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Abstract: We construct a new family of flat connections generalising the KZ connec-
tion, the Casimir connection and the dynamical connection. These new connections are
attached to simply-laced graphs, and are obtained via quantisation of time-dependent
Hamiltonian systems controlling the isomonodromic deformations ofmeromorphic con-
nections on the sphere.

1. Introduction

Choose positive integers m, n, and set g := gln(C), equipped with the nondegenerate
pairing g⊗ g −→ C given by the trace. Let then B := C

m\{diags} be the configuration
space of ordered m-tuples of point in C with standard complex coordinates ti , and U (g)
the universal enveloping algebra of g. Finally, consider the trivial bundle U (g)⊗m ×
B −→ B.

The universal Knizhnik–Zamolodchikov equations (KZ) are a system of linear differ-
ential equations for a local section ψ of this bundle. To write them, define � ∈ g⊗ g to
be symmetric tensor corresponding to the identity Idg ∈ g⊗g∗ under the duality g ∼= g∗
induced by the nondegenerate pairing, and �i j ∈ End

(
U (g)⊗m

)
the action of � by left

multiplication on the i th and j th slot of the m-fold tensor power U (g)⊗m . Then the KZ
equations read

dψ = �̂ψ, where �̂ :=
∑

1≤i �= j≤m

�i j
dti − dt j

ti − t j
.

This system originated as equations for correlation functions in the Wess–Zumino–
Witten model for two-dimensional conformal field theory [KZ84]. Mathematically it
amounts to a flat connection whose monodromy provides important representations of
the m-string braid group. Moreover, the KZ connection is known to be equivalent to the
genus zero Hitchin connection in geometric quantisation [BL94,Las98].
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It has been known for some years [Res92,Har96] that KZ can be obtained as a
deformation quantisation of a system of nonlinear differential equations: the Schlesinger
system [Sch05]. This system is defined for matrices R1 . . . , Rm ∈ g which depend on a
configuration of points in C, and can be written in differential form as

d Ri =
∑

j �=i

[Ri , R j ]dti − dt j

ti − t j
.

These equations control the isomonodromic deformations of Fuchsian systems d −∑
i

Ri
z−ti

dz onCP1, and are in turndeterminedby time-dependentHamiltonians Hi : gm×
B −→ C, where

Hi :=
∑

j �=i

Tr(Ri R j )
dti − dt j

ti − t j
.

The key idea behind the quantisation is that the function Tr(Ri R j ) on gm becomes �i j
under the Poincaré–Birkhoff–Witt map Sym(g)⊗m −→ U (g)⊗m .

Almost two decades later, various generalisations of KZ have appeared. For instance,
the connection of Felder–Markov–Tarasov–Varchenko (FMTV, or the dynamical con-
nection) [FMTV00], and the connection of De Concini and (independently) Millson–
Toledano Laredo (DMT, or Casimir connection) [MTL05], which is essentially an im-
portant special case of [FMTV00]. The DMT connection may also be derived from
isomonodromy via a simple deformation quantisation, but this time from an irregular
isomonodromy problem [Boa02].

Importantly, in the FMTV system the space of times of KZ is increased by adding
on the regular part of a Cartan subalgebra, and thus in the case of gln(C) it becomes a
product C

m\{diags} × C
n\{diags}. The extra times correspond to the irregular isomon-

odromy times of the system of Jimbo–Miwa–Môri–Sato (JMMS) [JMMS80]. Harnad
[Har94] has shown that the two collections of times in the JMMS may be swapped,
and this classical duality between the Schlesinger system and its dual version underlies
the quantum/Howe duality of [Bau99] used in [TL02] to relate the KZ to the DMT
connection for gln(C).

More recently, the Hamiltonian theory of isomonodromy equations was extended
[Boa12], introducing simply-laced isomonodromy systems (SLIMS). They involve k
collections of times, generalising the two collections of times in the JMMS system, and
are attached to complete k-partite graphs plus some representation theoretic data. As a
particular case they contain the JMMS system—corresponding to a complete bipartite
graph—and further specialising they also include the Schlesinger system and its Harnad
dual version—corresponding to a star-shaped graph.

Moreover, the simply-laced isomonodromy systems extend a particular case of
[JMU81], which corresponds to complete k-partite graphs having at most one splayed
node, and with all other nodes being one-dimensional (namely, one term of the “master”
Equation 8.4 on page 33 of [Boa12] vanishes in the setup of [JMU81]). In turn, this was
one of our motivations to consider the SLIMS: they are more symmetric than [JMU81],
because one can now permute all the parts, and in future work we plan to study the quan-
tisation of the symmetries of [Boa12], which should simultaneously generalise [NY14]
and the aforementioned [Bau99].

The quantisation of the isomonodromic deformation systems that occur at the inter-
section of the simply-laced isomonodromy systems and [JMU81] was constructed in
[NS11], but this is still far from including all complete k-partite graphs since at most one
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node can be splayed. Nowwewant to attain the general case without further intermediate
steps, and thus we ask:
is it possible to quantise the whole family of the simply-laced isomonodromy systems,

generalising the derivation of the KZ connection as the quantisation of an
isomonodromy system?

In this article we show that this is indeed possible, proving the following.

Theorem. There exists a strongly flat quantum Hamiltonian system quantising the
simply-laced isomonodromy systems of [Boa12]. Moreover, the quantum system spe-
cialises to KZ and to systems which are semiclassically equivalent to DMT and FMTV.

Hence, in brief we construct a new family of flat connections out of the deformation
quantisation of isomonodromy systems on the Riemann sphere, which we call simply-
laced quantum connections (SLQC), thereby completing the following table:

Isomonodromy system Schlesinger Dual Schlesinger JMMS SLIMS
Space of times C

m\{diags} C
n\{diags} C

m\{diags} × C
n\{diags} ∏k

1 C
di \{diags}

Quantum connection KZ DMT FMTV SLQC

2. Layout of the Article

In Sect. 3 we recall the construction of the simply-laced isomonodromy systems. This
involves a trivial symplectic fibration Fa = M × B −→ B, and results in a collection
of time-dependent Hamiltonian functions Hi : Fa −→ C. These systems are attached
to complete k-partite graphs plus some decoration.

In Sect. 4 we realise the Hamiltonians as traces of potentials on the quiver (classical
potentials), and we study the Poisson bracket of such traces.

In Sect. 5we discuss the filtered quantisation ofM, following e.g. [Eti07]. This results
in a noncommutative filtered algebra A, the Weyl algebra.

In Sect. 6 we define quantum potentials, which are related to the quantum algebra A
similarly to how classical potentials are related to the algebra of functions on M.

In Sect. 7 we explain how to quantise the Hamiltonians Hi to obtain time-dependent
operators Ĥi , thereby defining the universal simply-laced quantum connection, and the
simply-laced quantum connection as an important particular case.

In Sect. 8 we prove the main result (Theorem 7.1) that the universal simply-laced
quantum connection is strongly flat.

In Sect. 9 we show that the quantum Hamiltonian reduction of the simply-laced
quantum connection yields the KZ connection, in the special case of a star-shaped graph
with no irregular times.

In Sect. 10 we consider the Harnad-dual data of the previous section, and we show
that the quantum Hamiltonian reduction of the simply-laced quantum connection yields
a quantum system which is semiclassically equivalent to the DMT connection.

In Sect. 11 we show that the quantum Hamiltonian reduction of the simply-laced
quantum connection is semiclassically equivalent to the FMTV connection, in the case
of a generic complete bipartite quiver.

All vector spaces, varieties and algebras are tacitly defined over C; all gradings and
filtrations of algebras are over Z≥0; all filtrations are exhaustive and all algebras are
finitely generated.
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3. Simply-Laced Isomonodromy Systems

In this section we define the simply-laced isomonodromy systems. They are systems of
nonautonomous Hamiltonians attached to complete k-partite graphs plus some decora-
tion, which we now introduce.

Let J be a finite set of cardinality |J | = k ≥ 2, and I another finite set provided
with a surjection π : I � J with nonempty fibres. Write I = ∐

j∈J I j for the induced

partition of I , with parts I j := π−1( j), and let G̃ be the complete graph on nodes J .

Definition 3.1. The complete k-partite graph on nodes I is the graph G in which two
nodes i, j ∈ I are connected by an edge if and only if they lie in different parts of I .

The complete k-partite graph G is obtained from G̃ by splaying the nodes of the
complete graph: one replaces j with the finite set of nodes I j , and connects them to
every node outside I j . Both G̃ and G are by Definition simply-laced, i.e. without edge
loops or repeated edges.We equivalently think of these graphs as special types of quivers,
identifying an edge with a pair of opposite arrows, and we keep the notation G̃ and G
for the quivers corresponding to the two graphs.

Now choose representation-theoretic data: attach finite-dimensional vector spaces
{Vi }i∈I to the nodes of G, and then associate the spaces W j := ⊕

i∈I j Vi to the nodes
of G̃. Then, in addition to this usual data, fix an embedding

a : J ↪→ C ∪ {∞}, j �−→ a j .

This assigns different elements of the complex projective line to the nodes of G̃.
Definition 3.2. The embedding a : J ↪→ C ∪ {∞} is called a reading of G̃. The reading
is generic if ∞ �∈ a(J ), and degenerate otherwise; if the reading is degenerate, we write
∞ := a−1(∞) ∈ J for the node sent to ∞.

We extend the reading of G̃ to a map a : I −→ C ∪ {∞} by declaring the extension
to be constant on each part I j of I , and we call this a reading of G.

Following [Boa12], these data define a space of times

B :=
∏

j∈J

C
I j \{diags} ⊆ C

I ,

and a vector space of representations of the quiver G in the vector space V := ⊕
j∈J W j ,

that is
M := Rep(G, V ) =

⊕

i �= j∈J

Hom
(

W i , W j
)

.

Equivalently,M ⊆ End(V ) is the subspace of off-diagonal endomorphisms with respect
to the block decomposition

End(V ) = End

⎛

⎝
⊕

j∈J

W j

⎞

⎠ =
⊕

i∈J

End(W i ) ⊕
⊕

i �= j∈J

Hom(W i , W j ).

Denote Bi j : W j −→ W i the linear maps defined by a representation, and let Xi j =
φi j Bi j be the scalar multiplication of Bi j by the nonvanishing complex number

φi j = −φ j i :=
{

(ai − a j )
−1, ai , a j �= ∞

1, ai = ∞ . (3.1)
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Then we equip the vector space M with the symplectic form

ωa := 1

2

∑

i �= j∈J

Tr
(
d Xi j ∧ d B ji ). (3.2)

Now define the space Fa as the product Fa := M × B, where the dependence on
a lies in the symplectic form (3.2). The canonical projection πa : Fa −→ B makes Fa
into a trivial symplectic fibration over the base B, with fibre (M, ωa). This symplectic
fibration parametrises a family of meromorphic connections on a trivial vector bundle
over the Riemann sphere, as follows.

First, define U∞ := ⊕
j �=∞ W j to be the natural complement to W ∞ inside V , and

write a generic endomorphism γ ∈ End(V ) as

γ =
(

T ∞ Q
P B + T

)
,

using the natural block decomposition for elements of End(V ) = End(W ∞⊕U∞). This
means that W ∞ ∈ End(T ∞) and B, T ∈ End(U∞), whereas Q ∈ Hom(W ∞, U∞) and
P ∈ Hom(U∞, W ∞). Moreover, we let B (resp. T ) be the off-diagonal (resp. diagonal)
part of the restriction γ |U∞ . Then separating the off-diagonal and the diagonal part of
γ leads to the global decomposition γ = 
 + T̂ , where


 :=
(
0 P
Q B

)
∈ M, and T̂ :=

(
T ∞ 0
0 T

)
.

Next, assume that the restriction T j = γ |W j is diagonalisable for all j ∈ J , and that
W j = ⊕

i∈I j Vi is its eigenspace decomposition. Then one may write

T̂ =
∑

i∈I

ti Idi , T ∞ =
∑

i∈I ∞
ti Idi , T =

∑

i∈I\I ∞
ti Idi ,

where Idi ∈ End(V ) is the idempotent for Vi inside V , and {ti }i∈I ∈ B are complex
numbers which are necessarily distinct for nodes lying in the same part of I . Thus one
can encode the spectral type of the endomorphism T̂ into an element of the base spaceB,
and deforming this spectral type insideB amounts to the requirement that the eigenspace
decomposition of the T j be fixed.

Finally, introduce the notation Id j ∈ End(V ) for the idempotent for the subspace
W j inside V , and define the endomorphism

A :=
∑

j �=∞
a j Id

j ∈ End(U∞),

using the finite part I\I ∞ −→ C of the reading. With this notation introduced, we now
construct a meromorphic connection on the the trivial vector bundle U∞ × CP1 −→
CP1. Take z to be a holomorphic coordinate which identifies CP1 ∼= C ∪ {∞}, and
write Ri = Qi Pi ∈ End(U∞) using the components

Vi U∞
Qi

Pi
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of Q and P . Then we define the meromorphic connection

∇ := d − (
Az + B + T + Q(z − T ∞)−1P

)
dz = d −

(

Az + B + T +
∑

i∈I ∞

Ri

z − ti

)

dz.

