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Abstract: We define (p, q) Hermitian geometry as the target space geometry of the
two dimensional (p, q) supersymmetric sigma model. This includes generalised Kähler
geometry for (2, 2), generalised hyperkähler geometry for (4, 2), strong Kähler with
torsion geometry for (2, 1) and strong hyperkähler with torsion geometry for (4, 1).
We provide a generalised complex geometry formulation of hermitian geometry, gen-
eralising Gualtieri’s formulation of the (2, 2) case. Our formulation involves a chiral
version of generalised complex structure and we provide explicit formulae for the map
to generalised geometry.
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1. Introduction

Complex geometries with torsion arise in the study of supersymmetric sigma models
and in generalised complex geometry. The bihermitean geometry that arises in two-
dimensional supersymmetric sigma models [1] was formulated in the framework of
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generalised complex geometry [2] as generalised Kähler geometry by Gualtieri [3],
with the relation between the sigma model geometry and generalised complex geometry
given by the Gualtieri map.

The supersymmetry algebras in two dimensions are labelled by two integers p, q.
Requiring a non-linear sigma model to be invariant under (p, q) supersymmetry places
strong restrictions on the target space geometry, with various geometries arising for
different values of p, q [8]. We will refer to the target space geometry of the (p, q) su-
persymmetric sigma model as (p, q) hermitian geometry; this will be defined in Sect. 2.
The models of [1] giving rise to generalised Kähler geometry have (2, 2) supersymme-
try while (2, 1) supersymmetry gives an interesting geometry [4,5] that is sometimes
referred to as Strong Kähler with Torsion (SKT). SKT geometry was discussed within
the formalism of generalised complex geometry in [6,7]. Our purpose here is to find the
generalised complex geometry formulation of the all (p, q) hermitian geometries. This
will require the definition of a chiral form of generalised complex structure that we will
refer to as a half generalised complex structure. We also aim to give a presentation that
is closely related to the sigma model geometry, making the map to generalised complex
geometry manifest.

2. ( p, q) Hermitian Geometry

The (p, q) supersymmetry algebra in two dimensions has p right-handed supercharges
and q left-handed ones [4]. The general supersymmetric sigmamodels with (1, 1), (2, 2)
and (4, 4) supersymmetry were constructed in [1], the ones with (1, 0) and (2, 0) super-
symmetry were constructed in [4], the one with (2,1) supersymmetry was constructed
in [5], while the remaining cases were given in [8]. The (1, 1) supersymmetric sigma
model has a target space (M, g, H) which is a manifold M with a metric g and a
closed 3-form H . This can be given locally in terms of a 2-form potential b, H = db.
Conversely, given such a geometry one may construct a (1, 1) supersymmetric sigma
model with that target space. The (1, 1) model will in fact have (p, q) supersymmetry
with p, q = 1, 2 or 4 if it has a special geometry that we will call a (p, q) hermitian
geometry, which has p− 1 complex structures Ja+ (a = 1, . . . p− 1) and q − 1 complex
structures Ja

′
− (a′ = 1, . . . q − 1). The space (M, g, H, Ja+ , Ja

′
− ) is a (p, q) hermitian

geometry if

1. Ja+ (a = 1, . . . p − 1) and Ja
′

− (a′ = 1, . . . q − 1) are complex structures on M.
2. The metric g is hermitian with respect to all complex structures

g(J X, JY ) = g(X,Y ), ∀J ∈ {Ja+ , Ja
′

− }.
3. The J± are covariantly constant

∇(±) J(±) = 0, ∀J+ ∈ {Ja+ } and ∀J− ∈ {Ja′
− }

with respect to the connections

∇(±) := (∇(0) ± 1
2g

−1H) (2.1)

with torsion ± 1
2g

il Hl jk . Here ∇(0) is the Levi-Civita connection and the (3, 0) part

of H vanishes with respect to each complex structure J ∈ {Ja+ , Ja
′

− }, so that
H = H (2,1) + H (1,2) (2.2)

with respect to each J .
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4. If p = 4 then J 1+ , J 2+ , J 3+ satisfy a quaternion algebra and if q = 4 then J 1−, J 2−, J 3−
satisfy a quaternion algebra.

