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Abstract: A circle pattern is an embedding of a planar graph in which each face is
inscribed in a circle. We define and prove magnetic criticality of a large family of Ising
models on planar graphs whose dual is a circle pattern. Our construction includes as a
special case the critical isoradial Ising models of Baxter.

1. Introduction

The exact value of critical parameters is known only for a limited number of two-
dimensional models of statistical mechanics. One of the most prominent examples is the
Ising model whose critical temperature on the square lattice was famously computed
by Kramers and Wannier [24] under a uniqueness hypothesis on the critical point. A
confirmation of this condition came later as a corollary to the groundbreaking solution
of the model provided by Onsager [29].

The methods available at that time yielded also the critical temperature of inhomoge-
neous Ising models on the square lattice with different vertical and horizontal coupling
constants. A natural generalization of such models is the setting of arbitrary biperiodic
graphs, i.e., weighted planar graphs whose group of symmetries includes Z?. The critical
point in the case of the square lattice with periodic coupling constants was first computed
by Li [25], and the result was later extended to all biperiodic graphs by Cimasoni and
Duminil-Copin [14]. Both approaches go through Fourier analysis of periodic matrices
that arise from the combinatorial solutions of the Ising model due to Fisher [19], and
Kac and Ward [22] respectively. In particular, it is known that criticality in this set-
ting is equivalent to the existence of nontrivial functions in the kernel of the associated
Kac—Ward matrix [13].

So far the only other class of planar graphs where critical parameters for the Ising
model were explicitly known are the isoradial graphs defined by the condition that each
face is inscribed in a circle with a common radius. The critical Z-invariant coupling
constants of Baxter [3] arise then as a solution to a system of equations requiring that the
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Ising model is invariant under a star-triangle transformation (which preserves isoradiality
of the graph). Criticality in the sense of statistical mechanics of the associated Ising model
was proved in the periodic case in [14], and in the general case in [26]. Moreover, it is
known that also in this setting the associated Kac—Ward matrix has a non-trivial kernel
[27].

Isoradial graphs form the most general family of graphs where the critical Ising model
was shown to be conformally invariant in the scaling limit [12]. The proof of Chelkak
and Smirnov uses the fact that differential operators admit well behaved discretizations
on isoradial graphs [16,28]. One should also mention that dimer models on isoradial
graphs related to the Ising model were studied in [7-9].

A circle pattern is an embedding of a planar graph in which each face is inscribed in a
circle of an arbitrary radius. Circle patterns have been extensively studied in relation to
discretely holomorphic functions [1,4,5,30]. In this article we define coupling constants
for the Ising model on the dual graph of a circle pattern, and prove that the resulting model
is critical. Our construction, when restricted to isoradial graphs, recovers the critical Z-
invariant coupling constants of Baxter. Examples of new graphs where a critical Ising
model can be defined in a local manner include, among many others, arbitrary trivalent
graphs whose dual is a triangulation with acute angles.

Unlike the previous proofs of criticality [14,25,26], we do not invoke duality argu-
ments. Instead, we obtain exponential decay of correlations in the high-temperature
regime using bounds on the operator norm of the Kac—Ward transition matrix [23,26].
To establish magnetic order in the low-temperature regime, we construct a non-trivial
vector in the kernel of the critical Kac—Ward matrix (which readily implies infinite sus-
ceptibility), and then use known correlation inequalities to infer positive magnetization
at lower temperatures.

Clearly, many of the natural questions about the model we study in this article remain
open, and one of the most interesting is perhaps that of existence, conformal invariance
and universality (among circle patterns) of the scaling limit. The foundation for the proof
of conformal invariance on isoradial graphs is the strong form of discrete holomorphicity
that is satisfied by the fermionic observable associated with the critical Ising model.
Here we provide the corresponding relations satisfied by the observable in the case
of circle patterns. These are only “half” of the relevant relations in the sense that the
isoradial observable satisfies them on both the dual and primal graph, whereas the generic
observable does so only on the dual graph.

This article is organized as follows. In the next section we introduce the setup and
state our main theorems. In Sect. 3 we recall relevant results on the relation between
the Ising model and the Kac—Ward matrix, and in Sect. 4 we provide the proofs of our
results. In Sect. 5 we briefly discuss discrete holomorphicity of the critical fermionic
observable on circle patterns, and in Sect. 6 we present applications of our method to
more general types of planar graphs (including s-embeddings of Chelkak [10]).

2. Main Results

LetG = (V, E) and G* = (V*, E*) be infinite, mutually dual, planar graphs embedded
in the complex plane in such a way that each face of G* is inscribed in a circle whose
center is inside the closure of the face, and the vertices of G lie at the centers of the
circles. We identify both G and G* with their embedding and we say that G* is a circle
pattern. (Note that we include the condition about the center being inside the face in
the definition of a circle pattern.) For each ¢ = {u, v} € E, the dual edge ¢* is the
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Fig. 1. Local geometry of a circle pattern G* and its dual G with dashed and solid edges respectively. Here,
¢ = (u,v)and —¢ = (v, u)

common chord of the circles centered at # and v. We denote by 60(,,v) and 6, ) half of
the respective central angles given by the chord (see Fig. 1). The ordered pairs (u, v) and
(v, u) represent the two opposite directed versions of the undirected edge {u, v}. Note
that foreachv € V,

> by =, 2.1)

u~v

where the sum is over all vertices u adjacent to v. We will often assume the bounded
angle property of G* by requiring that there exists ¢ > 0 such that

£<0uvy <% —¢ (2.2)

for all directed edges (u, v). This in particular implies that G is of bounded degree. Let
J = (J)ecE € (0, 00]F be coupling constants given by

6 o u
tanh Jg, ) = y/tan 5% tan <454 (2.3)

It is easy to see that the bounded angle property implies that || J | o < 00.

Note that if all the circumscribed circles have the same radius, then G and G* are
isoradial, the angles satisfy 0, ) = 6y, and (2.3) defines the critical Z-invariant
coupling constants of Baxter [3]. On the other hand, the coupling constants (2.3) are
a special case of the ones introduced by Chelkak [10] in the setting of graphs called
s-embeddings which generalize circle patterns. However, no questions about criticality
are asked in [10] and these are the main focus of the present article (In Sect. 6 we discuss
applications of our approach to general s-embeddings which yields partial answers to the
question of criticality). Also, the model considered here is more general than the one of
Bonzom, Costantino and Livine [6], who studied a supersymmetric relation between the
planar Ising model and spin networks. The authors of [6] considered the same coupling
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constants as (2.3) but only in the case when G™* is a triangulation (and hence a circle
pattern).