(3.3)
This connection has simple poles at the points {ti }i∈I ∞ ⊆ C with residues Ri , and a pole
of order three at infinity when A �= 0. It follows from the definition that simple poles
exist only in the case of a degenerate reading, when the part I ∞ is nonempty.

We now consider isomonodromic deformations of (3.3). This means by definition
letting the spectral type of T̂ vary inside B—i.e. varying the positions of the poles and
the irregular coefficient T at infinity—and look for a new off-diagonal term 
 inside M

such that the (extended) monodromy data of the resulting meromorphic connection are
the same as the starting one. Finding such deformations amounts to solving a system of
nonlinear, first order differential equations, which are called isomonodromy equations.
The deformation parameters for the spectrum of T are called irregular times, since they
correspond to deformations of irregular singularities. Simple poles instead are regular
singularities, and thus the deformation parameters for the spectrum of T ∞ are called
regular times in the isomonodromy literature.

Geometrically, isomonodromic families of connections define the leaves of a non-
linear/Ehresmann symplectic connection inside the symplectic bundle πa : Fa −→ B.
Since the bundle is trivial over B, it also carries a trivial Ehresmann connection, which is
the pointwise span of the horizontal vector fields ∂ti (for i ∈ I ) associated to the global
coordinates on B. The crucial point is that the difference between the two connections
can be integrated to a time-dependent Hamiltonian system Hi : Fa −→ C. More pre-
cisely, if one denotes {·, ·} the Poisson bracket of the symplectic manifold (M, ωa), then
the (interesting) isomonodromy connection is the pointwise span of the vector fields
Xi = ∂ti + {Hi , ·}, where {Hi , ·} is the vertical Hamiltonian vector field of the fibrewise
restriction of Hi to M.

The definition of the Hamiltonians themselves is given by in coordinate-free fashion
by constructing a horizontal 1-form � ∈ �0(Fa, π∗

a T ∗B) on the total space of the
fibration. To write it down, set � := φ(
) and X := φ(B), by applying the alternating
weights (3.1) componentwise. Then let δ(�
) denote the diagonal part of �
 in the
decomposition V = ⊕

j∈J W j , and set

�̃
 := ad−1
T̂

[
dT̂ , �


]
.

With this notation introduced, one defines

� := 1

2
Tr

(
�̃
δ(�
)

) − Tr
(
�γ�dT̂

)
+ Tr

(
X2T dT

)
+ Tr

(
P AQT ∞dT ∞)

. (3.4)

The Hamiltonians are now given by Hi := 〈�, ∂ti 〉, which means that� = ∑
i∈I Hi dti .

Importantly, this time-dependent Hamiltonian system satisfies a strong version of
integrability. Let us recall the following result from [Boa12].

Theorem 3.1. The isomonodromy system Hi : Fa −→ C is strongly flat, which means
that

{Hi , Hj } = 0 = ∂ Hi

∂t j
− ∂ Hj

∂ti
, for all i, j ∈ I,

where {·, ·} is the symplectic Poisson bracket of (M, ωa), computed by fibrewise restric-
tion of the Hamiltonians to the vertical directions.
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We will also think to the Hamiltonian Hi : M×B −→ C as the data of a polynomial
function on M for all choice of times in B. In this viewpoint the Hamiltonian is a global
section of the bundle of commutative algebras A0 × B −→ B, where A0 := OM(M) ∼=
Sym(M∗) is the Poisson algebra of regular functions (polynomials) on the affine space
M, endowed with the above Poisson bracket {·, ·}.
Definition 3.3. The simply-laced isomonodromy system attached to the complete k-
partite graph G on nodes I , to the vector spaces {Vi }i∈I and to the reading a : I −→
C ∪ {∞} is the time-dependent Hamiltonian system (3.4). The Hamiltonians Hi are
called the simply-laced Hamiltonians.

This is the classical Hamiltonian systemwewill quantise. To this end, we first express
the Hamiltonians Hi as traces of potentials in G.

4. Classical Potentials

Consider again finite sets I and J with |J | = k, equipped with a surjection π : I � J
with nonempty fibres. Let G be the complete k-partite graph on I = ∐

j∈J I j , where

we set I j = π−1( j) for j ∈ J .

Definition 4.1. A potential W on G is a C-linear combination of oriented cycles in G,
defined up to cyclic permutations of their arrows. The space of potentials is denoted
CGcycl.

Let now {Vi }i∈I be a family of finite-dimensional vector spaces, setV := ⊕
i∈I Vi and

take a reading a : J ↪→ C∪{∞}. Then every potential W ∈ CGcycl defines a polynomial
function on M = Rep(G, V ), by taking the trace of its cycles in a representation defined
by linear maps Xi j = φi j Bi j : W j −→ W i (see Eq. (3.1)). Explicitly, write an oriented
n-cycle—i.e. a cycle of length n ≥ 0—asC = αn . . . α1, where α1, . . . , αn is a sequence
of composable arrows in G (reading from right to left in the cycle). Then the function
Tr(C) : M −→ C is

Tr(C) = Tr
(
Xαn · · · Xα1

)
,

and a time-dependent potential W : B −→ CGcycl will define a nonautonomous Hamil-
tonian Tr(W ) : B −→ A0 on M with space of times B, where A0 = Sym(M∗) is the
algebra of polynomial functions on the affine space M as in the previous section.

Themain point is that the simply-laced isomonodromy system (3.4) is made up of the
traces of certain potentials on G. To write them introduce the notation Ii := π−1(π(i))
for the part of I containing the node i , and denote αi j the arrow in G from the node i to
the node j . Then consider the following potentials on G:

Wi (2) :=
∑

j∈I\Ii

(ti − t j )αi jα j i ,

Wi (3) :=
∑

j,l∈I\Ii : I j �=Il

(a j − al)αilαl jα j i ,

Wi (4) :=
∑

m∈Ii \{i}

∑

j,l∈I\Ii

(ai − a j )(ai − al)

ti − tm
αi jα jmαmlαli .

(4.1)

In plain words, the potential Wi (2) is a linear combination of all oriented 2-cycles based
at i , and thus its second node j lives in a different part of I ; Wi (3) is a linear combination
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Fig. 1. Isomonodromy cycles

of all oriented 3-cycles based at i , and thus its three nodes i, j, l live in different parts
of I ; and Wi (4) is a linear combination of all oriented 4-cycles based at i which pass
through a second node m �= i in the same part of i , and thus their remaining two nodes
j, l lie outside the common part of i and m.

Proposition 4.1. Assume the reading of G is nondegenerate. Then the simply-laced
Hamiltonian Hi is the trace of the time-dependent potential Wi = Wi (2)+Wi (3)+Wi (4)
in the variables Xi j , where Wi (2), Wi (3) and Wi (4) are as in (4.1).

If the reading is degenerate then Hi is the trace of a potential involving the same
cycles of Wi , but with different weights.

This follows from an explicit expansion of the formula (3.4). We denote Wi the
potential such that Hi = Tr(Wi ) for i ∈ I , both in a degenerate and in a nondegenerate
reading.

Definition 4.2. The potential Wi is the isomonodromy potential at the node i ∈ I .
The oriented cycles that appear in the isomonodromy potentials are the isomonodromy
cycles.

The isomonodromy 4-cycles are further divided in two types:

(1) nondegenerate, if they pass through four distinct nodes of G;
(2) degenerate, if they pass through three distinct nodes of G.

Figure 1 shows the isomonodromy cycles in G.
More precisely in Fig. 1 one sees 2-cycles, 3-cycles, nondegenerate 4-cycles and

degenerate 4-cycles, in order from left to right. The degenerate 4-cycles can be described
as the glueing of two 2-cycles at some node, which we call their centre. The other two
nodes are called peripheral, and they lie in one and the same part of I—looking at the
indices of Wi (4) in (4.1). Beware that there are no restriction for 2-cycles and 3-cycles
(all such oriented cycles in G are by definition isomonodromy cycles), but the 4-cycles
we consider are only those that appear in the isomonodromy potentials Wi (4) of (4.1).

Corollary 4.1. The simply-laced Hamiltonians Hi are invariant for the natural action
of simultaneous change of basis on the spaces Vi ⊆ V .

This follows from Proposition 4.1, plus the fact that the trace is a class function.
Thus the group Ĥ := ∏

i∈I GL(Vi ), acting in a Hamiltonian fashion via simultaneous
conjugations on (M, ωa), preserves Hi = Tr(Wi ).

Remark 4.1. It follows that the simply-laced isomonodromy system descends to a time-
dependent Hamiltonian system on the Ĥ -Hamiltonian reduction of (M, ωa) at any coad-
joint orbit. This complex symplectic quotient is isomorphic to the moduli space M∗

dR
of isomorphism classes of meromorphic connections (3.3) defined on a trivial holo-
morphic vector bundle (with unramified irregular type Q = Az2

2 + T z at z = ∞; see
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Fig. 2. Cut-and-glue rule for the necklace Lie bracket: before cutting a pair of opposite arrows

Fig. 3. Cut-and-glue rule for the necklace Lie bracket: after cutting a pair of opposite arrows

[Boa12], Section 9). The reduced system defines the isomonodromy connection on the
trivial symplectic fibration M∗

dR × B −→ B, which is also known as the wild non-
Abelian Gauß–Manin connection for the family of wild Riemann spheres parametrised
by B (see [Sim94,Boa01]). By quantising the simply-laced isomonodromy system we
are thus in effect quantising the isomonodromy connection, i.e. replacing a certain local
system of symplectic manifold with a flat bundle constructed by fibrewise (deformation)
quantisation.

Finally, there is a natural Lie bracket {·, ·}G on the space of potentials, called the
necklace Lie bracket, which we will use in what follows (see e.g. [BLB02,Eti07]).

Definition 4.3. Pick twooriented cyclesC1, C2 inG. ThenecklaceLie bracket {C1, C2}G ∈
CGcycl is the unique potential such that

Tr
({C1, C2}G

) = {Tr(C1),Tr(C2)} ∈ A0.

The necklace Lie bracket admits the following description in terms of cutting and
glueing of arrows. Write C1 = αn . . . α1 and C2 = βm . . . β1 for two cycles. Then one
constructs a new cycle for every pair of arrows (αi , β j ) such that αi is opposite to β j ,
by deleting that pair and gluing together what is left to obtain a new oriented cycle.

To see this graphically, fix indices i, j such that αi is opposite to β j , and introduce the
notation t (α), h(α) ∈ I for the tail (starting node) and the head (end node) of an arrow α

in G, respectively. Set then a = t (β j−1), b = h(β j−1) = h(αi ), c = h(β j ) = h(αi−1),
d = h(β j+1), e = t (αi−1), f = h(αi+1), which are all nodes in G. Then the local picture
before deleting arrows looks like Fig. 2.

After cutting and glueing one has instead the situation of Fig. 3.
One repeats this operation for all the pairs (αi , β j ) of opposite arrows, and then

{C1, C2}G is obtained by summing these cycles with weights which depend on the



10 G. Rembado

Poisson bracket of the coordinate functions associated to the arrows that have been cut
out (see the computations in “Appendix A” for more details).

Remark 4.2. Conceptually, what happens is the following. The invariant regular func-
tions on M for the action of Ĥ consist of the C-algebra AĤ

0 ⊆ A0 generated by traces
of oriented cycles (see Theorem 1 of [LBP90]; this is a consequence of H. Weyl’s
“first fundamental theorem of invariant theory”). Hence we have an injective map
Tr : CGcycl ↪→ AĤ

0 , and Definition 4.3 says that it is a morphism of Lie algebras: the
necklace Lie bracket is the pull-back of the Poisson bracket on A0. Furthermore if one
upgrades the necklace Lie bracket to a Poisson bracket on Sym(CGcycl)—by enforcing
the Leibnitz rule—then the trace becomes an isomorphism of Poisson algebras. This
is a restatement of the fact that the Ĥ -invariant functions are polynomials of traces of
oriented cycles.

We will present a quantum counterpart of this in Sect. 6, independently from (but
possibly similarly to) [Sch05]. Note that [Sch05] considers a more refined Hopf algebra
quantisation, whereas we need not discuss coproducts.

5. Quantisation of Poisson Algebras

In this section we recall the definition of a filtered quantisation of A0 = Sym(M∗),
which is a particular instance of deformation quantisation. All this material is standard,
and thus we omit proofs (see e.g. [ES98,Sch12]).

5.1. Formal deformation quantisation. Let � be a formal variable, and (B, {·, ·}) a com-
mutative Poisson algebra.

Definition 5.1. Aone-parameter formal deformation quantisation of B is a topologically
free C���-algebra Â, together with an isomorphism Â

/
� Â ∼= B, such that

{ f0, g0} = 1

�d
( f g − g f ) + � Â,

for all f0, g0 ∈ B and for arbitrary lifts f, g ∈ Â of f0 and g0, where d is a suitable
positive integer. The canonical projection σ : Â −→ B is called the semiclassical limit.

Definition 5.1 is the type of quantisation we look for, but in our case there is a
simplification due to the fact that our classical algebras (of polynomials functions on
an affine space) are graded. This makes it possible to construct a formal deformation
quantisation by applying the Rees construction to a filtered algebra, which is more
convenient to work with.