For each complex structure J ∈ (Ja+ , Ja
′

− ), there is a differential operator dc =
i(∂ − ∂̄) and the corresponding 2-formω = gJ which satisfies ddcω = 0. The condition
(3) can be replaced with the following condition:

• For each J+ ∈ (Ja+ ), dcω = H while for each J− ∈ (Ja
′

− ), dcω = −H .

The (2, 2) geometries were called generalised Kähler geometries in [3] while the
(4, 2) gives geometries that were called generalised hyperkähler geometries in [9]. The
name strong Kähler with torsion (SKT) was proposed for (2, 1) (or (1, 2)) geometry and
strong hyperkähler with torsion was proposed for (4, 1) (or (1, 4)) geometry in [10].
If H = 0, then p = q and the (2, 2) case gives Kähler geometry in which case ω is
the Kähler form, while the (4, 4) case gives hyperkähler geometries. If p > 4 then the
holonomy of ∇(+) is trivial while if q > 4 then the holonomy of ∇(−) is trivial; we will
restrict ourselves to the cases p ≤ 4, q ≤ 4 here.

There is a rich interplay between (p, q) hermitian geometry and the superspace for-
mulation of the (p, q) supersymmetric sigma model. For the (2, 2) case, if the two
complex structures J+, J− commute, then the corresponding sigma model is formulated
in terms of chiral and twisted chiral superfields [1]. On the other hand, if the commutator
[J+, J−] has trivial kernel, then the sigma model is formulated in terms of semichiral
superfields [11]. It was shown in [12] that the general (2, 2) sigma model can be for-
mulated in terms of chiral, twisted chiral and semichiral superfields, giving a complete
characterisation of generalised Kähler geometry (away from irregular points) with the
geometry given locally by a scalar potential. This will be discussed further in Sect. 10.

3. Generalised Geometry

For a d-dimensional manifoldM, the generalised tangent space is the sum of the tangent
bundle T and the cotangent bundle T ∗

T := T ⊕ T ∗. (3.1)

This has a natural O(d, d) invariant metric η defined by

η(X + ξ,Y + σ) = ξ(Y ) + σ(X) (3.2)

where X,Y are vectorfields and and ξ, σ are one-formfields.There is a natural projection

ρ : T → T, (3.3)

with ρ(X + ξ) = X .
If g is a metric onM, then this gives a metric g−1 on T ∗ and a metricH on T with

H(X + ξ,Y + σ) = g(X,Y ) + g−1(ξ, σ ). (3.4)

There is also a natural map

G : T → T, (3.5)

with

G2 = 1, (3.6)
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defined in terms of the lowering and raising maps g : T ∗ → T and g−1 : T → T ∗ by

G(X + ξ) = gξ + g−1X. (3.7)

A 2-form B on M defines the B-transformation which is a map

eB : X + ξ 
→ X + ξ + iX B (3.8)

that preserves the metric η.
The Courant bracket is defined on smooth sections of T ⊕ T ∗, and is given by

�X + ξ,Y + σ �0 = [X,Y ] + LXσ − LY ξ − 1

2
d(iXσ − iY ξ), (3.9)

where X + ξ,Y + σ ∈ C∞(T ⊕ T ∗) and LX is the Lie derivative with respect to X .
Given a 3-form H , the H -twisted Courant bracket �, �H is

�X + ξ,Y + σ �H = �X + ξ,Y + σ �0 + iY iX H. (3.10)

If b is a 2-form then

�eb(W ), eb(Z)�H = eb�W, Z�H+db ∀ W, Z ∈ C∞(T ⊕ T ∗), (3.11)

so that eb is a symmetry of �, �H if and only if db = 0.
The map G has eigenvalues ±1 and the +1 and −1 eigenspaces both have dimension

d. It then defines a splitting

T = T+ ⊕ T−, (3.12)

of T into the ±1 eigenspaces

T± := P±T (3.13)

defined by the projection operators

P± := 1
2 (1 ± G) . (3.14)

