states allows us then to obtain
explicit convergence rates for entropies of quantum states and capacities of quantum
channels.

Consider the following auxiliary functions

N↑
H (E) :=

∑

λ+λ′≤E;λ,λ′∈σ(H)

λ2 and N↓
H (E) :=

∑

λ+λ′≤E;λ,λ′∈σ(H)

λλ′

which depend only on the spectrum of H.

We obtain the following explicit convergence rates for the von Neumann entropy
S(ρ) of a state ρ, and the conditional entropy S(A|B)ρ of a bipartite state ρAB [defined
through (7.2)]. For x ∈ [0, 1], we define h(x) := − x log(x) − (1 − x) log(1 − x) (the

binary entropy), g(x) := (x + 1) log(x + 1) − x log(x), and rε(t) = 1+ t
2

1−εt a function on

(0, 1
2ε ], with ε ∈ (0, 1).

Proposition (Entropy convergence). Let H be a positive semi-definite operator, with
EH := inf(σ (H)) ≥ 0, on a quantum system A satisfying the Gibbs hypothesis and

assume that the limit ξ := limλ→∞
N↑
H (λ)

N↓
H (λ)

> 1 exists such that η := (ξ − 1)−1 is

well-defined.
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For any two states ρ, σ ∈ D(HA) satisfying energy bounds tr(ρH), tr(σH) ≤ E
such that 1

2 ‖ρ − σ‖1 ≤ ε ≤ 1 :
1. |S(ρ) − S(σ )| ≤ 2εη log ((E − EH )/ε) (1 + o(1)) + h(ε) as ε ↓ 0.
2. Let ε < ε′ ≤ 1 and δ = ε′−ε

1+ε′ , then as ε ↓ 0

|S(ρ) − S(σ )| ≤ (ε′ + 2δ)η log ((E − EH )/δ) (1 + o(1)) + h(ε′) + h(δ). (3.16)

3. For states ρ, σ ∈ D(HA ⊗ HB) with tr(ρAH), tr(σAH) ≤ E, 1
2 ‖ρ − σ‖ ≤ ε, and

ε′ and δ as in (2), the conditional entropy (7.2) satisfies as ε ↓ 0
∣
∣S(A|B)ρ − S(A|B)σ

∣
∣ ≤ 2(ε′ + 4δ)η log ((E − EH )/δ) (1 + o(1))

+(1 + ε′)h( ε′
1+ε′ ) + 2h(δ). (3.17)

For the constrained product-state classical capacity C (1), whose expression is given
by (7.17), and the constrained classical capacity C , defined through (7.18), we obtain
the following convergence results:

Proposition (Capacity convergence). Consider positive semi-definite operators HA on
a Hilbert space HA and HB on a Hilbert space HB, where HB satisfies the Gibbs
hypothesis. Moreover, let EHB := inf(σ (HB)). We also assume that the limit ξ :=
limλ→∞

N↑
HB

(λ)

N↓
HB

(λ)
> 1 exists such that η := (ξ − 1)−1 is well-defined.

Let�, � : T1(HA) → T1(HB) be two quantum channels such that 12 ‖� − �‖HA,E

1≤ ε for some ε ∈ (0, 1), and there is a common function k : R

+ → R
+ such that

sup
tr(HAρ)≤E

tr(HB�(ρ)) ≤ k(E)E and sup
tr(HAρ)≤E

tr(HB�(ρ)) ≤ k(E)E .

Then for t ∈ (0, 1
2ε ] the capacities satisfy

|C (1)(�, HA, E) − C (1)(�, HA, E)| ≤ ε(2t + rε(t))η log(k(E)E/(εt) + EHB )(1 + o(1))

+2g(εrε(t)) + 2h(εt), as ε ↓ 0 and

|C(�, HA, E) − C(�, HA, E)| ≤ 2ε(2t + rε(t))η log(k(E)E/(εt) + EHB )(1 + o(1))

+2g(εrε(t)) + 4h(εt), as ε ↓ 0. (3.18)

4. Closed Quantum Systems

In this section we study the dynamics of closed quantum systems in α-ECD norms.
From Proposition A.1 in the appendix it follows that if a state ρ = ∑∞

i=1 λi |ϕi 〉〈ϕi |
satisfies the energy constraint tr(S2αρ) < ∞ for some positive operator S, then all |ϕi 〉
for which λi �= 0, are contained in the domain of Sα. However, the expectation value
tr(Sρ) of an operator S in a state ρ can be infinite even if all the eigenvectors of ρ are in
the domain of S. This is shown in the following example.

Example 2. Consider the free Schrödinger operator S := − d2

dx2
on the interval [0,√1/8]

with Dirichlet boundary conditions modeling a particle in a box of length 1/
√
8. This

operator possesses an eigendecomposition with eigenfunctions (ψi ) such that − d2

dx2
=

∑∞
i=1 i

2|ψi 〉〈ψi |. However, the state ρ = ∑∞
i=1

1
i(i+1) |ψi 〉〈ψi |, here∑∞

i=1
1

i(i+1) = 1,
satisfies tr(Sρ) = ∞.
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Proposition 3.2 implies that any group T vN
t (ρ) = e−i t Hρeit H , with self-adjoint

operator H , is continuous with respect to the ECD norm induced by |H | without any
further assumptions on H besides self-adjointness. Before proving this result, we start
with the definition of the Favard spaces [EN00, Chap. 2., Sect.5.5.10] or [BF15, Sect. 4]
and an auxiliary lemma:

Definition 4.1 (Favard spaces). Let (Tt ) be a contraction semigroup, i.e. for all x ∈ X :
‖Tt x‖ ≤ ‖x‖, on some Banach space X , then for each α ∈ (0, 1] we introduce Favard
spaces of the semigroup:

Fα ≡ Fα((Tt )) :=
{

x ∈ X : |x |Fα
:= sup

t>0

∥
∥ 1
tα (Tt x − x)

∥
∥ < ∞

}

.

In order to link Favard spaces to QDSs, we require a characterization of these spaces
in terms of the resolvent of the associated generator.

Lemma 4.2. Let α ∈ (0, 1]. Consider a contraction semigroup (Tt ) with generator A,
then x ∈ Fα if and only if

sup
λ>0

∥
∥
∥λ

αA(λI − A)−1x
∥
∥
∥ < ∞

in which case |x |Fα
≤ ζα supλ>0

∥
∥λαA(λI − A)−1x

∥
∥ with ζα defined in (3.1). In partic-

ular if X = H is a Hilbert space, then for any one-parameter group T S
t = e−i t H acting

onH, where H is self-adjoint, any x ∈ D(|H |α) belongs to the Favard space Fα and

|x |2Fα
≤ g2α

∥
∥|H |α x

∥
∥2 . (4.1)

Proof. Let x ∈ Fα then by definition of Fα we have ‖Tt x − x‖ ≤ |x |Fα
tα and for λ > 0

λαA(λI − A)−1x
(1)= λα+1(λI − A)−1x − λαx

(2)= λα+1
∫ ∞

0
e−λs(Tsx − x) ds.

(4.2)

We rewrote A = λI + (A−λI ) to get (1) and we used the representation of the resolvent
as in (2.3) for (2). Hence, it follows that by taking the norm of (4.2)

sup
λ>0

∥
∥
∥λ

αA(λI − A)−1x
∥
∥
∥

(1)≤ sup
λ>0

λα+1
∫ ∞

0
e−λs |x |Fα

sα ds
(2)= �(α + 1) |x |Fα

< ∞

where we used the definition of the Favard spaces Fα in (1), and computed the integral
to obtain (2). Conversely, let x satisfy K := supλ>0

∥
∥λαA(λI − A)−1x

∥
∥ < ∞ then by

decomposing I = (λI − A)(λI − A)−1 we can write

x = λ(λI − A)−1x − A(λI − A)−1x =: xλ − yλ

where now xλ ∈ D(A). Then, using identity (2.1) we get (1)

‖Tt xλ − xλ‖ (1)=
∥
∥
∥
∥

∫ t

0
Ts Axλ ds

∥
∥
∥
∥

(2)≤ ‖Axλ‖ t
(3)≤
∥
∥
∥λ

αA(λI − A)−1x
∥
∥
∥ tλ1−α

(4)≤ Ktλ1−α, (4.3)
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where (2) follows from contractivity of the semigroup, and used the definition of xλ and
K to obtain (3) and (4), respectively. For yλ, the triangle inequality and contractivity of
the semigroup imply that

‖Tt yλ − yλ‖ ≤ 2 ‖yλ‖ ≤ 2Kλ−α. (4.4)

Combining both estimates (4.3) and (4.4) shows by the triangle inequality

∥
∥ 1
tα (Tt x − x)

∥
∥ ≤ K (tλ)1−α + 2K (tλ)−α.

Optimizing the right-hand side over λ > 0 proves that x ∈ Fα , since the right-hand side
is finite, and

∥
∥ 1
tα (Tt x − x)

∥
∥ ≤ ζαK .

For x ∈ D (|H |α), one finds that

∥
∥
∥λ

α(− i H)(λI − (− i H))−1x
∥
∥
∥

2 (1)=
∫

R

λ2αs2

λ2+s2
d
〈

EH (s)x, x
〉

(2)≤ (1 − α)1−ααα

∫

R

|s|2α d
〈

EH (s)x, x
〉

(3)= (1 − α)1−ααα
∥
∥|H |α x

∥
∥2 . (4.5)

Here, we used the functional calculus, see Sect. 2.2, in (1), optimized over λ to show
(2), and used again the functional calculus in (3) which implies the claim. ��
It is known that if the generator A is defined on a Hilbert spaceH, then the Favard space
F1 coincides with the operator domain D(A) [EN00, Corollary 5.21]. As all QDSs
are contractive, it suffices to establish a bound at t = 0, since by contractivity of the
semigroup for t ≥ t0 ≥ 0 :

∥
∥(Tt − Tt0)x

∥
∥ ≤ ∥∥Tt0

∥
∥
∥
∥(Tt−t0 − I )x

∥
∥ ≤ ∥∥(Tt−t0 − I )x

∥
∥ . (4.6)

The above lemma then implies Proposition 3.1, which provides a bound on the dynamics
of the Schrödinger equation (T S

t ) as shown below (Fig. 3).

Proof of Proposition 3.1. The result on the autonomous dynamics follows directly by
rearranging the estimate ||ϕ0〉|2Fα

≤ ζ 2
α (1 − α)1−ααα ‖|H |α |ϕ0〉‖2 from Lemma 4.2

Fig. 3. For a normalized |ψ〉 in a Hilbert space H we illustrate the connection between energy constraints,
Favard spaces, and convergence rates for the Schrödinger equation with Hamiltonian H in closed quantum
systems with α ∈ (0, 1] as in Proposition 3.1



840 S. Becker, N. Datta

and using (4.6) to transfer the result to arbitrary times t, s. The non-autonomous result
follows from the variation of constant formula

Ut |ϕ0〉 = e−i t H0 |ϕ0〉 − i
∫ t

0
e−i(t−r)H0V (r)Ur |ϕ0〉 dr

such that by using the result for the autonomous semigroup we obtain

‖(Ut − I ) |ϕ0〉‖ ≤ gα

∥
∥|H |α |ϕ0〉

∥
∥ tα +

∫ t

0
‖V (r)‖ dr,

where gα is given by (3.1). The general result follows by considering the initial state
Us |ϕ0〉 at initial time t0 = s. ��

Before extending the above result to the dynamics of the vonNeumann equation (2.6)
for states on the product spaceH⊗ C

n , we need another auxiliary Lemma on the action
of the Schrödinger dynamics on states:

Lemma 4.3. The tensor product of the strongly continuous one-parameter group T S
t =

e−i t H for H self-adjoint onH with the identity idB(Cn) acting on states ρ ∈ D(H⊗C
n)

satisfies for α ∈ (0, 1]
∥
∥(T S

t ⊗ idB(Cn) − id)(ρ)
∥
∥
1 ≤ gα

√

tr
(

(|H |2α ⊗ ICn )ρ
)

tα. (4.7)

Proof. ByPropositionA.1we can assume that all eigenvectors (ϕi ) of ρ are in D(|H |α⊗
ICn ) as the right-hand side in (4.7) is infinite otherwise. The generator of (T S

t ⊗ idB(Cn))

acting on trace class operators is the operator −i H ⊗ ICn acting on some set of trace
class operators [NS86, Section A-I 3.7]. Using the results from Lemma 4.2 it suffices to
bound for λ > 0

∥
∥
∥λ

α(− i H ⊗ ICn )(λI − (− i H ⊗ ICn ))−1√ρ
√

ρ

∥
∥
∥

2

1

accordingly. From the spectral decomposition ρ =∑∞
i=1 λi |ϕi 〉〈ϕi | of a state, the claim

then follows immediately from the following bound
∥
∥
∥λ

α(− i H ⊗ ICn )(λI − (− i H ⊗ ICn ))−1√ρ
√

ρ

∥
∥
∥

2

1
(1)≤ λ2α tr

( −i H ⊗ ICn

λI + i H ⊗ ICn
ρ

i H ⊗ ICn

λI − i H ⊗ ICn

)

(2)=
∞
∑

i=1

λi

∫

R

λ2αs2

λ2+s2
d
〈

EH⊗ICn
s ϕi , ϕi

〉 (3)≤
∞
∑

i=1

λi (1 − α)1−ααα
∥
∥|H ⊗ ICn |α |ϕi 〉

∥
∥2

(4)≤ (1 − α)1−ααα tr
(

|H |2α ⊗ ICnρ
)

, (4.8)

where we applied Hölder’s inequality in (1), used the spectral decomposition of the state
and the functional calculus, as in Sect. 2.2, in (2), optimized over λ and applied the
functional calculus again in (3), and used in (4) again the spectral decomposition of the
state, as well as

|H ⊗ ICn |2α = |diag(H, . . . , H)|2α = diag(|H |2α , . . . , |H |2α) = |H |2α ⊗ ICn .