5.2. Filtered quantisation and the Rees construction. Consider a filtered associative
algebra A = ⋃

k≥0 A≤k . Recall that the associated graded gr(A) of A is the graded
associative algebra with graded components gr(A)k = A≤k

/
A≤k−1, for k ≥ 0—where

A≤−1 := (0). The product of gr(A) is induced from that of A by defining it on repre-
sentatives.

Let now B be a graded associative algebra—not necessarily Poisson or commutative
at this stage.
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Definition 5.2. A filtered deformation of B is a filtered associative algebra A together
with an isomorphism gr(A) ∼= B of graded associative algebras.

Analogously to Definition 5.1, the associative product of a filtered algebra induces
a Poisson bracket on the associated graded, provided the latter is commutative. To state
this fact denote by σp : A −→ gr(A)p the canonical projections for p ≥ 0.

Proposition 5.1. Let A = ⋃
k≥0 A≤k be a filtered associative algebra such that gr(A)

is commutative. Then there exists a maximal integer d ≥ 1 such that
[
A≤k, A≤l

] ⊆
A≤k+l−d for all k, l ≥ 0. Furthermore, there is a canonical Poisson bracket {·, ·}A on
gr(A) defined by

{σk( f ), σl(g)}A = σk+l−d
(

f g − g f
)
, (5.1)

where f ∈ A≤k and g ∈ A≤l .

Finally, analogously to Definition 5.1, a filtered quantisation is a filtered deformation
plus a compatibility of Poisson brackets. Let then (B, {·, ·}) be a graded commutative
Poisson algebra.

Definition 5.3. A filtered quantisation of (B, {·, ·}) is a filtered associative algebra A
together with an isomorphism gr(A) ∼= B of graded Poisson algebras, where gr(A) has
the Poisson structure defined by (5.1).

There is now a universal construction to pass from a filtered quantisation as in Def-
inition 5.3 to a formal deformation quantisation as in Definition 5.1. Let again A be a
filtered associative algebra, and � a formal variable.

Definition 5.4. The Rees algebra Rees(A) of A is the C[�]-algebra defined by

Rees(A) :=
⊕

k≥0

A≤k · �
k ⊆ A[�].

Proposition 5.2. Assume that A is a filtered quantisation of (B, {·, ·}). Then the following
completion of the Rees algebra of A defines a formal deformation quantisation of the
commutative Poisson algebra (B, {·, ·}) (forgetting the grading):

Â :=
⎧
⎨

⎩

∑

k≥0

fk�
k

∣
∣∣∣∣∣

fk ∈ A≤k for all k ≥ 0, lim
k−→+∞ (k − | fk |) = +∞

⎫
⎬

⎭
⊆ A���,

where the nonnegative integer | f | := min{k ≥ 0 | f ∈ A≤k} is the order of the element
f ∈ A.

The proof consists in showing that the map

σ :
∑

k≥0

fk�
k �−→

∑

k≥0

σk ( fk) (5.2)

is surjective on B with kernel � Â ⊆ Â, hence induces an isomorphism Â
/

� Â ∼= B—
noting that the right-hand side of (5.2) is a finite sum. Then the compatibility with the
Poisson bracket, as expressed in Definition 5.1 taking d = 2, follows from Eq. (5.1).
The morphism (5.2) is precisely the semiclassical limit σ : Â −→ B of Definition 5.1.
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Remark 5.1. The completion is taken to recover the general setting of deformation quan-
tisation as in Definition 5.1. In the filtered case however one can neglect this completion
and work with polynomials instead of power series, which is reminiscent of the fact that
in this case the deformation parameter � can take on numerical values instead of just
being a formal variable.

Hence in brief to deformation-quantise a graded commutative Poisson algebra B ac-
cording to Definition 5.1 one may look for a filtered quantisation A as in Definition 5.3.
Then replacing this with (a completion of) its Rees algebra will recover the deforma-
tion parameter �. Enforcing the quantum mechanical terminology one may refer to the
elements of A as quantum operators.

5.3. The Weyl algebra. We now define a filtered quantisation of the algebra of polyno-
mial functions on a complex symplectic vector space (V, ω)—seen as an affine space
over C. Denote {·, ·} the Poisson bracket on B := Sym(V ∗) associated to the symplectic
form.

Definition 5.5. We define

A = W (V ∗, {·, ·}) := Tens(V ∗)
/

I,

where Tens(V ∗) is the tensor algebra of the vector space V ∗, and I ⊆ Tens(V ∗) is the
two-sided ideal generated by elements of the form

f ⊗ g − g ⊗ f − { f, g}, for f, g ∈ V ∗.

The noncommutative algebra A inherits the quotient filtration of Tens(V ∗) (the addi-
tive/Bernstein filtration). Then one can show that (5.1) holds with d = 2, and that there is
a canonical isomorphism gr(A) ∼= B of graded commutative Poisson algebras—where
the symmetric algebra has the standard grading, see e.g. [Sch12]. Hence A is a filtered
quantisation of B.

Remark 5.2. There is also a dual realisation of A, called the Weyl algebra of the sym-
plectic vector space (V, ω) and noted W (V, ω). Analogously to A, it is defined as the
quotient of Tens(V ) with respect to the two-sided ideal generated by the elements

x ⊗ y − y ⊗ x − ω(x, y), for x, y ∈ V .

Strictly speaking, the Weyl algebra W (V, ω) is a filtered deformation of Sym(V ) rather
then Sym(V ∗), and that’s why we gave the dual realisation in Definition 5.5. Nonethe-
less, the linear isomorphism V ∼= V ∗ induced by the symplectic pairing tautologically
provides an isomorphism A ∼= W (V, ω) of filtered associative algebras, and thus we
will not distinguish among the two.

There is a natural embedding ι : V ∗ ↪→ A obtained from the composition of the
inclusion V ∗ ↪→ Tens(V ∗) with the canonical projection Tens(V ∗) −→ A, and we
write f̂ := ι( f ) for the image of a linear function in this natural embedding. Hereafter
we want to interpret ι as a quantisation of linear functions on V , and to do this we define
the semiclassical limit following the prescription of Sect. 5.

Let Rees(A) be the Rees algebra of A as in definition 5.4, and Â its completion as
in Proposition 5.2. The arrow ι is tautologically upgraded to an embedding ι̂ : V ∗ ↪→
Rees(A) ⊆ Â via ι̂( f ) := f̂ �. Moreover, by definition the semiclassical limit σ : Â −→
B of (5.2) is a left inverse to ι̂.
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Definition 5.6. A quantisation of a function f ∈ B is an element of the affine subspace
σ−1( f ) ⊆ Â.

In particular the element f̂ � is a quantisation of the linear function f ∈ V ∗, and ι is
given by the composition

V ∗ Rees(A) A ,
ι̂ ev�=1

where ev�=1 is the evaluation of polynomials at � = 1.

Definition 5.7. The element ι( f ) = f̂ ∈ A is theWeyl quantisation of the linear function
f ∈ V ∗.

This provides a presentation of the Weyl algebra as soon as a basis of V is chosen.
Namely, if X1, . . . , Xm : V −→ C are the linear coordinate functions associated to a
basis of V , then their Weyl quantisations generate A as a C-algebra. Hence A is isomor-
phic to the quotient of the free algebra generated by the symbols X̂i with commutation
relations [

X̂i , X̂ j
] = {Xi , X j } ∈ A≤0 = C.

Moreover, if n ≥ 0 and i1, . . . , in ∈ {1, . . . , m} then the product
∏n

j=1 X̂i j ∈ A≤n has
order equal to n, and not less.

Remark 5.3. Note that by Definition 5.6 the element
∏n

j=1 X̂i j ·�n ∈ Â is a quantisation
of the monomial f = ∏n

j=1 Xi j ∈ B, but this is not canonically attached to f as
the order for the (classical) variables of f is immaterial. More explicitly, if �n is the
symmetric group on n objects and τ ∈ �n a permutation then one can consider the
element

n∏

j=1

X̂iτ ( j) · �
n ∈ Â,

which is also a quantisation of f , and the lack of a natural way to pick one ordering
results in no-go obstructions to quantisation à la Groenewold–Van Hove. Moreover, if
one tries to bypass this issue by considering the symmetrisation map

f �−→ 1

n!
∑

τ∈�n

n∏

j=1

X̂iτ ( j) · �
n,

which a priori solves the problem of choosing an ordering, then one fails to preserve the
crucial property of flatness of Theorem 3.1.

In the next section we will describe a procedure to quantise the simply-laced isomon-
odromy systems (3.4) by preserving (strong) flatness, overcoming the aforementioned
obstructions.

6. Quantisation of Potentials

Wenow discuss how to quantise the traces of the isomonodromy cycles of Definition 4.2,
which leads to a quantisation of the simply-laced isomonodromy system (3.4).

Start by applying all the material of the previous Sect. 5 to the situation of the simply-
laced isomonodromy systems. Let G be the k-complete graph on nodes I = ∐

j∈J I j ,
{Vi }i∈I a family of finite-dimensional vector spaces and a : J ↪→ C ∪ {∞} a reading.
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Define the symplectic vector space (M, ωa) as in Sect. 3. Then the filtered quantisation
A = W (M∗, {·, ·})of the classical algebra A0 = Sym(M∗) is defined in 5.5—where {·, ·}
is the symplectic Poisson bracket—together with the semiclassical limit (5.2), whose
domain is a completion Â of the Rees algebra of A (which is a deformation quantisation
of A0 according to Definition 5.1).

To get an explicit description of A we may do as instructed in the previous section.
Choose bases for the spaces Vi for all i ∈ I , and consider the coordinate functions
X �−→ Xα

i j on M, where α runs through the arrows of G and i, j are indices for the
coefficients of thematrix Xα : Vt (α) −→ Vh(α) in the given bases. Then a generic element
of A is a polynomial in the Weyl quantisations X̂α

i j .
We now push the interpretation of the classical Hamiltonians as traces of potentials

one step further: we attach quantum operators to decorated oriented cycles, in the same
way in which (invariant) functions on M are attached to ordinary oriented cycles.

Definition 6.1. An anchored cycle Ĉ is an oriented cycle in G with a starting arrow fixed,
called the anchor of Ĉ . We will denote this by underlining the anchor:

Ĉ = αn · · · α1,

where α1, . . . , αn are composable arrows in G.
Now let C = αn · · ·α1, be an oriented cycle, and consider its trace

Tr(C) =
∑

k1,...,kn

Xαn
knkn−1

· · · Xα1
k1kn

∈ A0,

where k1, . . . , kn are suitable indices. If one anchors C at α1, i.e. if one considers the
anchored cycle Ĉ := αn · · ·α1, then the element

∑

k1,...,kn

X̂αn
knkn−1

· · · X̂α1
k1kn

∈ A

is uniquely determined. In turn we define this element to be the trace of the anchored
cycle Ĉ .

Definition 6.2. The trace of the anchored cycle Ĉ = αn · · · α1 is

Tr(Ĉ) :=
∑

k1,...,kn

X̂αn
knkn−1

· · · X̂α1
k1kn

∈ A. (6.1)

The �-deformed trace of the anchored cycle Ĉ is Tr�(Ĉ) := Tr(Ĉ) ·�n ∈ Rees(A) ⊆ Â,
where � is a formal variable.

More intrinsically, consider the A-valued matrix

X̂αl · · · X̂α1 ∈ A ⊗ End(Vi ),

where i := t (α1) ∈ I is the tail of the anchor of Ĉ , i.e. the starting node of the anchored
cycle. The coefficients of thematrices X̂αl , . . . , X̂α1 areWeyl quantisations of coordinate
functions on M, and taking a trace amounts to contracting Vi against V ∗

i . Finally we
multiply the result by the correct power of �, i.e. by the length of the cycle.

An important point is that two different anchored cycles may define the same element
of the Weyl algebra. This happens if and only if their two underlying cycles coincide
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under a cyclic permutation of their arrows inwhich no arrow is swappedwith its opposite,
because all coefficients of the matrix X̂α commute with those of X̂β if and only if α and
β are not opposite.

This observation motivates the next definitions.

Definition 6.3. Let Ĉ = αn · · · α1 be an anchored cycle in G. An admissible permutation
of the arrows of Ĉ consists in dividing the word αn · · · α1 in two subwords

A = αn · · · αn−i , B = αn−i−1 · · · α1

such that no arrow in A has its opposite in B, and in swapping A and B. This yields a
new anchored cycle Ĉ ′ = αn−i−1 · · · α1αl · · · αn−i which is said to be equivalent to Ĉ .

Definition 6.4. A quantum cycle in G is an anchored cycle defined up to admissible
permutations of its arrows. We define ĈGcycl to be the complex vector space spanned
by quantum cycles in G, and we call its elements quantum potentials. Furthermore,
we denote σG : ĈGcycl −→ CGcycl the map that forgets the anchor, and we say that a

quantum potential Ŵ is a quantisation of the potential W if σG(Ŵ ) = W .
The length l(C) ≥ 0 of a quantum cycle Ĉ is defined as that of its underlying oriented

cycle C = σG(Ĉ).