The spaces

T± = {X + ξ ∈ C∞(T ⊕ T ∗) : ξ = ±gX} (3.15)

have natural identifications with the tangent bundle

ρ± : T± → T (3.16)

given by

ρ±(X ± gX) = X . (3.17)

Using the natural matrix notation in which X + ξ is written

X =
(
X
ξ

)
(3.18)

the metrics are represented by the matrices

η =
(
0 1
1 0

)
H =

(
g 0
0 g−1

)
. (3.19)
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The map G acts through the matrix

G =
(
0 g−1

g 0

)
(3.20)

satisfying

G = η−1H; G2 = 1 (3.21)

while the B-map is represented by

exp(B) =
(
1 0
B 1

)
. (3.22)

The projection ρ is

ρ =
(
1 0
0 0

)
. (3.23)

Given a closed 3-form H , in each patch there is a 2-form b such that H = db. If H
represents an integral cohomology class, b is a gerbe connection. Then a B-map using
b takes a section W of T ⊕ T ∗ to a local section

X̃ = ebX =
(

X
ξ + bX

)
(3.24)

of a Courant algebroid E with the short exact sequence

0 → T ∗ → E → T → 0 (3.25)

and anchor map ρ̃ : E → T . See [2,3,6,7,9] for further discussion. The H -twisted
Courant bracket on T ⊕ T ∗ is mapped to the untwisted Courant bracket on E :

�X̃, Ỹ� = �eb(X), eb(Y)� = eb�X,Y�H . (3.26)

The map then gives η̃, H̃, G̃ on E given by η̃ = η and

G̃ = ebGe−b, H̃ = ebHe−b (3.27)

so that

G̃ =
(−g−1b g−1

g − bg−1b bg−1

)
=

(
1
b 1

) (
g−1

g

) (
1
−b 1

)
(3.28)

and

H̃ =
(
g − bg−1b bg−1

−g−1b g−1

)
= ηG̃. (3.29)

H̃ is often referred to as the generalised metric.
The map G̃ has eigenvalues ±1 and defines a splitting

E = E+ ⊕ E− (3.30)

of E into the ±1 eigenspaces defined by the projection operators

P̃± := 1
2

(
1 ± G̃

)
. (3.31)

In discussing generalised complex geometry, we can either work on E with integra-
bility defined with respect to the untwisted Courant bracket (as in [2,3]), or equivalently
on T ⊕ T ∗ with integrability defined with respect to the H -twisted Courant bracket. We
will adopt the latter strategy. Our results can be transferred to E using the B-map.
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4. Generalised Complex Geometry

Ageneralised almost complex structureJ is a bundle endomorphism ofTwhich squares
to minus the identity and preserves the metric η,

J 2 = −1

η(JX,JY) = η(X,Y).

The generalised almost complex structure J splits the complexified generalised tangent
bundle into the +i eigenspace L and the −i eigenspace L

T ⊗ C = L ⊕ L. (4.1)

A generalised complex structure [2] is a generalised almost complex structure for which
the subspace L is involutive under the H -twisted Courant bracket, i.e. one for which

�X,Y�H ∈ L if X,Y ∈ L. (4.2)

A generalised Kähler structure [3] on a manifoldM with metric g can be defined as
a generalised complex structure J1 that commutes with the map G defined in (3.5):

J1G = GJ1. (4.3)

Then

J2 = GJ1 (4.4)

defines a second generalised complex structure that commutes with J1.
Gualtieri [3] showed that a generalised Kähler structure on M is equivalent to a

(2, 2) or bihermitian geometry (M, g, H, J±) with complex structures J± on M. The
Gualtierimap gives the generalised complex structures in terms of the complex structures
J±

J1/2 = 1

2

(
J+ ± J− −(ω−1

+ ∓ ω−1− )

ω+ ∓ ω− −(J t+ ± J t−)