We will study Ising models on finite connected subgraphs G = (Vg, Eg) of G with
coupling constants J. To this end, let

Vg ={veVg:3ueV\Vg, {u,v} € E}

be the boundary of G, and let Qg = {—1, +1}"¢ be the space of spin configurations.
The Ising model [21] at inverse temperature 3 > 0 with free or ‘+’ boundary conditions
conditions L] € {f, +} is a probability measure on Qg given by

1
Pg)ﬂ(a): g eXp(ﬂ Z J{M,U}UMGU+I{D:+},3 Z J{u,v}av,),
ZG,ﬂ {u,v}eEg vedVg
u¢Ve

where Z (D; P is the normalizing constant called the partition function. We write (')g’ 8 for

the expectation with respect to PE B By the second Griffiths inequality, we can define
the infinite volume limits of correlation functions by

O . O
{ H "u)G,ﬁ = é‘}nG( H U“)G,B’
uceA ucA

where A C V is finite, and where the limit is taken over any increasing family of finite
connected subgraphs G containing A and exhausting G.

Let d(-, -) be the graph distance on G. The following is our main result identifying a
phase transition at 8, = 1:

Theorem 2.1. Let G* be a circle pattern satisfying the bounded angle property, and
consider the Ising model on G with coupling constants as in (2.3). Then

(i) for every B < 1, there exists Cg > 0 such that for allu,v € V,

(Uuav)qé’ﬂ = e—Cﬂd(u,v)’

(i1) if the radii of circles are uniformly bounded from above, then for every v € V, there
exists ty > 0 such that forall p > 1,

<C7v)?(—;w3 >1-p7"

Moreover, if the radii of circles are uniformly bounded from below, then one can
choose one such t = t, for all v.

We also show that the magnetic susceptibility diverges at criticality:

Theorem 2.2. Let G* be as in Theorem 2.1, and assume that the radii of circles are
uniformly bounded from below. Then for allv € V,

XepW) = Y (0uon)f 4 < 00

ueV

ifand only if B < 1.
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Fig. 2. A piece of a circle packing and its dual. The quadrangulation Q from Example 2 is the graph whose
vertices are the regions bounded by dashed lines. Its dual Q* is a circle pattern

Our main tool is the Kac—Ward transition matrix A associated with the Ising model
[22]. The exponential decay of correlations for 8 < 1 will follow from our previous
result [26] which says that the Euclidean operator norm of A is strictly smaller than 1.
This part does not actually require the faces of G* to be cyclic polygons and holds true
for an arbitrary choice of angles 6,,,) satisfying condition (2.1). The complementary
lower bound on the two-point function which identifies a phase transition at . = 1
will follow from a construction of an eigenvector of A with eigenvalue 1 combined with
known correlation inequalities. This part crucially relies on the global geometry of the
embedding.

‘We finish this section with a list of examples of circle patterns which are not neces-
sarily isoradial.

Example 1. Any acute triangulation G* of the plane, i.e., a planar graph whose all faces
are acute triangles, is a circle pattern. In this case, G is a trivalent graph and this is
the set-up where the relation between the planar Ising model and spin networks was
studied in [6]. The authors heuristically derived the same coupling constants (2.3) on
the spin network side, and asked if they correspond to critical Ising models on a class of
graphs that is larger than the isoradial graphs. Theorem 2.1 answers this question in the
affirmative.

Example 2. A circle packing is a representation of a planar graph G where the vertices
are the centers of interior-disjoint disks in the plane, and two vertices are adjacent if the
respective discs are tangent. Consider a circle packing of an infinite planar graph G such
that each face is convex. Then the dual graph G* can be simultaneously circle-packed
in such a way that the circles centered at the endpoints of an edge e and its dual edge e*
meet orthogonally at one point (see Fig. 2). Let Q be the quadrangulation whose vertices
are the vertices and faces of G, and whose edges are of the form {u, u*}, where u is a
vertex of G and u* is one of the faces incident on u. Then Q* is the medial graph of G
with vertices given by the meeting points of the circles, and with edges connecting every
pair of consecutive vertices around every circle. By construction, Q* is a circle pattern.
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Example 3. Let G and G* be be mutually planar graphs embedded in such a way that
each pair of a primal and dual edge meets at a right angle. Let Q be the quadrangulation
whose vertices are the vertices, faces and edges of G, and whose edges are of the form
{e, v} where e is an edge of G and v is either a vertex or a face incident on e. Note that
each face of Q has at least two right interior angles, and hence Q is a circle pattern. The
dual graph Q* is the 4-regular graph that is obtained from G by replacing each edge of
G by a quadrilateral and each vertex of degree d by a d-gon face.

Example 4. Let G = 7% and fix 0 < a < b < oo. For the i-th column of vertical edges,
choose a coupling constant J; € [a, b]. To each horizontal edge between column i and
i + 1 assign a coupling constant J; ;41 satisfying
tanh J; ;41 = e Jim I,

The resulting Ising model is critical as these coupling constants are computed using (2.3)
applied to the dual lattice G* ~ Z? with appropriately stretched or squeezed columns.
Note that if J; are constant, the classical anisotropic critical Ising model is recovered,
and upon setting J; = —% log(+/2 — 1) we get the homogenous critical model.

3. The Kac-Ward Operator and the Fermionic Observable

In this section we define the Kac—Ward matrix on a general graph in the plane and relate
its inverse to the spin fermionic observable of Smirnov [13,27]. We also recall the exact
value of the Euclidean operator norm of the associated transition matrix computed in [26]
(Lemma 3.3). Using this we later prove in Lemma 4.4 that in the setting of Theorem 2.1
the operator norm is smaller than 1 if and only if 8 < 1. The novel contribution of this
section is that at 8 = 1 we construct an eigenvector of eigenvalue 1 of the transition
matrix, or equivalently, a null vector of the Kac—Ward matrix (Proposition 3.1). The
consequences of the existence of such a vector for biperiodic graphs and s-embeddings
are discussed in Sect. 6.

Let G = (Vg, Eg) be a graph drawn in the plane with possible edge crossings. Let
EG be the set of all directed versions of the edges in Eg, and let ¥ = (’?E)Ee e be a
vector of associated real weights. For a directed edge é = (u, v), we write t; = u for its
tail, h; = v its head, —é = (v, u) its reversal, and e = {u, v} € Eg for its undirected
equivalent.