The �-deformed trace Tr� : ĈGcycl −→ Â is thus a linear map landing inside
Rees(A) ⊆ Â, and the following square is commutative by construction:

CGcycl A0

ĈGcycl Â

�

Tr

σG

Tr�

σ

Hence, the semiclassical limit of Tr�(Ĉ) ∈ Â equals Tr(C) ∈ A0 whenever σG(Ĉ) =
C , and one can quantise the cycle C to quantise the function Tr(C). In turn, quantising
a cycle means (by Definition 6.4) constructing a quantum potential which projects back
to it by forgetting anchors.

This is what we now do for the isomonodromy cycles of Fig. 1.

Definition 6.5. The quantisation of a 3-cycle (resp. nondegenerate 4-cycle) is the quan-
tum 3-cycle (resp. quantum 4-cycle) obtained from any choice of anchoring.1 The quan-
tisation of a degenerate 4-cycles is the quantum 4-cycle obtained by anchoring at either

of the two arrows coming out of the centre. The quantisation of a 2-cycle C =
is the combination of quantum 2-cycles Ĉ of Fig. 4, where we draw the tails of the
anchors as black nodes.

The quantum cycles thus defined in G are called the quantum isomonodromy cycles.

Figure 5 shows the quantum isomonodromy cycles, where as above (and hereafter)
we draw the tails of the anchors as black nodes.

From left to right one sees quantum 2-cycles, quantum 3-cycles, nondegenerate quan-
tum 4-cycles and degenerate quantum 4-cycles. This should be compared with Fig. 1,
which shows the (classical) isomonodromy cycles.

1 Since 3-cycles and nondegenerate 4-cycles do not contain pairs of opposite arrows, the actual choice
of anchor is immaterial: all the resulting anchored cycles will be equivalent, i.e. they will define the same
quantum cycle inside ĈGcycl.
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Fig. 4. Quantisation of 2-cycles

Fig. 5. Quantum isomonodromy cycles

Remark 6.1. The quantisation of degenerate 4-cycles is well defined, since changing the
order of the arrows coming out of the central node amounts to an admissible permutation
of the arrows.

To see this explicitly, denote γ ∗ the opposite of any arrow γ in G. Then one may
write a degenerate 4-cycle as C = β∗βα∗α, where α, β are the two distinct arrows of
C coming out of the centre. The two possible anchors at the centre yield the anchored
cycles Ĉ1 = β∗βα∗α and Ĉ2 = α∗αβ∗β, which are equivalent under the admissible
permutation swapping the two 2-cycles α∗α and β∗β: doing this does not change the
relative order of the opposite pairs (α, α∗), (β, β∗).

7. Definition of the (Universal) Simply-Laced Quantum Connection

Consider again the isomonodromy potentials Wi ∈ CGcycl of Definition 4.2. Then Hi =
Tr(Wi ) is the simply-laced Hamiltonian at the node i ∈ I .

Definition 7.1. Thequantum isomonodromypotential Ŵi : B −→ ĈGcycl at the node i ∈
I is defined by quantising all the isomonodromy cycles of Wi according toDefinition 6.5.
The universal simply-laced quantum Hamiltonian Ĥi : B −→ Â is the �-deformed trace
of the quantum isomonodromy potential at the node i ∈ I .

By construction Ĥi = Tr�(Ŵi ) : B −→ Â is a quantisation (according to Defini-
tion 5.6) of the simply-laced Hamiltonian Hi : B −→ A0 pointwise on B, since the
identity σ(Ĥi ) = Hi is true at each fixed time.

Definition 7.2. The universal simply-laced quantum connection ∇̂ is the connection on
the trivial bundle of noncommutative algebras Â × B −→ B defined by

∇̂ = d − �̂ , where �̂ :=
∑

i∈I

Ĥi dti ∈ �1(B, Â),

letting Â act on itself by left multiplication.

The main result of this paper is the following.
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Theorem 7.1. The universal simply-laced quantum connection is strongly flat, which
means that

[
Ĥi , Ĥ j

] = 0 = ∂ Ĥi

∂t j
− ∂ Ĥ j

∂ti
, for all i, j ∈ I.

The connection of Definition 7.2 is universal since one may replace the regular
representation of Â by any left Â-module ρ : Â −→ EndC(H), and thus obtain a new
connection

∇̂ρ = d −
∑

i∈I

ρ(Ĥi )dti ,

on the vector bundleH×B −→ B, where now the Hamiltonians act as operator onH—
instead of acting on Â by left multiplication. Because of Theorem 7.1 all connections
obtained from ∇̂ in this way will be strongly flat.

Since the quantumHamiltonians live in Rees(A) ⊆ Â, an important class of modules
arises from left modules for the Weyl algebra A, letting the Rees algebra act via the
morphism ev�=1 : Rees(A) −→ A. A particular important example is obtained by
considering the regular representation of the Weyl algebra on itself.

Definition 7.3. The simply-laced quantum connection is the connection on the trivial
bundle of noncommutative algebras A × B −→ B induced from the universal simply-
laced quantum connection from the representation ρ1 : Rees(A) −→ EndC(A) defined
by

ρ1

(
∑

k

fk�
k

)

(X) :=
(

∑

k

fk

)

· X.

The functions ρ1(Ĥi ) = Tr(Ŵi ) are the simply-laced quantum Hamiltonians.

The simply-laced quantum connection will be later related to the KZ connection (in
Sect. 9), the DMT connection (in Sect. 10) and the FMTV connection (in Sect. 11).

Remark 7.1. For the sake of a geometric example, consider again a Lagrangian splitting
M ∼= T ∗ Rep(Q, V ), where Q ⊆ G is the subquiver containing the arrows with a
given positive orientation. Taking the real part of the symplectic from produces a real
cotangent bundle, and one may take H := C∞L2(M, C) to be the space of smooth
square-summable complex functions on M (with respect to the Lebesgue measure on
M), on which A acts with the standard Schrödinger representation: if a set of real
Darboux coordinates (q j , p j ) is chosen on T ∗M , then the position q j acts via the
function multiplication μq j , and the momentum p j via the derivative −i∂q j .

In the language of geometric quantisation this means considering the prequantisable
symplectic manifold (T ∗M,

∑
j dq j ∧ dp j ), and taking prequantum data consisting of

the trivial complex line bundle T ∗M × C −→ T ∗M equipped with the tautological
Hermitian metric and the prequantum connection ∇ = d − i

∑
j q j dp j defined by the

Liouville potential of the exact symplectic form. Then one performs geometric quan-
tisation (at quantum level � = 1) with respect to the real polarisation defined by the
cotangent fibres.

The next section is dedicated to the proof of Theorem 7.1.
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8. Proof of Strong Flatness

8.1. Time-dependent term.

Proposition 8.1. One has:

∂ti Ĥ j − ∂t j Ĥi = 0, for all i, j ∈ I.

This follows from a lemma.

Lemma 8.1. Let Wi : B −→ CGcycl be a classical isomonodromy potential. Then

∂t j Ŵi = ∂̂t j Wi , and ∂t j Tr�
(
Ŵi

) = Tr�
(
∂t j Ŵi

)
,

for all i, j ∈ I .

Proof of Lemma 8.1. These identities follow from construction: the quantisation of clas-
sical cycles and the �-deformed trace of quantum cycles do not depend on B. Note that
taking derivatives does not change the type of cycles that make up the isomonodromy
potential Wi , but only modifies the coefficients of the linear combination; hence the
quantisation ∂̂t j Wi of ∂t j Wi is well defined in the sense of Definition 6.5. ��
Proof of Proposition 8.1. Using the second set of identities of Lemma 8.1, it is enough
to verify that one has ∂ti Ŵ j − ∂t j Ŵi = 0 for all i, j ∈ I , because the �-deformed
trace of the left-hand side is precisely the difference ∂ti Ĥ j − ∂t j Ĥi . To prove this we
appeal to Theorem 3.1, borrowing the identity ∂ti H j = ∂t j Hi , which is equivalent to
∂ti W j = ∂t j Wi because Tr : CGcycl −→ A0 is injective. This implies

∂̂ti W j = ∂̂t j Wi ,

and the first set of identity of Lemma 8.1 concludes the proof. ��

8.2. Vanishing commutators. We now have to show that the simply-laced quantum
Hamiltonians commute. By bilinearity, this reduces to the problem of computing com-
mutators of the form

[
Tr�(Ĉ1),Tr�(Ĉ2)

] = [
Tr(Ĉ1),Tr(Ĉ2)

] · �
l(C1)+l(C2) ∈ Â,

where Ĉ1, Ĉ2 are quantum isomonodromy cycles of lengths l(C1) and l(C2) respectively.
We first focus on the element

[
Tr(Ĉ1),Tr(Ĉ2)

]
inside the Weyl algebra, and check

that it can still be expressed as the trace of a quantum potential. Importantly, to show
this one can no longer use the commutativity of the associative product, but nonetheless
this nontrivial property holds for quantum isomonodromy cycles.

Proposition 8.2. If Ĉ1 and Ĉ2 are quantum isomonodromy cycles then there exists a
quantum potential Ŵ ∈ ĈGcycl such that

[
Tr(Ĉ1),Tr(Ĉ2)

] = Tr(Ŵ ) ∈ A.

Moreover, Ĉ is obtained by a suitable anchoring of all cycles of the Necklace Lie bracket
{
σG(Ĉ1), σG(Ĉ2)

}
G ∈ CGcycl.
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The quantum potential Ĉ in the statement is uniquely determined by Ĉ1 and Ĉ2 as
an element of ĈGcycl, since we consider it up to admissible permutations of its arrows.

Definition 8.1. The commutator of the quantum isomonodromy cycles Ĉ1 and Ĉ2 is the
quantum potential

[
Ĉ1, Ĉ2

] ∈ ĈGcycl defined by Proposition 8.2, which thus satisfies

[
Tr(Ĉ1),Tr(Ĉ2)

] = Tr
([

Ĉ1, Ĉ2
])

.

Remark 8.1. Because of Proposition 8.2 the commutator is a quantisation of the necklace
Lie bracket of the underlying cycles, i.e.

σG
([

Ĉ1, Ĉ2
]) = {

σG(Ĉ1), σG(Ĉ2)
}
G .

This identity should be compared with (5.1), replacing degrees with lengths of cycles.
This shows how the construction of quantum potentials points towards a filtered quan-
tisation of Sym(CGcycl) (cf. Remark 4.2).

The proof of Proposition 8.2 breaks up into three Lemmas, whose proofs have been
postponed to the “Appendix A”.

Lemma 8.2. Let Ĉ1 and Ĉ2 be quantum cycles. Assume that one of Ĉ1, Ĉ2 is a quantum 2-
cycle, or that one of them does not contain pairs of opposite arrows. Then the commutator[
Ĉ1, Ĉ2

]
is well defined according to 8.1, and Proposition 8.2 is satisfied.

This properly includes all the commutators of quantum isomonodromy cycles, except
if both are degenerate quantum 4-cycles. Hence we now address that case, decomposing
it in the following two subcases: either the degenerate 4-cycles have different centres,
or their centres coincide.

Remark 8.2. As before, all forthcoming pictures sketch a “local” situation on the graph
G, meaning that we only draw the nodes and arrows involved in the commutators and
forget about the rest ofG. These sketches summarise longer computations in noncommu-
tative variables, which are explicitly given in the “Appendix A”. The simplicity of these
figures should be contrastedwith the complexity of the computations; indeed simplifying
such computations was one of our main motivations for developing this cycle-theoretic
calculus.

Secondarily, a choice of Darboux coordinates on (M, ωa) can be made in order to
simplify all formulæ: doing so one can assume that all coefficients in the necklace Lie
bracket equal either +1 or −1, and the sign can be fixed by taking an orientation for G.
Lemma 8.3. Pick distinct nodes a, b, c, d ∈ I such that the sequences of nodes (a, b, a, c)
and (a, c, d, c) define two degenerate quantum 4-cycles, so that a is the centre of the
former and c is the centre of the latter. Then their commutator vanishes, as shown in
Fig. 6.

The commutator is indeed obtained as by a suitable anchoring of the necklace Lie
bracket, since this necklace Lie bracket also vanishes. Hence Proposition 8.2 is verified
in this case.

Lemma 8.4. Pick two degenerate quantum 4-cycles centred at j ∈ I , with exactly one
peripheral node in common. Then one can choose an orientation of G so that their
commutator equals the quantum potential shown in Fig. 7.
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Fig. 6. Vanishing commutator of two degenerate quantum 4-cycles centred at different nodes

Fig. 7. Commutator of twodegenerate quantum4-cycleswith centres in common (the numbers at the peripheral
nodes indicate the order in which they are touched)

The cut-and-glue rule for the necklace Lie bracket then shows that Proposition 8.2 is
verified in this last case.

Now we conclude the proof of the main Theorem 7.1.

Proposition 8.3. One has
[
Ĥi , Ĥ j

] = 0 for all i, j ∈ I .