)
. (4.5)

Here ω± are the Kähler forms ω± = gJ±.
A generalised complex structure J on T gives a generalised complex structure J̃ on

E

J̃ = ebJ e−b (4.6)

such that the +i eigenspace L of J̃ is involutive with respect to the untwisted Courant
bracket, i.e. for which

�X̃, Ỹ�0 ∈ L if X̃, Ỹ ∈ L . (4.7)

A generalisedKähler structure on E consists of a J̃1 commutingwith G̃, and theGualtieri
map is now

J̃1/2 = 1

2

(
1
b 1

) (
J+ ± J− −(ω−1

+ ∓ ω−1− )

ω+ ∓ ω− −(J t+ ± J t−)

) (
1

−b 1

)
. (4.8)
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5. Half Generalised Complex Structures

The Gualtieri map can be written suggestively as

J1 = P+

(
J+ 0
0 −J t+

)
P+ + P−

(
J− 0
0 −J t−

)
P− (5.1)

so that

J1 = J+ + J− (5.2)

where J± are endomorphisms of T±:

J± : T± → T± (5.3)

with

J+ = P+

(
J+ 0
0 −J t+

)
P+, J− = P−

(
J− 0
0 −J t−

)
P−. (5.4)

This motivates defining structures on T± instead of on T.

Definition 1. A positive chirality half generalised almost complex structure J+ is a
bundle endomorphism of T+

J+ : T+ → T+ (5.5)

which vanishes on T−, squares to minus the identity on T+ and preserves the metric η,

J 2
+ = −1T+

η(J+X,J+Y) = η(X,Y) for X,Y ∈ T+.

Definition 2. A negative chirality half generalised almost complex structure J− is a
bundle endomorphism of T− which vanishes on T+, squares to minus the identity on
T− and preserves the metric η.

Using J+, we define another two projection operators

�± := 1
2 (1 ∓ iJ+). (5.6)

This allows a further split

T+ ⊗ C = L+ ⊕ L+ (5.7)

into the +i eigenspace L+ and the −i eigenspace L+. We define a positive chirality half
generalised complex structureJ+ as a positive chirality half generalised almost complex
structure for which L+ is involutive with respect to the H -twisted Courant bracket, i.e.
one for which

�X,Y�H ∈ L+ if X,Y ∈ C∞(L+). (5.8)

We will refer to this as the condition that J+ is integrable.
There is a similar construction for negative chirality. A negative chirality half gener-

alised almost complex structure J− gives a split

T− ⊗ C = L− ⊕ L− (5.9)
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into the +i eigenspace L− and the −i eigenspace L− and it will be a negative chirality
half generalised complex structure if L− is involutive with respect to the H -twisted
Courant bracket.

Note that half generalised complex structures automatically commute with G. A gen-
eralised Kähler structure corresponds to two half generalised almost complex structure
J±. The maps ρ± : T± → T take the half generalised complex structures J± on T± to
the complex structures J± on T .

There is a similar construction on the Courant algebroid E . A positive chirality half
generalised almost complex structure J̃+ is a bundle endomorphism of E+

J̃+ : E+ → E+ (5.10)

which squares to minus the identity on E+ and preserves the metric η,

J̃ 2
+ = −1E+

η(J̃+W, J̃+Z) = η(W, Z) for W, Z ∈ C∞(E+).

With the decomposition

E+ = L+ ⊕ L̄+ (5.11)

where L is the +i eigenspace of J̃+, we define a positive chirality half generalised
complex structure J̃+ on E as a positive chirality half generalised almost complex
structure which is integrable, i.e. for which L is involutive with respect to the Courant
bracket

�X̃, Ỹ� ∈ L+ if X̃, Ỹ ∈ C∞(L+). (5.12)

There is a similar construction for negative chirality.
The structures on E± are the B-transforms of the structures on T±:

J̃± = ebJ±e−b (5.13)

so that explicitly

J̃+ = eb P+

(
J+ 0
0 −J t+

)
P+e

−b, J̃− = eb P−
(
J− 0
0 −J t−

)
P−e−b. (5.14)