��
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From estimate (4.7) we can then state the proof of Proposition 3.2:

Proof of Proposition 3.2. From a simple application of the triangle inequality and the
unitary quantum evolution we conclude that

1
tα

∥
∥
∥(T vN

t ⊗ idB(Cn) − id)(ρ)

∥
∥
∥
1

= 1
tα

∥
∥
∥(T S

t ⊗ ICn )ρ(T S−t ⊗ ICn ) − ρ

∥
∥
∥
1

≤ 2
tα

∥
∥
∥(T S

t ⊗ ICn − I )ρ
∥
∥
∥
1

such that by applying Lemma 4.3 in (1) and the energy constraint in (2), we obtain the
result for the ECD norms

1
tα

∥
∥
∥(T vN

t ⊗ idB(Cn) − id)(ρ)

∥
∥
∥
1

≤ 2
tα

∥
∥
∥(T S

t ⊗ idB(Cn) − id)(ρ)

∥
∥
∥
1

(1)≤ 2ζα(1 − α)
1−α
2 α

α
2

√

tr
(

(|H |2α ⊗ ICn )ρ
)

(2)≤ 2ζα(1 − α)
1−α
2 α

α
2 Eα.

The estimate on pure states follows immediately from Proposition 3.1 after expressing
the trace distance in terms of the Hilbert space norm. ��
The preceding Propositions 3.1 and 3.2 show that the quantum dynamics of closed
quantum systems generated by some self-adjoint operator H is always continuous with
respect to the α-ECD norm induced by the absolute value of the same operator H .

We now do a perturbation analysis for the convergence in α-ECD norm:

Proposition 4.4. Let H be a self-adjoint operator, α ∈ (0, 1] and |H |α relatively Sα-
bounded in the sense of squareswhere S is a positive semi-definite operator, i.e. D(Sα) ⊆
D(|H |α) and there are a, b ≥ 0 such that for all ϕ ∈ D(Sα) : ‖|H |α ϕ‖2 ≤ a ‖Sαϕ‖2 +
b ‖ϕ‖2 . Then, the H-associated strongly continuous semigroup T vN

t ρ = e−i t Hρeit H is
α- Hölder continuous with respect to the α-ECD norm. Moreover, there is the inequality

of norms ‖•‖S,E

2α ≤ ‖•‖|H |,(aE2α+b)1/(2α)


2α such that

‖Tt − Ts‖S,E

2α ≤ 2gα

√

aE2α + b |t − s|α.

In particular, if Sα is also relatively |H |α-bounded, then the α-ECD norms ‖•‖S,E

2α and

‖•‖|H |,E

2α are equivalent in the sense there are constants c1, c2 > 0 such that for all

quantum channels T

c1 ‖T ‖S,E

2α ≤ ‖T ‖|H |,E


2α ≤ c2 ‖T ‖S,E

2α .

Proof. Consider a density matrix with spectral decomposition ρ = ∑∞
i=1 λi |ϕi 〉〈ϕi |.

If any of the |ϕi 〉 /∈ D(Sα) then tr(S2αρ) = ∞ as in Proposition A.1. Thus, we may
assume that all |ϕi 〉 ∈ D(Sα). Therefore, if tr(S2αρ) ≤ E2α then also tr(|H |2α ρ) ≤
a tr(S2αρ) + b ≤ aE2α + b which proves the Proposition, since the estimate follows
from Proposition 3.2. ��
The previous result allows us to study QDSs generated by complicated Hamiltonians
using more accessible operators penalizing the states in the ECD norms. We illustrate
this in the following example where we see that it suffices to penalize the kinetic energy
of a state and still obtain convergence for the semigroup of the Coulomb Hamiltonian.
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Example 3 (Coulomb potential). If H is relatively S bounded and both H and S are
positive, then it follows from [RS2, Theorem X.18] that H is also S form-bounded. This
is to say that

√
H is also

√
S bounded. Iterating this idea, we find that H2−n

is relatively
S2

−n
bounded for all n ∈ N0. Let H := −� + 1

|x | and S := −� on L2(R3), then H
is relatively S-bounded, see for example [RS2, Theorem X.15]. Thus, the semigroup
T vN
t (ρ) := e−i t Hρeit H is 2−n-Hölder continuous in time with respect to ‖•‖S,E


21−n .

We provide a simple example showing that it is impossible to select arbitrary unbounded
self-adjoint operators to penalize the energy in the diamond norm and still have the same
convergence rates in time:

Example 4 (Harmonic oscillator). Let Hosc := −�+|x |2 be the dimensionless Hamilto-
nian of the harmonic oscillator on D(Hosc) := {ϕ ∈ L2(Rd);�ϕ, |x |2 ϕ ∈ L2(Rd)

}

.

The one-parameter group of the harmonic oscillator T vN
t (ρ) := e−i t Hoscρeit Hosc does

not obey a uniform linear time-rate in the 1-ECD norm induced by the negative Lapla-
cian −� for any E > 0 = inf(σ (−�)). To see this, it suffices to study the dynamics
generated by the Schrödinger equation (2.5) with Hamiltonian Hosc. Then, the Favard
space F1 coincides with the operator domain D(Hosc), as stated in [EN00, Corol-
lary 5.21]. However, the domain of the Laplacian penalizing the energy is D(−�) =
{

f ∈ L2(Rd);−� f ∈ L2(Rd)
}

which is strictly larger than F1 = D(Hosc), as for
f ∈ D(−�) one does not require that |x |2 f ∈ L2(Rd).

The perturbation result, Proposition 4.4, essentially relies on operator boundedness
and provides explicit bounds to compare the two different α-ECD norms induced by
the perturbed and unperturbed operator. This result is a special case of a more abstract
result, stated as Proposition B.1 in Appendix B, that relies on the special geometry of
the space of trace class operators. It yields the same rate tα for the convergence with
respect to the perturbed and unperturbed norms. However, it does not provide an explicit
prefactor.

5. Open Quantum Systems

We start with an auxiliary Lemma that provides sufficient conditions under which a per-
turbation of the generator of a contraction semigroup leaves its Favard spaces invariant:

Lemma 5.1 (Perturbation of Favard spaces). Let A0 and A = A0+B be twogenerators of
contraction semigroups on some Banach space X. Furthermore, we fix some α ∈ (0, 1].
Let λ > 0 and B be relatively A0-bounded with A0-bound a ≥ 0 and bound b ≥ 0.
Then, for any k ≥ 0 such that

sup
λ>0

∥
∥
∥λ

αA0(λI − A0)
−1x
∥
∥
∥ ≤ k,

we have for all c > 0

sup
λ>0

∥
∥
∥λ

αA(λI − A)−1x
∥
∥
∥ ≤ max

{

2cα ‖x‖ , 3bcα−1 ‖x‖ + (1 + 3a)k
}

< ∞.

In particular, the Favard space Fα of the semigroup generated by A0 is contained in the
Favard space Fα of the semigroup generated by A.
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Proof. Fix c > 0, then for λ ∈ (0, c] it follows that ∥∥λαA(λI − A)−1
∥
∥ ≤ 2λα ≤ 2cα

where we used that by (2.2) and the triangle inequality,
∥
∥
∥A(λI − A)−1

∥
∥
∥ ≤

∥
∥
∥(λI − A)(λI − A)−1

∥
∥
∥ +
∥
∥
∥λ(λI − A)−1

∥
∥
∥ ≤ 2. (5.1)

For λ > c we obtain from the resolvent identity (2.4) and the triangle inequality
∥
∥
∥λ

αA(λI − A)−1x
∥
∥
∥ ≤

∥
∥
∥λ

αA(λI − A0)
−1x
∥
∥
∥ +
∥
∥
∥λ

αA(λI − A)−1B(λI − A0)
−1x
∥
∥
∥ .

(5.2)

By relative A0-boundedness of B we obtain for the first term on the right-hand side of
(5.2) by splitting up A = A0 + B
∥
∥
∥λ

αA(λI − A0)
−1x
∥
∥
∥ ≤ (1 + a)

∥
∥
∥λ

αA0(λI − A0)
−1x
∥
∥
∥ + b

∥
∥
∥λ

α(λI − A0)
−1x
∥
∥
∥ .

For the second term on the right-hand side of (5.2), we can use (5.1) and submultiplica-
tivity to bound

∥
∥
∥λ

αA(λI − A)−1B(λI − A0)
−1x
∥
∥
∥ ≤ 2

∥
∥
∥λ

αB(λI − A0)
−1x
∥
∥
∥ .

Again, using the relative A0-boundedness of B we can estimate the last term

2
∥
∥
∥λ

αB(λI − A0)
−1x
∥
∥
∥ ≤ 2a

∥
∥
∥λ

αA0(λI − A0)
−1x
∥
∥
∥ + 2b

∥
∥
∥λ

α(λI − A0)
−1x
∥
∥
∥ .

Thus, since A0 generates a contraction semigroup, it follows by (2.2) that∥
∥λ(λI − A0)

−1
∥
∥ ≤ 1, and since λ > c

∥
∥
∥λ

α(λI − A0)
−1x
∥
∥
∥ ≤ λα−1

∥
∥
∥λ(λI − A0)

−1x
∥
∥
∥ ≤ cα−1 ‖x‖

such that we finally obtain the claim of the lemma by putting all estimates together and
using Lemma 4.2

∥
∥
∥λ

αA(λI − A)−1x
∥
∥
∥ ≤ (1 + 3a)

∥
∥
∥λ

αA0(λI − A0)
−1x
∥
∥
∥ + 3bcα−1 ‖x‖ .

��
The most general form of the generator of a uniformly continuous QMS is the so-

called GKLS representation, named after Lindblad [Lin76] and Gorini, Kossakowski
and Sudarshan [GKS76].

Theorem GKLS. Let (�t ) be a uniformly continuous semigroup in the Schrödinger
picture on the space of trace class operators T1(H). Its adjoint semigroup is a uniformly
continuous semigroup (�∗

t ) on the space of bounded linear operators onH and defines
a QMS on B(H) if and only if there are Lindblad operators Ll ∈ B(H) and an operator
G ∈ B(H) such that the bounded generator L∗ of (�∗

t ) satisfies for all S ∈ B(H)

L∗(S) =
∑

l∈N

L∗
l SLl + G∗S + SG and

∑

l∈N

L∗
l Ll + G∗ + G = 0.

In particular, G can be written as G = − 1
2

∑

l∈N
L∗
l Ll − i H where H is bounded and

self-adjoint.