Proof. Note that if Ĉ1 and Ĉ2 are quantum isomonodromy cycles then one has

Tr�
([

Ĉ1, Ĉ2
]) = Tr

([
Ĉ1, Ĉ2

]) · �
l(C1)+l(C2)−2,

where l(Ck) is the length of Ĉk for k = 1, 2. Indeed, by Proposition 8.2 all quantum
cycles in the commutator have length l(C1) + l(C2) − 2, since this is the length of the
cycles in the necklace Lie bracket

{
σG(Ĉ1), σG(Ĉ2)

}
G . Hence

Tr�
([

Ĉ1, Ĉ2
]) · �

2 = [
Tr�(Ĉ1),Tr� Ĉ2

]
,

and by bilinearity

Tr�
([

Ŵi , Ŵ j
]) · �

2 = [
Tr�

(
Ŵi

)
,Tr�

(
Ŵ j

)] = [
Ĥi , Ĥ j

] ∈ Â.

Thus it is enough to show that
[
Ŵi , Ŵ j

] = 0 as quantum potential, for all i, j ∈ I .
Moreover, in the quantum potential Ŵi we can replace all quantisations of 2-cycles

(shown in Fig. 4) with a single quantum 2-cycle anchored at the node i , since doing this
amounts to adding a constant, i.e. a central term.
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Finally, in all computations of quantum commutators one can freelymove the anchors
of 3-cycles and nondegenerate 4-cycles, since they give equivalent anchored cycles.

Decompose then the classical isomonodromy potentials Wi , W j into a linear com-
bination of isomonodromy cycles, obtaining Wi = ∑

k ckCk and W j = ∑
l dl Dl for

oriented cycles Ck, Dl in G and complex numbers ck, dl . Expanding the necklace Lie
bracket of Wi and W j by bilinearity yields a linear combination of potentials:

0 = {Wi , W j }G =
∑

k,l

ckdl{Ck, Dl}G, (8.1)

where the identity {Wi , W j }G = 0 (inside CGcycl) follows from Theorem 3.1, since it is
equivalent to the Poisson commutativity of the simply-laced (classical) Hamiltonians.
Putting together all equal cycles on the right-hand side of (8.1) then results in a vanishing
linear combination of cycles:

0 = {Wi , W j }G =
∑

m

em Em ∈ CGcycl,

where now all the Em are distinct. Then one has necessarily em = 0 for all m, since any
finite family of distinct cycles in G is by definition free inside CGcycl.

On the quantum side one finds an analogous expansion:

[
Ŵi , Ŵ j

] =
∑

k,l

ckdl
[
Ĉk, D̂l

]
, (8.2)

with Ĉk (resp. D̂l ) being the quantisations of Ck (resp. of Dl ), according to Defini-
tion 6.5—with the aforementioned modification for the quantisation of 2-cycles. More-
over, thanks to Proposition 8.2 one knows that

[
Ĉk, D̂l

]
is obtained by suitably anchoring

all the cycles of {Ck, Dl}G . One would now like to have

[
Ŵi , Ŵ j

] =
∑

m

em Êm ∈ ĈGcycl,

with the same constants em ∈ C, for some quantisation Êm of Em . This will happen if
the following holds: whenever two cycles are equal on the right hand-side of (8.1), then
their corresponding quantum cycles on the right-hand side of (8.2) are also equal, i.e.
they are anchored cycles with equivalent anchors.

A systematic way of showing this is to list all cycles coming out of the necklace Lie
bracket of two isomonodromy cycles with opposite arrows in common. For those which
do not contain opposite arrows there is nothing to show, so we proceed by cataloguing
all cycles which instead do contain opposite arrows, dividing them into two lists.

The first list appears in Fig. 8.
The cycles of Fig. 8 can be described as the glueing of two subcycles at some node,

which we call their centre. One can then compute in noncommutative variables (cf.
“Appendix A”) to show that such cycles can always be anchored at their central node
after computing commutators, up to changing anchors for 3-cycles and nondegenerate
4-cycles. Then the two leftmost cycles of Fig. 8 correspond to equal quantum cycles on
the right-hand side of (8.2), as it was to be shown.

The rightmost cycle of Fig. 8 requires further care, since there are inequivalent anchors
at its centre; nonetheless, up to changing the anchor of nondegenerate 4-cycles one can
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Fig. 8. Cycles with opposite arrows which arise as necklace Lie brackets of isomonodromy cycles: first list

Fig. 9. Cycles with opposite arrows which arise as necklace Lie brackets of isomonodromy cycles: second
list

show that the 2-subcycle always comes first after computing commutators, and thus such
quantum cycles are equal.

The remaining cycles which contain opposite arrows are shown in Fig. 9.
The two leftmost cycles of Fig. 9 are dealt with by a uniqueness argument. Namely,

the cycle C = only arises from the necklace Lie bracket of two 3-cycles C1
and C2 having opposite orientations. The cycles C1 and C2 are uniquely determined by
the three nodes of C , and thus on the right-hand side of (8.1) the cycle C appears exactly
twice with opposite coefficients—otherwise the sum would not vanish. But then up to
changing the anchors of C1 and C2 (which are all equivalent) the same happens on the
right-hand side of (8.2), because the quantisation does not tamper with the coefficients
of 3-cycles.

Similarly, the 6-cycle C ′ = only arises as the necklace Lie bracket of
two nondegenerate 4-cycles with opposite orientations, which are moreover uniquely
determined by the nodes of C ′, and the same argument applies.

Finally we have to consider the rightmost cycle of Fig. 9, i.e. the 6-cycle coming
out the commutator of two degenerate 4-cycles with centre in common, as depicted in
Lemma 8.4. The existence of a common centre implies that i and j lie in the same
part of I , which we denote I := Ii = I j . Let then k ∈ I be the common centre and
consider the complete bipartite subgraph G′ ⊆ G on nodes I ′ = {k} ∐

I . If one defines
V ′ := Vk ⊕ ⊕

l∈I Vl , then a choice of Darboux coordinates on the representation space

Rep(G′, V ′) ∼= T ∗
⎛

⎝
⊕

l∈I

Hom(Vl , Vk)

⎞

⎠
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turns this situation into that of Sect. 9.1, where we consider the universal simply-laced
quantum connection of a star-shaped quiver. Hence the proof of Proposition 9.1 con-
cludes the proof of Proposition 8.3. ��

The proof of Theorem 7.1 will thus be completed by the proof of Proposition 9.1.

Remark 8.3. If one denotes Ĉi j the degenerate quantum 4-cycle with centre k that passes
through the nodes i �= j ∈ I , then one can show that

[
Ĉi j , Ĉil + Ĉ jl

] = 0

for all distinct nodes i, j, l ∈ I—keeping the notation of I = Ii = I j used in the
above proof. We see these relations as a lift of Kohno’s relations for the flatness of the
Knizhnik–Zamolodchikov connection, that is

[
�̂(i j), �̂(il) + �̂( jl)] = 0,

where the operators �̂(i j) will be defined in Sect. 9.2.

This remark prompts us to explaining why the universal simply-laced quantum con-
nection is a lifted version of some important quantum connections including Knizhnik–
Zamolodchikov, as we now turn to do.

9. The KZ Connection and the Star with Degenerate Reading

In this section we show that the Knizhnik–Zamolodchikov connection (KZ) [KZ84] is
a reduction of the simply-laced quantum connection for the degenerate reading of a
star with no irregular times attached. By definition a star (or a star-shaped graph) is a
complete bipartite graph having one part with a single node, called the centre; the other
nodes are called peripheral.

9.1. Simply-laced quantum connection of a star. We start by specialising the general
construction of Sects. 3 and 7 to define the universal simply-laced quantum connection
of a star with no irregular times.

Take the set J to have cardinality k = 2, with degenerate reading

a : J �−→ a(J ) = {∞, 0} ⊆ C ∪ {∞}.
This means that the highest irregular coefficient A of the meromorphic connections (3.3)
vanishes, and that T = T 0. We further assume that T 0 = 0, so that (3.3) becomes a
logarithmic connection. The base space of times is now B = C

m\{diags}, i.e. the space
of variations of the positions of m ≥ 1 simple poles in C.

If we identify J with a(J ), then the part I 0 ⊆ I = I 0
∐

I ∞ within the set of nodes
I of the complete bipartite graph G is a singleton, and we denote 0 its only element.
Hence, G is a star with centre 0, and with m = |I ∞| peripheral nodes, such as in Fig. 10.

We then attach finite dimensional vector spaces {V0, Vi }i∈I ∞ to the nodes ofG, and set
W ∞ = ⊕

i∈I ∞ Vi , U∞ = W 0 = V0, and V = W ∞ ⊕ W 0. The space of representation
is

M = Rep(G, V ) = Hom(W ∞, W 0) ⊕ Hom(W 0, W ∞),
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Fig. 10. A star-shaped graph (here with m = 4 peripheral nodes)

equipped with the symplectic form ωa = Tr(d Q ∧ d P), where Q : W ∞ −→ W 0 and
P : W 0 −→ W ∞. We write Qi for the component of Q in V ∗

i ⊗ W 0, and Pi for the
component of P in (W 0)∗ ⊗ Vi .

As explained above, these data parametrise particular examples of the meromorphic
connections (3.3), namely the logarithmic connections

∇ = d − (
Q(z − T ∞)−1P

)
dz = d −

∑

i∈I ∞

Qi Pi

z − ti
dz, (9.1)

on the trivial vector bundle W 0 × CP1 −→ CP1, where {ti }i∈I ∞ ∈ B, and the off-
diagonal term 
 = ( Q

P

) ∈ M encodes the residues.
The isomonodromic deformations of the Fuchsian systems (9.1) are controlled by

the simply-laced Hamiltonian system (3.4). If one sets P̃ Q = ad−1
T ∞

[
dT ∞, P Q

]
, then

it becomes

� = 1

2
Tr

(̃
P Q P Q

)
.

This is a nonautonomous Hamiltonian system defined on the trivial symplectic fibration
M × B −→ B, which spells out as

Hi := 〈�, ∂ti 〉 =
∑

j �=i∈I ∞

Tr(Pi Q j Pj Qi )

ti − t j
. (9.2)

The universal simply-laced quantum connection of Definition 7.2 specialises to

∇̂ = d − �̂ = d −
∑

i∈I ∞

⎛

⎝
∑

i �= j∈I ∞

Tr(Q̂ j P̂j Q̂i P̂i )

ti − t j
· �

4

⎞

⎠ dti ,

where Q̂ j and P̂j are matrices whose coefficients are the Weyl quantisation of the
coordinate functions (Q j )kl and (Pj )kl , and the order of these noncommutative variables
is fixed by anchoring all degenerate 4-cycles at their centre—following Definition 6.5.

The expansion of the universal simply-laced quantumHamiltonian at the node i ∈ I ∞
is then

Ĥi := 〈�̂ , ∂ti 〉 =
∑

i �= j

Tr(Q̂ j P̂j Q̂i P̂i )

ti − t j
· �

4, (9.3)
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whereas the simply-laced quantum Hamiltonians are the functions ρ1(Ĥi ) : B −→ A as
in Definition 7.3, obtained from the evaluation � = 1.

We now prove directly that the universal quantum Hamiltonians commute.

Proposition 9.1. One has
[
Ĥi , Ĥ j

] = 0 for all i, j ∈ I ∞.

Proof. Assume i �= j ∈ I ∞. The trick is to split the commutator in the following sum:

[
Ĥi , Ĥ j

] = �
8 ·

∑

k∈I ∞\{i, j}

1

(ti − tk)(t j − tk)

[
Tr(Q̂k P̂k Q̂i P̂i ),Tr(Q̂k P̂k Q̂ j P̂j )

]

+
1

(ti − t j )(t j − tk)

[
Tr(Q̂ j P̂j Q̂i P̂i ),Tr(Q̂ j P̂j Q̂k P̂k)

]

+
1

(ti − tk)(t j − ti )

[
Tr(Q̂i P̂i Q̂k P̂k),Tr(Q̂i P̂i Q̂ j P̂j )

]
.

This decomposition is suggested by enumerating the possible degenerate 4-cycles with
exactly one peripheral node in common, because this is the only situation leading to
nonvanishing commutators. Such nonvanishing commutators can be depicted as follows
(for k ∈ I ∞\{i, j}):

k

i

k

j, ,

when k is in common; then

i

j

k

j, ,

when j is in common; and finally
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k

i i

j, ,

when i is in common. Now, using Lemma 8.4 one finds:

[
Ĥi , Ĥ j

] = �
8 ·

∑

k �=i, j

1

(ti − tk)(t j − tk)
Tr

(
[Q̂i P̂i , Q̂k P̂k]Q̂ j P̂j

)

+
1

(ti − t j )(t j − tk)
Tr

(
[Q̂i P̂i , Q̂ j P̂j ]Q̂k P̂k

)

+
1

(ti − tk)(t j − ti )
Tr

(
[Q̂k P̂k, Q̂i P̂i ]Q̂ j P̂j

)

= �
8 ·

∑

k �=i, j

[
1

(ti − tk)(t j − tk)
− 1

(ti − t j )(t j − tk)
− 1

(ti − tk)(t j − ti )

]

·Tr
(
[Q̂ j P̂j , Q̂i P̂i ]Q̂k P̂k

)
.