6. Algebraic Structure

If X ∈ C∞(T+), then it takes the form

X =
(

X
gX

)
(6.1)

for some vector field X ∈ C∞(T ), and the isomorphism ρ+T+ → T takes ρ+ : X → X ,

ρ+ : X =
(

X
gX

)
→ X. (6.2)

The identification of T+ with T leads to the identification of an automorphism A of T+
with an automorphism A of T . In this section, we will develop some useful formulas
making this identification explicit.
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An automorphism of T has the general form

A =
(
a c
b d

)
(6.3)

for some automorphisms

a : T → T, c : T → T ∗,
b : T ∗ → T, d : T ∗ → T ∗. (6.4)

This will be an automorphism of T+ that leaves T− invariant if

P−A = 0, AP− = 0 (6.5)

which implies A must take the form

A = 1

2

(
A Ag−1

gA gAg−1

)
(6.6)

and A is an automorphism of T :

A : T → T . (6.7)

The automorphism A can be rewritten as

A = P+

(
A 0
0 gAg−1

)
P+. (6.8)

Then

A
(

X
gX

)
=

(
AX
gAX .

)
(6.9)

For X,Y ∈ C∞(T+) with

X =
(

X
gX

)
, Y =

(
Y
gY

)
, (6.10)

we have

η(X,Y) = H(X,Y) = 2g(X,Y ). (6.11)

Then A is orthogonal

η(AX,AY) = η(X,Y) (6.12)

if and only if A satisfies the orthogonality condition

g(AX, AY ) = g(X,Y ). (6.13)

This is equivalent to

gAg−1 = (At )−1 (6.14)
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so that an orthogonal transformation A takes the form

A = P+

(
A 0
0 (At )−1

)
P+. (6.15)

Apositive chirality half generalised almost complex structureJ+ is then anorthogonal
automomorhism of T+ satisfying J 2

+ = −1T+ . It then takes the form

J+ = P+

(
J+ 0
0 (J t+)

−1

)
P+ (6.16)

for an automorphism J+ : T → T satisfying

(J+)
2 = −1 (6.17)

and

g(J+X, J+Y ) = g(X,Y ) (6.18)

so that J+ is an hermitian almost complex structure. As (J+)−1 = −J+, (6.16) can be
rewritten as

J+ = P+

(
J+ 0
0 −J t+

)
P+. (6.19)

Similar formulae apply for T−. If X ∈ C∞(T−) then

X =
(

X
−gX

)
(6.20)

for some X ∈ C∞(T ) and an automorphism of T− takes the form

A = 1

2

(
A −Ag−1

−gA gAg−1

)
= P−

(
A 0
0 gAg−1

)
P−. (6.21)

For X,Y ∈ C∞(T−), η is negative definite

− η(X,Y) = H(X,Y) = 2g(X,Y ) (6.22)

and A is orthogonal if and only A is, as before. A negative chirality half generalised
almost complex structure J− is then

J− = P−
(
J− 0
0 −J t−

)
P− (6.23)

for an hermitian almost complex structure J− : T → T .
If T has a positive chirality half generalised almost complex structure J+ and a nega-

tive chirality half generalised almost complex structureJ−, then T has hermitian almost
complex structures J+, J− and there are two commuting generalised almost complex
structures

J1 = P+

(
J+ 0
0 −J t+

)
P+ + P−

(
J− 0
0 −J t−

)
P− (6.24)

and

J2 = P+

(
J+ 0
0 −J t+

)
P+ − P−

(
J− 0
0 −J t−

)
P− (6.25)

which can be rewritten as (4.5).
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7. Integrability

An almost complex structure J on T splits the tangent bundle into +i eigenspace 	 and
the −i eigenspace 	̄

T ⊗ C = 	 ⊕ 	̄ (7.1)

and can be used to define the projectors

π± := 1
2 (1 ∓ i J ). (7.2)