The Kac—Ward transition matrix A (X) is a matrix indexed by E G given by

Ac(X)z 3 =

{z_gzgeié@»?) if hg = rzandg # —&; a1

0 otherwise,

where

o he —t
£(2,8) = Arg(hg g) € (—m, 7]

e e

is the turning angle from e to g. Here we identified the vertices with the corresponding
complex numbers given by the embedding. The Kac—Ward matrix is defined by

Tg(x) =1d — Ag(X),

where Id is the identity matrix indexed by E"C;.



Circle Patterns and Critical Ising Models 513

We now assume that G is finite. Let £ be the collection of even subgraphs of G, i.e.,
subsets w of E¢ such that all vertices in Vi have even degree in (the subgraph induced
by) w. Let x = (x¢)ecE; be weights on the undirected edges given by

Xe = XzX_g, (3.2)

where ¢, —e are the two directed versions of e. Consider the partition function

Zo)= Y D[], (3.3)

wekg ecw

where C(w) is the number of pairs of edges in w that cross. The seminal identity of Kac
and Ward [22] (which in the general form allowing edge crossings was established in
[15,23,31]) reads

Z6(x) = /detTg (%). (3.4)

If G has no edge crossings, then the high-temperature expansion of the Ising partition
function Z g P is equal, up to an explicit constant, to Zg(x) with x, = tanh 8J,, and
hence (3.4) establishes an intrinsic relation between the Ising model and the Kac—Ward
operator.

It turns out that one can go further and also express the inverse of T (X) in terms of
related partition functions which, in addition to an even subgraph, involve a path weighted
by a complex factor. We now define these objects which are forms of the fermionic
observable introduced by Smirnov [32]. For a directed edge ¢ € E Jetmg = (tz+h3)/2
be its midpoint. For &, g € E, é # —3g, we define a modified graph G3 3 with vertex set
Ve U {mg, mg} and edge set (Eg\{e, g}) U {{mg, hg}, {13, mg}}, and define the weights
of the undirected half-edges to be X{y, p;y = Xz and X{tg,mg) = X_z. Let (€, g) be
the collection of sets of edges w of G 3 containing {mg, fyz;;} and {tg, mg}, and such that
all vertices in Vi have even degree in w. (Note that we do not require that mz and m3
have even degree.) From standard parity arguments, it follows that each w € Eg (e, g)
contains a self-avoiding path starting at m; and ending at mz. We denote by y,, the
left-most such path, i.e., a path which at every step takes the left-most possible turn. We
also write «(y,,) for the total turning angle of y,,, i.e., the sum of turning angles between
consecutive steps of y,,.

Let Fg (%) be a matrix indexed by E¢ given by

i
. 1 —5a(Vw) P -
Fo@ag; =%+ Yocgoen € T Teewres i # € (35
0 otherwise,

where X and x are related via (3.2). For a graph G with no edge crossings, the following
identity:

Fo(X) =T;' (%) (3.6)

which gives foundations for our results was proved in [13,27], and is valid for any
weight vector x. We refer the interested reader to [11] for a recent detailed account of
the relationship of (3.6) with other combinatorial approaches to the Ising model.

The main new contribution of this section is the following construction of a nontrivial
vector in the kernel of the critical Kac—Ward matrix defined on the dual of a circle pattern.
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Proposition 3.1. Let G* be a circle pattern, and let X be weights on the directed edges
of G given by X; = ,/tan %3, é € E. Foran edge e* of G*, let |e*| be its length, and
define p; = p_; = +/|e*|, where é and —é are the two directed edges crossing e*. Then

Ac(X)p = p.

This identity will directly follow from the next lemma. Let G = (V, E), and let E
be the set of directed edges of G. We define In, = {¢ € E : h; = v} and Out, = {¢ €
E: f; = v} to be the directed edges pointing at and away from the vertex v respectively.
Let J be the involutive automorphism of C¥ induced by the map ¢ > —é, and let
AR) = JAgX). As was noted in [26], and is easily seen from the definition of the

transition matrix (3.1), A(X) is a Hermitian, block-diagonal matrix with blocks AX)Y,
v € V, acting on the linear subspace indexed by Out,,, and given by

I e -, o
xgxgezé( @8 ifr; = t; = vande # g;

A(x)* = .
0 otherwise.

Let pV be the restriction of p to the subspace indexed by Out,. Note that Jp = p, and
hence to prove Proposition 3.1, it is enough to show the following:

Lemma 3.2. Let X be as in Proposition 3.1. Then for allv € V,
AF)'p" = p".
Proof. Fix é € Out,, and let ¢, €1, ..., €, be a clockwise ordering of Out,. Then
k—1
L(=8.&)=m—0;—2) 0; —0;. fork=1.....n
Jj=1

Without loss of generality we can assume that the radius of the circle centered at v is
equal to 1, and hence pz = /2 sin 65 for all g € Out,. We have

PR
[A()C) p'le Z P x ezé( é,8)
ge0ut,\é
=2 Z \/sinegtan%gelfé(_z’g’)
ge0ut,\é
=2 Z sin 075;8'74(_(3@)
g€0uty\é
n [ i
=_iZ(e[206k e‘%eék)e (J‘[ b 22 / el\)
k=1

— _i(er™0) _ g3 =02y
b
= 2cos 5

where the second last equality follows from a telescopic sum. Hence,

[A(X)"p"]; = 2cos %ig = 2cos %,/tan %5 =/2sinf; = p?
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We finish this section with an upper bound on the operator norm of the transition
matrix which we will use in the next section to prove exponential decay of the two-point
function in the high-temperature (8 < 1) regime.

Lemma 3.3. Let (0;);_f satisfy condition (2.1), i.e, ).,
and let X be weights on the directed edges of G such that

|Xz] <4/stan %

for some s > 0 and all é € E. Then the induced operator norm of Ag(X) acting on
0*(E) satisfies

Owuy =7 forallv e V,

[AG@) < s.

Proof. Note that | A(X)|| = | Ag(¥)]. Since A (X) is block diagonal with blocks A (¥)Y,
the desired inequality is a direct consequence of condition (2.1) and Lemma 2.4 of [26]
which says that the operator norm of A (¥)" acting on the deg(v)-dimensional Euclidean
complex vector space indexed by Out, is the positive solution s of

Z arctan (%) = % 3.7

4. Proofs of Main Results

In this section we prove the main theorems. In preparation for the proofs, we bound the
Ising two-point correlation functions with free boundary conditions from both below and
above by the entries of the inverse Kac—Ward matrix (Lemma 4.1). The upper bound
together with the previous bounds on the operator norm of the transition matrix will be
used to obtain exponential decay of correlations for B < 1. We then recall a general
differential inequality due to Duminil-Copin and Tassion (Lemma 4.2) which gives a
lower bound for the magnetization in terms of a correlation function ¢ defined in (4.3).
We use the existence of the eigenvector from Proposition 3.1 together with the lower
bound from Lemma 4.1 to obtain a non-zero lower bound on ¢ at 8 = 1 (Lemma 4.3).
Finally, we can integrate the differential inequality to obtain positive magnetization for
all g > 1.