Each addend of this sum vanishes because of the cyclic relation

1

(ti − tk)(t j − tk)
− 1

(ti − t j )(t j − tk)
− 1

(ti − tk)(t j − ti )
= 0.

��

9.2. KZ connection. Here we recall the definition of the KZ connection [KZ84], and we
derive an explicit formula for the KZ Hamiltonians.

Letm ≥ 1 be an integer, and consider the spaceB = C
m\{diags} ⊆ C

m of configura-
tion of ordered m-tuples of points in C, with global complex coordinates {ti }i defined by
the restriction of the standard coordinates on C

m . Choose a Lie algebra g equipped with
an invariant nondegenerate symmetric bilinear form K ∈ g∗ ⊗ g∗ identifying g ∼= g∗.
Consider the trivial bundle U (g)⊗m × B −→ B with fibre the m-fold tensor power of
the universal enveloping algebra of g. Then the KZ connection is a connection ∇̂KZ on
this trivial bundle of noncommutative algebras.

To write it down, use the duality g ∼= g∗ to turn the identity morphism Idg ∈ g ⊗ g∗
into an element � ∈ g⊗ g. Then applying the natural inclusion ιU : g ↪→ U (g) on each
factor yields an element �̂ := ιU (�) ⊆ U (g) ⊗ U (g), and we denote �̂(i j) ∈ U (g)⊗m

the natural embedding of �̂ on the i th and j th slot of the m-fold tensor product, for
i, j ∈ {1, . . . , m}.
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The KZ connection is defined by

∇̂KZ = d − �̂KZ := d −
∑

i �= j

�̂(i j)

ti − t j
(dti − dt j ), (9.4)

where �̂(i j) ∈ U (g)⊗m acts by left multiplication. The KZ Hamiltonians are then given
by

ĤKZ
i := 〈�̂KZ, ∂ti 〉 =

∑

j �=i

�̂(i j)

ti − t j
,

and constitute a strongly integrable nonautonomous quantum Hamiltonian system.

Remark 9.1. The above definition of � is intrinsic. One may equivalently choose a K -
orthonormal basis (xi )i of g and find � = ∑

i xi ⊗ xi , K = ∑
i dxi ⊗ dxi .

Furthermore, the connection d − ��̂KZ is still strongly flat for every choice of the
parameter �. Using the construction of Proposition 5.2 one can add such a quantum
parameter in (9.4), matching it with the expression usually found in the literature (where
�

−1 is the sum of the dual Coxeter number h∨ of a simple Lie algebra g and a level
k ∈ Z≥0 for integrable highest weight ĝ-modules; see [EFK98,Koh02]).

This construction can be specialised to g = gl(W 0), where W 0 is a finite-dimensional
vector space, taking the nondegenerate invariant trace pairing K (A, B) := Tr(AB).

Definition 9.1. The isomorphism g ∼= g∗ induced by the nondegenerate trace pairing is
called the trace-duality.

The trace-duality sends the vector ei j of the canonical basis of g to the covector
de ji ∈ g∗. Hence in these coordinates one finds

ĤKZ
i =

∑

j �=i

∑

k,l

ê(i)
kl · ê( j)

lk

ti − t j
, (9.5)

where the product on U (g)⊗m is defined factor-wise, ê jk := ιU (e jk) and ê(i)
jk ∈ U (g)⊗m

denotes the natural embedding of ê jk ∈ U (g) on the i th slot of U (g)⊗m .

9.3. Schlesinger system. In this section we write explicit formulæ for the Schlesinger
Hamiltonians [Sch05].

Fix again a finite-dimensional vector space W 0, and consider the trivial holomorphic
vector bundle W 0 × CP1 −→ CP1. Take z to be a holomorphic coordinate identi-
fying CP1 ∼= C ∪ {∞}, choose complex numbers t1, . . . tm ∈ C and endomorphisms
R1, . . . Rm ∈ g = gl(W 0) such that

∑
i Ri = 0. Then the Fuchsian system with poles

at the points ti and residues Ri is the system of linear first order differential equations

∂ψ

∂z
=

m∑

i=1

Ri

z − ti
ψ,
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for a local holomorphic sectionψ ofW 0×CP1 −→ CP1. The isomonodromyequations
for the residues under variations of the positions of the poles yield theSchlesinger system:

d Ri = −
∑

i �= j

[
Ri , R j

]

ti − t j
d(ti − t j ).

These are nonlinear first order differential equations defining an integrable Ehresmann
connection on the trivial Poisson fibration gm × B −→ B, where B = C

m\{diags}
parametrises the choices of the positions of the poles, and where we equip g with the
linear Poisson bracket coming from the Lie–Poisson structure of g∗ under the trace-
duality.

It can now be shown that there exist smooth functions HSch
i : gm × B −→ C such

that the isomonodromy equations become

∂ R j

∂ti
= {HSch

i , R j },

for 1 ≤ i, j ≤ m. These functions are called the Schlesinger Hamiltonians, and are
explicitly given by

HSch
i =

∑

j �=i

Tr(Ri R j )

ti − t j
. (9.6)

9.4. KZ is a quantisation of Schlesinger. It is shown in [Res92,Har96] that the KZ
connection is a quantisation of the Schlesinger system. In this section we give a proof
adapted to our notation.

There is a standard quantisation machinery for the dual of a Lie algebra g∗. Namely,
the algebra of regular functions on g∗ is isomorphic to Sym(g), which is a graded
commutative Poisson algebra endowed with its Lie–Poisson structure. The material of
Sect. 5 applies, and one can look for a filtered quantisation of Sym(g).

An explicit filtered quantisation is described by the Poincaré–Birkhoff–Witt theorem,
stating that there is an isomorphism of graded commutative algebras Sym(g) ∼= grU (g),
taking the standard filtration on the universal enveloping algebra of g. Moreover, the
identity (5.1) for Poisson brackets holds, and thus U (g) is a filtered quantisation of
Sym(g), which constitutes a Poisson analogue of the symplectic construction of the
Weyl algebra of Sect. 5.3.

We now extend the universal inclusion x �−→ x̂ to a map defined on the whole of the
symmetric algebra, using the symmetrisation.

Definition 9.2. The PBW-quantisation QPBW : Sym(g) −→ U (g) is the map defined
on monomials of degree n by

QPBW :
n∏

i=1

xi �−→ 1

n!
∑

τ∈�n

n∏

j=1

x̂τ( j),

where xi ∈ g for all i and �n is the symmetric group on n objects.
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To apply this to the KZ connection take g = gl(W 0) as in Sect. 9.2, and extend
the PBW-quantisation to a map Sym(g)⊗m −→ U (g)⊗m in the natural way. Now, the
Schlesinger Hamiltonians (9.6) are global sections

HSch
i : B −→ Sym(g∗)⊗m,

and thanks to the trace-duality g∗ ∼= g one may consider them as taking values in
Sym(g)⊗m . Similarly, the KZ Hamiltonians (9.5) are global sections

ĤKZ
i : B −→ U (g)⊗m,

and thus it makes sense to compare the KZ Hamiltonians with the PBW-quantisation of
the Schlesinger Hamiltonians.

Theorem 9.1. One has QPBW(HSch
i ) = ĤKZ

i for all i = 1, . . . , m, pointwise on B.

Proof. By linearity it is enough to show that

QPBW
(
Tr(Ri R j )

) = �̂(i j), for all i �= j ∈ {1, . . . , m}.
Note that the function (R1, . . . , Rm) �−→ Tr(Ri R j ) is the embedding of the invariant
nondegenerate bilinear form K ∈ g∗ ⊗ g∗ on the on the i th and j th slot of Sym(g∗)⊗m ,
and that the PBW-quantisation reduces to the universal inclusion ιU on elements of
degree one. Hence it is enough to show that the trace-dual K ∗ of K equals � inside
g ⊗ g, which is clear by computing in a K -orthonormal basis (cf. Remark 9.1). ��

9.5. Classical Hamiltonian reduction. In this section we show that the classical Hamil-
tonian reduction of the simply-laced Hamiltonians system (9.2) yields the Schlesinger
Hamiltonians (9.6). The formal procedure is to replace the matrix product Qi Pi that
appears in (9.2) with the residue Ri that appears in (9.6), and we will turn this into an
algebraic statement.

Consider again the vector spaces W 0 and W ∞ = ⊕
i∈I ∞ Vi , and keep the notation

g = gl(W 0). Using the nondegenerate pairing provided by the trace, one has for all
i ∈ I ∞ a canonical identification

Li := Hom(Vi , W 0) ∼= Hom(W 0, Vi )
∗,

and thus
Hom(Vi , W 0) ⊕ Hom(W 0, Vi ) ∼= T ∗Li .

Consider now the product map, that is

μi : T ∗Li −→ g, (Qi , Pi ) �−→ Qi Pi .

Up to using the trace-duality g ∼= g∗, this is the moment map for the restriction of the
GL(W 0)-action on the invariant symplectic subspace T ∗Li ⊆ M; in particular it is a
Poisson map. The direct sum of the maps μi thus yields a Poisson map

μ : M =
⊕

i∈I ∞
T ∗Li −→ gm, μ : (Qi , Pi )i∈I ∞ �−→ (Qi Pi )i∈I ∞ , (9.7)

and the pull-back with respect to μ yields a morphism

μ∗ : Sym(g∗)⊗m −→ Sym(M∗) = A0.
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To write an explicit formula for it, let (Ri ) jk be the coordinate functions on the i th factor
of the product gm , and (Qi ) jm , (d Pi )ml the coordinate functions on M—once bases of
W 0 and Vi have been chosen. Then for all i ∈ I ∞ one has

μ∗((Ri ) jk
) =

∑

m

(Qi ) jm(Pi )mk .

We see that μ∗ is a morphism turning polynomial functions on gm into polynomial
functions on M, and we now prove that this natural correspondence matches (9.2) with
(9.6).

Proposition 9.2. One has μ∗(HSch
i ) = Hi for all i ∈ I ∞.

Proof. By linearity, it is enough to check that

μ∗ Tr(Ri R j ) = Tr(Qi Pi Q j Pj ), for i �= j ∈ I ∞.

The definition of μ∗
i implies precisely

μ∗ Tr(Ri R j ) = μ∗ ∑

k,l

(Ri )kl(R j )lk =
∑

k,l

(
μ∗

i (Ri )kl
)(

μ∗
j (R j )lk

)

=
∑

k,l,m,n

(Qi )km(Pi )ml(Q j )ln(Pj )nk = Tr(Qi Pi Q j Pj ).

��
This proposition gives an algebraic meaning to performing the formal change of

variable Ri := Qi Pi . This can be used to show that (9.6) is the Hamiltonian reduction of
(9.2) under the action of change of bases in the spaces at the peripheral nodes of the star
G. With this end in mind we now recall the definition of the Hamiltonian reduction of
a Poisson algebra (see [Eti07]; what is there called “moment map” we call “comoment
map”, following the usual convention that a moment map takes values in the dual of a
Lie algebra).

Start abstractly: let (B, {·, ·}) be a commutative Poisson algebra and h a Lie algebra.

Definition 9.3. An h-action on B is a morphism ξ : h −→ Der(B) of Lie algebras. A
comoment map for ξ is a morphism μ∗ : Sym(h) −→ B of Poisson algebras whose
restriction to h lifts ξ through the adjoint action of B on itself:

h Der(B)

B

ξ

μ∗|h
ad

The action is then uniquely determined by ξ(x).a = {μ(x), a}, for x ∈ h and a ∈ B.
Assume now to have a comoment map μ∗ : Sym(h) −→ B for an h-action on B,

and let I ⊆ Sym(h) be an ideal.
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Definition 9.4. The Hamiltonian reduction of B with respect to the comoment map μ∗
and the ideal I is the quotient ring

R(B, h,I) := Bh
/
Jh,

where
Bh := {

f ∈ B | {μ∗(h), f } = 0
}
,

is the h-invariant part, J ⊆ B is the ideal generated byμ∗(I) inside B, and Jh := J∩ Bh.

To apply this to the case at hand set G∞ := ∏
i∈I ∞ GL(Vi ), with Lie algebra g∞. The

group acts on (M, ωa), and the infinitesimal action of g∞ by vector fields on M yields
by definition a g∞-action on A0, where A0 = Sym(M∗) plays the role of the Poisson
algebra B in the above definitions. There is a comoment map μ∗∞ : Sym(g∞) −→ A0
for the g∞-action, and we may choose an ideal I ⊆ Sym(g∞). Then the Hamiltonian
reduction R(A0, g

∞,I) is defined, together with the canonical projectionπI : Ag∞
0 −→

R(A0, g
∞,I). ByCorollary4.1 the simply-lacedHamiltonian Hi of (9.2) isg∞-invariant.

Definition 9.5. The element πI(Hi ) ∈ R(A0, g
∞,I) is the Hamiltonian reduction of

the function Hi at the ideal I.

Thegeometric counterpart of this algebraic constriction is the following. Fix aZariski-
closed coadjoint G∞-orbit O ⊆ (g∞)∗, and let I be the associated ideal of vanishing
functions

I := I [O] =
{

f ∈ Sym(g∞)

∣
∣∣ f |O = 0

}
.