The almost complex structure J is integrable if 	 is involutive with respect to the Lie
bracket, i.e. if

[X,Y ] ∈ 	 if X,Y ∈ C∞(	). (7.3)

If it is integrable, then it is a complex structure on T . J is integrable if and only if the
Nijenhuis tensor defined by

N (X,Y ) = π−([π+X, π+Y ]) (7.4)

vanishes for all vector fields X,Y .
From Sect. 5, a positive chirality half generalised almost complex structure J+ splits

the generalised tangent space

T+ ⊗ C = L+ ⊕ L+ (7.5)

into the +i eigenspace L+ and the−i eigenspace L+ and defines the projection operators
�∓ := 1

2 (1 ± iJ+). It is a positive chirality half generalised complex structure if the
subspace L+ is involutive with respect to the H -twisted Courant bracket, i.e. if

�X,Y�H ∈ L+ if X,Y ∈ C∞(L+). (7.6)

This requires the vanishing of the generalised Nijenhuis tensor

N (X,Y) = �−��+X,�+Y�H (7.7)

and the vanishing of

M(X,Y) = P−��+X,�+Y�H (7.8)

which is required for ��+X,�+Y�H to be a section of T+.
For X ∈ C∞(T+) with

X =
(

X
gX

)
(7.9)

it follows from (6.19) that

J+X =
(

J+X
gJ+X

)
(7.10)

so that the automorphism X → J+X of T+ maps to the automorphism X → J+X of T .
Then

�±X =
(

π±X
gπ±X .

)
. (7.11)
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We have that

X =
(

X
gX

)
∈ C∞(L+) if and only if X ∈ C∞(	). (7.12)

We now turn to the form of the brackets on T+. For X,Y ∈ C∞(T+) with

X =
(

X
gX

)
, Y =

(
Y
gY

)
, (7.13)

the Courant bracket takes the simple form

�X,Y�C =
( [X,Y ]
g[X,Y ]

)
+

(
0

S(X,Y )

)
(7.14)

where [X,Y ] is the Lie bracket. Here the map S : C∞(T ⊗ T ) → C∞(T ∗) is defined
by

iZ S(X,Y ) = g(X,∇(0)
Z Y ) − g(Y,∇(0)

Z X) (7.15)

where ∇(0) is the Levi-Civita connection. In index notation,

Sμ(X,Y ) = Xν∇(0)
μ Y ν − Yν∇(0)

μ Xν . (7.16)

For the H -twisted Courant bracket, S is replaced in these formulae by

S(+)(X,Y ) = S(X,Y ) + iX iY H (7.17)

which has the effect of replacing the connection ∇(0) with the connection with torsion
∇(+) given in (2.1). Then

iZ S
(+)(X,Y ) = g(X,∇(+)

Z Y ) − g(Y,∇(+)
Z X) (7.18)

or

S(+)
μ (X,Y ) = Xν∇(+)

μ Y ν − Yν∇(+)
μ Xν . (7.19)

Then the H-twisted Courant bracket takes the form

�X,Y�H =
( [X,Y ]
g[X,Y ]

)
+

(
0

S(+)(X,Y )

)
. (7.20)

We now consider the conditions �X,Y�H ∈ C∞(L+) if X,Y ∈ C∞(L+) for J+ to
be a positive chirality half generalised complex structure. Now from (7.11), (7.14) and
(7.20);

��+X,�+Y�H =
( [π+X, π+Y ]
g[π+X, π+Y ]

)
+

(
0

S(+)(π+X, π+Y )

)
. (7.21)

This will be in L+ if and only if the following two conditions hold

1. [π+X, π+Y ] ∈ C∞(	), i.e. J+ is a complex structure
2. S(+)(π+X, π+Y ) = 0 for all vector fields X,Y .
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The second condition is the condition that ��+X,�+Y�H ∈ C∞(T+) and is equivalent
to the vanishing of M(X,Y) in (7.8), as

M(X,Y) = P−
(

0
S(+)(X,Y )

)
. (7.22)

From (7.11) and (7.19)