This construction has been generalized byDavies [Da77] to unbounded generatorswhich
is discussed below:
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5.1. Extension of GKLS theorem to unbounded generators [Da77]. Let G : D(G) ⊆
H → H be the generator of a contractive strongly continuous semigroup, that we
denote by (Pt )t≥0 in the sequel, and consider Lindblad-type operators (Ll)l∈N. These
form a (possibly finite) sequence of bounded or unbounded operators on H satisfying
D(G) ⊆ D(Ll) for every l ∈ N such that for all x, y ∈ D(G) :

〈Gx, y〉 + 〈x,Gy〉 +
∑

l∈N

〈Ll x, Ll y〉 = 0. (5.3)

Acting on arbitrary bounded operators S ∈ B(H)we introduce the generator of the QDS
(�∗

t ) in a weak formulation for x, y ∈ D(G)

L∗(S)(x, y) = 〈Gx, Sy〉 +
∑

l∈N

〈Ll x, SLl y〉 + 〈x, SGy〉 . (5.4)

Under the preceding assumptions, it can be shown [Da77] that the QDS (�∗
t ) is weak

∗
continuous on B(H) satisfying for all x, y ∈ D(G) and S ∈ B(H)

〈

x,�∗
t (S)y

〉 = 〈x, Sy〉 +
∫ t

0
L∗(�∗

s (S))(x, y) ds. (5.5)

Among all such semigroups satisfying the preceding equation, we consider henceforth
the minimal semigroup, which always exists [C15, Theorem 6.1.9], satisfying for all
bounded operators S the inequality �min∗

t (S) ≤ �∗
t (S). The minimal semigroup will in

the sequel just be denoted by (�∗
t ) again. We also assume that this semigroup (�∗

t ) is
Markovian, i.e. �∗

t (I ) = I. Direct methods to verify the Markov property for a minimal
semigroup, are for example due to Chebotarev and Fagnola [CF98, Theorem 4.4].

Since (�∗
t ) is a weak

∗ continuous semigroup, the predual semigroup �t acting on
trace class operators is a strongly continuous semigroup generated by the adjoint of L.
By the Markov property of the adjoint semigroup [C15, Proposition 6.3.6], the vector
space given by span {|ϕ〉〈ψ |;ϕ,ψ ∈ D(G)} is a core for D(L) and

L(|ϕ〉〈ψ |) = |Gϕ〉〈ψ | + |ϕ〉〈Gψ | +
∑

l∈N

|Llϕ〉〈Llψ |, (5.6)

where the series converges in trace norm. To keep the notation short, we write X̂ =
X ⊗ ICn for operators X on H and X̂ = X ⊗ idB(Cn) for super-operators. Then, by
inserting (5.4) into (5.5) it follows that for all S ∈ B(H ⊗ C

n) and x, y ∈ D(G) ⊗ C
n

〈

x, �̂∗
t (S)y

〉 = 〈x, Sy〉 +
∞
∑

l=1

∫ t

0

〈

L̂l x, �̂
∗
s (S) L̂l y

〉

ds

+
∫ t

0

(〈

x, �̂∗
s (S)Ĝ y

〉

+
〈

Ĝx, �̂∗
s (S)y

〉)

ds. (5.7)

Direct computations show that the QMS satisfies [C15, Proposition 6.1.3.]:

〈

x, �̂∗
t (S)y

〉 = 〈P̂t x, S P̂t y
〉

+
∞
∑

l=1

∫ t

0

〈

L̂l P̂t−s x, �̂
∗
s (S)L̂l P̂t−s y

〉

ds. (5.8)

By the representation of the QMS in (5.8), bounds on the dynamics of the full, possibly
intricate, QDS (�̂t ) can be found using the simpler semigroup

(

P̂t
)

as the subsequent
Lemma shows:



Rates for Quantum Evolution and Entropic Continuity Bounds 845

Lemma 5.2. For arbitrary n ∈ N and states ρ ∈ D(H ⊗ C
n) we have

∥
∥(�̂t − id)(ρ)

∥
∥
1 ≤ 4

∥
∥(P̂t − id)(ρ)

∥
∥
1 .

Proof. Consider an approximation of ρ ∈ D(H ⊗ C
n) in trace norm by finite-rank

operators ρm := ∑m
i=1 λi |ui 〉〈ui | with |ui 〉 ∈ D(G) ⊗ C

n and λi ≥ 0 such that
ρm −−−−→

m→∞ ρ in trace norm. This one exists by a two-step argument. First, we record that

we can always approximate density operators by their finite-rank approximations using
the spectral decomposition. Thus, it suffices to approximate operators

∑N
i=1 λi |ϕi 〉〈ϕi |

with |ui 〉 ∈ H ⊗ C
n and arbitrary N . Since all norms on finite-dimensional spaces are

equivalent, it suffices to observe that since D(G) is dense inH that also D(G) ⊗ C
n is

dense inH ⊗ C
n such that there is a sequence |ϕk

i 〉 ∈ D(G) ⊗ C
n with

lim
k→∞ ‖|ϕk

i 〉〈ϕk
i | − |ϕi 〉〈ϕi |‖1 = 0

which shows the claim.
Then we estimate, using that ρm :=∑m

i=1 λi |ui 〉〈ui |,
∥
∥(�̂t − id)(ρm)

∥
∥
1

(1)= sup
S∈B(H⊗Cn);‖S‖=1

tr
(

ρm
(

�̂∗
t − id

)

(S)
)

(2)= sup
S∈B(H⊗Cn);‖S‖=1

m
∑

i=1

λi
〈

ui ,
(

�̂∗
t − id

)

(S)ui
〉

(3)≤ sup
S∈B(H⊗Cn);‖S‖=1

m
∑

i=1

λi
(〈(

P̂t − I
)

ui , S P̂tui
〉

+
〈

ui , S
(

P̂t − I
)

ui
〉)

+ sup
S∈B(H⊗Cn);‖S‖=1

m
∑

i=1

λi

∞
∑

l=1

∫ t

0

〈

L̂l P̂t−sui , �̂
∗
s (S) L̂l P̂t−sui

〉

ds, (5.9)

where we expressed the norm in a weak formulation in (1), applied the spectral decom-
position of ρm in (2), and used (5.8) to obtain (3).

The two terms in the second-to-last line of (5.9) satisfy, again by the spectral decom-
position of ρm,

sup
S∈B(H⊗Cn);‖S‖=1

m
∑

i=1

λi
(〈

(P̂t − I )ui , S P̂tui
〉

+
〈

ui , S(P̂t − I )ui
〉)

= sup
S∈B(H⊗Cn);‖S‖=1

tr
(

(P̂∗
t − I )S P̂tρm

)

+ tr
(

S(P̂t − I )ρm
)

(1)≤
∥
∥
∥ρm

(

P̂t − I
)∗∥∥
∥
1
+
∥
∥
(

P̂t − I
)

ρm
∥
∥
1

(2)= 2
∥
∥
(

P̂t − I
)

ρm
∥
∥
1 . (5.10)

Here, we used Hölder’s inequality and contractivity of the semigroup (P̂t ) to get (1) and
then used that the trace norm is the same for any operator and its adjoint to conclude
(2). For the last term in (5.9) we obtain by contractivity of the QMS
∣
∣
∣
∣
∣

m
∑

i=1

λi

∞
∑

l=1

∫ t

0

〈

L̂l P̂t−sui , �̂
∗
s (S) L̂l P̂t−sui

〉

ds

∣
∣
∣
∣
∣
≤

m
∑

i=1

λi

∞
∑

l=1

∫ t

0

∥
∥L̂l P̂t−sui

∥
∥
2
ds
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and thus

m
∑

i=1

λi

∞
∑

l=1

∫ t

0

∥
∥L̂l P̂t−sui

∥
∥
2
ds

(1)= −2
m
∑

i=1

λi

∫ t

0
Re
〈

P̂t−sui , Ĝ P̂t−sui
〉

ds

(2)=
m
∑

i=1

λi

∫ t

0

d

ds

∥
∥P̂t−sui

∥
∥
2
ds

(3)= tr
((

I − P̂∗
t P̂t
)

ρm
)

, (5.11)

where we used (5.3) in (1), that G is the generator of (Pt ) to obtain (2), and finally
the fundamental theorem of calculus to obtain (3). We can then rewrite this term by
decomposing it as follows

tr
((

I − P̂∗
t P̂t
)

ρm
) = tr

((

I − P̂∗
t

)

ρm
)

+ tr
(

P̂∗
t

(

I − P̂t
)

ρm
)

(1)= tr
(

ρm
(

I − P̂∗
t

))

+ tr
(

P̂∗
t

(

I − P̂t
)

ρm
)

(2)≤ 2
∥
∥
(

P̂t − I
)

ρm
∥
∥
1 (5.12)

where we used cyclicity of the trace in (1). To obtain (2) we used Hölder’s inequality
together with the contractivity of the semigroup P̂∗

t and the fact that the trace norm for
operators and their adjoints coincide. Estimating (5.9) by (5.10) and (5.12), we can let
m tend to infinity and obtain the bound stated in the lemma. ��

We are now able to prove Theorem 1 which shows that the uniform continuity for the
α-ECD norm which we obtained for closed quantum systems in Proposition 3.2 applies
to open quantum systems as well:

Proof of Theorem 1. We start by proving the first part of the theorem: That G is the
generator of a contraction semigroup if a < 1 follows from [EN00, Theorem 2.7].

First, we observe that K ⊗ ICn is still relatively H ⊗ ICn -bounded with the same
bound a [Si15, Theorem 7.1.20].

According to Lemmas 4.2 and 5.2 it suffices to obtain bounds on the rate of con-
vergence for the semigroups (P̂t ) on density operators ρ ∈ D(H ⊗ C

n) with spectral
decomposition ρ =∑∞

i=1 λi |ϕi 〉 〈ϕi |
∥
∥
∥λ

αG ⊗ ICn (λI − G ⊗ ICn )−1√ρ
√

ρ

∥
∥
∥

2

1
(1)≤ λ2α tr

(
G ⊗ ICn

λI − G ⊗ ICn
ρ

G∗ ⊗ ICn

λI − G∗ ⊗ ICn

)

(2)≤
∞
∑

i=1

λi

∥
∥
∥
∥
λα G ⊗ ICn

λI − G ⊗ ICn
|ϕi 〉
∥
∥
∥
∥

2

(3)≤
∞
∑

i=1

λi

(

max

{

2cα, 3bcα−1 + (1 + 3a)

∥
∥
∥
∥
λα −i H ⊗ ICn

λI − (− i H ⊗ ICn )
|ϕi 〉
∥
∥
∥
∥

})2

,

where we used Hölder’s inequality to get (1), the spectral decomposition of ρ in (2),
and Lemma 5.1 to get (3). Then, by expanding the expression above (1) and using the
Cauchy–Schwarz inequality (2) we find
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∥
∥
∥λ

αG ⊗ ICn (λI − G ⊗ ICn )−1√ρ
√

ρ

∥
∥
∥

2

1

(1)≤ max

{

(2cα)2, (3bcα−1)2 + 6bcα−1(1 + 3a)

∞
∑

i=1

√

λi
√

λi

∥
∥
∥λ

α −i H⊗ICn

λI−(− i H⊗ICn )
|ϕi 〉
∥
∥
∥

+(1 + 3a)2λ2α tr
( −i H⊗ICn

λI−(− i H⊗ICn )
ρ

i H⊗ICn

λI−(i H⊗ICn )

)}

(2)≤ max

{

(2cα)2, (3bcα−1)2 + 6bcα−1(1 + 3a)

√

λ2α tr
( −i H⊗ICn

λI−(−i H⊗ICn )
ρ

i H⊗ICn

λI−(i H⊗ICn )

)

+(1 + 3a)2λ2α tr
( −i H⊗ICn

λI−(−i H⊗ICn )
ρ

i H⊗ICn

λI−(i H⊗ICn )

)}

= max

{

2cα, 3bcα−1 + (1 + 3a)

√

λ2α tr
( −i H⊗ICn

λI−(−i H⊗ICn )
ρ

i H⊗ICn

λI−(i H⊗ICn )

)}2

.

Applying (4.8) yields the desired estimate on the semigroup (P̂t ) and Lemma 5.2 the one
on (�̂t ). By (4.6), we then conclude that ‖�t − �s‖|H |,E


2α ≤ ωH (α, a, b, c) |t − s|α.

The second part follows analogously with the only difference being that

∞
∑

i=1

λi

∥
∥
∥λ

αK ⊗ ICn (λI − K ⊗ ICn )−1 |ϕi 〉
∥
∥
∥

2

=
∞
∑

i=1

λi

∫

R

λ2αs2

(λ−s)2
d
〈

EK⊗ICn (s)ϕi , ϕi
〉

≤
∞
∑

i=1

λi (1 − α)1−ααα

∫

R

|s|2α d
〈

EK⊗ICn (s)ϕi , ϕi
〉

= (1 − α)2(1−α)α2α tr
(

|K |2α ⊗ ICnρ
)

.

��
Corollary 5.3. For open quantum systems satisfying the assumptions of Theorem 1 the
change in purity is bounded for states ρ ∈ D(H ⊗ C

n) with tr(|H |2α ρH) ≤ E2α (or
tr(|K |2α ρH) ≤ E2α) and any c > 0 for ω• as in (3.8) by

∣
∣
∣tr
(

(�̂t (ρ))2 − (�̂s(ρ))2
)∣
∣
∣ ≤ 2ω•(α, a, b, c, E) |t − s|α.

