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Abstract: This paper develops a local analogue of the ADHM construction, which
characterises ASD instantons defined over smooth bounded domains inside Euclidean
R
4 diffeomorphic to the 4-ball, in terms of infinite dimensional Hilbert spaces and

bounded Hermitian linear operators satisfying an analogue of the ADHM equation.
Morever, we describe the degeneration of this construction when a family of instantons
develops a curvature singularity at the origin.

1. Introduction

This paper studies two related problems for ASD connections A defined on a bounded
region B ⊂ R

4 with the standard Euclidean metric: local Nahm transform, and sin-
gularity formation. The unifying theme is to understand ASD connections by studying
solutions to the coupled Dirac equation (i.e. ‘Dirac fields’).

The Nahm transform in various contexts is extensively studied [2,4,5,10]. It resem-
bles the Fourier transform in many ways, and is also closely related to the celebrated
ADHM construction [7,10]. The prototype Nahm transform [4] constructs ASD connec-
tions over a given 4-torus, starting fromcoupledDiracfields attached toASDconnections
over the dual torus. It enjoys remarkable properties, such as

• ASD connections without flat factors are preserved under the transform.
• The inverse Nahm transform reproduces the original ASD connection.

It is desirable to establish a local version of Nahm transform; the main motivations
are:
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• From the viewpoint of quantum mechanics, it is natural to expect that gauge fields
(i.e. connections) can be reconstructed up to gauge equivalence from the information
about its interaction with fermions (i.e.Dirac fields). Such a description will be gauge
invariant.

• The local Nahm transform can be recast as an ADHM type construction, which
relates ASD instantons on domains to operator algebras.

• In algebraic geometry, gauge theory on holomorphic vector bundles is usefully
studied via the sheaf of holomorphic sections. In the absence of a (preferred) complex
structure, we advocate Dirac fields as a substitute of holomorphic sections, and the
inverse Nahm transform below presents the vector bundle with ASD connection as
a kernel bundle, in a spirit analogous to presentations of coherent sheaves. This idea
may be of relevance in higher dimensional gauge theory where there is no complex
structure in sight.

• Some motivations from the twistor space perspective are discussed in [15].

Our main result in this direction, which borrows techniques from [4], is

Theorem 1.1 (Local Nahm transform, cf. Chapter 2 and 3). Let B be a bounded region
inside the Euclidean R

4, such that B̄ is diffeomorphic to the unit 4-ball with boundary.
For a smooth ASD connection on a Hermitian vector bundle (E, A) over B̄, there is a
bundle of Hilbert spaces with an ASD connection (Ê, Â) over the dual vector space R̂4,
called the local Nahm tranform. Morever, the inverse Nahm transform is canonically
isomorphic to (E, A).

The local Nahm transform admits an alternative description analogous to the [10].
The information of the bundle Ê is equivalent to the Hilbert space of solutions to the
coupled Dirac equations

H2
D = {s ∈ L2(B, E ⊗ S−) : D−

A s = 0},
which we call the ‘Bergmann space’. The information of the connection Â is equivalent
to 4 bounded Hermitian operators on H2

D , defined by

x̂μ = P0 ◦ xμ, μ = 1, 2, 3, 4,

where xμ means multiplication by the coordinate function, and P0 is the orthogonal
projection from L2(B, E ⊗ S−) to H2

D . One can alternatively think of x̂μ as Hermitian
bilinear forms 〈s|xμ|s′〉 on H2

D , in analogy with observables in quantummechanics. The
ASD condition on Â is equivalent to

⎧
⎪⎨

⎪⎩

[x̂1, x̂2] + [x̂3, x̂4] = 0,
[x̂1, x̂3] + [x̂4, x̂2] = 0,
[x̂1, x̂4] + [x̂2, x̂3] = 0,

analgous to the ADHM equation. Thus (Ê, Â) is analogous to the ADHM data, albeit
H2
D is infinite dimensional,which brings forth somenuanced functional analytic features.
The inverse Nahm transform can also be equivalently described in this ADHM lan-

guage. Given the ADHM data as above, the inverse Nahm transform bundle ˆ̂E is the
subbundle of the trivial bundle H2

D ⊗ S−, defined as

ˆ̂Ey = ker[H2
D ⊗ S−

−2π i
∑

(x̂μ−yμ)ĉμ−−−−−−−−−−−→ H2
D ⊗ S+], ∀y ∈ B,
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and we equip ˆ̂E ⊂ H2
D ⊗ S− with the subbundle connection ˆ̂A, which turns out to be

again ASD. The main content of Theorem 1.1 is that ( ˆ̂E,
ˆ̂A) reconstructs (E, A). Thus

we have related ASD connections on domains to operator theory. M. Atiyah suggests to
the author that this picture may be related to Alain Connes’s noncommutative geometry
[8].

The second problem studied in this paper is singularity formation.

Problme 1.2. Given a 1-parameter family {At }t>0 of smooth ASD connections At with
uniformly bounded L2 curvature, on the Hermitian bundle E over the closed ball B̄ =
B(R), such that as t → ∞, the connections converge smoothly away from the origin to
A∞, and near the origin they are allowed to develop a curvature singularity. Describe
the limiting behaviour of the Bergmann spaces H2

DAt
of Dirac fields for At as t → ∞.

In the quantum mechanics analogy, this means studying how fermions interact with
gauge fields with concentrated curvature. In the algebraic geometry analogy, this situa-
tion is akin to a flat family of holomorphic vector bundles degenerating into a coherent
sheaf. We wish to capture curvature singularity by the Dirac fields, in the same spirit that
singularities of Hermitian Yang-Mills connections are captured by the coherent sheaf of
holomorphic sections.

We develop a convergence theory in Chapters 4 and 5 (which can be read independent
of Chapters 2 and 3). The Hamiltonian of the harmonic oscillator

H(s) = 1

2R2

∫

B(R)

|x |2|s|2

on H2
DAt

induces a Hermitian operator with discrete and non-negative spectrum. The

spectral theory is our key tool to understand the spaces H2
DAt

. There is a positive
number called the spectral gap, such that for sufficiently concentrated ASD connections,
the eigenvalues are either greater than the gap, which form the so called large spectrum,
or very close to zero, which form the so called small spectrum, for which the eigenstates
are localised near the origin, much like a potential well in quantum mechanics.

The dimension of the small spectrum is constant for large t . To describe the limiting
behaviour of the large spectrum, we recall that Uhlenbeck’s removable singularity theo-
rem allows us to smoothly extend the ASD connection A∞ across the origin to a smooth
connection on a different bundle Ẽ over B. Then the large spectrum for At converges in
a natural sense to the spectrum of A∞. Morever,

Theorem 1.3 (Convergence theory). There is a natural topological bundle over 0 <

t ≤ ∞, whose fibres over 0 < t < ∞ are H2
DAt

and the fibre over ∞ is the orthogonal

direct sum H2
DA∞ ⊕ V , where V has the dimension of the small spectrum. Morever,

certain natural operators on the spaces H2
DAt

can be extended continuously to the limit

H2
DA∞ ⊕ V .

An important quantity describing the curvature singularity formation is the instanton
number, i.e. the amount of energy loss

k = lim
t→∞

1

8π2

∫

B
|FAt |2 − 1

8π2

∫

B
|FA∞|2. (1)
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This is well known to have a more topological interpretation: for any 0 < r ≤ R,

k = 1

8π2

∫

B(r)
Tr(FAt ∧ FAt ) −

∫

∂B(r)
CS(At ) (2)

where CS(A) = 1
8π2 Tr(d A ∧ A + 2

3 A ∧ A ∧ A) is the Chern Simons form, defined up
to an integer, and becomes uniquely defined by demanding continuity at t = ∞:

lim
t→∞

∫

∂B(r)
CS(At ) =

∫

∂B(r)
CS(A∞) = 1

8π2

∫

B(r)
Tr(FA∞ ∧ FA∞).

We combine our theory of the local Nahm transform and our analytic theory of
singularity formation, together with some rudiments of K-theory, to show

Theorem 1.4 (cf. Section 6.2). The instanton number is equal to the dimension of the
small spectrum dim V .

In the standard Uhlenbeck compactification of ASD instanton moduli space [10],
one formally puts in ideal instantons, encoding the amount of energy concentrating to
points, and the smooth limiting connection after removal of singularity. Our theorems
say that both information is captured by the ADHM type data.

Remark. In the Nahm transform on T 4 (cf. [4]), if one starts from an ASD connection
with flat factors on E , then the transformed bundle Ê on T̂ 4 will have a local curvature
singularity. By the family Atiyah-Singer formula, rank(E) (resp. c2(E)) contributes to
c2(Ê) (resp. rank(Ê)) of the transformed bundle. In our case we start from an ASD
connection with local curvature singularity on a domain, and the local Nahm transform
acquires a flat factor corresponding to V . The instanton number is an analogue of the
second Chern class, and dim(V ) is an analogue of rank.

2. The Local Nahm Transform

We define the local Nahm transform, and explain two different perspectives, which
exhibit its analogy with the Nahm transform on the 4-torus and the ADHM construction
of instantons on R

4.

2.1. Nahm transform perspective. Suppose we are given a Hermitian bundle E with a
smooth ASD connection A over the closure of a bounded connected domain B ⊂ R

4

with smooth boundary, then we can produce an ASD connection on some (infinite rank)

Hilbert bundle Ê → R̂4 over the dual vector space R̂4 as follows. First, we recall the

Poincaré bundle P over R4 × R̂4, given by equipping the trivial line bundle with the
connection

ω = 2π i
4∑

μ=1

zμdxμ, (3)
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where xμ are the standard coordinates on R
4 and zμ are the dual coordinates. For each

fixed z ∈ R̂4, the bundle E couples to the flat line bundle P|z . Equivalently, one thinks
of the coupled connection as a modified connection on E

Az = A + 2π i
4∑

μ=1

zμdxμ. (4)

These Az are all gauge equivalent, but we keep them separate to make apparent the
analogy with the Nahm transform on the 4-torus [4]. We introduce the coupled Dirac
operators:

{
D+

Az
: W 1,2

0 (B, E ⊗ S+) → L2(B, E ⊗ S−),

D−
Az

: L2(B, E ⊗ S−) → W−1,2(B, E ⊗ S+).
(5)

The Sobolev space W 1,2
0 imposes a zero Dirichlet boundary condition. The convention

in this paper is that the Clifford operators are anti-self-adjoint, with Clifford relations

cμcν + cνcμ = −2δμν,

so the Dirac operator is formally self-adjoint.
TheWeitzenböck formula implies that ker D+

Az
is zero, since parallel coupled spinors

with zero boundary condition must vanish. We define a bundle Ê over R4 with fibres
given by all the L2 solutions to the Dirac equation

Êz = ker D−
Az

. (6)

This sits inside the trivial Hilbert bundle over R̂4 with fibre L2(B, E ⊗ S−). Let Pz be
the projections to the kernels according to the orthogonal splitting

L2(B, E ⊗ S−) = Êz ⊕ D+
Az
W 1,2

0 . (7)

The projection operator Pz admits the formula

Pz = 1 − D+
Az
GzD

−
Az

, (8)

where Gz is the Green’s operator solving the Dirichlet problem for the coupled Lapla-
cian

Gz = (∇∗
Az

∇Az )
−1 : W−1,2(B, E) → W 1,2

0 (B, E).

Then Ê inherits the subbundle connection Â,with covariant derivative givenby ∇̂ = Pzd̂,
where d̂ is the trivial connection.

Definition 2.1. The local Nahm transform of the pair (E, A) is the Hilbert bundle with

a connection (Ê, Â) over R̂4.