We first need to state the classical high-temperature expansion of the Ising correlation
functions. To this end, for u, v € Vg, let £ (u, v) be the collection of subsets w of Eg
such that each vertex in Vg \({u}A{v}) (resp. in {u}A{v}) has even (resp. odd) degree
in w, where A is the symmetric difference. We define the partition function

26Xy = Z er~
we€g (u,v) €€

As observed by van der Waerden [33], for x, = tanh(8J,), and all u, v € V5, we have

£ Z6Wu

(O’MCIU)G’/S— 7ot “4.1)
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Using the relationship between the fermionic observable and the inverse Kac—Ward
matrix (3.6), we can now prove two-sided bounds on the two-point correlation functions
in terms of the entries of inverse Kac—Ward matrices with possible signed weights. To
this end, given a set of signs 7 € {—1, 1}¥ on the directed edges, we define the signed
weight vector X* on E simply by X! = 7;X;.

Lemmad.1. Let 8 > 0, J, > 0 and x, = tanh(BJ.), e € E. Then for all u,v € Vg,

u # v, there exists © € {—1, 1} such that for all weight vectors X > 0 on E related to
x by (3.2), we have

_1 -
|TG (x)2§| B ST R
_max ?Smowéﬂi Z X_XgITg (X7)z 3l
eeln,,geOut, XeX_g ?

o é€ln,,ge0ut,
e+£3 u-8 v

Note that the lower bound is given by the inverse Kac—Ward matrix with no additional
signs, and the upper bound requires signed weights.

Proof. We first prove the lower bound. By (3.6), we have that 7; 1()_c’) = Fs(¥). By
the definition of £g (€, g), removing the two half-edges from w € &g (e, g) (carrying
weights Xz and X_ g) yields a configuration in £ (u, v). It is now enough to use the high
temperature expansion (4.1) and the fact that all terms in the definition of Z5(x),,,, are

positive, whereas the corresponding terms in Fg (X);, g carry a complex factor.

To obtain the upper bound, we construct an augmented graph G” by adding to G a
simple path y connecting u and v in such a way that y crosses each edge at most once
and does not pass through any vertex of G. Without loss of generality, we can assume

that y is the single edge {u, v}. We fix r € {—1, 1} satisfying

o —1 ifeis crossed byy,
77 1+1  otherwise,

and, when needed, we extend the weights to G” by setting 7; = 7_; = 1. We also
chose an orientation y = (u, v) of y.
We claim that for all X related to x° by (3.2), we have

1 0
(0uow) L Zgr (x7)|.

= — . 4.2
GP T Zg(x) 0%y F5=0,7_j=1 (4.2)

To understand this equality first note that the differentiation selects only the even sub-
graphs of GV that actually contain y. Furthermore, there is a bijection between such
subgraphs and the graphs in £ (u, v) (it is enough to remove y ). Hence, (4.2) follows
from the high-temperature expansion (4.1) and the fact that the signs of x* are chosen in
such a way that they cancel out the signs appearing in the definition (3.3) of Zgy (x7).
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Using the Kac—Ward formula (3.4) for GV and Jacobi’s formula for the derivative of
a determinant, we get that the right-hand side of (4.2) is equal to

1 ol =
——+/detTg(x)

Zg(x) 3)?)7 ¥;=0X_;=1
1 = 1,27, O -
- - detTGy(xf)Tr(TGy‘(xf)TTGy(xf)) o
ZG (X) 2 3)6)7 X;=0,x_;=1
Zg(x™) 1 e 0 -
— G(-x )_Tr<T5y1(x‘[)TTGy(x‘[)> B _
Zg(x) 2 0xy ¥=0%_;=1
Zg(x") LG+ LG TN~ =] =
ZM Z 62( (y.e)+ (g,y))x_é,ngGl(xr)ag

ecOut,,geln,

- - —1,-
< Z X_Xg|Tg (X7)z zl.
ecOut,,geln,

The second equality follows from the Kac—Ward formula again and the fact that
x, = XyX_; = 0. The third equality follows from the definition of 7 (x*), and the
last inequality holds true since Zgr (x7) counts even subgraphs with additional signs,
whereas all terms in Zg (x) are positive. O

The second crucial ingredient in the proof of our Theorem 2.1 will be a differential
inequality for the magnetization of general Ising models due to Duminil-Copin and
Tassion. To state it, we need to introduce some notation. To this end, let S C V be
such that the subgraph of G induced by S is connected. We will denote by (-)E p the
expectation with respect to the Ising model on this induced subgraph. For v € V, we
define

s.p@) =Y > tanh (BJuu) (0u0u) ] 4- 4.3)

ueS wes

The next lemma is contained in an unpublished version [17] of [18], and we give its
proof for completeness in “Appendix”.

Lemma 4.2. For any finite subgraph G = (Vg, Eg), any v € Vg, and 8 > 0,

d 1 . 2
ﬁ(o’v)-&,ﬂ z 5 inf ess)(1 = ()5 p)7)-
SCVg

We will next use Lemma 4.1 together with the existence of the eigenvector from
Proposition 3.1 to get a uniform lower bound on ¢g g(v). This may be considered as
the main technical novelty of the present article, and its consequences for the existence
of positive magnetization at low temperatures for other families of planar graph are
discussed in Sect. 6.

Before stating the result, we need to introduce additional notation. Let G = (Vg, Eg)
be a finite subgraph of G induced by the vertex set V. Consider the edges of G whose
one endpoint is in Vi and the other one in V\ V. Each such edge splits into two half-
edges, one of which is incident to V. We add the incident half-edges to the edge set
Eg, and we assign them the weights of the corresponding full edges in G. We also add
their endpoints (which are the midpoints of the corresponding edges of G) to the vertex
set Vi and we call the resulting graph G = (Vz, Ez). Note that by construction, all
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vertices in Vg are interior in G meaning that they have the same degree in G asin G. Let
7(9G) be the set of the directed versions of the half-edges in Eg which point outside G.

Lemma 4.3. Let G* be a circle pattern satisfying the bounded angle property (2.2), and
such that the radii of all circles are uniformly bounded from above by R < co. Then for
every v € V and every finite S C V containing v,

<p51(v)z,/itan%,
’ R

where r is the maximal radius of a circle centered at a neihbor of v, and ¢ is as in (2.2).