Proof. Applying Theorem 1 to the following estimate yields the claim

∣
∣
∣tr
(

(�̂t (ρ))2 − (�̂s(ρ))2
)∣
∣
∣ ≤ 2

∥
∥�̂t (ρ) − �̂s(ρ)

∥
∥
1 .

��
Wecontinuewith a discussion of applications of Theorem1. Let us start by continuing

our study of the quantum-limited attenuator and amplifier channels that we started in
Example 1:
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Example 5 (Attenuator and amplifier channel). Let N := a∗a be the number operator
andM := aa∗, wherea anda∗ are the standard creation and annihilation operators. Since
coherent states span the entire space, (1.2) uniquely defines the action of an attenuator
channel �att

t (with time-dependent attenuation parameter η(t) := e−t ) on arbitrary
states ρ as follows [DTG16, Lemma 12]

�att
t (ρ) =

∞
∑

l=0

(1−e−t )l

l! e−t N/2al ρ (a∗)l e−t N/2.

The generator [DTG16, (II.16)] of the corresponding QDS (�att
t ) is then given by

Latt(ρ) := d

dt

∣
∣
∣
t=0

�att
t (ρ) = aρa∗ − 1

2 (Nρ + ρN ) , for all ρ ∈ V ⊂ D(Latt).

The domain of the generator consists of all such trace class operators for which the
time-derivative at zero, of the semigroup (�att

t ) in trace norm exists. The space V on
which the above identity holds is a core for Latt by [C15, Proposition 6.3.6]. The QDS
generated by

Lamp(ρ) = (Latt − I )(ρ) = a∗ρa − 1
2 (Mρ + ρM) , for all ρ ∈ V ⊂ D(Lamp)

is denoted as (�
amp
t ), where�

amp
t denotes the so-called quantum-limited amplifier chan-

nel. The domain of D(Lamp) coincides with the domain of D(Latt) since both operators
differ only by the identity operator.

Hence, by Theorem 1 with H = 0, parameters a = b = 0, and K = N it follows
that

∥
∥�att

t − �att
s

∥
∥
N ,E

2α ≤ 4ζα(1 − α)1−αααEα |t − s|α. (5.13)

At least for α = 1/2, we can compare the above asymptotics with the explicit bound
that was obtained in [N18]: Consider attenuation parameters η = 1, for the initial state,
and η′ = e−t , for the time evolved state, as in [N18]. If we assume for simplicity that
the energy E is integer-valued, then the energy-constrained minimum fidelity, that is the
infimum of the fidelity over all pure states of expected energy less or equal to E evolved
under the attenuator channel with parameters η, η′ respectively, defined in [N18, (11)],
satisfies FE (η, η′) = e−t E/2 = 1−Et/2+O(t2).By the Fuchs- van de Graaf inequality
as in (6.3) this yields the short-time asymptotics

∥
∥�att

t − I
∥
∥
N ,E

1 ≤ 2

√

Et/2(1 + o(1)), as t ↓ 0,

which has the same scaling both in time and energy as the above estimate (5.13). In anal-
ogy to (5.13),wefind for the amplifier channel, since inf(σ (N )) = 0 and inf(σ (M)) = 1

∥
∥�

amp
t − �

amp
s
∥
∥
M,E

2α ≤ 4ζα(1 − α)1−αααEα |t − s|α.

Finally, since M = N + I it follows that ‖Mϕ‖2 ≤ 2(‖Nϕ‖2 + ‖ϕ‖2) and thus by
Proposition 4.4

∥
∥�

amp
t − �

amp
s
∥
∥
N ,E

2α ≤ 4ζα(1 − α)1−ααα

√
2E2α + 2 |t − s|α.



Rates for Quantum Evolution and Entropic Continuity Bounds 849

Example 6 (Linear quantum Boltzmann equation [A02,HV09]). Since this example de-
scribes scattering effects, that depend on the ratio of mass parameters, we exception-
ally include physical constants in this example. Consider a particle of mass M whose
motion without an environment is described by the self-adjoint Schrödinger operator
H0 = − �

2

2M � + V . The linear quantum Boltzmann equation describes the motion of
the particle in the presence of an additional ideal gas of particles with mass m dis-

tributed according to the Maxwell–Boltzmann distribution μβ(p) = 1
π3/2 p3β

e−|p|2/p2β

where pβ = √
2m/β.

Here, we discuss for simplicity the linear quantum Boltzmann equation under the
Born approximation of scattering theory [HV09]: Let mred = mM/(m + M) be the
reducedmass and ngas the density of gas particles.We assume that the scattering potential
between the gas particles and the single particle is of short-range and smooth such that
V ∈ S (R3) where S (R3) is the Schwartz space [RS1]. In the Born approximation
the scattering amplitude becomes f (p) = − mred

2π�2F(V )(p/�), where F is the Fourier
transform.

The presence of the ideal gas leads then to a constant energy shift Hper = −2π�
2 ngas
mred

Re( f (0)) in the Hamiltonian H = H0 + Hper and also to an additional dissipative part
[HV08]: Let P = −i�∇x be the momentum operator, then we introduce operators

L(P, k) =
√
√

βm

2π

ngas
mred |k| f (−k) exp

(

−β

(

(1 + m
M ) |k|2 + 2 m

M 〈P, k〉)2
16m |k|2

)

(5.14)

where

∥
∥
∥
∥
∥
exp

(

−β

(

(1+ m
M )|k|2+2 m

M 〈P,k〉
)2

16m|k|2

)∥
∥
∥
∥
∥

≤ 1 by the functional calculus. The linear

quantum Boltzmann equation for the state ρ of the particle then reads

d

dt
ρ(t) = −i[H, ρ(t)]

+
∫

R3

(

ei〈k,x〉L(P, k)ρL(P, k)∗e−i〈k,x〉 − 1

2
{ρ, L(P, k)∗L(P, k)}

)

dk.

Lemma 5.1 and Proposition 4.4 imply, since Hper is a bounded perturbation and

∫

R3

∥
∥L(P, k)∗L(P, k)

∥
∥ dk < ∞,

that the dynamics of the linear quantumBoltzmann equation obeys the same asymptotics
as the dynamics of a closed system evolving according to d

dt ρ(t) = −i[H0, ρ(t)]. Thus,
the QDS (�t ) of the linear quantum Boltzmann equation satisfies for E > inf(σ (|H0|))

‖�t − �s‖|H0|,E

2α = O

(

Eα|t − s|α) .
Bycombining the attenuator channelwith the amplifier channel, and using an operator

proportional to the number operator N as the Hamiltonian part, we obtain the example
of a damped and pumped harmonic oscillator which found, for example, applications in
quantum optics, to describe a single mode of radiation in a cavity [A02]:
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Example 7 (Harmonic oscillator [A02a]). We consider a scaled number operator as the
Hamiltonian H = ζa∗a for some ζ > 0 and damping V (ρ) := γ↓aρa∗ and pumping
W (ρ) := γ↑a∗ρa operators and transition rates γ↓, γ↑ ≥ 0. The damping and pump-
ing processes are described by Lindblad operators L↓ := √

γ↓a and L↑ := √
γ↑a∗.

The operator K = − 1
2

(

L∗↓L↓ + L∗↑L↑
)

is then dissipative and self-adjoint, such that

Theorem 1 applies, and implies that the QDS (�t ) satisfies for any E > 0

‖�t − �s‖H,E

2α = O

(

Eα|t − s|α) .
Next, we study the evolution of quantum particles under Brownian motion which is
obtained as the diffusive limit of the quantum Boltzmann equation that we discussed in
Example 6 [HV09, Sect. 5].

Example 8 (Quantum Brownian motion [AS04,V04]). Consider the Hamiltonian of a
harmonic oscillator H = − d2

dx2
+ x2 and Lindblad operators for j ∈ {1, 2} given by

L j := γ j x + β j
d
dx where γ j , β j ∈ C. In particular, choosing γ j = β j turns L j into

the annihilation operator L j = γ j
( d
dx + x

)

and L∗ into the creation operator L∗
j =

γ j
(− d

dx + x
)

which have been considered in the previous example.
The Lindblad equation for quantum Brownian motion reads

∂tρ = −i[H, ρ] + iλ
2 ([p, {x, ρ}] − [x, {p, ρ}]) − Dpp[x, [x, ρ]] − Dxx [p, [p, ρ]]

+Dxp[p, [x, ρ]] + Dpx [x, [p, ρ]] (5.15)

with diffusion coefficients Dxx = |γ1|2+|γ2|2
2 , Dpp = |β1|2+|β2|2

2 , Dxp = Dpx = − Re
γ ∗
1 β1+γ ∗

2 β2
2 and λ = Im

(

γ ∗
1 β1 + γ ∗

2 β2
)

.

The operator K = − 1
2

∑2
j=1 L

∗
j L j is then relatively H -bounded and G = i H − K

is the generator of a contraction semigroup on D(H). By Theorem 1, the QDS (�t ) of
quantum Brownian motion satisfies for E > inf(σ (H)) and α ∈ (0, 1]

‖�t − �s‖H,E

2α = O

(

Eα|t − s|α) .
The field of quantum optics is a rich source of open quantum systems to which the
convergence Theorem 1 applies and we discuss a few of them in the following example:

Example 9 (Quantum optics/Jaynes–Cummings model [CGQ03]). Systems that consist
of a harmonic oscillator coupled to two-level systems are among the common illustra-
tive examples considered in quantum optics and within this theory are called Jaynes–
Cummings models. A particular example of a Jaynes–Cummings model is a two-level
ion coupled to a harmonic trap of strength ν > 0 located at the node of a standing
light wave. For a detuning parameter � and Rabi frequency �, a Master equation with
Hamiltonian

H = IC2νa∗a +
�

2
σz − �

2
(σ+ + σ−) sin

(

η(a + a∗)
)

,

where η is the Lamb–Dicke parameter, and with Lindblad operators L = √
�σ−, L∗ =√

�σ+ has been proposed in [CBPZ92] for this model. Here, � is the decay rate of the
excited state of the two-state ion. The Hilbert space is therefore �2(N) ⊗ C

2 and as the
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Lindblad operators are just bounded operators, all conditions of Theorem 1 are trivially
satisfied. Thus, it follows that for E > 0 the QDS (�t ) satisfies

‖�t − �s‖νa∗a,E

2α = O

(

Eα|t − s|α) .
More generally, plenty of models in quantum optics are special cases of the following
form [CGQ03]: Consider Hamiltonians H with h j ∈ C

M×M

H =
(

h j

N
∏

k=1

(a∗
k )

nk (ak)
mk + H. a.

)

acting on a Hilbert spaceH = �2(N)⊗N ⊗ C
M . The Lindblad operators are of the form

Lk = λkak or Lk = λka∗
k
11 where ak is the annihilation operator of the k-th factor of

the tensor product �2(N)⊗N and λk ≥ 0 a positive semi-definite matrix acting on C
M .

Hence, the operators − 1
2 L

∗
k Lk are self-adjoint and dissipative and for a large class

of Hamiltonians H the asymptotics of Theorem 1 can be applied.

6. Generalized Relative Entropies and Quantum Speed Limits

We start with some immediate consequences of Propositions 3.1, 3.2, and Theorem 1
on certain generalized relative entropies and distance measures which are dominated by
the trace norm:

Definition 6.1. Forα ∈ (0, 1)∪(1,∞),α-Tsallis,α-Rényi divergences (see e.g. [NN11]),
and α-sandwiched Rényi divergences (see e.g. [WWY14,MDSFT13]) are respectively
defined as follows for ρ, σ ∈ D(H) with supp(ρ) ⊆ supp(σ )

DTsallis
α (ρ||σ) := 1

α−1

(

tr
(

ρασ 1−α
)

− 1
)

,

DRényi
α (ρ||σ) := 1

α−1 log
(

tr
(

ρασ 1−α
))

, and

D̃Rényi
α (ρ||σ) := 1

α−1 log
(

tr
(

ρ
1−α
2α σρ

1−α
2α

)α)

. (6.1)

Of particular interest to us are the α = 1/2-divergences: The α = 1/2-Tsallis
divergence is, up to a prefactor, the square of the Hellinger distance [RSI] and satisfies

DTsallis
1/2 (ρ||σ) = ∥∥√ρ − √

σ
∥
∥
2
2 = 2

(

1 − tr
(√

ρ
√

σ
))

.

The form A(ρ, σ ) := tr
(√

ρ
√

σ
)

appearing in DTsallis
1/2 is known as theBhattacharrya

coefficient; it links DTsallis
1/2 to DRényi

1/2 :

DRényi
1/2 (ρ||σ) = −2 log A(ρ, σ ) = − 2 log

(

1 − DTsallis
1/2 (ρ||σ)

2

)

.