Proposition 2.2. The local Nahm transform remains ASD.
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Proof. (Sketch) The same proof in [4], Theorem 1.5 works (but their curvature formula
is off by a sign). This goes by taking a local orthonormal framing of Ê , denoted f̂ j (z) =
ψ

j
z (x). Then one computes the connection coefficients

Â jk = 〈 f̂ j , d̂ f̂ k〉, (9)

where the inner product comes from L2 integration. The curvature components are

F̂i j = d̂ Âi j +
∑

k

Âik ∧ Âk j = 〈� ∧ � · ψ i
z ,Gzψ

j
z 〉, (10)

where

� ∧ � · ψ i
z = (2π)2

∑

μ,ν

dzμ ∧ dzνcμcνψ
i
z .

The curvature formula shows the connection Â to be ASD. ��

2.2. ADHM perspective. The local Nahm transform can also be cast in a form which
makes apparent the analogy with the ADHM data [10].

By gauge equivalence, it is easy to see Êz = exp(−2π i z)Ê0. This means we can
alternatively think about the underlying bundle of Ê as the trivial bundle with fibre
isomorphic to H2

D = Ê0 = ker D−
A ; this assigns a canonical trivialisation to Ê . Notice

that for s ∈ H2
D ,

Pzd̂(exp(−2π i z)s) = −2π i Pz(xμdzμ exp(−2π i z)s)

= −2π i exp(−2π i z)P0(xμs)dzμ,

so after identifying all fibres with H2
D , the information of the connection Â is up to some

constant given by the operators x̂μ = P0 ◦ xμ, defined in essentially the same way as
the matrices appearing in the ADHM data, except that these operators act on infinite
dimensional spaces.

Lemma 2.3 (Analogue of the ADHM equation). The ASD condition on Â is equivalent
to

⎧
⎪⎨

⎪⎩

[x̂1, x̂2] + [x̂3, x̂4] = 0
[x̂1, x̂3] + [x̂4, x̂2] = 0
[x̂1, x̂4] + [x̂2, x̂3] = 0.

(11)

Proof. By the above discussions, the connection matrix of Â in the canonical trivial-

isation is the constant matrix valued 1-form Â = −2π i
∑

μ x̂μdzμ on R̂4. Thus the

curvature F̂ = Â ∧ Â, and the result is clear after expanding this. ��
Remark. A useful intuition when one tackles analytical questions concerning the space
H2
D of solutions to the coupledDirac equation, is the analogy between the Dirac equation

and the Cauchy-Riemann equation. The space of L2 solutions to the Cauchy-Riemann
equation is sometimes called the Bergmann space, which will be our terminology for
H2
D .
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Remark. In the next Chapter we will be concerned with reconstructing the original ASD
connection from these ADHM data. We give some physical intuitions here about why
such reconstructions are possible. The connection A can be thought of as some gauge
field, and physically this is detected by observing themotion of fermions inside the gauge
field. The space H2

D , i.e. solutions to the coupled Dirac equation, can be viewed as the
Hilbert space for the fermion, and operators such as P0 ◦ xμ are the natural ingredients
to specify the quantum mechanics for the fermion.

3. The Inverse Construction

We show how to reconstruct the original ASD connection from its local Nahm trans-
form. We proceed by defining the inverse Nahm transform, interpret it in the frame-
works of both the Nahm transform and the ADHM construction, and then define a
canonical comparison map between the original bundle and the inverse Nahm transform
bundle, which turns out to preserve both the Hermitian structure and the connection
matrix.

3.1. Inverse Nahm transform. Wewish to reconstruct the original bundle by an analogue
of the inverse Nahm transform in [4]. This suggests us to look at solutions to the Dirac
equation coupled to the infinite rank bundle Ê . To set up, we take the dual Poincaré

bundle P̂ over R̂4 × R
4, with connection

ω̂ = 2π i
4∑

μ=1

xμdzμ,

and for every x ∈ R
4, we couple Ê to P̂|x . Alternatively, one thinks of the coupled

connection as Âx = Â + 2π i
∑4

μ=1 xμdzμ. Here the connection Â on Ê → R̂4 is the

subbundle connection by embedding Ê into the trivial bundle with fibre L2(B, E ⊗ S−).

We identify the spinors on R
4 with those on R̂4.

The sections of Ê which are constant under the canonical trivialisation Ê � H2
D

are called invariant. One can think of this condition as the analogue of the peri-
odicity condition over the dual 4-torus, when the size of the dual torus has shrunk
to zero. It is clear that the covariant derivative on Ê preserves the invariance condi-
tion.

Thenwedefine thefibres of the inverse Nahm transform bundle ˆ̂E over x ∈ R
4 to be

the space of invariant solutions to the coupled Dirac operators D̂−
Âx
. A priori the inverse

Nahm transform bundle may have singularities. An invariant section s in 	(R̂4, Ê⊗ S−)

has constant modulus for all fibres z ∈ R̂4, so the Hermitian metric on any fibre can

be taken to give a norm on s. This equips ˆ̂E with a Hermitian structure. There is also

a natural connection on ˆ̂E , given by the projection of the natural differentiation in the

x variable, where we view a section of ˆ̂E as a function from R
4 to the invariant part of

	(R̂4, Ê ⊗ S−).
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3.2. A formal comparison with ADHM construction. The Nahm transform formulation
emphasizes the analogy with the torus case, and retains as much symmetry between
the Nahm transform with its inverse as is possible. We can also view the inverse Nahm
transform from the perspective of the ADHM construction. The dictionary for this in-

terpretation, is that the invariant quantities on R̂4 are replaced by the information on the
zero fibre. The correspondence is:

• The space of invariant sections of Ê corresponds to H2
D .

• The connection Â correspond to four operators on H2
D: the covariant derivatives ∇̂μ

become −2π i x̂μ = −2π i P0 ◦ xμ, the projection of the multiplication by xμ.

• The fibre of the inverse Nahm transform ˆ̂Ey becomes

ker[H2
D ⊗ S−

−2π i
∑

(x̂μ−yμ)ĉμ−−−−−−−−−−−→ H2
D ⊗ S+].

• The Hermitian metric on the inverse Nahm transform bundle is always inherited
from the metric on H2

D .• The connection on the inverse Nahm transform is the subbundle connection forˆ̂E ⊂ H2
D ⊗ S−, where H2

D ⊗ S− is thought of as the trivial bundle over B.

Proposition 3.1 (Analogue of ADHM construction). Given the Hilbert space H2
D and

four bounded Hermitian operators x̂μ on H2
D satisfying the ADHM type equation (11).

Assume


̂ Ây
= ∇̂∗

Ây
∇̂ Ây

= 4π2
∑

μ

(x̂μ − yμ)2, ∀y ∈ B

is invertible, then ˆ̂E is a nonsingular Hermitian bundle over B, and the subbundle

connection ˆ̂A on ˆ̂E ⊂ H2
D ⊗ S− is ASD.

For a sketch proof of this fact in the Nahm transform language, see Corollary 3.9
below. The Proposition does not depend on knowing that the ADHM data arise from
(E, A), although the invertibility of 
̂ Ây

turns out to be automatic in that situation.

3.3. Construction ofDirac fields. Weproceed as in [4].We aim to produce coupledDirac
fields for Â using the Green’s operator Gz in order to define a canonical comparison

map E → ˆ̂E .
Notice there is a tautological element � ∈ 	(B × R̂4, Ê∗ ⊗ E ⊗ S−), given by

evaluating any element of Ê on E⊗S−. If we further compose with the Green’s operator
Gz , we obtain a section

G� =
∞∑

j=1

(Gzψ
j
z ) f̂ j

∗ ∈ 	(B × R̂4, Ê∗ ⊗ E ⊗ S−),

where f̂ j
∗
stands for the dual basis of f̂ j = ψ

j
z . Now suppose we have f ∈ E∗

x , then

evaluating against f produces an element in	({x}×R̂4, Ê∗ ⊗ S−); denote it asG�( f ).
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We notice that for each z ∈ R̂4, the value ofG�( f ) at the point z is finite. This is because
if we contract by a unit spinor η,

|〈G�( f )(z), η〉|2 =
∑

j

|〈(Gzψ
j
z )( f ), η〉|2

is in fact the norm square of the linear functional 〈 f ◦ Gz, η〉 on the Hilbert space Êz .
Since the connection A is smooth, this linear functional is bounded by basic elliptic
analysis.

Proposition 3.2. The element G�( f ) lies in ker D̂−
Â∗ , the kernel of the Dirac operator

on the dual bundle of Ê .

Proof. (Sketch) The formal calculation for the Dirac equation is the same as in [4],
Proposition 2.1, which uses explicit expressions for the connection coefficient of Â, and
reduces the proof to properties of the Green’s operator. ��
Corollary 3.3. The element 4π exp(2π i z(x))G�( f )(z) lies in ker D̂−

Â∗
x
. Morever, under

the canonial trivialisation Ê∗
z = exp(2π i z)(H2

D)∗, this is invariant.

Proof. Using D̂−
Â∗
x

= D̂−
Â∗ − 2π i

∑4
μ=1 xμĉμ, the first claim is clear. We consider the z

dependence of the construction.

exp(2π i z(x))G�( f )(z) =
∑

f ◦ (Gzψ
j
z ) f̂ j

∗
(z) exp(2π i z(x))

=
∑

f ◦ (exp(−2π i z)G0ψ
j
0 ) f̂ j

∗
(z) exp(2π i z(x))

= exp(2π i z)
∑

f ◦ (G0ψ
j
0 ) f̂ j

∗
(0),

where we used the fact the f ∈ E∗
x is located above the point x ∈ B. This means the

element is invariant. ��
Recall there is a complex antilinear automorphism of the spin bundle, denoted ε :

S → S, which preserves the chiral splitting S = S+⊕S− and the Cliffordmultiplication.
Tensoring this with the canonical isomorphism E � E∗, one obtains an antilinear
isomorphism

ε̂ : E ⊗ S � E∗ ⊗ S, (12)

which is checked to preserve the Dirac equation.

This allows us to define a canonical comparison map α : E → ˆ̂E by

ξ �→ 4π exp(−2π i〈·, x〉)〈ε̂(G�), ξ 〉 = 4π exp(−2π i〈z, x〉)
∑

j

〈ε̂(Gzψ
j
z ), ξ 〉 f j (z),

(13)

i.e. we follow the composition Ex � E∗
x → ker D̂−

Â∗
x

� ker D̂−
Âx
.
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The adjoint operator of this canonical map Ey → ˆ̂Ey ⊂ H2
D ⊗ S− can be described

as follows. Identify the space of invariant sections of Ê with H2
D , then for ζ ∈ H2

D ⊗ S−,
the adjoint operator maps it into an element of Ey , given by

ζ �→ 4π(TrS−(ε ◦ G0)ζ )(y), H2
D ⊗ S− → Ey,

where the ε ◦ G0 sends the H2
D factor to 	(E) ⊗ S−, so we can then contract the two

copies of S− to get some element in 	(E), and finally evaluate at the point y ∈ B.

3.4. An example: the trivial line bundle. Let uswork out explicitlywhat this construction
means for (E, A) being the trivial flat line bundle, and B = B(R) ⊂ R

4 is a ball. Then
we can pick ξ to be a unit length basis vector, and henceforth suppress it. Modulo the
twisting ε, the canonical map E → H2

D ⊗ S− essentially comes down to the following
description: calculate the composition

H2
D

G0−→ W 1,2
0 ∩ C∞(B, E ⊗ S−)

evaluate−−−−→ Ey ⊗ S− � S−,

and then write this (spinor-valued) functional on H2
D using Riesz representation.

The Green’s function for the Euclidean Laplacian on the ball is well known.We recall
the formula

{
G(p, 0) = 1

4π2 {|p|−2 − R−2}
G(p, q) = 1

4π2 {|p − q|−2 − |p |q|
R − q R

|q| |−2} = G(q, p).

We treat p as the independent variable, and q is a parameter. In the spinorial situation, the
Green’s function is merely the above tensored by a parallel spinor field η. We calculate
the projection of the Green’s function to the space H2

D ,

⎧
⎪⎨

⎪⎩

G(p, 0) ⊗ η = D{− p·η
8π2 (|p|−2 − R−2)} + η

4π2R2

G(p, q) ⊗ η = D{− 1
2 (p − q) · ηG(p, q)} + 1

4π2 (
R2

|q|2 − 1) R2

|q|2
p−q R2

|q|2
|p−q R2

|q|2 |4 · q · η.