Proof. For d(v, V\S) = 1, the bound easily follows from the definition of ¢g 1(v) and
the bounded angle property. We can therefore assume that d(v, V\S) > 1.

Let G be the subgraph of G induced by the vertices in S. Let Xz = ,/ tan ¢ and let p

be the eigenvector of Ag () as defined in Proposition 3.1 restricted to the dlrected edges
of G (here the half-edges are identified with their counterparts in G). Let ¢ = T (X)p,
and note that, by the definition of the Kac—Ward matrix, {; = p; for all ¢ € 71(9G), and

s = 0 otherwise. Therefore, by Lemma 4.1 and the bounded angle property, for any
e = (u,v) € Iny,,

\/2ru sine < \/2ru sin 6
= pz
75" (el
> T ®ages
§€i(dG)

< +/2Rcose Z fgffg(UuUquc,l

g=(w,2)€i(dG)

<«/2Rcose Z f—§<0v0w>£;,1

g=(w,z)en(dG)

cos ¢

< |2R @s,1(v),

né
n3

where r, is the radius of the circle centered at «, and where in the last inequality we used
that tanh J, = X, = X3X_3 >  /tan § x g by the bounded angle property. We finish the
proof by maximizing over the nelghbors uofv. O

The last technical statement that we need is an easy consequence of Lemma 3.3 that
will be used to derive exponential decay of correlations for § < 1.

Lemma 4.4. Let G* be a circle pattern satisfying the bounded angle property (2.2), and
let B > 0. Fore € E, let x,(B) = tanh(BJ,) where J, are the coupling constants defined

in(2.3). Fore € E, let
%5(B) =/ 2B tan %,
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where e is the undirected version of ¢. Then there exists a constant ¢ > 0 such that for
allt € {(£1}F and g € [0, 1],

[AcGET(BNI <1 —c(1=p),
where, as before, X} = t;X;.

Proof. By the bounded angle property, M := sup,.g Jo < oo. Define s(B, J.) =

e h BJ,
% = ‘i‘:nhﬁje .For B € [0, 1], we have

Je 2J, oM
—S(ﬂ, Jo) = > — > — :
ap tanh J, cosh® BJ, ~ sinh2J, ~ sinh2M

:C7

and since s(1, J,) = 1, we get s(8, Jo) < 1 —c(1 — B). The desired inequality follows
directly from Lemma 3.3. O

Equipped with the results discussed above, we can now prove our theorems.

Proof of Theorem 2.1. We first prove part (i). Let D be the maximal degree of G, and
let X(B8) and x(B) be as in Lemma 4.4. Note that X(B) and x (8) are related via (3.2). Let
G be a finite subgraph of G, and denote T = T (X7 (B)) and A = Ag (X" (B)). We use
the upper bound from Lemma 4.1 and Lemma 4.4 to get for u # v,

(0—qu>{;’)3 = Z _*)Cg|T~_a1

e€ln,,g€Out,
<D* max |T5.|
e€ln,,geOut, 8
= max | Z[Ak]
eeIn,, g€O0ut,

o0

= Dza Imgtxo | Z [Ak]g,g
eeln,,geOuty, ke=d (u.v)—1
) ”A”d(u,v)—l
- L —IA]l

5 IAG(XT(B))[|dw-0)=1
- 1= [[AcGET(B))I

2
< D ed(u,v)—l’
1—¢€

where € = 1 —c(1 — B) < 1 with c as in Lemma 4.4. The second equality follows from
the fact that A assigns non-zero transition weights only between adjacent edges and
therefore one needs at least k = d(u, v) — 1 steps for [Ak ]z, to be non-zero. The second
last inequality holds true since A is a restriction of Ag(x?(8)) to the set of directed
edges of G, and hence ||A|| < |[Ag(X¥(B))|. The final bound is independent of G, and

therefore we complete the proof of part (i) by taking the limit of (ouav)g’ g as G /G.
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To prove part (ii), denote g(B) = (ov)g’ 8 We use Lemma 4.2 together with
Lemma 4.3, and the monotonicity of g g(v) in B, to get forall 8 > 1,

d
gl e < — 5 inf o551 = g(A)?)
< —ginf g5 1 (0)(1 = ()
ty 2
<51 -8B
<50 2.

where t, = /% tan § is as in Lemma 4.3. Using Gronwall’s lemma we integrate the

resulting differential inequality from By = 1to Btoget 1 — g(B) < (1 — g(1)B™" <
B~ since g(1) > 0. This finishes the proof of part (ii) O

Proof of Theorem 2.2. The inequality xg, g(v) < oo for B < 1 follows from the expo-
nential decay of correlations from Theorem 2.1 (i), and the quadratic growth of balls in
the graph distance (due to the fact that the circles have a minimal diameter).

The fact that xg,g(v) = oo for B > 1 follows directly from Lemma 4.3 and the
second Griffiths inequality which implies that ¢g g(v) is non-decreasing in 8. O

5. Discrete Holomorphicity of Fermionic Observables

In this section we discuss discrete holomorphicity of the critical fermionic observable
given by the inverse Kac—Ward operator. We note that, even though the observable in the
general setting of circle patterns satisfies less local constraints than its isoradial version,
and hence the tools of [12] are not fully applicable, our results point in the direction of
conformal invariance of the scaling limit.

We first give a short overview of the properties of the critical isoradial fermionic
observable which were crucial in establishing its scaling limit in [12]. The spin fermionic
observable f studied in [12] is related to the complex-valued partition functions F
from (3.5), and is defined on the midpoints of the edges of a finite subgraph G of an
isoradial graph G. At criticality, it satisfies a strong form of discrete holomorphicity
called s-holomorphicity, which implies that

(1) the discrete contour integrals of f are well defined both on G and G*,

(2) the real part (or the imaginary part, depending on the precise definitions) of the
discrete contour integral of £2, denoted by £, is well defined both on G and G*,

(3) moreover & is sub- and super-harmonic on G and G* respectively with respect to the
critical Laplacian,

(4) f is the unique solution to a certain discrete boundary value problem on G.

We note that these properties are only the starting point for the arguments in [12], and
the full analysis of f in the scaling limit requires many additional technical estimates
on the relevant observables.

In this section we will prove that in the case of circle patterns, the corresponding
critical fermionic observable satisfies property

e (1) but only on G* (Lemma 5.3),
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e (2) also only on G* (the equality from Lemma 5.4),

e (3) on G in a weak sense. To be more precise, the inequality of Lemma 5.4 is exactly
the same inequality that guarantees that the function / is subharmonic on G in the
isoradial case. However, for circle patterns, the function % is not well defined on G
as an exact discrete contour integral (for a generalized definition, see [10]),

e (4) in the same sense as for isoradial graphs (Corollary 5.2).