Consider also the fidelity of two states ρ, σ that we denote by

F(ρ, σ ) := tr
√√

ρσ
√

ρ = ∥∥√ρ
√

σ
∥
∥
1 . (6.2)

11 For notational simplicity, we suppress the tensor products with the identity on all other factors.
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It is related to the trace distance via the Fuchs-van de Graaf inequalities [FG99]:

2(1 − F(ρ, σ )) ≤ ‖ρ − σ‖1 ≤ 2
√

1 − F(ρ, σ )2. (6.3)

In particular, F(ρ, σ ) ≥ 1 − ‖ρ−σ‖1
2 such that

D̃Rényi
1/2 (ρ||σ) = − 2 log(F(ρ, σ )) ≤ −2 log

(

1 − ‖ρ − σ‖1
2

)

. (6.4)

Bures angle θ and Bures distance dB are respectively defined as

θ(ρ, σ ) := arccos (F(ρ, σ )) and dB(ρ, σ ) := √2 (1 − F(ρ, σ )).

As a Corollary of Proposition 3.2 for closed quantum systems and Theorem 1 for open
quantum systems, we obtain:

Corollary 6.2. For closedquantumsystemsand statesρ ∈ D(H) such that tr
(

ρ |H |2α) ≤
E2α it follows with the notation introduced in Definition 2.1 that:

• The Bures distance and Bures angle satisfy

dB(T vN
t (ρ), T vN

s (ρ)) ≤ √2gαEα |t − s|α and

θ(T vN
t (ρ), T vN

s (ρ)) ≤ arccos
(

max
{

1 − gαE
α |t − s|α,−1

})

.

• For the 1/2-divergences we obtain

DTsallis
1/2 (T vN

t (ρ)||T vN
s (ρ)) ≤ 2gαE

α |t − s|α,

DRényi
1/2 (T vN

t (ρ)||T vN
s (ρ)) ≤ −2 log

((

1 − gαE
α |t − s|α)+

)

, and

D̃Rényi
1/2 (T vN

t (ρ)||T vN
s (ρ)) ≤ −2 log

((

1 − gαE
α |t − s|α)+

)

where (a)+ := max{a, 0}. For open quantum systems satisfying the conditions of Theo-
rem 1 and states ρ satisfying tr

(

ρ |H |2α) ≤ E2α(or tr
(

ρ |K |2α) ≤ E2α) we obtain for
ω• as in (3.8)

• For the 1/2-divergences it follows that

DTsallis
1/2 (�t (ρ)||�s(ρ)) ≤ ω•|t − s|α,

DRényi
1/2 (�t (ρ)||�s(ρ)) ≤ −2 log

((

1 − ω•
2 |t − s|α)+

)

, and

D̃Rényi
1/2 (�t (ρ)||�s(ρ)) ≤ −2 log

((

1 − ω•
2 |t − s|α)+

)

• For the Bures distance and Bures angle, we obtain

dB(�t (ρ),�s(ρ)) ≤ √

ω•|t − s|α and

θ(�t (ρ),�s(ρ)) ≤ arccos
(

max
{

1 − ω•
2 |t − s|α,−1

})

.

Proof. It suffices to show that all quantities can be estimated by the trace norm. For
the 1/2-sandwiched Rényi divergences, this is already shown in (6.4). Proposition 3.2
then provides the upper bounds for closed systems and Theorem 1 yields the bounds for
open systems. For estimates on Bures distances and Bures angles an application of the
Fuchs-van de Graaf inequality [FG99], (6.3), shows that dB(ρ, σ )2 ≤ ‖ρ − σ‖1 and

θ(ρ, σ ) ≤ arccos
(

1 − ‖ρ−σ‖1
2

)

. The Powers–Størmer inequality [PS70, Lemma 4.1]

implies that DTsallis
1/2 (ρ||σ) ≤ ‖ρ − σ‖1 . ��
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The study of quantum speed limits, see also the review article [DC17], is concerned with
the minimal time for the system needed to evolve from one state of expected energy E
to another state that is a certain distance away from the initial state. It has been shown
in [ML98,LT09] that the minimal time of a closed quantum system to evolve from an
initial state |ϕ0〉 to another state that is orthogonal to it, under the evolution given by the
Schrödinger equation (2.5), with positive semi-definite Hamiltonian H , satisfies

tmin ≥ π
2 max

{

〈ϕ0 | H | ϕ0〉−1 ,
(〈

ϕ0

∣
∣
∣ H2

∣
∣
∣ϕ0

〉

− 〈ϕ0 | H | ϕ0〉2
)−1/2

}

, (6.5)

and showed that this bound can be saturated. For arbitrary (Bures) angles θ ∈ [0, π/2]
this bound was (partially numerically) extended by Giovannetti, Lloyd, and Maccone
[GLM03,GLM03a,GLM04] to

tmin ≥ max

⎧

⎨

⎩

1
√
〈

ϕ0
∣
∣ H2

∣
∣ϕ0
〉− 〈ϕ0 | H | ϕ0〉2

θ,
2

πE
θ2

⎫

⎬

⎭
. (6.6)

While the quantum speed limits for closed quantum system still yield non-trivial state-
ments for dynamics generated by unbounded operators, non-trivial estimates for open
quantum systems with unbounded operators do not seem to exist. Let us begin by men-
tioning some results that hold for open quantum systems with bounded generators. In
[CEPH13,UK16] a bound on the purity has been stated saying that to reach a purity
pfin := tr(ρ(t)2) from a purity pstart := tr(ρ(0)2) the minimal time needed is bounded
from below by

tmin ≥ max

{ |log(pfin) − log(pstart)|
4
∑

k ‖Lk‖2 ,
|log(pfin) − log(pstart)|

‖L − L∗‖
}

, (6.7)

where Lk are the Lindblad operators, ‖•‖2 the Hilbert–Schmidt norm, and L is the
generator of the associated QDS. Furthermore, a bound on the quantum speed limit in
terms of the operator norm of the generator has been derived in [DL13]. In the following
remark we see that all these bounds have a pathological behaviour for certain infinite-
dimensional systems and cannot be sharp in general:

Remark 1. Consider a closed system with Hamiltonian S = − d2

dx2
on R. The state

ψ ∈ L2(R) with Fourier transform F(ψ)(x) = c
(1+x2)1/2

where c > 0 is such that ψ is
of unit norm. Then, 〈Sψ,ψ〉 = ∞ whereas tr(Sαρ) < ∞ for α < 1/4. Thus, the above
bounds (6.5) and (6.6) reduce to the trivial bound tmin ≥ 0.

For infinite-dimensional open quantum systems, the first term in the bound on the
purity (6.7) reduces to zero if the Lindblad operators are not Hilbert–Schmidt, which is
the case for all examples presented in Sect. 5. In particular, if the Lindblad operators are
unbounded, then the bound simplifies to tmin ≥ 0.

We can now state the proof of Theorem 2:

Proof of Theorem 2. The first estimate on the minimal time of the Schrödinger dynam-
ics, follows from the polarization identity of the Hilbert space inner product

∥
∥
∥(T S

t − I )x
∥
∥
∥

2 = 2 − 2Re〈T S
t x, x〉 ≤ g2αE

2αt2α,

and Proposition 3.1, which after rearranging yields the claim. For the estimates on the
Bures angle we rearrange the estimates in Corollary 6.2, and for the estimate on the
purity we rearrange the estimate in Corollary 5.3. ��
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7. Entropy and Capacity Bounds

In this section, we obtain explicit continuity bounds for different families of entropies
of quantum states, and various constrained classical capacities of quantum channels in
infinite dimensions.

The capacity of a channel is the maximal rate at which information can be transmitted
through it reliably. Unlike a classical channel, a quantum channel has various different
capacities. These depend, for example, on the nature of the information transmitted
(classical or quantum), the nature of the input states (product or entangled), the nature
of the allowed measurements at the output of the channel (individual or collective), the
availability of any auxiliary resource (e.g. prior shared entanglement between the sender
and the receiver), the presence or absence of feedback from the receiver to the sender,
etc. From a practical point of view, it is natural, and in fact necessary, to impose energy
constraints on the input states to the quantum channels in computing their capacities,
since one cannot physically prepare states of infinite energy. Due to the energy con-
straint, the resulting capacity is called the constrained capacity of the channel. Here we
consider three different constrained capacities for transmission of classical information
through an infinite-dimensional quantum channel: (i) the constrained product-state ca-
pacity, which is the capacity evaluated under the additional constraint that the inputs
are product states, (ii) the constrained classical capacity, for which the only constraint
is the energy constraint, and (iii) the constrained entanglement-assisted classical ca-
pacity, which corresponds to the case in which the sender and the receiver have prior
shared entanglement.12 If � : T1(HA) → T1(HB) denotes an infinite-dimensional
quantum channel, then the energy constraint on an input state ρ to the channel is given
by tr(HAρ) ≤ E , where HA is the Hamiltonian of the input system A.13 For n identical
copies of the channel, the energy constraint is tr(HAnρAn

) ≤ nE , where ρAn ∈ D(H⊗n
A )

and

HAn = HA ⊗ I⊗n−1 + I ⊗ HA ⊗ I⊗n−2 + · · · + I⊗n−1 ⊗ HA.

The capacities are evaluated in the asymptotic limit (n → ∞). For their operational
definitions see [H03]. Obviously these capacities depend not only on the channel,�, but
also on HA and E . We denote the three different classical capacities introduced above
as follows: (i) C (1)(�, HA, E), (ii) C(�, HA, E), and (iii) Cea(�, HA, E). Expressions
for these capacities have been evaluated [H03] and are given by equations (7.17), (7.18)
and (7.15), respectively.

Besides classical capacities, we also study convergence of entropies in this section.
It has been shown by Lindblad in [Lin74,Lin73] that the quantum relative entropy for
states ρ, σ ∈ D(H) is well-defined for a complete orthonormal basis of eigenvectors
(‖ϕn〉)n of either ρ or σ as

D(ρ||σ) =
∑

n

〈ϕn| (ρ(log(ρ) − log(σ )) + σ − ρ) |ϕn〉. (7.1)

and the conditional entropy of a bipartite state ρAB ∈ D(HA ⊗ HB) is given by

S(A|B)ρ := S(ρAB) − S(ρB). (7.2)

12 To simplify the nomenclature, we henceforth suppress theword constrainedwhen referring to the different
capacities.
13 Since our continuity bounds on the capacities are refinements of those obtained by Shirokov in [Shi18],

we closely follow the notations and definitions of [Shi18].
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If the underlying Hilbert space is infinite-dimensional, the von Neumann entropy de-
pends discontinuously on the states and is even unbounded in every neighbourhood:
More precisely, let ε > 0, then in the ε-neighbourhood (in trace distance) of any state ρ,
there is another state ρ′ (say) for which S(ρ′) = ∞ [We78]. In general the von Neumann
entropy is only lower semicontinuous i.e. given a state ρ, if (ρn)n∈N denotes a sequence
of states such that ‖ρn − ρ‖1 −−−→

n→∞ 0, then S(ρ) ≤ lim infn S(ρn) [We78]. Although,

this explains why there are no continuity bounds for the entropy of states in infinite
dimensions, the following observation shows that under additional assumptions, such
continuity estimates can indeed be derived: Let H be a self-adjoint operator such that a

Gibbs state γ (β) := e−βH

tr(e−βH )
∈ D(H) is well-defined for all β > 0,14 the sequence of

states (ρn) converge in trace norm ‖ρn − ρ‖1 → 0, and the energies tr(ρnH), tr(ρH)

are uniformly bounded, then the entropies converge S(ρ) = limn→∞ S(ρn) as well
[We78]. Thus, continuity bounds on the von Neumann entropy can be expected to hold
for energy-constrained states when the underlying Hamiltonian defines a Gibbs state for
all inverse temperatures. Indeed, in [W15] for entropies and [Shi18] for capacities, such
continuity estimates have been established which are fully explicit up to the asymptotic
behaviour of the Gibbs state for high energies. It is precisely this asymptotic behaviour
that we discuss in this section.

We now want to compare the delicate continuity properties of the von Neumann
entropy with the properties of the Tsallis-(Tq) and Rényi-(Sq) entropies:

Definition 7.1. The q-Tsallis entropy is for q > 1, using the q-Schatten norm, defined
by

Tq(ρ) := 1
q−1

(

1 − ‖ρ‖qq
)

.

The q-Rényi entropy is for q > 1, using the q-Schatten norm, defined by

Sq(ρ) := 1
q−1 log

(‖ρ‖qq
) = q

q−1 log
(‖ρ‖q

)

.