This means for s ∈ H2
D ,

ε̂Gs(q) = ε̂

∫

B(R)

G(p, q)s(p)dVolp

= ε̂

2∑

ν=1

∫

B(R)

ην ⊗ 〈G(p, q)ην, s(p)〉dVolp

=
2∑

ν=1

ε̂ην ⊗ 〈 1

4π2 (
R2

|q|2 − 1)
R2

|q|2
p − q R2

|q|2
|p − q R2

|q|2 |4
· q · ην, s(p)〉.

Thus the image of the canonical map α : Ey → ˆ̂Ey ⊂ H2
D ⊗ S− is
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α(1) =

⎧
⎪⎨

⎪⎩

∑
ν εην ⊗ 1

π
( R2

|y|2 − 1) R2

|y|2
x−y R2

|y|2
|x−y R2

|y|2 |4 · y · ην ∈ S− ⊗ H2
D 0 < |y| < R,

∑
ν εην ⊗ ην

4πR2 y = 0.

(14)

Geometrically, theDirac field
x−y R2

|y|2
|x−y R2

|y|2 |4 ·y ·ην is proportional to the fundamental solution

to the Dirac equation with source at the inversion point of y; when y → 0 the source
moves to infinity and the suitably rescaled solution converges smoothly to the constant
Dirac field.

It is interesting to observe the limiting behaviour of this formula near the boundary
of B(R). For |y| ∼ R, write y = Rl cos θ , where θ ∼ 0, and l is a unit vector. Write
also x = l R + 1

2 x
′Rθ2, then the formula has the asymptote

∑

ν

εην ⊗ 1

π
θ2

x − l R − 1
2 l Rθ2

|x − l R − 1
2 l Rθ2|4 · l R · ην ∼

∑

ν

εην ⊗ 8

πR2θ4

x ′ − l

|x ′ − l|4 · l · ην.

(15)

If we view this naïvely as a function of x , then the pointwise limit will be zero, because
the Dirac field concentrates near l R with distance scale θ2. If we extract an appropriately
rescaled limit, we obtain a Dirac field in some half space, generated by a point charge
placed at unit distance outside the boundary plane.

3.5. Nonsingularity. This section studies the Laplacian 
̂ Ây
= ∇̂∗

Ây
∇̂ Ây

on the local

Nahm transform bundle Ê , where y ∈ R
4. The importance of this operator for our

construction is based on the observation that since Ây is ASD, on the positive spin
Ê ⊗ S+, we have

∇̂∗
Ây

∇̂ Ây
= D̂−

Ây
D̂+

Ây
. (16)

We start with a matrix description of this Laplacian acting on invariant sections of
Ê . Recall that s ∈ H2

D is canonically identified with the invariant section se−2π i z .

Lemma 3.4. Under the identification, the Laplacian can be identified with the operator
4π2P0 ◦ {|x − y|2 − 4G0} acting on H2

D.

Proof. Let s ∈ H2
D and τ = G0s. Then by Green’s formula

∫

B
〈τ, s〉 =

∫

B
|∇τ |2.

We consider the L2 decomposition

(xμ − yμ)s = Dτμ + σμ, (17)

with τμ ∈ W 1,2
0 and Dσμ = 0. Then we observe

∇∗∇τμ = D2τμ = D((xμ − yμ)s) = cμs = ∇∗∇cμτ,
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so in fact, by the uniqueness of solutions to the Laplace equation,

τμ = cμτ. (18)

Then we compute
∥
∥(xμ − yμ)s

∥
∥2
L2 = ∥

∥Dτμ

∥
∥2
L2 +

∥
∥σμ

∥
∥2
L2 = ‖∇τ‖2L2 +

∥
∥σμ

∥
∥2
L2 .

Summing over μ, we get
∫

B
|x − y|2|s|2dVolx = 4

∫

B
|∇τ |2 +

∑

μ

∥
∥σμ

∥
∥2
L2 = 4〈τ, s〉 +

∑

μ

∥
∥σμ

∥
∥2
L2 .

This equation has the interpretation

〈s, P0({|x − y|2 − 4G0}s)〉 =
∑

μ

∥
∥σμ

∥
∥2
L2 =

∑

μ

∥
∥P0 ◦ (xμ − yμ)s

∥
∥2
L2 . (19)

Under the identification, the directional derivatives ∇μ

Ây
can be identified as −2π i P0 ◦

(xμ − yμ) (cf. Section 3.2). Thus

〈s, 4π2P0({|x − y|2 − 4G0}s)〉 =
∑

μ

∥
∥
∥
∥∇μ

Ây
s

∥
∥
∥
∥

2

= 〈s, 
̂ Ây
s〉.

Since this holds for all s, the self adjoint operators 4π2P0 ◦ {|x − y|2 − 4G0} and 
̂ Ây

must be the same. ��
Remark. One can also derive the Laplacian formula by a calculation similar to Lemma
2.3, Lemma 2.4 in [4].

These preparations lead to

Proposition 3.5. The kernel of 
̂ Ây
on the space of invariant sections of Ê vanishes for

y ∈ R
4.

Proof. An invariant section is the same data as an element s ∈ H2
D . Then the kernel of


̂ Ây
translates into the condition

P0({
∑

μ

(xμ − yμ)2 − 4G0}s) = 0. (20)

Comparing with the proof of Lemma 3.4, this implies (cf. (19))
∑

μ

∥
∥σμ

∥
∥2
L2 = 0,

hence σμ = 0 for all μ. Now combining (17), (18),

D({|x − y|2 − 4G0}s) = 2
∑

μ

(xμ − yμ)cμs − 4Dτ = 2
∑

μ

cμDτμ − 4Dτ

= 2
∑

cμD(cμτ) − 4Dτ = 0,

(21)
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so {|x − y|2 − 4G0}s is both orthogonal to H2
D (by equation (20)) and inside H2

D (by
equation (21)), and therefore

|x − y|2s = 4τ.

In particular s has zero boundary data. Substituting this into (17), we get

(xμ − yμ)s = D(cμ

1

4
|x − y|2s) = −cμD(

1

4
|x − y|2s) − 2∇μ(

1

4
|x − y|2s)

= −cμ

1

2
(x − y) · s − (xμ − yμ)s − 1

2
|x − y|2∇μs.

So for any μ,

|x − y|2∇μs = −4(xμ − yμ)s −
∑

ν

(xν − yν)cμcνs.

From this

∇A{|x − y|2(x − y) · s} = 0.

In other words,

s = (x − y) · ρ

|x − y|4 (22)

where ρ is covariant constant in E ⊗ S+.
This forces s = 0, by the zero boundary condition. ��

Remark. This proof suggests the mechanism of singularity formation: if the discussion
is extended to singular connections, then the kernel of 
̂ Ây

can be nonzero, and (22) is
expected to describe the asymptotic profile of the kernel elements near the singularity.

Our next aim is to justify the invertibility of 
̂ Ây
, acting on the space of invariant

sections of Ê , identified as H2
D . We recall the Laplacian is always self-adjoint and

semipositive. In our context it is also bounded by the formula in Lemma 3.4. So it is
enough to prove

Lemma 3.6. For y �∈ ∂B, there is a coercive estimate on the space of invariant sections
∥
∥
∥
̂ Ây

(se−2π i z)

∥
∥
∥ ≥ C

∥
∥
∥se−2π i z

∥
∥
∥ . (23)

Here the norm of an invariant section is the norm on any fibre Êz. The constant can be
taken to be uniform for y in any compact subset of B.

Proof. Since we already know the kernel is zero, the strategy for the coercive estimate
is a compactness argument, which is delicate due to norm collapsing issues. Suppose
we have a sequence sm ∈ H2

D , with unit norms, satisfying

∥
∥
∥P0({|x − y|2 − 4G0}sm)

∥
∥
∥
L2

= 1

4π2

∥
∥
∥
̂ Ây

(sme
−2π i z)

∥
∥
∥ ≤ 1/m.

By interior regularity, we may assume sm converges smoothly to s inside B. We asso-
ciate τm = G0sm as in the previous proposition. Then τm satisfies the elliptic equation
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Aτm = sm , with the zero boundary condition, so for any large Lebesgue exponent p
of our choice,

‖τm‖L p ≤ C ‖τm‖W 2,2
0

≤ C ‖sm‖L2 ≤ C.

Here the first inequality is Sobolev embedding, and the second inequality is elliptic
regularity.

For small δ, let Bδ = {x ∈ B : dist(x, ∂B) < δ}. Let q be the conjugate exponent of
p, then

∫

B
|x − y|2|sm |2(x)dVolx

= 4
∫

B
〈τm, sm〉 + 〈{|x − y|2 − 4G0}sm, sm〉

= 4
∫

B
〈τm, sm〉 + 〈P0({|x − y|2 − 4G0}sm), sm〉

≤ C ‖sm‖Lq (B) +
1

4π2

∥
∥
∥
̂ Ây

(sme
−2π i z)

∥
∥
∥

≤ C ‖sm‖Lq (B\Bδ) + C ‖sm‖Lq (Bδ) + 1/m

≤ C ‖sm‖Lq (B\Bδ) + Cδ−1/2+1/q ‖sm‖L2(Bδ)
+ 1/m.

On the other hand, interior regularity of Dirac fields implies

dist(y, ∂B)2 ‖sm‖2L2(B)
≤ C

∫

B
|x − y|2|sm |2(x)dVolx ,

so for δ � 1, we can absorb Cδ−1/2+1/q ‖sm‖L2(Bδ)
to deduce

dist(y, ∂B)2 = dist(y, ∂B)2 ‖sm‖2L2(B)
≤ C ‖sm‖Lq (B\Bδ) + 1/m.

Hence the norm of sm cannot be lost entirely to the boundary:

‖s‖Lq (B) ≥ lim inf ‖sm‖Lq (B\Bδ) ≥ Cdist(y, ∂B)2

whereC depends only on R and the connection A. The moral is that if a higher Lebesgue
norm of a function can be controlled by a lower Lebesgue norm, then the function cannot
be concentrated in region of small measure.

In particular the limit s is nontrivial. Now we look at the equation

|x − y|2sm − 4τm = P0(|x − y|2sm − 4τm) + Dtm, τm = G0sm,

where tm is just some element in W 1,2
0 . When we take the weak limit, we get

|x − y|2s − 4τ = Dt, τ = G0s.

Thus despite the possiblity of partial norm collapsing, the limit s still satisfies

P0({|x − y|2 − 4G0}s) = 0,

or in other words,


̂ Ây
(se−2π i z) = 0

which implies s = 0, a contradiction. ��
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Hence we finally achieved

Proposition 3.7. For y /∈ ∂B, the Laplacian 
̂ Ây
is invertible on the space of invariant

sections of Ê .

Remark. The subtle argument in the lemma involving norm collapsing reflects the gen-
uine distinction between interior points and the boundary. The coercivity estimate is

expected to fail on the boundary, so that ˆ̂E would not extend to a smooth bundle on R4;
otherwise the original ASD connection A would extend to a global connection on R

4,
which would be very surprising.

We can therefore define the inverse operator Ĝ y = (
̂ Ây
)−1, for y /∈ ∂B, on the

space of invariant sections of Ê . We collect a few formal consequences:

Corollary 3.8. The operator D̂−
Ây

: 	(R̂4, Ê ⊗ S−) → 	(R̂4, Ê ⊗ S+), when restricted

to the invariant sections, is a surjective map. Morever, the orthogonal projection from

H2
D ⊗ S− to the kernel ˆ̂Ey is given by

P̂y = 1 − D̂+
Ây
Ĝ y D̂

−
Ây

. (24)

Proof. Since Ây is ASD, we have 
̂ Ây
= D̂−

Ây
D̂+

Ây
. The surjectivity follows from the

explicit formula for a preimage, given by the operator D̂+
Ây
Ĝ y . To see the orthogonal

projection formula, one also needs to check D̂+
Ây

and D̂−
Ây

are adjoint on the invariant

sections. ��
Corollary 3.9. The bundle ˆ̂E is nonsingular over y �∈ ∂B. Morever, the natural connec-

tion ˆ̂A is ASD.