S(+)
μ (π+X, π+Y ) = −i(π+X)ν(∇(+)

μ J ν
+ ρ)Y ρ + i(π+Y )ν(∇(+)

μ J ν
+ ρ)Xρ. (7.23)

Then the imaginary part of

S(+)
μ (π+X, π+Y ) = 0 (7.24)

gives

XνY ρ∇(+)
μ J+ νρ = 0. (7.25)

For this to hold for all X,Y requires that J+ is covariantly constant with respect to ∇(+)

∇(+)
μ J+ νρ = 0. (7.26)

If this holds, then it follows from (7.7) and (7.21) that the generalised Nijenhuis tensor
is given in terms of the Nijenhuis tensor

N (X,Y) =
(

N (X,Y )

gN (X,Y )

)
(7.27)

and this will vanish if and only if N (X,Y ) = 0.
We then have the result that

Proposition. A positive chirality half generalised complex structure J+ is equivalent
to a hermitian complex structure J+ that is covariantly constant with respect to ∇(+),
∇(+) J+ = 0.

Similar arguments lead to the result that a negative chirality half generalised complex
structureJ− is equivalent to a hermitian complex structure J− that is covariantly constant
with respect to ∇(−), ∇(−) J− = 0.

To see this, note that for X,Y ∈ C∞(T−) with

X =
(

X
−gX

)
, Y =

(
Y

−gY

)
(7.28)

the Courant bracket takes the simple form

�X,Y�C =
( [X,Y ]

−g[X,Y ]
)

−
(

0
S(X,Y )

)
(7.29)

so that

�X,Y�H =
( [X,Y ]

−g[X,Y ]
)

−
(

0
S(−)(X,Y )

)
(7.30)

where

S(−)(X,Y ) = S(X,Y ) − iX iY H (7.31)

so that

S(−)
μ (X,Y ) = Xν∇(−)

μ Y ν − Yν∇(−)
μ Xν . (7.32)

Then this leads to the condition ∇(−) J− = 0.
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8. Strong Kähler with Torsion and Half Generalised Complex Structures

We can now give the formulation of Strong Kähler with Torsion geometry in terms of
generalised complex geometry. Using the results of the previous sections, we have that a
(2, 1) SKT geometry (M, g, H, J+) is equivalent to a positive chirality half generalised
complex structure J+ and metric structure G on T. The analogue of the Gualtieri map is

J+ = P+

(
J+ 0
0 −J t+

)
P+ (8.1)

which can be written as

J+ = 1
2

(
J+ −(ω+)

−1

ω+ −J t+

)
(8.2)

whereω+ = gJ+. Similarly, a (1, 2)SKTgeometry (M, g, H, J−) is precisely a negative
chirality half generalised complex structure J− and metric structure G on T, with

J− = 1
2

(
J− −(ω−)−1

ω− −J t−

)
= P−

(
J− 0
0 −J t−

)
P−. (8.3)

9. ( p, q) Generalised Complex Geometry

From Sect. 2, a (p, q) hermitian geometry (M, g, H, Ja+ , Ja
′

− ) has p−1 complex struc-

tures Ja+ (a = 1, . . . p− 1) and q − 1 complex structures Ja
′

− (a′ = 1, . . . q − 1) and for
each complex structure J , (M, g, H, J ) is an SKT space. Then each complex structure
corresponds to a half generalised complex structure, with p − 1 half positive chirality
generalised complex structures J a

+ on T+, and q − 1 negative chirality half generalised
complex structures J a′

− on T−. This motivates the definition of a (p, q) generalised

complex geometry (T,G, H,J a
+ ,J a′

− ) as

1. The generalised tangent bundle T with metric G.
2. T has p − 1 positive chirality half generalised complex structures J a

+ and q − 1
negative chirality half generalised complex structures J a′

− that are each integrable
with respect to the H -twisted Courant bracket.

3. If p = 4, the J a
+ satisfy the quaternion algebra, and if q = 4 the J a′

− satisfy the
quaternion algebra.