Unlike the von Neumann entropy, our next Proposition shows that the Tsallis and Rényi
entropies are Lipschitz continuous, without any assumptions on the expected energy of
the state or the Hamiltonian:

Proposition 7.2. Let ρ, σ ∈ D(H) be two states and α ∈ (0, 1]. Then the q-Tsallis
entropy satisfies the global Lipschitz estimates

|Tq(ρ) − Tq(σ )| ≤ q
q−1‖ρ − σ‖q ≤ q

q−1‖ρ − σ‖1.
Assume now that there is additionally some δ > 0 such that ‖ρ‖q ≥ δ > 0 and
‖ρ − σ‖q ≤ ε < δ. Then the q-Rényi entropy satisfies the local Lipschitz condition

|Sq(ρ) − Sq(σ )| ≤ q
(q−1)(δ−ε)

‖ρ − σ‖q ≤ q
(q−1)(δ−ε)

‖ρ − σ‖1.
In particular, under the assumptions of Theorem 1, it follows that for states ρ with
tr
(|H |2αρ

) ≤ E2α (or tr
(|K |2αρ

) ≤ E2α) we obtain for any c > 0 and t, s > 0 for the
QDS (�t ) of an open quantum system with ω• as in (3.8)

|Tq(�t (ρ)) − Tq(�s(ρ))| ≤ q
q−1ω• |t − s|α.

14 A sufficient condition for H ≥ 0 to define a Gibbs state is that the resolvent of H is a Hilbert–Schmidt
operator.
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If the initial state satisfies additionally ‖ρ‖q ≥ δ > 0 then up to sufficiently short times
t < δ/ω•

|Sq(�t (ρ)) − Sq(ρ)| ≤ qω•
(q−1)(δ−tω•) t

α.

Proof. The statement on the Tsallis entropy follows directly from

∣
∣Tq(ρ) − Tq(σ )

∣
∣ = 1

q−1

∣
∣‖ρ‖qq − ‖σ‖qq

∣
∣

(1)≤ q
q−1 ‖ρ − σ‖q

(2)≤ q
q−1 ‖ρ − σ‖1 ,

where we used the mean-value theorem for the function f (ρ) = ‖ρ‖qq on states for
which ‖ρ‖q ≤ 1 and the inverse triangle inequality in (1), and ‖ρ‖q ≤ ‖ρ‖1 in (2).

The additional assumptions for theRényi entropy imply that ‖σ‖q ≥ δ−‖ρ − σ‖q ≥
δ − ε > 0 which we need for the local Lipschitz condition on the logarithm. Proceeding
as for the Tsallis entropy this shows

∣
∣Sq(ρ) − Sq(σ )

∣
∣ ≤ q

(q−1)(δ−ε)

∣
∣‖ρ‖q − ‖σ‖q

∣
∣ ≤ q

(q−1)(δ−ε)
‖ρ − σ‖q

≤ q
(q−1)(δ−ε)

‖ρ − σ‖1 .

��
It is well-known that the Gibbs state γ (β) := e−βH

tr(e−βH )
maximizes the von Neumann

entropy among all states ρ that satisfy tr (ρH) ≤ E with E > inf(σ (H)). The inverse
temperature β(E) entering the Gibbs state is given as the unique solution to

tr
(

e−β(E)H (H − E)
)

= 0. (7.3)

In our next remark we state the equivalence of high temperatures and high energies in
the defining equation (7.3) of the Gibbs state:

Remark 2. By splitting up the terms in low energy and high energy regimes we find

0 = tr
(

e−β(E)H (H − E)
)

=
∑

λ∈σ(H);λ≤E

e−β(E)λ(λ − E)

︸ ︷︷ ︸

=:(1)

+
∑

λ∈σ(H);λ>E

e−β(E)λ(λ − E)

︸ ︷︷ ︸

=:(2)

.

For any finite energy, the term (1) is a finite sum, while (2) is an infinite sum (since the
operator H is unbounded). Thus, if the energy would remain finite, as β(E) ↓ 0, then
(1) is finite whereas (2) becomes infinite. Conversely, if the temperature would remain
finite (β > 0) as E → ∞, then (1) tends to negative infinity while (2) vanishes by the
dominated convergence theorem.

A straightforward calculation shows that the entropy of theGibbs state satisfies [W17,
p. 7]

S(γ (β(E))) = log
(

tr
(

e−β(E)H
))

+ β(E)E . (7.4)

In the proof of [Shi06, Proposition 1] it is shown that limε↓0 εS(γ (β(E/ε))) = 0. In the
following, we want to derive precise asymptotics of (7.4) in the high energy limit and
discuss applications of it.

Before entering the general theory, let us study the fully explicit case of the harmonic
oscillator first:
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Example 10. (Harmonic oscillator) Let Hosc = a∗a + 1
2 be the Hamiltonian of the Har-

monic oscillator and σ(Hosc) := {n + 1/2; n ∈ N0} its spectrum. Then the solutionβ(E)

of the equation

tr
(

e−β(E)Hosc(Hosc − E)
)

= 0 for E > 1/2

is given by β(E) = − log
( 2E−1
2E+1

)

. In particular, β(E) = 1/E +O(1/E3). We deduce

that the Gibbs state γ (β(E)) = e−β(E)Hosc

tr(e−β(E)Hosc)
has entropy

S(γ (β(E))) = log
(

tr
(

e−β(E)Hosc
))

+ β(E)E = log
(√

4E2−1
2

)

− log
( 2E−1
2E+1

)

E .

We stress that this shows that for the special case when the Hamiltonian is the harmonic
oscillator, then S(γ (β(E))) behaves like log(E) as E → ∞.

Our aim in this section is to show that, in some sense, the logarithmic divergence of
the entropy of the Gibbs state, as E → ∞, is not a special feature of the harmonic
oscillator but universal for many classes of Hamiltonians. This result allows us then to
state explicitly a rate of convergence in continuity bounds on entropies and capacities.

We start with some preliminary related ideas:
Let H be a self-adjoint operator with compact resolvent on L2(X, dν(x)). The spec-

tral function eH of H , is defined as [Hö07, (17.5.5)] for all x, y ∈ X

eH (x, y, E) :=
∑

λ j∈σ(H);λ j≤E

ϕ j (x)ϕ j (y)

where ϕ j are the eigenfunctions corresponding to the eigenvalue λ j of the operator H .
The number of eigenvalues of H that are atmost of energy E, countedwithmultiplicities,
is then given by

NH (E) =
∫

X
eH (x, x, E) dμ(x) =

∑

λ j≤E;λ j∈σ(H)

1.

The famous Weyl law [I16] gives an asymptotic description of NH for certain classes
of operators in the limit of high energies, and shows that this distribution is universal.
In many cases, even the precise asymptotics of eigenvalues is known. We will show that
to estimate the entropy of the Gibbs state at high energies for arbitrary Hamiltonians, it
suffices to estimate the ratio of the following two auxiliary functions for high energies

N↑
H (E) :=

∑

λ+λ′≤E;λ,λ′∈σ(H)

λ2 and N↓
H (E) :=

∑

λ+λ′≤E;λ,λ′∈σ(H)

λλ′. (7.5)

We also observe that the simple estimate 2λλ′ ≤ λ2 +λ′2 implies that N↑
H (E) ≥ N↓

H (E)

whereWeyl’s law ensures that these two functions have a universal asymptotic behaviour
as E → ∞ for large classes of operators. The next theorem shows that the high energy
asymptotics for the entropy of the Gibbs state is uniquely determined by the high energy
spectrum of the Hamiltonian expressed in terms of functions defined in (7.5).
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Theorem 3. Let H be an unbounded self-adjoint operator satisfying the Gibbs hypoth-

esis. Assume that the limit ξ := limλ→∞
N↑
H (λ)

N↓
H (λ)

> 1 exists, such that η := (ξ − 1)−1

is well-defined. Let the inverse temperature β(E) be given as the solution of (7.3). For
high energies, the inverse temperature satisfies the asymptotic law

β(E) = η

E
(1 + o(1)) as E → ∞. (7.6)

In the same high energy limit the partition function satisfies

ZH (β(E)) := tr
(

e−β(E)H
)

= κEη(1 + o(1)) as E → ∞ (7.7)

where κ = limE→∞ 1
Eη

∑

λ∈σ(H) e
−β(E)λ is a constant. Finally, the entropy of theGibbs

state satisfies

S(γ (E)) = η log (E) (1 + o(1)) as E → ∞.

Proof. The derivative of the inverse temperature as a function of the inverse energy
satisfies

β ′(E−1) = 1

E−1′
(β)

= −1
d
dβ

(
ZH (β)

Z ′
H (β)

) = 1
ZH (β)Z ′′

H (β)

Z ′
H (β)2

− 1
, (7.8)

where we used (7.3) in the second equality. We obtain then for the two-sided Laplace
transform of the auxiliary function N↑

H

L(N↑
H )(β)

(1)=
∫ ∞

−∞

∑

λ+λ′≤s;λ,λ′∈σ(H)

λ2e−βs ds
(2)=

∑

λ∈σ(H)

∑

λ′∈σ(H)

λ2
∫ ∞

λ+λ′
e−βs ds

(3)= 1

β

∑

λ∈σ(H)

∑

λ′∈σ(H)

λ2e−β(λ+λ′) (7.9)

where we used the definition of the two-sided Laplace transform in (1), Fubini’s theorem
to get (2), and by computing the integral we obtained (3). By an analogous calculation,
we find that for G(β) :=∑λ,λ′∈σ(H) λλ′e−β(λ+λ′),

L(N↓
H )(β) = G(β)

β
. (7.10)

The quotient of (7.9) and (7.10) allows us to recover the factor appearing in (7.8)

ZH (β)Z ′′
H (β)

Z ′
H (β)2

= L(N↑
H )(β)

L(N↓
H )(β)

. (7.11)

From the existence of the limit ξ = limλ→∞
N↑
H (λ)

N↓
H (λ)

in the assumption of the theorem,

we conclude that for any ε > 0 there is λ0 > 0 large enough such that for all λ ∈ R

(ξ − ε) 1l[λ0,∞)(λ)N↓
H (λ) ≤ 1l[λ0,∞)(λ)N↑

H (λ) ≤ (ξ + ε) 1l[λ0,∞)(λ)N↓
H (λ).
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Hence, by applying the two-sided Laplace transform to this inequality we infer that for
all β > 0 by decomposing 1l[λ0,∞) = 1 − 1l(−∞,λ0),

(ξ − ε)L((1 − 1l(−∞,λ0))N
↓
H )(β) ≤ L((1 − 1l(−∞,λ0))N

↑
H )(β)

≤ (ξ + ε)L((1 − 1l(−∞,λ0))N
↓
H )(β).

By addingL(1l(−∞,λ0) N
↑
H )(β) to the inequality and dividing byL(N↓

H )(β)we conclude
from (7.10) that

(ξ − ε)

(

1 − βL(1l(−∞,λ0) N
↓
H )(β)

G(β)

)

+
βL(1l(−∞,λ0) N

↑
H )(β)

G(β)
≤ L(N↑

H )(β)

L(N↓
H )(β)

≤ (ξ + ε)

(

1 − βL(1l(−∞,λ0) N
↓
H )(β)

G(β)

)

+
βL(1l(−∞,λ0) N

↑
H )(β)

G(β)
.

Thus, since ε > 0 is arbitrary, we obtain as β → 0+ from the previous inequality, since
by the Gibbs hypothesis lim infβ↓0 G(β) = ∑λ,λ′∈σ(H) λλ′ = ∞ as H is unbounded,
that

lim
β→0+

L(N↑
H )(β)

L(N↓
H )(β)

= ξ.

Hence, for high temperatures, i.e. high energies by Remark 2, we get by (7.8) and (7.11):

lim
E→∞ β ′(E−1) = η.

By differentiating the partition function with respect to E and using (7.3), we find that
the partition function satisfies the differential equation

dZH (β(E))

dE
= −Eβ ′(E)ZH (β(E))

and since β ′(E) = − η

E2 (1 + o(1)), we find that the partition function satisfies for some
κ > 0

ZH (β(E)) = κEη(1 + o(1)), as E → ∞,

where

κ = lim
E→∞

1
Eη

∑

λ∈σ(H)

e−β(E)λ.

Thus, by using (7.4), this implies that

S(γ (E)) = log
(

κEη(1 + o(1))
)

+ η(1 + o(1)) = η log(E)(1 + o(1)), as E → ∞.