Proof. The nonsingularity is a formal consequence of a smooth formula for the orthog-
onal projection P̂y ; here the word bundle is interpreted as a Hermitian vector bundle
with fibres possibly being Hilbert spaces.

The ASD condition is implied by the following curvature formula for ˆ̂A analogous
to (10), which relies on formula (24) for the projection operator. At the point y ∈ B, we

have ˆ̂F ∈ End( ˆ̂Ey) ⊗ �2T ∗
y (R4),

ˆ̂F = −(2π)2 P̂y Ĝ y ⊗
∑

μ,ν

ĉμĉνdxμ ∧ dxν, (25)

where P̂y Ĝ y acts on the 	(Ê) factor of ˆ̂Ey , and ĉμĉν acts on the spin factor. ��
We next wish to show the inverse Nahm transform vanishes in the exterior of B.

Corollary 3.10. The inverse Nahm transform ˆ̂Ey = 0 for y /∈ B̄.
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Proof. Since we know the bundle is nonsingular in the exterior region, the rank is

constant, so it is only necessary to show ˆ̂Ey = 0 for |y| � 1. But we know

D̂−
Ây

= D̂−
Â
+ 2π i

∑
yμĉμ = 2π i(1 + D̂−

Â
(2π i

∑
yμĉμ)−1)

∑
yμĉμ,

and D̂−
Â
acting on invariant sections is a bounded operator, so for large |y|, the Dirac

operator is merely a small perturbation of the invertible operator 2π i
∑

yμĉμ, hence

itself invertible, implying the kernel ˆ̂Ey = 0. ��

3.6. The canonical map. To study the canonical map α : E → ˆ̂E , we look at

vx (z) = 4π exp(−2π i z(x))
∑

j

ε̂(Gzψ
j
z (x)) ⊗ f̂ j (z) ∈ E∗

x ⊗ S− ⊗ Êz, (26)

where x ∈ B is a parameter. For x1, x2 ∈ B, we consider the correlator function
〈vx1(z), vx2(z)〉Êz⊗S− , meaning we contract the Êz and the S− factor, to get a matrix in
Hom(Ex2 , Ex1). We aim to derive a formula for the correlators, by adapting arguments
in [4].

Proposition 3.11 (cf. [4], Lemma 2.6). The correlator is

〈vx1(z), vx2(z)〉Ê⊗S− = 4π2G0(x1, x2)|x1 − x2|2 (27)

which is independent of z.

Proof. Since 〈ε̂(v), ε̂(w)〉 = 〈w, v〉, we calculate
〈vx1(z), vx2(z)〉Êz⊗S−

= (4π)2 exp(2π i z(x1 − x2))〈
∑

j

ε̂Gzψ
j
z (x1) ⊗ f j (z),

∑

k

ε̂Gzψ
k
z (x2) ⊗ f k(z)〉Êz⊗S−

= (4π)2 exp(2π i z(x1 − x2))TrS−
∑

j

|Gzψ
j
z (x1)〉〈Gzψ

j
z (x2)|.

(28)

Here the bra-ket notation indicates 〈Gzψ
j
z (x2)| ∈ E∗

x2 and |Gzψ
j
z (x1)〉 ∈ Ex1 .

The expression
∑

j |Gzψ
j
z (x1)〉〈Gzψ

j
z (x2)| can be viewed as the Schwartz kernel

of an operator acting on 	(B, E ⊗ S−), which converts a section h with independent
variable x2 to a section with independent variable x1. This can be factorised into several
steps. The first step sends h to

∑

k

f̂ k(z)
∫

B
〈Gzψ

k
z (x2), h(x2)〉dVolx2 = PzGz(h).

Here the equality uses the self-adjointness of Gz , and the decomposition formula for

the projection Pz = ∑
f̂ k〈 f̂ k, ·〉. The second step contracts the Êz factor with f̂ j to
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get a number, multiplies the result by Gzψ
j
z (x1), and sums over j . Using again the

decomposition formula for the projection, the result is
∫

B

∑

j

|Gzψ
j
z (x1)〉〈Gzψ

j
z (x2)|h(x2)dVolx2 = evx1 ◦ Gz PzGz(h). (29)

Nowwe simplify the formula and take the trace over the spinor factor S−. The projec-
tion can be written as Pz = 1−D+

Az
GzD

−
Az
. Hence using that the Clifford multiplication

cμcν can contribute to the spinor trace if and only ifμ = ν, we see that (using summation
convention)

TrS−(Gz PzGz) = TrS−(G2
z − Gzcμ∇μ

Az
Gzcν∇ν

Az
Gz) = TrS−(G2

z + Gz∇μ
Az
Gz∇μ

Az
Gz).

Now we use the formula Gz∇μ
Az
Gz = 1

4π i
∂Gz
∂zμ

(see [4], Lemma 2.2) to simplify:

Gz∇μ
Az
Gz∇μ

Az
Gz = 1

4π i

∂Gz

∂zμ
∇μ

Az
Gz

= 1

4π i

∂

∂zμ
(Gz∇μ

Az
Gz) − 1

4π i
Gz

∂

∂zμ
(∇μ

Az
Gz)

= −1

(4π)2

∂2Gz

∂z2μ
− 1

4π i
Gz∇μ

Az

∂Gz

∂zμ
− 1

4π i
Gz[ ∂

∂zμ
,∇μ

Az
]Gz

= −1

(4π)2

∂2Gz

∂z2μ
− Gz∇μ

Az
Gz∇μ

Az
Gz − 2G2

z .

From this we see

TrS−(Gz PzGz) = TrS−(G2
z + Gz∇μ

Az
Gz∇μ

Az
Gz)

= −1

(4π)2

∂2Gz

∂z2μ
. (30)

Here we need to take into account the fact that S− is 2-dimensional, so contributes twice
to the trace.

Combining the above,weget the formula for the correlator by comparing theSchwartz
kernel of operators:

〈vx1(z), vx2(z)〉Êz⊗S− = − exp(2π i z(x1 − x2))
∑

μ

∂2Gz

∂z2μ
(x1, x2).

Furthermore, we have 
Az = e−2π i z
Ae2π i z, so the Green’s function is Gz(x, y) =
exp(−2π i z(x − y))G0(x, y). From this we see

− exp(2π i z(x − y))
∑

μ

∂2Gz

∂z2μ
(x, y) = 4π2G0(x, y)|x − y|2.

The claim follows. ��
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Given ξ ∈ Ex , the image under the canonical map α : E → ˆ̂E is precisely the

invariant section 〈vx , ξ 〉 ∈ 	(R̂4, Ê ⊗ S−). We show that the canonical map α preserves
the structures (cf. [4], Theorem 2.8 and 2.9).

Proposition 3.12. The canonical map α preserves the Hermitian metric.

Proof. The Green’s function has the short distance asymptotic expansion

Gz(x, y) = 1

4π2|x − y|2 {I −
∑

μ

(Aμ(x) + 2π i zμ)(xμ − yμ) + O(|x − y|2)}.

(31)

From this we see

〈vx (z), vy(z)〉Ê⊗S− = 4π2G0(x, y)|x − y|2 = I

−
∑

μ

Aμ(x)(xμ − yμ) + O(|x − y|2). (32)

Thus the norm square of 〈vx , ξ 〉 can be calculated by first extending ξ to be part of
a local orthonormal frame, and then taking the limit y → x . This yields |〈vx , ξ 〉|2 =
〈ξ |I |ξ 〉 = |ξ |2, by looking at the lowest order in the expansion. ��
Proposition 3.13. The canonical map α preserves the connection matrix.

Proof. Let ξ and ξ ′ be two local sections of E , fitting into a local orthonormal frame of

E . These map to v
ξ
x = 〈vx , ξ 〉 and v

ξ ′
x = 〈vx , ξ ′〉. The connection matrix on ˆ̂E at the

point x ∈ B is specified by knowing 〈vξ ′
x , d

dy |xvξ
y 〉(x). But this can be calculated from

the expansion of the Green’s function above, which implies the required

〈vξ ′
x ,

d

dy
|xvξ

y 〉(x) =
∑

μ

〈ξ ′, Aμ(x)ξ 〉dxμ = 〈ξ ′,∇Aξ 〉.

��

3.7. The reconstruction theorem. We derive the main reconstruction theorem 1.1 as-
suming the following Lemma on Fredholm index, which we shall prove later in Section
6.1.

Lemma 3.14. Assume B̄ is diffeomorphic to the unit 4-ball with boundary. The index
of the Dirac operator D̂−

Ây
acting on the space of invariant sections equals rank(E) for

y ∈ B.

Theorem 3.15 (Reconstruction). Let B be a bounded domain in R
4, such that B̄ is

diffeomorphic to the unit 4-ball with boundary, and A is a smooth ASD connection on

B̄. The canonical map α : E → ˆ̂E is an isomorphism over B, preserving the Hermitian

metric and the connection, and in the exterior of B the inverse Nahm transform ˆ̂E
vanishes.

Proof. By Corollary 3.10, the inverse Nahm transform vanishes in the exterior region.
By Corollary 3.8, the operator D̂−

Ây
is surjective, so its kernel dimension is equal to

the index. For y ∈ B, by the Lemma above the index is rank (E), so rank (
ˆ̂E) =
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rank (E). By Proposition 3.12, the canonical map α is an injective isometry, so must be

an isomorphism. The connection A agrees with ˆ̂A by Proposition 3.13. ��
We now discuss the result from a number of perspectives.

Remark. The reconstruction theorem is anologous to the Cauchy integration formula in
complex analysis, which says the contour integral

1

2π i

∮
f (ζ )

ζ − z
dζ

vanishes for z in the exterior region of the contour, and reproduces the holomorphic
function f in the interior domain.

Remark. Viewed in another way, the reconstrction theorem means there is a canonical
embedding of E inside the trivial Hilbert bundle H2

D ⊗ S−. Then (27) has the interesting
interpretation:

Corollary 3.16. The Green’s function G0(x, y) on the original bundle is related to the
embedding data by

G0(x, y) = 1

4π2|x − y|2 〈vx (0), vy(0)〉H2
D⊗S− ∈ Hom(Ey, Ex ). (33)

Similar results are known in the context of the usual ADHM construction (cf. equation
(29) in [6]).

Remark. Theorem 1.1 links ASD connections to operator theory via the ADHM inter-
pretation. Donaldson proved in [9] a Runge approximation type theorem, which says
that ASD connections on domains can be C∞ approximated on compact subsets up to
gauge, by restrictions of global ASD connections over S4 for arbitrarily large second
Chern class. This suggests that on the operator theory side, one may approximate x̂μ

in some sense by finite rank Hermitian operators satisfying the ADHM equation. It is
interesting to ask how this may be proved using purely operator theoretic techniques.

Remark. The ADHM data (H2
D, x̂μ) resembles the key concept of ‘spectral triple’ in

noncommutative geometry (NG) [8], and the ADHM type equation (11) fits into the
basic philosophy of NG, namely to encode geometry by operator algebras.

4. The Spectral Problem

For a smooth ASD connection A on B = B(R) ⊂ R
4, we wish to understand the

Bergmann space H2
D = {s ∈ L2(B, E ⊗ S−) : D−

A s = 0}, whose elements are called
Dirac fields, by studying the spectrum of a natural operator on H2

D , which physically is
just the Hamiltonian of a harmonic oscillator (cf. Section 4.1).