This incomplete picture, compared to the isoradial case, suggests that new ideas are
required to carry out the program of [12] in the setting of circle pattterns.

To state our results, we first need to recall the notion of s-holomorhicity introduced
by Smirnov [32] for the square lattice, and generalized by Chelkak and Smirnov [12] to
the setting of isoradial graphs. We assume that G is a finite subgraph of G such that G*
is a circle pattern. Let Proj(z; £) be the orthogonal projection of the complex number z
onto the complex line ¢. We say that a function f : Eg — C is s-holomorphic at an
interior vertex v € V if for every dual vertex v* adjacent to v,

Proj(f (e1); (v — v¥) "2R) = Proj(f(e2): (v — v) 2 R), (5.1

where e, ey are the two edges incident on both v and v*, and where, as before, the
vertices are identified with the complex numbers given by the embedding.

Our first result will relate the notion of s-holomorphicity to the Kac—Ward matrix.
To this end, let

_1
e =hs—1z, and G =n; IR.

We define L to be the real linear space of functions ¢ : E—C satisfying ¢; € £; for all
¢. One can easily check that £ is invariant under the action of the Kac—Ward operator.
Let S be the operator mapping complex functions on E to functions in £ given by

Sf(e) = pzProj(f(e); £z),

where p; = +/|e*| is as before. Note that £z and £_; are orthogonal, and hence we have
forp € L,

S p(e) = p3 ' (9@) + 0(—2)).

Let X; = ,/tan % be the critical weights. The following result in the setting of isoradial
graphs was first proved in [27].

Proposition 5.1 (s-holomorphicity and the Kac—Ward matrix). A function f is s-
holomorphic at an interior vertex v of G if and only if

Tg(X)Sf(e) =0 foralle € In,.

Proof. Notethat pgy ) = /2ry sin 0y ), Where ry, is the radius of the circle centered at v.
This implies that the row of 7 (X)S indexed by € € In,, is equal to the corresponding row
of the matrix 7' S from [27] scaled by 2 rv)'c'g_l , and hence the result directly follows from
Theorem 2.1 of [27]. (Note that the matrix T from [27] is our matrix T (X¥) conjugated
by Diag{¥; : ¢ € E}). O
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This in particular implies that s-holomorphic functions can be uniquely recovered
from their boundary values. Let G and G be as defined before Lemma 4.3, and letp € £
be a function defined on the directed edges of G and satisfying

p@) el; forée en(dG), and ¢(€) =0 otherwise.

Following Smirnov [32], we say that f : Ez — C solves the discrete Riemann—Hilbert
boundary value problem for the pair (G, ¢) if f is s-holomorphic at all v € V5 and

Sf(e) =¢(e) foralle € n(G).

Corollary 5.2 (Boundary value problem). Let G and ¢ be as above and let T (X) be
the critical Kac—Ward operator defined on G, where the half-edges of G inherit weights
from the corresponding edges of G. Then the discrete Riemann—Hilbert boundary value
problem for (G, ¢) has a unique solution

=1,
f=5"T:' G

Proof. Suppose that f is a solution to the discrete Riemann—Hilbert boundary value
problem. Note that G is not formally a subgraph of G since it contains half-edges.
However, these half-edges are parallel to the corresponding edges of G, and therefore
we can use Theorem 5.1 to conclude that T (X)Sf(¢) = 0 for all € ¢ n(G). Moreover
if e € 1(G), then h(€) # t(g) for all g # —e. Hence by the definition of the Kac—Ward
operator, T (X)Sf (¢) = IdSf (¢) = ¢(e) for e € 1(G). This means that T (X)Sf (¢) =
@ (&) for all directed edges ¢, and the claim follows. O

Finally, we wish to prove that certain discrete contour integrals related to s-
holomorphic functions are well defined. To this end, we first list several basic results.

Fix f : E — C, and let ¢ = Sf € £, which means that f(e) = pgl(go(f?) + p(—e)).
Define D; = n;/|nz|. An elementary computation yields

Re(nz: f2(e)) = 2Dz ¢ (@)p(—e), (5.2)
Im(nz f2(e)) = lp@)|* — lp(—&) . (5.3)

Fix a vertex v € V, and let ¢, = ((p(—é'))560utv and @out = ((p(E))geOu[v. If fis
s-holomorphic, then by Theorem 5.1, T (X)@(é) = 0 for all € € In,. Equivalently,

[\wout = ¢in, (5.4)

where A = A(X)? is the block matrix from Sect. 3 acting on the linear subspace indexed
by Out,,. Let D = Diag{D; e c Outv}, and let Z(¢) = Arg(D;) € (—m, w]. We claim
that DA is skew-symmetric. Indeed, for ¢, g € Out,, ¢ # g, we have

[DA: _ ic@-2Gry £29-32-5.2) _ i(L@-LG+2(-2.8) _ y*in _
[DAlzz

For a directed edge ¢ of G, let * be the directed edge of G* crossing € and such
that Z(¢, e*) > 0. Recall that n; = h; — t;. The next lemma says that the discrete
contour integral of an s-holomorphic function is well defined on G*, verifying “half” of
property (1).



Circle Patterns and Critical Ising Models 523

Lemma 5.3 (Vanishing of integrals over closed contours). If f is s-holomorphic at an
interior vertex v, then

> nefle)=0.

éeOut,

Proof. Let f = (f(e))zcou,  Recall that p = (/|e*])zcout, 15 an eigenvector of A of
eigenvalue 1, and let p? = (le*Dzeout, - The desired equality can be now rewritten as

i(,oz)TDf = 0. Since DA is skew symmetric, we have DA = —AT D. Hence, by (5.4)
we get

(0" Df = p" D(@out + ¢in)
= p" Dgout + p* D Agout
= p" Dgout — p" AT Dgou
= p" Dgou — (Ap)" Dgpou
=0,
which completes the proof. O

We finish with a result saying that if f is s-holomorphic, then the real part of the
discrete contour integral of £ is well defined on G*, and moreover, the imaginary part
of the integral of f2 over any closed counterclockwise contour on G* is nonnegative.
This is the counterpart in the setting of circle patterns of the fundamental properties (2)
and (3) discovered by Smirnov [32] and Chelkak and Smirnov [12].