��
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Example 11. The entropy of the Gibbs state for the quantum harmonic oscillator as in
Example 10 satisfies

S(γ (E)) = log(E)(1 + o(1)), as E → ∞.

The entropy of the Gibbs state for regular Sturm–Liouville operators defined through

(Hy)(x) = − 1
r(x) (py

′)′(x) + q(x)
r(x) y(x),

on bounded intervals (a, b) with r, q ∈ C[a, b], p ∈ C1[a, b], and p(x), r(x) > 0 for
x ∈ [a, b] satisfies

S(γ (E)) = 1
2 log(E)(1 + o(1)) as E → ∞.

The entropy of the Gibbs state for multi-dimensional second order differential operators
[Hö07, Sect. 17.5]

H = −
n
∑

j,k=1

∂

∂x j

(

g jk ∂

∂xk

)

+
n
∑

j=1

b j ∂

∂x j
+ c

on bounded open subsets � of R
n with smooth boundary, Dirichlet boundary condition,

and positive semi-definitematrix (g jk) on� such that H is self-adjoint on L2(X, dμ(x))
satisfies

S(γ (E)) = n
2 log(E)(1 + o(1)), as E → ∞.

Calculation. Instead of just referring to Example 10 for the harmonic oscillator, we
apply Theorem 3:

Harmonic oscillator: By applying the Cauchy product formula, we find from
the Harmonic oscillator spectrum {n + 1/2; n ∈ N0}

N↑
H (n + 1) =

n
∑

k=0

k
∑

i=0

(

i + 1
2

)2 = (2n2 + 6n + 3)(2 + n)(1 + n)

24
and

N↓
H (n + 1) =

n
∑

k=0

k
∑

i=0

(

i + 1
2

)

(k − i + 1
2 ) = (n2 + 3n + 3)(2 + n)(1 + n)

24

such that η =
(

limλ→∞
N↑
H (λ)

N↓
H (λ)

− 1

)−1

= 1.

By Theorem 3 it follows that

S(γ (E)) = log(E)(1 + o(1)), as E → ∞. (7.12)

Sturm- - Liouville operator: The spectrum of the Sturm–Liouville operators obeys
high energy asymptotics [T12, Theorem 5.25]

σ(H) =
{

n2π2
(∫ b

a

√
r(t)
p(t) dt

)−2

+O(n); n ∈ N

}
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(A) Inverse temperature of Gibbs state
for the quantum harmonic oscillator.
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(B) Inverse temperature of Gibbs state
for the operator − d2

dx2 on [0, 1/
√
8].

Fig. 4. Asymptotics of inverse temperature (7.6) of the Gibbs state compared with the true solution β(E)

such that for γ := ∫ ba
√

r(t)
p(t) dt

N↑
H

(

n2π2γ −2
)

= γ −4
∫ π/2

0

∫ n

0

(

π2r2 cos2(ϕ)
)2

r dr dϕ (1 + o(1))

= π5n6

32γ 2 (1 + o(1)) and

N↓
H

(

n2π2γ −2
)

= γ −4
∫ π/2

0

∫ n

0
π4r4

(

cos2(ϕ) sin2(ϕ)
)

r dr dϕ (1 + o(1))

= π5n6

96γ 2 (1 + o(1))

from which we obtain that η =
(

limλ→∞
N↑
H (λ)

N↓
H (λ)

− 1

)−1

= 1
2 and thus by Theorem 3

S(γ (E)) = 1
2 log(E)(1 + o(1)), as E → ∞. (7.13)

Multi- dimensional operators: The m-th eigenvalue of the second order operator
are known to satisfy [Hö07, Sect. 17.5] λm ≈ 4π2

(Cn |�|)2/n m
2/n as m → ∞ where Cn :=

πn/2

�(
n
2 +1)

. For our calculation, we may drop the prefactor of the eigenvalues when taking

the quotient of N↑
H (λ) and N↓

H (λ). Approximating the series by integrals yields

E−1(β) =
(∫ ∞

0
m2/ne−βm2/n

dm

)−1 (∫ ∞

0
e−βm2/n

dm

)

(1 + o(1))

= 2β
n (1 + o(1)), as β ↓ 0

from which we conclude by Theorem 3

S(γ (E)) = n

2
log(E)(1 + o(1)), as E → ∞. (7.14)

��
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In Fig. 4a we compare the true inverse temperature β(E) of the Gibbs state for the
quantum harmonic oscillator as in Example 10 with the asymptotic law β(E) ≈ 1

E
obtained from Theorem 3. In Fig. 4b we compare the inverse temperature of the Gibbs
state for the Hamiltonian describing a particle in a box of length 1√

8
with the asymptotic

law β(E) ≈ 1
2E we obtained in Example 11. The following Proposition, which relies on

Theorem 3, shows that for large generic classes of Schrödinger operators with compact
resolvent, the entropy of the Gibbs states obeys a universal high energy asymptotic
behaviour.

The Proposition [Entropy convergence] then follows as an application of Theorem 3,
which provides an explicit rate of convergence for entropies on infinite-dimensional
Hilbert spaces:

Proof. (Prop. ent. conv.) Under the assumptions stated in the Proposition and if EH = 0,
Lemmas 15 and 16 in [W17] show that the von Neumann entropy satisfies

|S(ρ) − S(σ )| ≤ 2εS(γ (E/ε)) + h(ε) and

|S(ρ) − S(σ )| ≤ (ε′ + 2δ)S(γ (E/δ)) + h(ε′) + h(δ).

The conditional entropy satisfies by [W17, Lemma 17]

∣
∣S(A|B)ρ − S(A|B)σ

∣
∣ ≤ 2(ε′ + 4δ)S(γ (E/δ)) + (1 + ε′)h( ε′

1+ε′ ) + 2h(δ).

However, to apply [W17], H has to satisfy the assumption EH = 0. If this is not satisfied,
we can define the auxiliary operator H̃ = H − EH . With respect to the operator H̃ , the
density operators ρ, σ satisfy the new energy constraints tr(ρ H̃), tr(σ H̃) ≤ E − EH .

Moreover, we observe that

N↑
H̃

(E − 2EH ) :=
∑

λ+λ′≤E−2EH ;λ,λ′∈σ(H̃)

λ2 =
∑

λ+λ′≤E;λ,λ′∈σ(H)

(λ − EH )2

= N↑
H (E)(1 + o(1)) as E ↑ ∞ and

N↓
H̃

(E − 2EH ) :=
∑

λ+λ′≤E−2EH ;λ,λ′∈σ(H̃)

λλ′ =
∑

λ+λ′≤E;λ,λ′∈σ(H)

(λ − EH )(λ′ − EH )

= N↓
H (E)(1 + o(1)) as E ↑ ∞.

This implies that

ξ = lim
λ→∞

N↑
H (λ)

N↓
H (λ)

= lim
λ→∞

N↑
H̃

(λ)

N↓
H̃

(λ)
.

Combining these results with Theorem 3 yields the claim of the Proposition. ��
Another correlation measure for a bipartite state ρAB ∈ D(HA⊗HB) is the quantum

mutual information (QMI)

I (A; B)ρ = D(ρAB ||ρA ⊗ ρB) ≥ 0,
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and is defined in terms of the relative entropy (7.1). Let � : T1(HA) → T1(HB)

be a quantum channel and HA a positive semi-definite operator on HA. The energy-
constrained entanglement assisted capacity, Cea(�, HA, E) was proved to be given by
the following expression

Cea(�, HA, E) = sup
tr(HAρ)≤E

I (B;C)(�⊗IHC )(ρ̂), (7.15)

by Holevo and Shirokov [HS13], where ρ̂ is a pure state in D(HA ⊗HC ) with reduced
state ρ ∈ D(HA).

The two Corollaries C.1 and C.2 of Theorem 3 that are stated in Appendix C provide
convergence rates on QMI and hence on Cea.

We continue our discussion of attenuator and amplifier channels, that were defined
in Example 5 by studying their convergence of entropies.

Example 12 (Entropy bounds for attenuator and amplifier channels). We start by dis-
cussing how the expected energy of output states of these channels with time-dependent
attenuation and amplification parameters behave as a function of time.

Let ρatt and ρamp be the time-evolved states under the attenuator and amplifier chan-
nels, i.e. ρatt(t) = �att

t (ρatt
0 ) and ρamp(t) = �

amp
t (ρ

amp
0 ), with ρatt

0 and ρ
amp
0 denoting

arbitrary initial states. Differentiating the expectation value tr(Nρatt(t)) with respect
to time shows that, for the attenuator channel, the expectation value tr(Nρatt(t)) is a
decreasing function of time

d
dt tr(Nρatt(t)) = tr(NLattρatt(t)) = − tr(N 2ρatt(t)) + tr(a∗Naρatt(t))

= − tr(N 2ρatt(t)) + tr(N (N − 1)ρatt(t)) = − tr(Nρatt(t)),

whereas for the amplifier channel, a similar computation shows that

d
dt tr(Mρamp(t)) = tr(Mρamp(t)).

Hence, it follows that tr(Nρatt(t)) = tr(Nρatt
0 )e−t and tr(Mρamp(t)) = tr(Mρ

amp
0 )et .

Let ε > 0 and t0 be sufficiently small such that t0 ≤ 1
E

(
2ε

ζ1/2(1−α)(1−α)/2αα/2

)1/α
. Then

by (5.13) specialising this bound for α = 1/2, shows that
∥
∥�att

t+s − �att
s

∥
∥
N ,E

1 ≤ 2ε

and
∥
∥�

amp
t+s − �

amp
s
∥
∥
M,E

1 ≤ 2ε. Thus, by Proposition [Entropy convergence], for times

t ∈ (0, t0) and s > 0 such that

tr(ρatt
0 N ) ≤ Ees and tr(ρamp

0 M) ≤ Ee−(t0+s),

we find in terms of the binary entropy h

∣
∣S
(

ρatt(t + s)
)− S

(

ρatt(s)
)∣
∣ ≤ 2ε log (E/ε) (1 + o(1)) + h(ε) and

∣
∣S
(

ρamp(t + s)
)− S

(

ρamp(s)
)∣
∣ ≤ 2ε log ((E − 1)/ε) (1 + o(1)) + h(ε).
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7.1. Capacity bounds. Another application of the high energy asymptotics of the entropy
of the Gibbs state are bounds on capacities of quantum channels. Concerning these
bounds, we need to introduce, before stating our result, the definition of an ensemble,
its barycenter, and the Holevo quantity [Shi18].

Definition 7.3. A Borel probability measure μ on the set of states D(H) ⊆ T1(H) is
called an ensemble of quantum states. The expectation value ρ ∈ D(H)

ρ =
∫

D(H)

ρ dμ(ρ)

is called its barycenter. The expected energy of the barycenter state is defined as E(μ) =
tr(Hρ). The Holevo quantity of the ensemble is defined, if S(ρ) < ∞, as

χ(μ) = S(ρ) −
∫

D(H)

S(ρ) dμ(ρ). (7.16)

For a quantumchannel� : T1(HA) → T1(HB), the pushforward ensemble (�∗(μ))(B) =
μ(�−1(B)) is defined as the pushforward measure for all Borel sets B and is itself an
ensemble on the final space of �.

Remark 3. If the ensemble is of the form μ = ∑∞
i=1 piδρi for probabilities pi ≥ 0

summing up to one
∑∞

i=1 pi = 1 and delta distributions associated with states ρi ∈
D(H) then the ensemble is also called discrete. In this case the barycenter state is just

ρ =
∞
∑

i=1

piρi ∈ D(H).

Let� be a quantum channel, then the pushforward ensemble of such a discrete ensemble
becomes just �∗(μ) =∑∞

i=1 piδ�(ρi ).

Discrete ensembles play a particularly important role in the study of capacities. Let
DE be the set of discrete ensembles with barycenter state ρ of energy less than E
under a positive semi-definite Hamiltonian. Let � be a channel, H a positive semi-
definite Hamiltonian, andμ a discrete ensemble. The constrained product-state classical
capacity is known to be given by the Holevo capacity χ∗(�) := supμ∈DE

χ(�∗(μ)),
defined in terms of the Holevo quantity, by

C (1)(�, H, E) = χ∗(�). (7.17)

The full classical capacity is given in terms of C (1) as follows

C(�, H, E)

= lim
n→∞

1
nC

(1)
(

�⊗n, H ⊗ I⊗n−1 + I ⊗ H ⊗ I⊗n−2 · · · + I⊗n−1 ⊗ H, nE
)

. (7.18)

With those definitions at hand, we can finish the proof of Proposition [Capacity conver-
gence].