The maps ρ± : T± → T take each half generalised complex structure J± on T± to
a complex structure J± on T . This can be made explicit as:

J a
+ = 1

2

(
J −(ω)−1

ω −J t

)a

+

J a′
− = 1

2

(
J −(ω)−1

ω −J t

)a′

−
. (9.1)

This then gives us a precise correspondence between a (p, q) generalised complex
geometry (T,G, H,J a

+ ,J a′
− ) and a (p, q) hermitian geometry (M, g, H, Ja+ , Ja

′
− ).
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If p ≥ 2 and q ≥ 2, any positive chirality half generalised complex structure can be
combined with any negative chirality one to form a generalised complex structure, so
that we have a basis of (p − 1)(q − 1) generalised complex structures

J ab′ = (J a
+ ,J b′

− ) (9.2)

together with a further set of generalised complex structures GJ ab′
. This gives a gen-

eralised Kähler structure for p = q = 2, 3 generalised complex structures J a1′
for

(p, q) = (4, 2) and 9 generalised complex structures J ab′
for (p, q) = (4, 4). For

(p, q) = (4, 2), the space of generalised complex structures is a 2-sphere while for
(p, q) = (4, 4) it is S2 × S2. The case of 3 generalised complex structures satisfying a
quaternion algebra is a generalised hyperkähler structure [9].

10. Discussion

The (p, q) hermitian geometries are characterised by the holonomy groups Hol(∇(±))

of the connections with torsion ∇(±). If the dimension d of the manifold is even, then
p ≥ 2 if Hol(∇(+)) ⊆ U (d/2) and q ≥ 2 if Hol(∇(−)) ⊆ U (d/2), while if d is a
multiple of 4, then p ≥ 4 if Hol(∇(+)) ⊆ Sp(d/4) and q ≥ 4 if Hol(∇(−)) ⊆ Sp(d/4).
The cases p > 4 or q > 4 are only possible with trivial holonomy.

There are some features of (p, q) hermitian geometries that are particular to certain
values of p and q. One interesting aspect of (2, 2) hermitian geometry, i.e., of generalised
Kähler geometry, is that there are three Poisson structures on T ,

σ± := (J+ ± J−)g−1, σ := [J+, J−]g−1, (10.1)

which can have irregular points that form loci inMwhere the Poisson structures change
rank, givingwhat has been called type change in [3]. This implies that for (4, 2) hermitian
geometry there are then three sets of three Poisson structures

σ a± := (Ja+ ± J−)g−1, σ a := [Ja+ , J−]g−1, (10.2)

while for (4, 4) hermitian geometry there are then nine sets of three Poisson structures

σ ab′
± := (Ja+ ± Jb

′
− )g−1, σ ab′ := [Ja+ , Jb

′
− ]g−1, (10.3)

Another interesting feature of generalised Kähler geometry is that it has a generalised
potential K that determines all geometric quantities. For commuting complex structures,

[J+, J−] = 0, (10.4)

the expressions for the metric and b-field are linear in the 2nd derivatives of the scalar
function K [1], while they are non linear when the complex structures do not commute
[13–15]. A proof of this relies on the superspace formulation of the sigma model away
from irregular points. An alternative proof of the existence of K for a class of GKGs
that does include irregular points was recently given in [16]. For (p, q) models with
p, q ≥ 2, the scalar potential governing the geometry is further constrained to allow
for enhanced supersymmetry. In certain classes of models for which the supersymmetry
algebra closes without use of equations of motion (i.e. off-shell), the general model can
be found explicitly, giving a general construction of the corresponding potential and
hence the local geometry [1,17,18].
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For SKT geometry there is only one complex structure and so no Poisson structures
or irregular points. The potential that determines the geometry again follows from the
sigma model and is a complex vector potential (kα, kᾱ) [4,5]. For recent discussions of
such (2, 0) and (2, 1) models, see [17,18]. For (4, 1) hermitian geometry (hyperkähler
with torsion) the vector potential is further constrained, and has been studied in [17,18].
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