Lemma 5.4. If f is s-holomorphic at an interior vertex v, then

Re( 3 ng*f2(6)> —0, and Im< 3 ng*fz(e)) > 0.

ecOut, éeOut,

Proof. By (5.2) and (5.4), we have

Re( D nee £2(0)) = 2i9% Dpin = 20l DAout =0,

e¢eOut,

where in the last equality we used that DA is skew-symmetric.
Moreover, by (5.3), (5.4) and the fact that the operator norm of A is bounded by 1
(3.7), we get

m (Y ne £2©) = Igoul® = il = lgoutl> = 1 Agoul® = 0,

ecOut,
which completes the proof. O

Remark 1. Note that the last two lemmas follow directly from the corresponding results
of Chelkak and Smirnov for isoradial graphs [12]. Indeed, both the definition of s-
holomorphicity (5.1) and the desired relations depend only on the geometry of the graph
G* in the immediate neighborhood of v, which is indistinguishable from the one of an
isoradial graph. However, we included the concise proofs that use the Kac—Ward matrix
as they shed a different light on these relations.
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6. Applications to Other Graphs

In this section we briefly discuss the consequences of a non-trivial kernel of the Kac—
Ward matrix for the question of criticality of the Ising model defined on other types of
planar graphs.

Biperiodic graphs. Cimasoni and Duminil-Copin [14] (see also [25]) computed the
critical temperature of the the Ising model on an arbitrary biperiodic graph, i.e., a graph
which is invariant under the action of a Z?-isomorphic group of translations of the plane.
The proof uses the Kac—Ward matrix, and the critical point is identified with the only
inverse-temperature 8. at which there exists a non-trivial periodic vector in the kernel
of this matrix. Moreover it was shown that at 8. the Kac—Ward matrix associated with
the dual Ising model also has a non-trivial kernel.

Using this one can alternatively obtain criticality of 8. without going through the
analysis of differentiability of the free energy, as it is done in [14]. Indeed, the existence
at B, of the null vectors of the primal and dual Kac—Ward matrix implies a direct analog of
Lemma 4.3 which gives a non-zero lower bound on the quantity ¢ from (4.3) for both the
primal and dual model. Hence, together with the differential inequality from Lemma 4.2,
exactly as in the proof of part (ii) of Theorem 2.1, we get that the magnetization in
the primal Ising model is positive for B > f., and in the dual model it is positive
for § < B.. To get a complete picture, one needs to show that the magnetization is
never simultaneously positive in both the primal and dual model. This is e.g. proved in
Theorem 4.4 of [ 14], which also gives exponential decay of the two-point spin correlation
functions under the assumption that the magnetization vanishes.

S-embeddings. In [10], Chelkak introduced a family of Ising models defined on s-
embeddings, which are more general that the critical models on circle patterns. S-
embeddings are planar graphs (or more precisely pairs of primal and dual graphs) defined
by the property that each quad whose diagonals are given by a pair of a primal and dual
edge is tangential. This is clearly satisfied for circle patterns since all such quads are in
this case kites. A natural question is if the Ising model of Chelkak is critical in the sense
of spin correlations and magnetization. The answer in the biperiodic case is affirmative
and is given by the main result of [14], and the case of circle patterns with uniformly
bounded angles and faces is covered in the present article.

In the general setting a partial answer, though strongly supporting criticality, can be
provided using the same idea as above, i.e. by constructing a null-vector both for the
primal and dual Kac—Ward matrix.

Remark 2. The fact that the Kac—Ward matrix on s-embeddings with weights as in [10]
has a non-trivial kernel was first observed by Dmitry Chelkak and the author is grateful
to him for sharing his insight.

We now give the details of the construction, following the setup of [10]. Let G and
G* form an s-embedding. A corner ¢ = {u, v} of G is a pair composed of a vertex v
and a face u incident on v. We define Y to be the 4-regular graph whose vertex set is
the set of all corners of G, and where two corners {1, v}, {2, v2} are adjacent if either
u1 = uy and {vq, vy} is a primal edge, or vi = v and {uy, uz} is a dual edge (see e.g.
Fig. 26 in [28]). We denote by T * the double cover of Y that branches around each of
its faces (see Fig. 27 in [28]).
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A spinor is a function defined on the vertices of Y whose values at two corners
corresponding to one corner in Y differ by the sign. Chelkak defined a spinor F(c) :=
(v — u)Y/% (Remark 6.2 of [10]), where ¢ is one of the two versions of the corner {u, v},
and where the face u is identified with the complex number given by the embedding of
G*. Tt turns out that F satisfies the three-term spinor relation (equation (2.13) of [10]).
To state it, consider a face of T corresponding to an edge e of G, and let ¢y, ¢, ¢3 be
any three consecutive corners in Y as one goes around the face counterclockwise. Let
X, = tan % be the weight associated to e in the Ising model. The three-term relation
reads

Flex) = peF(c1) +4/1 = pF(c3), (6.1)

where p, = sin 6 if the corner ¢ = {u, v} corresponds to the directed edge (v, u) in the
tangential quad assigned to e when going counterclockwise around e, and p, = cos 8 if
it corresponds to (u, v).

The crucial observation now is that the kernels of the three-term relation and the
Kac—Ward matrix are related to each other as was shown in [11]. To be more precise,
note that | F(c)| = |v — u|'/? is a well defined function on the corners in Y that satisfies
the three term relation (6.1) with coefficients multiplied by 7n(c) := F(c)/|F (c)|. This
means that | F| is in the kernel of the (infinite) matrix D defined before Lemma 3.4 in
[11]. We easily obtain from this lemma that 2D = C[I — %(Y +il)D], where I is
the identity, Y is the involutive automorphism induced by é — —eé, and where C is
an explicit conjugate of the (infinite) Kac—Ward matrix defined after equation (3.1) in
[11]. Hence, |F| is the kernel of C, and therefore p := B*|F]| is in the kernel of the
Kac—Ward matrix as defined in [11], where B is the (infinite) block-diagonal matrix
defined in equation (3.1) of [11]. By the same construction applied to G* we also obtain
a null-vector p* of the dual Kac—Ward matrix.

Remark 3. The Kac—Ward matrix in [11] is the same as ours, up to conjugation by
a diagonal matrix with diagonal terms given by (%)1/ 2. We note that can use the

construction above to obtain in an alternative way the null-vector for circle-patterns
from Proposition 3.1.

It is easily seen from the definitions of B and |F| that if the half-angles of the
tangential quads associated to G and G* satisfy condition (2.1), and moreover the sizes
of the quads are uniformly bounded from above, then || p|loc < 00 and || p*|lco < 0. By
the same arguments as in the biperiodic case, this means that for 8 > 1, there is positive
magnetization in the primal Ising model of Chelkak, and for § < 1 there is positive
magnetization in the associated dual model. This is a strong indication that the model at
B = 1is indeed critical.