We are interested in the behaviour of H2
DA

as A develops a curvature singularity at the
origin. This means A is a member of a sequence Ai (or a 1-parameter family At ), which
is uniformly bounded to all orders on the complement of any given neighbourhood of the
origin. We derive uniform estimates to control the eigenstates associated to the spectral
problem. These are based on the Weitzenböck formula. The picture emerging from the
analysis is the following:

The spectrum is divided into 3 characteristic ranges: λ � 1, the intermediate range,
and λ ∼ 1.
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• If the eigenvalue is bounded below by a positive constant, then the solution has good
interior Morrey type bound. (cf. (44))

• If the eigenvalue is bounded above away from 1, then the solution has good bounds
away from the origin (cf. Proposition 4.4 and its ensuing Remark).

• If the eigenvalue is small, then the density of the eigenstate is concentrated near the
origin (cf. (36)).

• If the eigenvalue is close to 1, then the density of the eigenstate is concentrated near
the boundary (cf. (37)).

4.1. The spectral problem. Let A be anASD connection on B = B(R), which is smooth
up to the boundary. We introduce a functional on the Bergmann space H2

D ,

H(s) = 1

2R2

∫

B(R)

|x |2|s|2dVol. (34)

Physically this is the Hamiltonian of a harmonic oscillator.
Now H defines a Hermitian form, which in the presence of the L2 inner product

defines a bounded self-adjoint operator L acting on H2
D . We observe

Lemma 4.1. The operator L = 1/2 + K where K is a compact operator.

Proof. We can write L−1/2 as the operator norm limit of a sequence of linear operators
Li corresponding to the Hermitian forms

Hi (s) = 1

2

∫

B((1−1/ i)R)

(|x |2R−2 − 1)|s|2dVol.

But each Li is a compact operator becasuse the L2 norm of a Dirac field controlls all
interior higher order derivatives. Compact operators are closed under norm limits, so
L − 1/2 must be compact as well. ��

Standard functional analysis implies that L has discrete spectrum; this amounts to
the simultaneous diagonalisation of the the Hermitian form H and the L2 inner product,
and is computable by the Rayleigh-Ritz method.

Remark. We have by definition
∫

B

|x |2
R2 |s|2dVol = λ2

∫

B
|s|2dVol, (35)

so 0 < λ < 1. We make an elementary observation that when λ � 1, the eigenstate s is
concentrated near the origin: for any fixed 0 < r < R,

∫

B\B(r)
|s|2 ≤ λ2R2

r2

∫

B
|s|2. (36)

Heuristically, the small eigenvalue eigenstates describe particles trapped in the potential
well, analogous to bound states in physics. If A has very concentrated curvature, we
expect the characteristic length scale λ of the eigenstates corresponding to the small
eigenvalues to be roughly the same as the length scale of the curvature of A.

On the opposite extreme, if the eigenvalue is close to 1, then the eigenstate s is
concentrated near the boundary: for any fixed 0 < r < R,

∫

B(r)
|s|2 ≤ (1 − λ2)R2

R2 − r2

∫

B
|s|2. (37)
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We now characterise the eigenstates s of L:

Proposition 4.2 (Characterisation of eigenstates). There is a unique section ζ in W 1,2
0

(B, E ⊗ S+), such that
{
D−

A s = 0

D+
Aζ = (

|x |2
2R2 − λ2

2 )s.
(38)

Proof. If s ∈ H2
D is an eigenstate of L with eigenvalue λ2

2 , then (
|x |2
2R2 − λ2

2 )s is orthogonal

to all elements in the space H2
D in the L2 sense, by linear algebra. This implies the second

equation above by using the decomposition

L2(B, E ⊗ S−) = D+
AW

1,2
0 (B, E ⊗ S+) ⊕ H2

D.

Here ζ is unique because by a standard Weitzenböck formula, there is no coupled Dirac
field with positive spin and zero boundary condition. ��

4.2. TheWeitzenböck formula. The well knownWeitzenböck formula says that because
A is ASD,

D2 = D−
A D

+
A = 
A

acting on the coupled positive spinor ζ ; the curvature effect is not directly visible. Thus
ζ enjoys more favourable analytic properties compared to the negative spinors, so we
shall mainly focus on ζ when deriving the estimates.

Notice equation (38) implies

D2ζ =
∑

i

xi ci
R2 s = x · s

R2 ,

which, by an application of Weitzenböck formula, gives

− 
|ζ |2 = 2|∇ζ |2 − 2Re〈ζ,
x · s
R2 〉, (39)

where our convention of the Hodge Laplacian is 
 = −∑
i ∇i∇i . Integrating the iden-

tity, we obtain:
∫

B
|∇ζ |2 = Re

∫

B
〈ζ,

x · s
R2 〉dVol.

Here the boundary term does not appear because ζ vanishes on the boundary.

Lemma 4.3 (W 1,2 estimate of ζ ).
∫

B
|∇ζ |2 ≤ Cλ2

∫

B
|s|2. (40)

As a consequence,
∫

B

|ζ |2
|x |2 dVol ≤ Cλ2

∫

B
|s|2. (41)

Here C is an absolute constant.
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Proof. By the Poincaré inequality,
∫

B
|∇ζ |2 = Re

∫

B
〈ζ,

x · s
R2 〉 ≤ 1

R2 (

∫

B
|ζ |2)1/2(

∫

B
|x |2|s|2)1/2

≤ C1/2R−1(

∫

B
|∇ζ |2)1/2(

∫

B
|x |2|s|2)1/2,

so (40) follows by
∫

B
|∇ζ |2 ≤ CR−2

∫

B
|x |2|s|2 = Cλ2

∫

B
|s|2.

The inequality (41) follows fromHardy’s inequality, by noticing that ζ has zero boundary
condition. ��
Proposition 4.4. Given constants0 < r < R and0 < C ′′ < 1, in the annulus regionr ≤
|x | ≤ R, if we normalise s to have unit L2 norm, then for eigenstates with eigenvalues
satisfying λ < C ′′,we have smooth estimates on s and ζ to all orders, which are uniform
in A in the setup of this Chapter.

Proof. We can rewrite (38) as

DA(
1

|x |2 − λ2R2 DAζ ) = 0.

This equation is elliptic with uniformly bounded coefficients away from the locus {|x | =
λ} and the origin, so by the L2 estimate and the zero boundary condition on ζ , we obtain
uniform smooth estimates of ζ in such region.

Near the locus {|x | = λ} we can use the local elliptic regularity of the Dirac equation
to estimate s to all orders, which implies the uniform elliptic estimates on ζ to all orders.

��
Remark. If we drop the condition λ < C ′′, the arguments above still imply uniform
smooth bounds on s away from both the origin and ∂B.

4.3. Large eigenvalues imply interior control. We study the situation where the eigen-
value is positively bounded below.

λ > C ′ > 0. (42)

Lemma 4.5. We have the estimate
∫

B(R)

1

|x |2 |∇ζ |2dVol ≤ C

R2

∫

B
|s|2 (43)

where C is an absolute constant.

Proof. We interpret (39) as a Poisson equation for |ζ |2, with zero boundary data. The
Green representation formula gives

|ζ |2(0) = 1

4π2

∫

B(R)

(
1

R2 − 1

|x |2 ){2|∇ζ |2 − 2Re〈ζ,
x · s
R2 〉}dVol.
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By rearranging terms and applying Cauchy-Schwartz inequality,

|ζ |2(0) + 1

4π2

∫

B
(− 1

R2 +
1

|x |2 )|∇ζ |2 ≤ C

R2

∫

B
|x |−1|s||ζ | ≤ C

R2 (

∫

B
|s|2)1/2(

∫

B

|ζ |2
|x |2 )1/2.

Nowwe use the consequence of Hardy’s inequality (41) to bound the RHS by an absolute
constant. We then use the L2 gradient estimate on ζ (cf. (40)) to drop

∫

B
1
R2 |∇ζ |2 from

LHS, and drop the term involving |ζ |2(0) to see the claim. ��
Proposition 4.6 (Interior Morrey estimate for large eigenvalues). We have

∫

B

1

|x |2 |s|2dVol ≤ C

λ4R2

∫

B
|s|2 (44)

where C is an absolute constant. In particular, if λ is bounded positively below, then for
any 0 < r < R, we have the Morrey decay estimate

∫

B(r)
|s|2 ≤ Cr2

R2

∫

B
|s|2. (45)

Proof. We apply (38) and the above Lemma to see
∫

B
(
λ2

2
− |x |2

R2 )2
|s|2
|x |2 dVol ≤ C

R2

∫

B
|s|2.

The result is then clear. ��
Remark. This estimate, ultimately due to the Weitzenböck formula, is highly non-
perturbative because it holds even when there can be an arbitrarily large amount of
curvature concentrating to the origin. The intuition is that if λ is bounded below by some
positive constant, then the characteristic length scale of the Dirac field is much larger
than the scale of the concentrated curvature, hence the curvature singularity is not very
visible to the solution.

5. Convergence Theory for Bergmann Spaces

Given a sequence Ai or a one-paramter family {At }t>0 of smooth ASD connections on B̄
forming a curvature singularity at the origin (cf. the setup in Chapter 4) with uniformly
bounded L2 curvature. Away from the origin, we assume the connections converge
in C∞

loc to a connection A∞ on E |B\{0}, which is necessarily smooth and ASD with
finite L2 curvature, so by the removable singularity theorem (E |B\{0}, A∞) extends
to (Ẽ, A∞). Here Ẽ is conceptually a different topological bundle from E , although
their L2 sections can be identified. We may assume A∞ has small L2 curvature, by
possibly shrinking B. The convergence problem asks for a limiting description of the
corresponding Bergmann spaces H2

DA
.

The basic picture is that the part of the spectrum for A above a threshold value
converges to the spectrum for A∞ (cf. Theorem 5.2, Proposition 5.3); the 1-parameter
family of Bergmann spaces H2

DAt
converge in a natural way to H2

DA∞ ⊕ V where V is a
finite dimensional space (cf. Theorem 5.14); the natural operators on Bergmann spaces
extend naturally to the limit space (cf. Proposition 5.15, 5.16). This picture is somewhat
analogous to a flat family of holomorphic vector bundles degenerating into a coherent
sheaf.
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5.1. Convergence of eigenstates. We consider a sequence of eigenstates si associated
to the connections Ai , with ‖si‖L2 = 1, the eigenvalues 0 < λi < 1 and corresponding
coupled positive spinor fields ζi solving (38), and we ask for a convergence theory of
si . Without loss of generality λi → λ∞ converges, after taking subsequence. The basic
picture of Chapter 4 implies:

• If λi → 0, then the density of si is concentrated to the origin, so si converges to
zero weakly.

• If λi → 1, then the density of si is concentrated to the boundary, so si converges to
zero weakly.

Now let us assume the uniform two sided eigenvalue bound 0 < C ′ < λi < C ′′ < 1.
By the main results of Chapter 4, in any given annulus region 0 < r ≤ |x | ≤ R, we have
uniform smooth estimates on all the data λi , si , ζi , so we can extract a subsequence to
ensure smooth convergence, by standard compactness arguments. A standard diagonal
argument implieswe can assumeC∞

loc convergence away from the origin, to the limiting
data λ∞, s∞ and ζ∞, which satisfy the limiting version of (38) on B\{0}.

Since we have uniform estimates ‖si‖L2 = 1 and ‖ζi‖W 1,2 ≤ C (cf. (40)), and the
norms cannot increase in the limit, so the same estimates hold for s∞ and ζ∞. By elliptic
regularity of this limiting PDE system, the limiting data extend smoothly across the
origin to give a solution of (38).

Crucially, we claim strong convergence of si to s∞ inside L2. The only possible
issue is to lose L2 mass to the origin. But this cannot happen thanks to the uniform
interior Morrey estimate (44).

In particular, the norm of s∞ does not collapse to zero, so s∞ ∈ H2
DA∞ is an eigenstate

with eigenvalue λ∞.

5.2. The spectral gap. A rather striking consequence of Section 5.1 is

Corollary 5.1 (Spectral gap). Suppose the minimal eigenvalue λ for the system (38)
corresponding to the limiting connection A∞ isλ0 > 0. Then eitherλ∞ = 0 orλ∞ ≥ λ0.