If J is the ideal generated by μ∗∞(I) ⊆ A0, then the quotient ring A0
/
J corresponds to

the algebra of regular functions on the preimageμ−1∞ (O) ⊆ M. Finally, theG∞-invariant
part yields the ring of functions on the quotient

μ−1∞ (O)
/

G∞ =: M �O G∞,

which is the usual Marsden-Weinstein symplectic reduction (a symplectic leaf of the
Poisson scheme M/G∞). Analogously, one can take a product of coadjoint GL(W 0)-
orbitsO′ := O1×· · ·×Om ⊆ (g∗)m ∼= gm . This is a symplectic leaf of gm , endowedwith
the Kirillov–Konstant–Souriau symplectic form, and the Schlesinger system restricts
to time-dependent Hamiltonians HSch

i

∣
∣O′ defined on the trivial symplectic fibration

O′ ×B −→ B. Hence at any fixed time these Hamiltonians are elements of the quotient
ring Sym(g∗)⊗m

/
I′, where I′ = I

[O′] is the ideal of functions vanishing on O′.
We thus take a last restriction on the simply-laced isomonodromy system of the star

to reduce it to the Schlesinger system: assume that the vector spaces Vi are all equal
to W 0, i.e. that we attach one and the same vector space to all nodes of G. Then there
are canonical identifications G∞ ∼= GL(W 0)m and g∞ ∼= gm , under which the product
O′ ⊆ gm of GL(W 0)-orbits becomes a G∞-orbit O ⊆ (g∞)∗—using the trace-duality.
Moreover, there is an induced isomorphismSym(g∗)⊗m ∼= Sym(g∞)which sends theO-
vanishing ideal I ⊆ Sym(g∞) onto theO′-vanishing ideal I′ ⊆ Sym(g∗)⊗m , providing
a ring isomorphism

Sym(g∞)
/
I ∼= Sym(g∗)⊗m/

I′.
The following proposition then gives a uniform way of comparing functions defined

on O′ with functions defined on the symplectic reduction M �O G∞.
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Proposition 9.3. There is an injective ring morphism

ϕ : Sym(g∗)⊗m/
I′ −→ R(A0, g

∞,I),

induced by composing the map μ∗ of (9.5) with the canonical projection πI on the
Hamiltonian reduction.

Proof. The only thing to show is that the image of μ∗ is contained in the invariant part
Ag∞
0 . Indeed if that is true then the composition

πI ◦ μ∗ : Sym(g∗)⊗m −→ R(A0, g
∞,I)

is well defined, and by construction the preimage of J under μ∗ is the ideal I′, up to the
aforementioned identification Sym(g∗)⊗m ∼= Sym(g∞). Hence themorphism ϕ induced
to the quotient has no kernel.

Finally, the fact that μ∗ takes values in the invariant algebra is due to a general
fact about comoment maps for commutative Hamiltonian actions of Lie groups: their
images are Poisson-commutative subalgebras. This means that if μ0 : M −→ g ∼= g∗
is the moment for the GL(W 0)-action on M, then one has μ∗

0

(
Sym(g∗)

) ⊆ Ag∞
0 . The

same holds for μi , which is the restriction of μ0 to T ∗ Hom(Vi , W 0), and thus for μ∗
as weel—since it is defined as μ∗

i on each factor T ∗ Hom(Vi , W 0) ⊆ M. ��
Proposition 9.2 immediately yields the final result of this section.

Theorem 9.2. One has ϕ
(

HSch
i

∣∣O′
) = πI(Hi ) for all i ∈ I ∞.

Hence, indeed the Schlesinger system corresponds to the Hamiltonian reduction
of this particular case of the simply-laced isomonodromy system, for every choice of
ideal/coadjoint orbit.

Remark 9.2. The residual GL(W 0)-action on M�O G∞—the action at the central node
of G—can further be modded out to yield the moduli spaceM∗

dR of isomorphism classes
of meromorphic connections (9.1) on a trivial vector bundle over CP1 (cf. Remark 4.1).
Then the totally reduced simply-laced Hamiltonians correspond to the reduction of the
Schlesinger Hamiltonians on the symplectic quotient O′ �0 GL(W 0) at the zero level
of the moment map for the diagonal coadjoint GL(W 0)-action on O′. In particular we
recover the realisation of the moduli space of logarithmic connection on the Riemann
sphere as the complex symplectic quotient of a product of coadjoint orbits (see [Hit97]).

9.6. Quantum Hamiltonian reduction. In this section we show the natural quantum
analogues of the results of the previous one: the quantum Hamiltonian reduction of the
simply-laced quantum Hamiltonians ρ1(Ĥi ) yields the KZ Hamiltonians (9.5).

As before, we start by explaining the algebraic meaning of the “quantum” change of
variables R̂i = Q̂i P̂i . Namely, we understand it as a morphism

μ̂∗ : U (g∗)⊗m −→ A

of associative algebras, where A = W (M∗, {·, ·}) is the Weyl algebra.

Proposition 9.4. The auxiliary morphism μ̃∗
i : Tens(g∗) −→ Tens(T ∗Li ), defined on

g∗ by
μ̃∗

i : (Ri ) jk �−→
∑

m

(Qi ) jm ⊗ (Pi )mk,

induces an associative morphism μ̂∗
i : U (g∗) −→ W (T ∗Li , {·, ·}).
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Proof. It is simpler to prove this fact for the function α : Tens(g) −→ Tens(T ∗Li )

obtained by precomposing μ̃∗
i with the trace-duality g −→ g∗. This composition reads

α : (ei ) jk �−→
∑

m

(Qi )km ⊗ (Pi )mj .

Now the basis elements satisfy the commutation relations

[
(ei ) jk, (ei )lm

] = δkl(ei ) jm − δ jm(ei )lk, and
{
(Qi ) jk, (Pi )lm

} = δklδ jm,

which directly imply

α
([

(ei ) jk, (ei )lm
]) =

{
α
(
(ei ) jk

)
, α

(
(ei )lm

)}
.

This yields

μ̃∗
i

([
(Ri ) jk, (Ri )lm

]) =
{
μ̃∗

i

(
(Ri ) jk

)
, μ̃∗

i

(
(Ri )lm

)}
,

and thus the two-sided ideal generated by

x ⊗ y − y ⊗ x − [x, y] ∈ Tens(g∗), for x, y ∈ g∗,

lands in the two-sided ideal generated by

f ⊗ g − g ⊗ f − { f, g} ∈ Tens(T ∗Li ), for f, g,∈ T ∗Li .

Then the universal property of the quotient concludes the proof. ��
Proposition 9.4 shows that the formula

μ̂∗
i

(
(R̂i ) jk

) :=
∑

m

(Q̂i ) jm · (P̂i )mk (9.8)

defines a morphism μ̂i : U (g) −→ W (T ∗Li , {·, ·}), where (Q̂i ) jm , (P̂i )mk are the Weyl
quantisations of the corresponding coordinate functions. Now we collect (9.8) into a
morphism μ̂∗ : U (g)⊗m −→ A, defined in the natural way:

μ̂∗
(

m⊗

i=1

f̂i

)

:=
m∏

i=1

μ̂∗
i ( f̂i ), where f̂i ∈ U (g) for all i,

and where we use the associative product of A on the right-hand side. This is indeed a
morphism of associative algebras if one endows U (g)⊗m with the factor-wise product,
since

[
W (T ∗Li , {·, ·}), W (T ∗L j , {·, ·})

] = 0 inside A for all i �= j .
We now prove that this morphism matches up the KZ Hamiltonians (9.5) with the

simply-laced quantum Hamiltonians.

Proposition 9.5. One has μ̂∗(ĤKZ
i

) = ρ1(Ĥi ) for all i ∈ I ∞.
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Proof. By linearity, it will be enough to show that

μ̂∗(Tr(R̂i R̂ j )
) = Tr(Q̂i P̂i Q̂ j P̂j ), for i �= j ∈ I ∞.

This follows from the straightforward expansion

μ̂∗ Tr(R̂i R̂ j ) = μ̂∗ ∑

k,l

(R̂i )kl · (R̂ j )lk =
∑

k,l

(
μ̂∗

i (R̂i )kl
) · (

μ̂∗
j (R̂ j )lk

)

=
∑

k,l,m,n

(Q̂i )km · (P̂i )ml · (Q̂ j )ln · (P̂j )nk = Tr(Q̂i P̂i Q̂ j P̂j ).

��
Hence, one has lifted the classical correspondence of Proposition 9.2 to a quantum

correspondence. This can be used to show that the quantum Hamiltonian reduction of
ρ1(Ĥi ) with respect to the action of the group G∞ = ∏

i∈I ∞ GL(Vi ) yields (9.5). With
this end in mind we now recall the definition of the quantum Hamiltonian reduction of
an associative algebra (see [Eti07]).

Start from an abstract viewpoint: let A be an associative algebra, and h a Lie algebra.

Definition 9.6. An h-action on A is morphism ξ̂ : h −→ Der(A) of Lie algebras. A
quantum comoment map for ξ̂ is a morphism μ̂∗ : U (h) −→ A of associative algebras
whose restriction to h lifts ξ̂ through the adjoint action of A on itself:

h Der(A)

A

ξ̂

μ̂∗|h
ad

The quantum action is then uniquely determined by ξ̂ (x).a = [μ̂(x), a], for x ∈ h
and a ∈ A.

Let now μ̂∗ be the quantum comoment map for a h action on the associative algebra
A, and Î ⊆ U (h) a two-sided ideal.

Definition 9.7. The quantum Hamiltonian reduction of A with respect to the quantum
comoment map μ̂∗ and the ideal Î is the quotient ring

Rq(A, h, Î) := Ah
/̂
Jh,

where Ah := {
b ∈ A

∣∣ [
μ̂∗(h), b

] = 0
}
is the h-invariant part, Ĵ ⊆ A is the left ideal

generated by μ̂∗(̂I) inside A, and Ĵh := Ĵ ∩ Ah.

To apply this to the case at hand, consider the Lie group G∞ = ∏
i∈I ∞ GL(Vi ) and

its Lie algebra g∞ ∼= (g∞)∗. Then analogous computations to those of Proposition 9.4
provides a quantum comoment map μ̂∗∞ : U

(
(g∞)∗

) −→ A = W (M∗, {·, ·}). Namely,
if one denotes (Si ) jk ∈ gl(Vi ) the coordinate functions, then one can consider

μ̂∗∞
(
(Ŝi ) jk

) := −
∑

m

(P̂i ) jm · (Q̂i )mk . (9.9)
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Pick then any ideal Î ⊆ U
(
(g∞)∗

)
, and define the quantum Hamiltonian reduction

R(A, g∞, Î), as well as the canonical projection πÎ : Ag∞ −→ R(A, g∞, Î). To define
the reduction of the quantum Hamiltonians one can provide an easy quantisation of
Corollary 4.1. Recall that Ĥ = G∞ × GL(W 0) is the global group acting on M by
simultaneous base changing.

Lemma 9.1. The simply-laced quantum Hamiltonians of Definition 7.3 are invariant for
the Ĥ-action on A.

Proof. More generally let R be a ring, and consider the standard trace on the space of
square matrices with coefficients in R. Then the trace is invariant under conjugation with
respect to matrices whose coefficients lies in the centre Z(R) ⊆ R. One can then apply
this for R = W (M∗, {·, ·}) and g ∈ Ĥ arbitrary, since g has coefficients in C = Z(A).

��
Definition 9.8. The element πÎ(ρ1(Ĥi )) ∈ R(A, g∞, Î) is the quantum Hamiltonian
reduction of the operator ρ1(Ĥi ) at the ideal Î.

Nowwe can conclude as in the previous Sect. 9.5. Assume again to have chosen Vi =
W 0 for all i ∈ I ∞, getting the identifications G∞ ∼= GL(W 0)m , g∞ ∼= gm , U (g∗)⊗m ∼=
U

(
(g∞)∗

)
. Also, an ideal Î ⊆ U

(
(g∞)∗

)
now corresponds to Î′ ⊆ U (g∗)⊗m , providing

an isomorphism
U

(
(g∞)∗

)/
Î ∼= U (g∗)⊗m/

Î′.

Proposition 9.6. There is an injective ring morphism

ϕ̂ : U (g∗)⊗m/
Î′ −→ R(A, g∞, Î),

induced by the composition of the map μ̂∗ of (9.5) with the canonical projection πÎ on
the quantum Hamiltonian reduction.

Proof. Again, the nontrivial point is that the image of μ̂∗ is contained in the invariant
part Ag∞

. If this were so, then

πÎ ◦ μ̂∗ : U (g∗)⊗m −→ R(A, g∞, Î)

would be well defined and induce the desired injective morphism ϕ̂.
Finally, the proof that

[
Im(μ̂∗), Im(μ̂∗∞)

] = 0 can be given in coordinates, using
formulæ (9.8) and (9.9). If one fixes i ∈ I ∞, then

[
μ̂∗((R̂i ) jk

)
, μ̂∗∞

(
(Ŝi )lm

)] = −
∑

n,o

[
(Q̂i ) jn · (P̂i )nk, (P̂i )lo · (Q̂i )om

]

=
∑

n,o

δ joδnl(P̂i )nk · (Q̂i )om − δnmδok(P̂i )lo · (Q̂i ) jn

= (P̂i )lk · (Q̂i ) jm − (P̂i )lk · (Q̂i ) jm = 0.