Proof. (Prop. cap. conv.). From [Shi18, Proposition 6] it follows that

|C (1)(�, HA, E) − C (1)(�, HA, E)| ≤ ε(2t + rε(t))S(γ (k(E)E/(εt) + EHB ))

+2g(εrε(t)) + 2h(εt) and

|C(�, HA, E) − C(�, HA, E)| ≤ 2ε(2t + rε(t))S(γ (k(E)E/(εt) + EHB ))

+2g(εrε(t)) + 4h(εt) (7.19)

and the result follows immediately from Theorem 3. ��
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8. Open Problems

Concerning thefirst part of the paper, itwouldbedesirable to study extensions of ourwork
to non-autonomous systems, such as systems described by a Schrödinger operator with
time-dependent potentials. For the Schrödinger equation, an application of the variation
of constants formula yields a bound for such systems as well (see Proposition 3.1).
This should also work, under suitable assumptions, for non-autonomous open quantum
systems. However, more mathematical care may be needed for the latter.

To answer the important questions: (i) “How fast can entropy increase?”-for any
infinite-dimensional open quantum system whose dynamics is governed by a QDS, and
(ii) “How fast can information be transmitted?”-through any quantum channel (obtained
by freezing the time parameter in the QDS), it seems necessary to find bounds on the
evolution of the expected energy for the state of the underlying open quantum systemover
time (as has been done for the case of the attenuator and amplifier channels in Example
12.15) To our knowledge, such bounds have not been obtained in full generality yet. See
also [BN88,DKSW18,OCA] for related results on question (i).

The first step to answer these two questions was provided by Winter [W15] and Shi-
rokov [Shi18], who derived continuity bounds on entropies and capacities, respectively.
Our paper provides, as a second step, a time-dependent bound on the evolution of the
expected energy of the state of the open quantum system, which enters these continuity
bounds through the energy constraint. Understanding the behaviour of this expected
energy as a function of time is needed in order to infer, from the continuity bounds, how
fast entropies and capacities can change.

It would be furthermore desirable to extend Theorem 3 to higher-order terms. In
Fig. 4a we see that the leading-order approximation for the inverse temperature pro-
vided by Theorem 3 is almost indistinguishable from the true solution for the harmonic
oscillator whereas the leading-order approximation in Fig. 4b for the particle in a box
seems to converge somewhat slower than the true solution. A better understanding of
higher order terms should be able to capture these behaviours more precisely.
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Appendix A. Properties of ECD Norms

The following Proposition states necessary technical conditions on the eigenbasis of
states satisfying an energy-constrained condition.

Proposition A.1. Let S be positive semi-definite. Let ρ = ∑∞
i=1 λi |ϕi 〉〈ϕi | be a state.

Then tr(Sρ) = ∞ if there is |ϕi 〉 /∈ D(
√
S) with λi �= 0. Analogously, a state ρ satisfies

tr(SρS) = ∞ if there is ϕi /∈ D(S) with λi �= 0. The converse implications hold if ρ is
of finite-rank.

15 In fact, in Example 12, explicit expressions, and not just bounds, have been obtained.

http://creativecommons.org/licenses/by/4.0/
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Proof. Let S be a positive semi-definite operator. The spectral theorem implies that
|ϕ〉 ∈ D(

√
S) if and only if tr(S|ϕ〉〈ϕ|) < ∞

tr(S|ϕ〉〈ϕ|) = sup
n∈N

tr(SE S[0,n]|ϕ〉〈ϕ|) = sup
n∈N

〈

SE S[0,n]ϕ, ϕ
〉

= sup
n∈N

∫ n

0
λ d〈E S

λ ϕ, ϕ〉 =
∫ ∞

0
λ d〈E S

λ ϕ, ϕ〉.

Hence, let ρ ∈ D(H) be a state with spectral decomposition ρ = ∑∞
i=1 λi |ϕi 〉〈ϕi |

such that there exists ϕi /∈ D(
√
S) and λi �= 0. Then tr(Sρ) = ∞. This follows

immediately from

tr(Sρ) = sup
n∈N

tr(SE S[0,n]ρ) = sup
n∈N

∑

i∈N

λi tr(SE S[0,n]|ϕi 〉〈ϕi |) =
∑

i∈N

λi tr(S|ϕi 〉〈ϕi |).

For the operator domain, it follows that |ϕ〉 ∈ D(S) if and only if tr(S|ϕ〉〈ϕ|S) < ∞
as we can deduce from

tr(S|ϕ〉〈ϕ|S) = sup
n∈N

∥
∥
∥SE S[0,n]ϕ

∥
∥
∥

2 =
∫ ∞

0
λ2 d〈E S

λ ϕ, ϕ〉.

Just like for the form domain, this implies for a state with eigendecomposition ρ =
∑

i λi |ϕi 〉〈ϕi | it follows that tr(SρS) = ∞ if there is |ϕi 〉 /∈ D(S) such that λi �= 0. ��
Note that by considering SE S[0,n] instead of just S we work with a bounded operator

that commutes with the series and also the application of SE S[0,n] to elements ϕi is well-
defined.

Appendix B. Dynamics of QDS in ECD Norms

The following Proposition is an adaptation of the uniform boundedness principle to the
α-ECD norm and can be applied as a perturbation theorem for convergence in α-ECD
norms.

Proposition B.1. Let S be a positive semi-definite operator, α ∈ (0, 1], and E >

inf(σ (S)). We then define the closed set

AE :=
{

ρ ∈ D(H ⊗ H′); tr(SαρHSα) ≤ E2α
}

.

Let H be a self-adjoint operator such that for all ρ ∈ AE

tr
(

(|H |α ⊗π IT1(H′))ρ(|H |α ⊗π IT1(H′))
) = tr

(|H |αρH|H |α) < ∞.

Then the H-associated strongly continuous one-parameter group T vN
t ρ = e−i t Hρeit H

is α-Hölder continuous with respect to the α-ECD norm generated by S and satisfies

∥
∥
∥T vN

t − T vN
s

∥
∥
∥

S,E


2α ≤ 2gα

∥
∥|H |α∥∥S,E


2α |t − s|α with
∥
∥|H |α∥∥S,E


2α < ∞.
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Proof. We can bound by the Cauchy–Schwarz inequality

sup
n∈N

∥
∥
∥

(

|H |α E |H |
[0,n] ⊗π IT1(H′)

)

ρ

∥
∥
∥
1

≤ √tr (|H |αρH|H |α) < ∞.

This allows us to define a family of closed sets

AE
m :=

{

ρ ∈ AE : sup
n

∥
∥
∥

(

|H |α E |H |
[0,n] ⊗π IT1(H′)

)

ρ

∥
∥
∥
1

≤ m

}

that exhaust AE = ⋃m∈N
AE
m by assumption. The set AE is closed in T1(H ⊗ H′) =

T1(H) ⊗π T1(H′) and thus complete. Baire’s theorem implies that one of the sets AE
m

has non-empty interior, i.e. there is ρ0 ∈ AE
m and ε > 0 such that the closed ball (in trace

distance) B(ρ0, 2ε) is contained in AE
m .

Thus, let ρ ∈ AE be arbitrary, then the auxiliary densitymatrix ρaux := (1−ε)ρ0+ερ

is an element of AE
m as well. Moreover, ‖ρaux − ρ0‖1 ≤ 2ε. Thus, ρaux is an element of

AE
m . By the definition of AE

m we therefore obtain, since ρ was an arbitrary element of
AE , immediately that ‖|H |α‖S,E


2α must be finite. We then obtain

1

tα

∥
∥
∥(T vN

t ⊗π IT1(H′) − I )(ρ)

∥
∥
∥
1

≤ 2

tα

∥
∥
∥(T S

t ⊗π IT1(H′) − I )(ρ)

∥
∥
∥
1

≤ 2ζα(1 − α)
1−α
2 α

α
2
∥
∥(|H |α ⊗π IT1(H′))(ρ)

∥
∥
1

≤ 2ζα(1 − α)
1−α
2 α

α
2
∥
∥|H |α∥∥S,E


2α
where we used the triangle inequality to get the first estimate, Lemma 4.2 for the second
one, and the definition of the ECD-norm for the last one. ��

Appendix C. Capacity Bounds

In the following let h(x) := − x log(x) − (1 − x) log(1 − x) be the binary entropy,
g(x) := (x + 1) log(x + 1) − x log(x), and rε(t) = 1+t/2

1−εt a function on (0, 1
2ε ].

Corollary C.1 (QMI). Consider quantum systems A, B,C, quantum channels �, � :
T1(HA) → T1(HB), and energies E1, . . . , En . Let HA be a positive semi-definite op-
erator on HA and HB a positive semi-definite operator on HB, with HB satisfying the
Gibbs hypothesis and EH := inf(σ (HB)).

We also assume that the limit ξ := limλ→∞
N↑
HB

(λ)

N↓
HB

(λ)
> 1 exists such that η :=

(ξ − 1)−1 is well-defined.
Letρ ∈ D(H⊗n

A ⊗HC )denote a state of the composite system A1A2 . . . AnC such that
EA = max1≤k≤n tr(HAρHAk

) < ∞ where HAk is the k-th factor in the tensor product

H⊗n
A . If the channels are such that 1

2 ‖� − �‖HA,EA

1 ≤ ε, and for k = 1, ., n both

tr(HB�(ρAk )), tr(HB�(ρAk )) ≤ Ek then for all t ∈ (0, 1/(2ε))with E = 1
n

∑n
k=1 Ek,

|I (Bn;C)(�⊗n⊗IC )(ρ) − I (Bn;C)(�⊗n⊗IC )(ρ)|
≤ 2nε(2t + rε(t))η log(E/(εt) + EHB )(1 + o(1))

+ 2ng(εrε(t)) + 4nh(εt), as ε ↓ 0.



868 S. Becker, N. Datta

Proof. By [Shi18, Proposition 5] it follows that

|I (Bn;C)(�⊗n⊗IC )(ρ) − I (Bn;C)(�⊗n⊗IC )(ρ)| ≤ 2nε(2t + rε(t))S(γ (E/(εt) + EHB ))

+ 2ng(εrε(t)) + 4nh(εt),

which together with Theorem 3 gives the claim of the Corollary. ��
Corollary C.2 (EAC). Let A, B be two quantum systems and HA be a positive semi-
definite operator on HA satisfying the Gibbs hypothesis and EHA := inf(σ (HA)). We

also assume that the limit ξ := limλ→∞
N↑
HA

(λ)

N↓
HA

(λ)
> 1 exists such that η := (ξ − 1)−1 is

well-defined and take E > inf(σ (H)).
Let�, � : T1(HA) → T1(HB)be twoquantumchannels such that 12 ‖� − �‖HA,E


1 ≤
ε then for t ∈ (0, 1

2ε ] the EAC satisfies

|Cea(�, HA, E) − Cea(�, HA, E)| ≤ 2ε(2t + rε(t))η log(E/(εt) + EHA)(1 + o(1))

+2g(εrε(t)) + 4h(εt), as ε ↓ 0. (C.1)

Proof. By [Shi18, Proposition 7] it follows that in terms of the Gibbs state γ (E/(εt))
for HA

|Cea(�, HA, E) − Cea(�, HA, E)| ≤ 2ε(2t + rε(t))S(γ (E/(εt) + EHA))

+2g(εrε(t)) + 4h(εt), as ε ↓ 0. (C.2)

Combining this result with Theorem 3 yields the claim. ��
Corollary C.3. (Holevo quantity) Let A, B be two quantum systems, E > 0, and μ any
ensemble of states on HA whose barycenter has expected energy E(μ). Let HA be a
positive semi-definite operator onHA and HB a positive semi-definite operator onHB
satisfying the Gibbs hypothesis with EHB := inf(σ (HB)). We also assume that the limit

ξ := limλ→∞
N↑
HB

(λ)

N↓
HB

(λ)
> 1 exists such that η := (ξ − 1)−1 is well-defined.

Let �, � : T1(HA) → T1(HB) be two quantum channels such that both

tr(HB�(ρ)), tr(HB�(ρ)) ≤ E

and 1
2 ‖� − �‖HA,E(μ)


1 ≤ ε. Then for t ∈ (0, 1
2ε ] the Holevo quantity satisfies

|χ(�∗(μ)) − χ(�∗(μ))| ≤ ε(2t + rε(t))η log(E/(εt) + EHB )(1 + o(1))

+ 2g(εrε(t)) + 2h(εt), as ε ↓ 0.

Proof. From [Shi18, Proposition 4] it follows that

|χ(�∗(μ)) − χ(�∗(μ))| ≤ ε(2t + rε(t))S(γ (E/(εt) + EHB )) + 2g(εrε(t)) + 2h(εt)

such that the claim of the Corollary follows from Theorem 3. ��
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