Proof. If the limit of eigenvalues λ∞ �= 0, then we can assume a positive lower bound
on λi . Unless λ∞ = 1, we can also assume an upper bound smaller than 1. So we are in
the situation above and we see the result from the good convergence theory. ��
Remark. If A∞ is the trivial flat connection, then the associated minimal eigenvalue
λ0 = √

2/3. This is because in the flat case any Dirac field satisfies the standard Laplace
equation, so |s|2 is subharmonic, hence the mean value inequality implies a lower bound
on the functional (34) on Dirac fields with unit norm, which achieves equality exactly
when s is parallel.

A standard compactness argument shows amore effective version of the spectral gap:

Theorem 5.2 (Effective spectral gap). For 0 < ε � 1, there is a large N, such that for
i ≥ N, any eigenvalue λi in the system (38) corresponding to the connection Ai satisfies
the dichotomy

0 < λi < ε, or λi > λ0 − ε.

Remark. It is curious what the physical interpretation of the spectral gap should be.
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The spectral gap theorem suggests us to separate the spectrum associated to Ai into
two parts: the large spectrum with λ > λ0 − ε, and the small spectrum with λ < ε.
Correspondingly, the Bergmann spaces decompose as

H2
DAi

= (H2
DAi

)large ⊕ (H2
DAi

)small .

5.3. Convergence in the large spectrum. The convergence theory for eigenstates can be
rather formally extended to a convergence theory for the large spectrum. For any given
Ai , let s

j
i be an orthonormal basis of eigenstates belonging to the large spectrum, where

j is arranged in increasing order of eigenvalues (counting multiplicity). We associate
the data ζ

j
i and λ

j
i in a self explanatory way. We will show

Proposition 5.3 (Spectral convergence). The large spectrum for Ai converges to the
spectrum of the smooth limit A∞, i.e. if we index the eigenvalues associated to A∞ in
increasing order (counting multiplicity) as λk0, then

λk0 = lim
i→∞ λki . (46)

Remark. We will henceforth often suppress mentioning taking subsequences, and we
shall tacitly use diagonal arguments. A posteriori we shall see that this is not necessary
due to the uniqueness of limit.

We first introduce an algorithm. By previous work in this Chapter, either λ1i → 1,
or they satisfy two sided bounds so that s1i converges strongly to s1∞, which is some
eigenstate in H2

A∞ with eigenvalue λ1∞. In the first case, we terminate and define λk∞ = 1

for all k. In the second case, we proceed with λ2i . We either terminate after a finite stage
(which a posteriori does not happen), or continue indefinitely to achieve a sequence
of limiting eigenstates sk∞ with eigenvalues λk∞, which must be orthonormal by strong
convergence. The algorithm implies

Lemma 5.4 (Generalised spectral gap).

λk∞ ≥ λk0. (47)

The equality is achieved precisely if every eigenvalue λk0 for A∞ arises as subsequential
limits of eigenvalues, including multiplicity.

Our next step is to show

Lemma 5.5. If s ∈ H2
DA∞ , then it is a strong L2 limit of sections of H2

DAi
.

Proof. As preparation, we study the decomposition of L2(E ⊗ S−) = D+
Ai
W 1,2

0 ⊕H2
DAi

for varying connections Ai . Let s ∈ L2(E ⊗ S−) be a smooth section, with unique
decomposition

s = DAi τi + σi . (48)

Notice by orthogonality

‖s‖2L2 = ∥
∥DAi τi

∥
∥2
L2 + ‖σi‖2L2 . (49)
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Now since τ has positive spin and zero boundary condition, theWeitzenböck formula im-
plies

∥
∥DAi τ

∥
∥2
L2 = ∥

∥∇Ai τi
∥
∥2
L2 . By Poincaré inequality for functions with zero boundary

data,

‖τi‖L2 ≤ CR ‖d|τi |‖L2 ≤ CR
∥
∥∇Ai τi

∥
∥
L2 .

Thus ‖si‖L2 controls both ‖τi‖W 1,2
0

and ‖σi‖L2 .

By the norm control, on every annulus 0 < r ≤ |x | ≤ R we can extract smoothly
convergent subsequences for τi and σi . Hence we have smooth convergence on 0 <

|x | ≤ R to the limiting data (τ∞, σ∞), for which the limiting version of (48) holds, and
morever ‖τ∞‖W 1,2

0
≤ C , ‖σ∞‖L2 ≤ C . Notice the equation

D2
A∞τ∞ = DA∞s

implies that τ∞ extends to a smooth section, so σ∞ is also smooth. It is clear that the
norm identity (49) holds in the limit, namely

‖s‖2L2 = ∥
∥∇A∞τ∞

∥
∥2
L2 + ‖σ∞‖2L2 .

But Fatou’s lemma implies that

lim inf ‖τi‖2 ≥ ‖τ∞‖2 , lim inf ‖σi‖2 ≥ ‖σ∞‖2 .

So the only possibility is for equalities to be achieved everywhere, i.e.

lim ‖τi‖2 = ‖τ∞‖2 , lim ‖σi‖2 = ‖σ∞‖2 .

The non-collapsing of norms imply that σi converges strongly to σ∞ in L2. Notice also
that since the subsequential limit is unique, in fact the whole sequence has to converge.

Now by an approximation argument on s, it is clear that the smoothness of s is not
essential. We specialise to the case s ∈ H2

DA∞ . Then s = σ∞ and the claim follows. ��
Corollary 5.6. If morever s is an eigenstate for A∞, for which the eigenvalue λm0 has
multiplicity one, then we may assume the sequence consists of eigenstates as well. If
the eigenvalue is degenerate, we need to take linear combinations of eigenstates with
approximately the same eigenvalue. In particular λm0 arises as a limit of eigenvalues.

Proof. We argue in the nondegenerate case (the degenerate case has only a little more
combinatorial complexity). The crucial point is that the spectrum is discrete. There are
only finitely many eigenvalues below λm0 :

λ10 ≤ λ20 · · · ≤ λm−1
0 < λm0 < λm+1

0 ≤ · · ·
Consider the spectral decomposition

σi =
∑

j

a j s
j
i + (small spectrum contribution).

By the generalised spectral gap lemma, there are essentially at most m − 1 eigenvalues
λki bounded above by λm−1

0 + ε < λm0 . For these eigenvalues the eigenstates are almost
orthogonal to s when i is large, because they converge to eigenstates with lower eigen-
values. So their corresponding Fourier coeffients a j in the spectral decomposition must
go to zero. But once we are not allowed to have contributions from low eigenvalues,
then for overall L2 mass reasons, neither are we allowed to have contributions from
eigenvalues larger than λm+1

0 − ε > λm0 . ��
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Once we know λk0 arises as limits of eigenvalues, Proposition 5.3 follows from the
generalised spectral gap Lemma. We leave the reader to ponder the issue of multiplicity.
As remarked earlier, the limit of λki turns out a posteriori to be independent of the
subsequence.

5.4. The limit of the Bergmann spaces. From last section, one has the appealing picture
that H2

DA∞ is the limit of (H2
DAi

)large, while the small spectrum is lost in the naïve

smooth limit. In this Section we give a more operator theoretic perspective; the main
result is Proposition 5.14.

The first step is to study a comparison map between (H2
DAi

)large and H2
DA∞ . To save

some writing, we will often suppress sequential indices i . Recall DA and DA∞ induce
two decompositions of L2. In particular, the two Bergmann spaces H2

DA
and H2

DA∞
project to each other, via the operator P : H2

DA∞ → H2
DA

and its adjoint P†. Thus there
are canonical maps

πP : H2
DA∞ → H2

DA

project−−−→ (H2
DA

)large (50)

and its adjoint

(H2
DA

)large → H2
DA

→ H2
DA∞ . (51)

Lemma 5.7. The canonical map πP : H2
DA∞ → (H2

DAi
)large ⊂ L2 converges to the

identity operator IH2
DA∞

in the operator norm, as i → ∞.

Proof. Pick any s ∈ H2
DA∞ , which is normalised to ‖s‖L2 = 1. We have the decompo-

sition

s = DAτ + σ + σ ′ (52)

where τ ∈ W 1,2
0 , σ ∈ (H2

DA
)large and σ ′ ∈ (H2

DA
)small . Here σ is the image of the

canonical map. Then

‖∇Aτ‖2L2 + ‖σ‖2L2 +
∥
∥σ ′∥∥2

L2 = ‖s‖2L2 . (53)

In particular, τ is bounded in L2. We also have

D2
Aτ = DAs = (DA − DA∞)s,

so D2
Aτ is L2 small away from the origin, whereby τ is W 2,2

loc (B\{0}) bounded. We can

therefore assume τ to converge strongly in W 1,2
loc (B\{0}) as i → ∞. The limit τ∞ is

globally bounded in L2, has zero boundary condition, and satisfies the Laplace equation,
so must be zero. Thus in the sequence, τ must be W 1,2 close to 0 away from the origin,
with bounds independent of s. In particular, DAτ is L2 small away from the origin.

Notice also
∫

B
|x |2R−2|σ ′|2dVol �

∫

B
|σ ′|2 ≤ 1.
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Therefore s is L2 close to σ away from the origin. In particular, since the Dirac equation
implies s has pointwise bound near the origin, we have for fixed δ � 1,

∫

B(R)\B(δR)

|s|2 ≥ (1 − Cδ4)

∫

B(R)

|s|2,

so by the above argument, when i is sufficiently large depending only on δ,
∫

B(R)\B(δR)

|σ |2 ≥ (1 − Cδ4)

∫

B(R)

|s|2.

Comparing with the partition of norm (53),

‖DAτ‖L2 ≤ Cδ2 ‖s‖L2 ,
∥
∥σ ′∥∥

L2 ≤ Cδ2 ‖s‖L2

so ‖s − σ‖L2 ≤ Cδ2 ‖s‖L2 . The constants are independent of s. Since δ is arbitrary,
this proves the result. ��
Lemma 5.8. The canonical comparison map πP for Ai is surjective for i � 1.

Proof. Since Lemma 5.7 implies the coercivity of πP , the image is closed. The cokernel
of πP is the kernel of (51), which means s ∈ (H2

DA
)large, and s = DA∞τ , for τ ∈ W 1,2

0 .
If the cokernel does not vanish for a subsequence of connections Ai , we normalise s to
‖s‖L2 = 1, and derive a contradiction by a compactness argument as follows.

First, A∞ is ASD, so Weitzenböck formula implies
∥
∥∇A∞τ

∥
∥
L2 = ∥

∥DA∞τ
∥
∥
L2 =

‖s‖L2 = 1, hencebyPoincaré inequality‖τ‖L2 is controlled.Now τ satisfies DAi DA∞τ =
0, with the zero boundary condition, hence it is controlled to any order away from the
origin. Any subsequential limit of τ must be zero, by the same argument as in last
Lemma. This implies τ converges to zero smoothly in the punctured disc; so must s,
which means the L2 mass of s is concentrated at the origin. But s lives in the large
spectrum, so

∫

B(R)
|x |2R−2|s|2 ≥ C ‖s‖2L2 , contradiction. ��

Corollary 5.9. For large i , the canonical map πP is an isomorphism. Morever, it is
close to being a unitary equivalence:

∥
∥
∥(πP)† − (πP)−1

∥
∥
∥ → 0, as i → ∞.

We next study the small spectrum H2
DA

. Here it is more convenient to set up the
problem in terms of a one-parameter family (At )t>0 of ASD connections converging
smoothly away from the origin. This is more suited to continuity arguments.

Proposition 5.10. For large t so that the curvature is sufficiently concentrated, the di-
mension of the small spectrum is constant in the family.

Proof. Imagine t to flow from a large number to ∞. By general functional analysis, the
eigenvalues flow continuously. But spectral gap (cf. Theorem 5.2) prevents the spectral
flow between the large spectrum and the small spectrum, so the dimension of the small
spectrum must be a constant finite number. ��
Remark. The concept of small spectrum is only meaningful in the large t limit.