However, it is not clear how to show that the magnetization cannot be simultaneously
positive in both the primal and dual Ising model in a general non-periodic s-embedding.
Indeed, the arguments of Theorem 4.4 of [14] and the operator norm estimates from
the present article do not apply in this more general setting. We leave this as an open
problem.
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Appendix

The following proof of Lemma 4.2 is due to Duminil-Copin and Tassion, and (up to
small modifications) is contained in an unpublished version of [18] (proof of Lemma
2.4 1n [17]). We include it here for completeness. The graphs considered in this section
are not assumed to be planar.

Let G = (Vi, Eg) be a finite graph, and let dVg C Vi be a fixed set of vertices
called the boundary. We consider an augmented graph G, = (V,, E,) where a ghost (or
a boundary) vertex e is added to the vertex set, and edges of the form {e, v}, v € 9V,
are added to the edge set.

We will consider Ising models on subgraphs of G, as defined in Sect. 2 with arbitrary
positive coupling constants (J,).cE, (to recover the exact setting of Sect. 2, one needs to
set Jyo = Vo Jiu,vy for v € 3Vg). One can easily check that the following relation
between bounf ary conditions holds true for any v € Vg,

()5 = (00005, 4

For S C V,, we will write <'>§, 8 for the expectation of the Ising model with free boundary
conditions defined on the subgraph of G, induced by S.

The notion of a current will play a crucial role in the proof. A current is a function
n: E, — N, whose weight is given by

w(n) = 1_[ —(ﬂJe)ne.

!
ecE. (n,)!

A vertex v is called a source of a currentmnif ), ny, ) is odd. We denote by 9n the set
of all sources of n. The classical random current representation of correlation functions
due to Griffiths, Hurst and Sherman [20] yields forany A C S C V,,

Zan A w(m)
1_[ Ov), S B w(n)
veA In=f
where both sums are over currents that are zero outside the subgraph induced by S. For
u,v € Vo and a current n, we will write u & v if u is connected to v via a path of

n

edges in E, with nonzero values of n, and u # v if it is not connected. The last tool
that we will need is the celebrated switching lemma introduced in [20] and developed
by Aizenman in [2]. It says thatif A U {u, v} C § C V,, then

Y wmpwm) = > wmpwm)lu <> vl,
any=AA{u,v} anj=A
omy={u,v} onp=y

where n = nj + ny, A is the symmetric difference, and where again the sums are taken
over currents ny, ny that are zero outside the subgraph induced by S.
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Proof of Lemma 4.2. Fix a vertex 0 € V. From the definition of the Ising model, we
have

d d
506 = 350G = DT (000w0G, s = (00005, ()G, ).
{u,vieE,

Let Zg, g = D yn—y (M) be the partition function of currents on G, with no sources.

Using the random current representation of correlation functions and the switching
lemma for S = V,, we obtain

(UOUoUu‘Tv)é.,lg - <UOUO>£.’/3<OMO'U)£.’ﬁ

1 n
= 2 wm)wm)1[0 £ o],
Ge.B 9n1={0,0}A{u,v}
o=y

n
where n = nj + ny. Note that if n; = {0, ¢}A{u, v}, dnp = ¥ and O #> e, then either

n n n n . .
0< uandv < e,0r 0 <> vand u < e. Since the second case is the same as the first
one with u and v exchanged, we get

d 1
(00)6.6 = 53— D Tuwidun: (A.1)

d'B Ge.B ucv, veV,
where
n
Suw = D wmDwm)l[0 S u, v S 0.0 4 el
on;={0,e}A{u,v}
onp =0

For z € {0, o}, define S, to be the set of vertices in V, that are not connected to z in n.
Let us compute §,,, by summing over all possible Sp:

> S wm)wm) S =508 1,0 L 604 o

SCV. an1=(0,0)Alu,v)
ony =0

> Y wm)wm)l[Sy =S, v <> e].
SCVe  on;={0,e}A{u,v}

s.t. v,e€S o=y
and O,u¢S

8u,v

Note that when Sop = S, n; and ny vanish on every {x, y} withx € S and y ¢ S. Thus,
fori = 1,2, we can decompose n; as n; = nf + nl.v '\S, where nlA denotes the current
with zero values outside the subgraph induced by A, and with sources an;‘ = ANon;.
Together with the last equality and the random current representation of correlation

functions, this gives

Sw= Y. > wmpwm)loo.)] 41[S = SI.

ScV,  on={0}A{u}
s.t.v,e€S onp=0
and O,u¢S
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: f
Since 1 > (0v0e) g We get

81,{,1)

v

> Y wmpwm) oy ) 11So = S

ScV,  on={0}A{u}
s.t. v,e€S ony=(

and O,u¢S
= Y Yo wm)wm)1[Sy = S]
SCVe  an ={0}A{u}A{v.e}
s.t.v,eeS onp={v,e}
and O,u¢S

= Y Y wmpwm1S) = S.v S e

ScV,  on={0}A{u}
s.t.v,e€S onp=0
and O,u¢S

= Z wmp)wmy)1[v S e, 0 ;Z> o],

on;={0}Af{u}
=0

where in the second line we used the random current representation of correlation func-
tions, and in the third line again the switching lemma. We now sum over all possible
S,:

n
Suv= . Y wm)wm)IS. =5, v <> 0,0 £ e
SCVg on;={0}A{u}
onpy=0

= > Y. wmDwm)S, =S|

ScVe on;={0}A{u}
s.t. 0,ues =0
and veV,\S

= > > wmpwm) (oo 41S. = S1.

ScVg on| =0
s.t. O,ueS ony=y
and veV,\S

The third line follows from the fact that since S = S, n; and n; can be decomposed as
n, = nf + niv.\s as before.

Combining the inequality above with (A.1), we get

d 1 ‘
aBVGs 2 5 ST DT wmwm) (o0 g11S. = S

Ge.B SCVG ueS veV,\S on; =0

S§30 ony=0
1 1
=5 2 0spO_r— 3 wmDwm)IS, = ]
ﬁ Scv Ge.B 9n =0
$30 ony =0
1 1 n
> —inf ¢g 5(0) wmp)wmy) (1 — 1[0 < o]
B 50" 5P Zé.’ﬁ aéw ( )

onp=0
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B 530 P *Ge.p

1. +
= 5 int g5, 01— (00)50),

where in the second inequality we used that 8Jy, ,; > tanh(8Jy v}), and in the first
equality we used the random current representation of correlations and the switching
lemma for the last time. O
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