By examining the comparison map πP in the limit t → ∞, we see
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Lemma 5.11. For large t, the operator P : H2
DA∞ → H2

DAt
is Fredholm, with index

being the negative of the dimension of the small spectrum.

Lemma 5.12. The Bergmann spaces H2
DAt

fit into a Hilbert bundle over the half line
0 < t < ∞.

Proof. Consider t near t0, and the natural projection operator H2
DAt

→ H2
DAt0

. This is

an isomorphism by the argument proving πP to be an isomorphism. ��
Lemma 5.13. For large t < ∞, the subspaces (H2

DAt
)small fit together into a vector

bundle.

Proof. As a general fact, consider a family of operators depending smoothly on a pa-
rameter t , with discrete spectrum consisting of eigenvalues. If we fix a spectral domain
� ⊂ C, and consider the projection operator to the the span of the eigenspaces for all
the eigenvalues inside �, then as long as no eigenvalue crosses the boundary of �, the
projection operator depends smoothly on t , and the image has constant dimension. (cf.
Appendix of [14]). ��
Theorem 5.14 (Natural limit of Bergmann spaces). Let V be an inner product space
with the dimension of the small spectrum. Then there is a natural topological bundle
over 0 < t ≤ ∞, whose fibres over 0 < t < ∞ agree with the Bergmann space H2

DAt
,

and the fibre over ∞ is H2
DA∞ ⊕ V .

Proof. It suffices to assign a trivialisation near∞. One can use the isomorphismprovided
by the canonical comparison map (50) to deal with the large spectrum part. To trivialise
the small spectrum part, one notices there is a canonical connection on the bundle⊔

∞>t>t0�1(H
2
DAt

)small coming from the embedding into L2. Over the one dimensional
base (t0,∞), this connection gives a parallelisation of this finite rank bundle compatible
with the Hermitian structure, which can be extended to the ∞ fibre by formally adding
a copy of V . ��

5.5. Natural operators on the Bergmann space. In the setup of Theorem 5.14, we can
ask whether natural operators on H2

DAt
extend continuously to operators on the limit

Bergmann space H2
DA∞ ⊕ V . Here we use the trivialisation near ∞ in Theorem 5.14 to

regard H2
DAt

as a fixed Hilbert space, and the convergence of operators is reduced to the
usual definition of norm convergence.

Given a smooth function f on B̄, the Toeplitz operator f̂ = PA ◦ f on H2
DA

means

multiplying by the function f , composed with the orthogonal projection of L2 to H2
DA

.
Physically, the Bergmann space is the state space of a fermion, and then these correspond
to quantum observables of the shape 〈s| f |s′〉. The Toeplitz operators are Hermitian.

Proposition 5.15 (Limit of Toeplitz type operators). In the setup of Theorem 5.14, if
f (0) = 0, then the Toeplitz operator f̂ on the Bergmann spaces H2

DAt
converge strongly

to the operator

H2
DA∞ ⊕ V

f̂⊕0−−→ H2
DA∞ ⊕ V (54)

on the limit Bergmann space, where f̂ also denotes the corresponding Toeplitz operator
on H2

DA∞ .
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Proof. Weuse the trivialisation near∞ described in the proof of 5.14. The limit operator
is zero on the V factor, because on the small spectrum for At ,

∥
∥ f̂ s

∥
∥2
L2 ≤

∫

B(R)

f 2|s|2 ≤ C
∫

B(R)

|x |2|s|2 ≤ Cλ2
∫

B(R)

|s|2 � ‖s‖2L2 .

Hence we only need to consider the large spectrum for At . Then the result follows from
the norm convergence πP → 1 as t → ∞. ��
Remark. It is unclear to the author how to extend thematrix describing Cliffordmultipli-
cations 〈s|c j ck |s′〉 for s, s′ ∈ (H2

DAt
)small to the limit. This question is intimately tied to

compactification of ASDmoduli spaces. It is interesting to extend the local Nahm trans-
form of Chapters 2, 3 to singularities. On the ASD side, the Uhlenbeck compactification
involves ideal instantons. On the operator theory side, the ideal instanton corresponds
to (H2

DA∞ ⊕ V, x̂μ), where H2
DA∞ encodes the smooth limit A∞ and dim V encodes

the delta mass of curvature. But if we enlarge the operator algebra to include secondary
operators induced by 〈s|c j ck |s′〉 and ask how they converge, then we may obtain a more
refined compactification.

Next we consider the Green operator GA : H2
DA

⊂ L2 → W 1,2
0 ⊂ L2, defined by

solving the 
A-Poisson equation with zero boundary condition. For a point x inside the
annulus 0 < r < |x | < r ′ < R, elliptic regularity gives the pointwise estimate

|GAs(x)| ≤ C ‖GAs‖L2 .

Thus the evaluation map

evx ◦ GA : H2
DA

→ Ex ⊗ S−, s �→ GAs(x)

is a bounded Ex ⊗ S− valued linear functional.
Now we vary the connection, so the Green’s operator depends on the parameter t ,

and we study its limit.

Proposition 5.16 (Limit Green operator). On the annulus 0 < r < |x | < r ′ < R, as
t → ∞, the evaluation maps for the Green operators converge strongly and uniformly
in x to some Ex ⊗ S− valued bounded linear functional on the limit Bergmann space
H2
DA∞ ⊕V . The limit functional vanishes on V and agrees with evx ◦GA∞ on the H2

DA∞
factor.

Proof. We first consider any s ∈ (H2
DAt

)small . Consider the L2 decomposition

xμs = DAτμ + σμ,

where τ ∈ W 1,2
0 , σμ ∈ H2

D . Then

D2
Aτμ = DA(xμs) = cμs,

so τμ = cμ(GAs). Hence

C ‖GAs‖2L2 ≤ ‖∇(GAs)‖2L2 = ∥
∥∇τμ

∥
∥2
L2 = ∥

∥Dτμ

∥
∥2
L2 ≤ ∥

∥xμs
∥
∥2
L2 � ‖s‖2L2 ,

whereC is an absolute constant. Thus the norm of the evaluation functional on the small
spectrum converges to zero.
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On the large spectrum, we use a compactness argument. Take some L2 normalised
counterexample sequence si ∈ H2

DA∞ , and let s′
i = Pi si ∈ H2

DAti
be their corre-

sponding elements via the trivialisation. We have points xi inside the annulus, such that
|GAti

s′
i (xi ) − GA∞si (xi )| ≥ ε. We will freely pass to subsequences.

Due to uniform W 1,2
0 bounds, we can extract a weak limit for GAti

s′
i . By elliptic

estimates in the annulus region, we can assume the convergence to be uniform in 0 <

r < |x | < r ′ < R, and si converges weakly to s∞ ∈ H2
DA∞ . Since Pi → 1, the

sequence s′
i has the same limit s∞. Then using the weak equation for the limit, one sees

the weak limit of GAti
s′
i must be GA∞s∞. The same discussions apply to GA∞si . Thus

the difference GAti
s′
i − GA∞si has weak limit zero, the convergence is uniform in the

annulus, but |GAti
s′
i (xi ) − GA∞si (xi )| ≥ ε, contradiction. ��

Remark. These linear functionals can be Riesz represented as elements of H2
DA

⊗(Ex ⊗
S−), which also converge strongly as t → ∞.

6. Index Theory and Chern Numbers

6.1. The rank of ˆ̂E and index computation. We prove Lemma 3.14, which amounts to
computing the index of an operator. It is convenient to work in the ADHM formulation,
which links more easily to operator theory. The discussions below are self contained,
although the main results are likely to be known in the literature of Toeplitz operators
and index theory.

The index problem fits into a more general picture. Consider the operator

T =
∑

i

f̂i ĉi : H2
D ⊗ S− → H2

D ⊗ S+,

where ĉi is the Clifford multiplication on the spin factor, and the Toeplitz operator
f̂i = P0 ◦ fi is the projection of the multiplication by a smooth real valued function
fi on B̄, i = 1, 2, 3, 4. We put on the assumption that the quaternion valued function
fT = f1 + i f2 + j f3 + k f4, which we think of as the symbol of the operator, does not
vanish anywhere on ∂B. In the generality of this Section, the connection A needs not to
be ASD.

Lemma 6.1. The operator T is Fredholm.

Proof. The operator is clearly bounded. We show the finite dimensionality of the kernel.
First write down the L2 decomposition

fi s = Dτi + σi ,

where s ∈ H2
D ⊗ S−, τi ∈ W 1,2

0 ⊗ S−, and Dσi = 0. Thus using Ds = 0,

D2τi =
∑

j

(c j∂ j fi )s.

This means by elliptic regularity, τi can be chosen to satisfy

‖τi‖W 2,2
0

≤ C ‖s‖L2 ,
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hence

‖Dτi‖W 1,2 ≤ C ‖s‖L2 .

As a remark, for general connections A, we need to impose τi ∈ (ker D)⊥ to make τi
satisfy the required estimates. Combining the above,

∑
fi ĉi s =

∑
ĉi Dτi +

∑
ĉiσi =

∑
ĉi Dτi + T s. (55)

The matrix
∑

fi ĉi can be viewed as a quaternion valued function, so it is invertible near
the boundary by the nonvanishing assumption. Thus in a small neighbourhood of the
boundary Bδ = {x ∈ B : dist(x, ∂B) < δ}, if T s = 0, then ‖s‖W 1,2(Bδ)

≤ C ‖s‖L2 . But
we also have ‖s‖W 1,2(B\Bδ)

≤ C ‖s‖L2 by the interior regularity of the Dirac equation, so
‖s‖W 1,2(B) ≤ C ‖s‖L2 , which forces the kernel to be finite dimensional by compactness.

A completely symmetric argument proves the finite dimensionality of the cokernel.
We also need T to have closed range. It is enough to prove that for s ∈ (ker D)⊥,

we have ‖s‖L2 ≤ C ‖T s‖L2 . This follows from a compactness argument similar to the
above. The key is to invoke (55), and suppose for contradiction take a sequence of s
to converge smoothly in the interior, and τi to converge strongly in W 1,2

0 , such that T s
converges strongly to zero. ��

Our next aim is to describe the index of this operator. We proceed by a sequence of
observations:

1. The index depends only on the boundary value of fi .
This is because if the boundary value is zero, then T is a compact operator, by the
interior regularity of Dirac fields.

2. Themap fT = f1+i f2+ j f3+k f4 : ∂B → H\{0}defines a degree (recallwe assume B
is homeomorphic to a ball), which classifies its homotopic type.Homotopic Fredholm
operators define the same index. Hence the index depends on f only through its
degree.

3. For the zero degree case, we consider the special operator T = ĉ1, which clearly
gives an isomorphism, so the index is zero.

4. Behaviour under multiplication.
Notice index(T ) = index(ĉ1T ), but ĉ1T is an endomorphism of H2

D ⊗ S−, so can
be composed. Observe 1, ĉ1ĉ2, ĉ1ĉ3, ĉ1ĉ4 is a standard quaternionic basis. Morever,
for the multiplication operators ĝ and ĝ′ acting on the H2

D factor, where g and g′

are real valued functions on B̄, the composite ĝĝ′ agrees with ˆgg′ up to a compact
correction. Combining these, the quaternionic multiplication of the symbol functions
and the composition of the operators are related as follows:

fT · fT ′ = − fĉ−1
1 (ĉ1T ′)(ĉ1T )

.

But the degree is additive with respect to symbol multiplication, and the index is
additive with respect to composition, so

Lemma 6.2. For a fixed connection A, the index is proportional to the degree.

5. Independence of connection A.
We wish to remove the dependence on the background connection A. For this, in-
troduce the Bergmann space H2

D̄
corresponding to a trivial flat connection Ā on the

original vector bundle E , which exists because B is contractible. This induces another
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orthogonal decomposition of L2. The two Bergmann spaces project onto each other,
via operators P : H2

D → H2
D̄
and its adjoint P†. Another viewpoint is that H2

D and

H2
D̄
have a natural L2 pairing, so induce two linear operators P and P†. It is clear

that P and P† are Fredholm; in fact, inside L2 they are compact perturbations of the
identity operator. For example,

P = 1 − D+
Ā
G ĀD

−
Ā

= 1 − D+
Ā
G Ā(D−

Ā
− D−

A ),

where (D−
Ā

− D−
A ) is bounded on L2, so D+

Ā
G Ā(D−

Ā
− D−

A ) : L2 → L2 is compact.
We can then consider the composition

H2
D̄

⊗ S−
P†−→ H2

D ⊗ S−
T−→ H2

D ⊗ S+
P−→ H2

D̄
⊗ S+.

This has the same index as T , because the index of P cancels with that of its adjoint.
The composite operator is a compact perturbation of

∑
f̂i ĉi : H2

D̄
⊗ S− → H2

D̄
⊗ S+.

This shows the index is the same as that of the corresponding problem in the flat case.
6. In the case of the trivial connection, it is clear that H2

D decomposes according to the
rank of the vector bundle, so the index is proportional to the rank of E .

Now we treat the standard case of the trivial flat line bundle, with T = ∑
x̂μĉμ. We

assume without loss of generality that the origin is an interior point of B, so the symbol
function fT is non-vanishing on ∂B, and morever fT : ∂B → H \ 0 has degree 1.

The cokernel of T vanishes, thanks to our non-singularity discussion (cf. Corol-
lary 3.8). The condition for the kernel is

∑
xμĉμs = Dτ, (56)

where s ∈ H2
D ⊗ S− and τ ∈ W 1,2

0 (E ⊗ S+) ⊗ S+, and E is the trivial flat line bundle.
We observe


τ = D2τ =
∑

cμĉμs.

The significance of this comes from representation theory. Notice

S− ⊗ S−
∑

cμĉμ−−−−→ S+ ⊗ S+

is a Spin(4)−equivariant map. We can decompose the representations

S− ⊗ S− = �2S− ⊕ (3D rep of su(2)−), S+ ⊗ S+ = �2S+ ⊕ (3D rep of su(2)+).

By Schur’s lemma, the map factors through the one dimensional representation �2S−,
and the image lands inside the line spanned by η′

1⊗ε(η′
1)+η′

2⊗ε(η′
2) ∈ �2S+ ⊂ S+⊗S+,

where η′
1, η

′
2 form an orthonormal basis of S+. Thus

∑
cμĉμs is a scalar function times

η′
1 ⊗ ε(η′

1) + η′
2 ⊗ ε(η′

2) ∈ S+ ⊗ S+; therefore there is some scalar function ρ, such that

τ = ρ(η′
1 ⊗ ε(η′

1) + η′
2 ⊗ ε(η′

2)). (57)
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This means

∑
cμĉμs = 
ρ(η′

1 ⊗ ε(η′
1) + η′

2 ⊗ ε(η′
2)).

On the other hand, direct differentiation shows

Dτ = ∇ρ · η′
1 ⊗ ε(η′

1) + ∇ρ · η′
2 ⊗ ε(η′

2),

hence using the defining equation (56),

s = − 1

|x |2 {∇ρ · η′
1 ⊗ x · ε(η′

1) + ∇ρ · η′
2 ⊗ x · ε(η′

2)},

whereby

∑
cμĉμs = − 4

|x |2 〈∇ρ, x〉(η′
1 ⊗ ε(η′

1) + η′
2 ⊗ ε(η′

2)).

Comparing the above, 
ρ = − 4
|x |2 〈∇ρ, x〉, or


(
ρ

|x |2 ) = 0.

Recall thatρ is a smooth functionwith zero boundary condition, so ρ

|x |2 has zero boundary
condition, and the only possible singularity is a pole of order 2 at the origin, which by
our assumption is an interior point of B. It has to be proportional to the Dirichlet Green’s
function with delta mass placed at the origin. This proves the kernel dimension is 1, so
the index is 1 in the special case.

Example 6.3. Consider the special case where B = B(R) ⊂ R
4. Up to a constant,

ρ = 1

2
(|x |2 − R2), s = −(η1 ⊗ ε(η1) + η2 ⊗ ε(η2)),

where η1, η2 form an orthonormal basis of S−.

To summarise the results of this Section,

Proposition 6.4. The index of T equals rank(E) deg( fT ).

Remark. Compare this with the non-singularity discussion (cf. Corollary 3.8). This

shows the inverse Nahm transform bundle ˆ̂E has rank equal to rank(E) in the inte-
rior of B and vanishes in the exterior, thus proving Lemma 3.14. In particular there is a
jump of index when we cross the boundary, so the operator T = ∑

μ(x̂μ − yμ)ĉμ fails
to be Fredholm when y ∈ ∂B.
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6.2. Singularity formation and small spectrum. The aim of this Section is to show
Theorem 1.4. The key input is the following result, which combines our local Nahm
transform theory with our analytic convergence theory for singularity formation.

Lemma 6.5. In the setup of a 1-parameter family of ASD connections At developing a
curvature singularity at the origin, we have the exact sequence

0 → E
αt−→ H2

DAt
⊗ S−

∑
μ(x̂μ−yμ)ĉμ−−−−−−−−→ H2

DAt
⊗ S+ → 0. (58)

In the limit t → ∞, the operator
∑

μ(x̂μ − yμ)ĉμ tends to

(H2
DA∞ ⊕ V ) ⊗ S−

∑
μ(x̂μ⊕0−yμ)ĉμ−−−−−−−−−−→ (H2

DA∞ ⊕ V ) ⊗ S+,

where convergence holds on the whole ball, and αt tends to

E
α∞⊕0−−−→ (H2

DA∞ ⊕ V ) ⊗ S−,

where convergence holds on {0 < |x | < R}, and is uniform on compact subsets.

Proof. Theexistenceof the exact sequence is rephrasing the reconstruction theorem3.15.
The convergence of (x̂μ − yμ)ĉμ follows from the convergence theory of Toeplitz

operators (cf. Proposition 5.15), applied to f = xμ. The convergence of the canonical
comparison maps αt follows from Proposition 5.16, because αt is essentially defined as
the evaluation map of the Green operator. ��
Remark. The heuristic idea of Theorem 1.4 is that, by (2) we can think of the instanton
number as a ‘Chern class’. Since we have the exact sequence (58), we think of the ‘Chern
class’ of E as a ‘difference of the Chern classes for infinite rank bundles’, and compute
it by topological manipulations. This idea involves several difficulties:

• This involves infinite rank bundles.
• The domain is not a closed manifold.
• In the limit the exactness fails.

The main idea to remedy these, is to replace vector bundles by relative K-theory
classes, and work in the Fredholm setting.

We sketch the following relative version of the index bundle construction, using only
first principles in K-theory.

Lemma 6.6. Let X be a compact connected manifold with boundary Y . Given the data

• A family of Fredholm maps between (possibly finite rank) Hilbert bundles, defined
over X:

H1
F−→ H2.

• A trivial finite rank vector bundle Ẽ |Y over Y , with a morphism α into kerF |Y , such
that the complex

0 → Ẽ |Y α−→ H1|Y F−→ H2|Y → 0

is a short exact sequence.
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Thenweobtainanatural class in the relativeK-theory K (X,Y ).Denote this as Ind [H1
F−→

H2, Ẽ |Y , α]. Morever, this class is invariant under small collective deformations of all
the defining data, and the construction is naturally additive.

Proof. (Sketch) We follow the following steps:

1. Since X is connected, the index of F over each point in X is constant. So if F is
fibrewise surjective, then the kernel bundle is a finite rank vector bundle over X with
a trivialisation over Y , so defines a relative K-theory class. Morever, the construction
is invariant under small deformations of F away from Y .

2. The surjectivity of F is satisfied near Y . If it fails somewhere away from Y , we can
replace H1 by H1 ⊕ C

N , where CN is a trivial vector bundle with sufficiently large
rank. Now perturb F by adding a morphism p : CN → H2. Generically this will
force surjectivity to hold. We require p to vanish near Y ; this uses the existence of
local cutoff functions. We define the class by

Ind [H1 ⊕ C
N F⊕p−−−→ H2, Ẽ |Y ⊕ C

N |Y , α ⊕ I dCN ].
3. We check the well definition of the above construction. Clearly

Ind [H1 ⊕ C
N F⊕p−−−→ H2, Ẽ |Y ⊕ C

N |Y , α ⊕ I dCN ]
= Ind [H1 ⊕ C

N+N ′ F⊕p⊕0−−−−−→ H2, Ẽ |Y ⊕ C
N+N ′

, α ⊕ I d
CN+N ′ ].

Morever any two choices of perturbations p and p′ are connected by some path. This
path may pass through some elements p′′ which do not make F ⊕ p′′ surjective. But
there is some N ′ such that p ⊕ 0 : CN+N ′ → H2 is connected to p′ ⊕ 0 by some
non-singular path, because we can always use the extra degrees of freedom to remove
any failure of transversality. The upshot is that by homotopy invariance the class is
independent of the perturbation p, and is clearly independent of N .

4. Supposewehave aoneparameter family of thedata (H1
F−→ H2, Ẽ |Y , α), parametrised

by t ∈ [0, 1], with constraints as given in the theorem.We claim they define the same
class. This is because without loss of generality F is surjective, and then the claim
reduces to the usual homotopy invariance property.

5. The additivity is obvious. ��
Back to our context, the characteristic number description (2) gives

Lemma 6.7. The instanton number is equal to the second Chern class of the relative
K-theory class defined by the pair (E, Ẽ |∂B(R/2)), under the Chern-Weil homomorphism

c2 : K (B(
R

2
), ∂B(

R

2
)) → H4(B(

R

2
), ∂B(

R

2
)).

Lemma 6.8. The class defined by the pair (E, Ẽ |∂B(R/2)) inside the relative K-theory
K (B( R2 ), ∂B( R2 )) is

(dim V )Ind [S−
∑

yμĉμ−−−−→ S+, 0, 0].
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Proof. Using the exact sequence (58), this class is

Ind [H2
DAt

⊗ S− −→ H2
DAt

⊗ S+, Ẽ |∂B(R/2), αt ],

which by continuity is

Ind [(H2
DA∞ ⊕ V ) ⊗ S− −→ (H2

DA∞ ⊕ V ) ⊗ S+, Ẽ |∂B(R/2), α∞].

By the additivity of the index bundle construction, this is

Ind [H2
DA∞ ⊗ S− −→ H2

DA∞ ⊗ S+, Ẽ |∂B(R/2), α∞] + Ind [V ⊗ S− −→ V ⊗ S+, 0, 0].

Now by the analogue of the exact sequence (58) applied to A∞, the first summand is the
relative K-theory class defined by the pair (Ẽ, Ẽ |∂B(R/2)), which is trivial. So the class

simplifies to (dim V )Ind [S−
∑

yμĉμ−−−−→ S+, 0, 0]. ��

Lemma 6.9. The c2 of the relative K-theory class Ind [S−
∑

yμĉμ−−−−→ S+, 0, 0] is 1.
Proof. Using the construction of the index bundle,

Ind [S−
∑

yμĉμ−−−−→ S+, 0, 0] = Ind [C2 ⊕ S−
0⊕∑

yμĉμ−−−−−−→ S+,C
2|∂B(R/2), I dC2 ⊕ 0].

To make sense of this, we need to apply a perturbation to the map

C
2 ⊕ S−

0⊕∑
yμĉμ−−−−−−→ S+

to make it surjective. A particular choice is given by the map appearing in the ADHM
construction of the standard 1-instanton (cf. [10], Section 3.4.1). Thus the relative K-
theory class is given by the class of the 1-instanton, together with a trivialisation near
infinity. This has charge c2 = 1. ��

Combining these Lemmas give Theorem 1.4.
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