The case where i �= j ∈ I ∞ is trivial, as {(Qi )kl , (Pj )mn} = 0 for all i �= j and for all
k, l, m, n, hence their Weyl quantisations commute in the Weyl algebra. ��

All the preparation has been done to show that (9.5) is the quantum Hamiltonian
reduction of the simply-laced quantum Hamiltonians.



36 G. Rembado

Theorem 9.3. One has
ϕ̂
([ĤKZ

i ]Î′
) = πÎ(ρ1(Ĥi )),

for all i ∈ I ∞, where [ĤKZ
i ]Î′ is the projection of the KZ Hamiltonian to the quotient

ring U (g∗)⊗m
/
Î′.

This follows from Proposition 9.5. Hence indeed the quantum Hamiltonian reduc-
tion of this particular case of the simply-laced quantum connection yields the KZ
connection—for every choice of ideal/coadjoint orbit.

10. The DMT Connection and the Degenerate Star with Dual Reading

In this section we show that the Casimir connection of De Concini &Millson–Toledano
Laredo (DMT) [MTL05] is semiclassically equivalent to the quantum Hamiltonian re-
duction of the simply-laced quantum connection for the Harnad-dual picture of the
previous section [Har94].

10.1. Simply-laced quantum connection of a star: Harnad-dual version. Take k = 2,
a(J ) = {∞, 0} ⊆ C ∪ {∞} and T ∞ = 0, in the general setup of Sect. 3. The graph
G is a star centred at the node ∞, as in Fig. 10. We attach finite-dimensional spaces
{V∞, Vi }i∈I 0 to the nodes I = {∞} ∐

I 0 of G. Then we set W ∞ = V∞, U∞ = W 0 =⊕
i∈I 0 Vi and V = W ∞ ⊕ W 0. The symplectic phase-space (M, ωa) is

M = Hom(W 0, W ∞) ⊕ Hom(W ∞, W 0),

with symplectic form ωa = Tr(d Q ∧ d P), and the space of times becomes B =
C

I 0\{diags}. Write T 0 = ∑
i∈I 0 ti Idi , where Idi is the idempotent for Vi ⊆ W 0—

so that {ti }i∈I 0 ∈ B. A generic element of M looks like 
 = ( Q
P

) ∈ End(V ), and the
special example of meromorphic connections (3.3) coded by these data are

∇ = d −
(

T 0 +
Q P

z

)
dz. (10.1)

Remark 10.1. These are indeed the Harnad-dual of the rational differential operators
(9.1), as discussed in [Boa12], “Appendix B”, but with a change of notation: after the
permutation

(W 0, W ∞, T 0, T ∞, Q, P) �−→ (W ∞, W 0,−T ∞, T 0,−P, Q)

we rename all terms to keep consistency with (3.3). Namely we insist that W 0 = U∞ be
the fibre of the trivial vector bundle on which the meromorphic connections are defined,
and that the spectrum of T 0 carries the irregular times (cf. [Boa12], Section 8.3).

If one sets Q̃ P = ad−1
T 0

[
dT 0, Q P

]
, then the isomonodromic deformations of (10.1)

are controlled by the simply-laced Hamiltonian system

� = 1

2
Tr

(̃
Q P Q P

)
.
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This Hamiltonian system is defined on the trivial symplectic fibration M × B −→ B,
and spells out as

Hi := 〈�, ∂ti 〉 =
∑

i �= j∈I 0

Tr(Pj Q j Pi Qi )

ti − t j
. (10.2)

The universal simply-laced quantum connection of Definition 7.2 specialises to

∇̂ = d − �̂ = d −
∑

i∈I 0

⎛

⎝
∑

j �=i∈I 0

Tr(P̂j Q̂ j P̂i Q̂i )

ti − t j
· �

4

⎞

⎠ dti .

This is a connection on the trivial bundle Â × B −→ B of noncommutative algebras,
where as always A := W (M∗, {·, ·}) and Â is the completion of its Rees algebra as in
Proposition 5.2. The main Theorem 7.1 assures that ∇̂ is strongly flat.

Finally, one has the explicit development

Ĥi := 〈�̂ , ∂ti 〉 =
∑

i �= j

Tr(P̂j Q̂ j P̂i Q̂i )

ti − t j
· �

4, (10.3)

for the universal simply-laced quantumHamiltonian at the node i ∈ I 0. The simply-laced
quantum Hamiltonians are instead the functions ρ1(Ĥi ) : B −→ A, as in Definition 7.3,
obtained from the evaluation � = 1.

10.2. DMT connection. In this sectionwe recall the construction of theDMTconnection
[MTL05], and we give an explicit development of the associated quantum Hamiltonians
in the case of g = gln(C).

Consider a simpleLie algebrag, and choose aCartan subalgebra t ⊆ gwith associated
root system R = R(g, t) ⊆ t∗. Let σα : t −→ t be the reflection associated to the root
α ∈ R, and

treg := t\
⋃

α∈R
Ker(σα)

the regular part of the Cartan algebra. Finally, take K : g ⊗ g −→ C to be the Killing
form of g.

One now defines a strongly flat connection ∇̂DMT on the bundle U (g) × treg −→
treg, as follows. For all α ∈ R choose a sl2-triplet of vectors eα ∈ gα , fα ∈ g−α ,
hα = [eα, fα] ∈ t, and then define the DMT connection as

∇̂DMT = d − �̂DMT := d −
∑

α∈R

K (α, α)

2
(̂eα · f̂α + f̂α · êα)

dα

α
, (10.4)

where K (α, α) ∈ R>0 is the length squared of the root α, computed using the dual of
the Killing form (which we also denote K ).

We now specialise the DMT connection to the case of g := gln(C), even though this
algebra is not (semi)simple. Indeed, if we consider an invariant nondegenerate symmetric
bilinear form K on g then we may perform the same construction as above, and we will
use here K (A, B) := 1

2 Tr(AB). Next we choose t ⊆ g to be the subalgebra of diagonal
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matrices, so that the roots are given byαi j (diag(t1, . . . , tn)) := ti −t j for 1 ≤ i �= j ≤ n.
Moreover, if (ei j )i j is the canonical basis then

gαi j = spanC{ei j }, g−αi j = gα j i = spanC{e ji },
so that hαi j = [ei j , e ji ] = eii − e j j ∈ t, and the length squared of all roots equals 2.
Finally, if one introduces the global coordinates {ti }i on treg obtained from the restriction
of the standard coordinates on t ∼= C

n , then

dαi j

αi j
= dti − dt j

ti − t j
.

Hence, one has the following expansion of the DMT Hamiltonians for g = gln(C):

ĤDMT
i := 〈�̂DMT, ∂ti 〉 = 1

2

∑

j �=i

êi j · ê j i + ê j i · êi j

ti − t j
. (10.5)

10.3. Dual Schlesinger system. In this section we define the dual Schlesinger system
and provide an explicit expansion of its Hamiltonians.

Let G be a reductive groupwith Lie algebra g. Equip gwith a nondegenerate invariant
symmetric bilinear form K ∈ g∗ ⊗g∗, whence g ∼= g∗ carries the Lie–Poisson structure.
Consider then the trivial Poisson fibration g × treg −→ treg, where t ⊆ g is a Cartan
subalgebra. Choose then R, T 0 ∈ g, with T 0 regular semisimple, and consider the
following set of meromorphic connections on the trivial principal G-bundle over CP1:

∇ = d −
(

T 0 +
R

z

)
dz. (10.6)

The isomonodromy equations of such connections admit an Hamiltonian formulation
(see [Boa02]). Namely, one sets R̃ := ad−1

T 0 [dT 0, R], and then defines a time-dependent
Hamiltonian system via the 1-form

� dSch := K
(
R, R̃

)
.

Next, by choosing global coordinates {ti }i on treg, one defines Hamiltonian functions
HdSch

i : g∗ × treg −→ C controlling the isomonodromy deformations of (10.6). These
are called the dual Schlesinger Hamiltonians.

Specialising all this to G = GLn(C), g = gln(C) and K (·, ·) = 1
2 Tr(·, ·) one finds

� dSch = 1

2
Tr

(
R̃ R

)
.

Next one computes
1

2
Tr

(
R̃ R

) = 1

2

∑

i �= j

Ri j R ji

ti − t j
(dti − dt j ),

and one has the following expansion of the dual Schlesinger Hamiltonians:

HdSch
i := 〈� dSch, ∂ti 〉 =

∑

j �=i

Ri j R ji

ti − t j
. (10.7)
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10.4. DMT is a quantisation of dual Schlesinger. It is shown in [Boa02] that the DMT
connection (10.4) is the PBW-quantisation of the dual Schlesinger system. In this section
we give a proof adapted to our notations in the case of G = GLn(C).

Theorem 10.1. One has QPBW(HdSch
i ) = ĤDMT

i for all i ∈ I 0.

Proof. Composing the dual Schlesinger Hamiltonians (10.7) with the trace-duality turns
them into sections of the trivial bundle Sym(g)× treg −→ treg. Explicitly, these sections
read

(ti )i �−→
∑

j �=i

e ji ⊗ ei j

ti − t j
.

If we fix i and j then the PBW-quantisation 9.2 of the numerator is

QPBW(e ji ⊗ ei j ) = êi j · ê j i + ê j i · êi j

2
,

and the result follows by linearity, looking at the expansion (10.5). ��

10.5. Classical Hamiltonian reduction. In this sectionwe show that the classical Hamil-
tonian reduction of the simply-laced isomonodromy Hamiltonians (10.2) yields the dual
Schlesinger Hamiltonians (10.7).

The first necessary restriction is the following: take dim(Vi ) = 1 for all i ∈ I 0. Then
dim(W 0) = |I 0| =: n, and indeedB = C

n\{diags} ∼= treg, where t is the standardCartan
subalgebra of g := gl(W 0) ∼= gln . As in Sect. 9.5, we consider the comomentmap for the
GL(W 0)-action on the symplectic cotangent bundle T ∗ Hom(W ∞, W 0) ∼= M, which
is given by the matrix product (Q, P) �−→ Q P . Up to using the usual trace-duality
g ∼= g∗, this is a map

μ∗ : Sym(g∗) −→ A0.

To find an explicit formula for it, write again Ri j for the coordinate functions on gl(W 0).
The map Qi : W ∞ −→ Vi is a row vector, and similarly Pj : Vj −→ W ∞ is a column
vector, hence one may write (d Qi )k , (d Pi )k the coordinate functions on M. Then one
has

μ∗(Ri j ) =
∑

k

(Qi )k(Pj )k, (10.8)

since the coefficients of the residue matrix R = Q P are the complex numbers Ri j =
Qi Pj = ∑

k(Qi )k(Pj )k .
We now show that the map (10.8) matches up the simply-laced Hamiltonians (10.2)

with the dual Schlesinger Hamiltonians (10.7).

Proposition 10.1. One has μ∗(HdSch
i ) = Hi for all i ∈ I 0.

Proof. By linearity, it is enough to show that μ∗(Ri j R ji ) = Tr(Pj Q j Pi Qi ), which
follows from the above formula:

μ∗(Ri j R ji ) = Qi Pj Q j Pi = Tr(Qi Pj Q j Pi ) = Tr(Pj Q j Pi Qi ).

In the second identity we used the fact that the endomorphism Qi Pj Q j Pi : Vi −→ Vi
is just a complex numbers, equal to its trace. ��
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The same exact steps of 9.5 then show that (10.7) is the Hamiltonian reduction of
(10.2) with respect to the action of G∞ = GL(W ∞) on M, at any given ideal/orbit.
Namely, if g∞ = gl(W ∞) acts with comoment map μ∗∞ : Sym(g∞) −→ A0 and
I ⊆ Sym(g∞) is an ideal, then the Hamiltonian reduction R(A0, g

∞,I) is defined as
in 9.4, together with a canonical projection

πI : Ag∞
0 −→ R(A0, g

∞,I).

This defines the Hamiltonian reduction πI(Hi ) of the simply-laced Hamiltonian (10.2),
and geometrically the choice of the ideal I corresponds to fixing a coadjoint G∞-orbit
O ⊆ (g∞)∗.

Now one needs to find a suitable ideal I′ ⊆ Sym(g∗) to match up with g, and this
can be done with a further restriction: assume that W ∞ = W 0, i.e. that dim(W ∞) = n.
Then there are canonical identification Sym(g∗) ∼= Sym(g∞), and taking the ideal I′
corresponding to I in this isomorphism one constructs a natural injective morphism

ϕ : Sym(g∗)
/
I′ −→ R(A0, g

∞,I),

induced by the composition of the projection πI after μ∗. The fact that the image
of Sym(g∗) inside A0 Poisson-commute with that of μ∗∞ is due to the fact that the
Hamiltonian GL(W 0)- and G∞-actions commute. Finally Proposition 10.1 shows the
following.

Theorem 10.2. The classes of the dual Schlesinger Hamiltonians (10.7) insideSym(g)
/
I′

match up with πI(Hi ) ∈ R(A0, g
∞,I) under the natural correspondence ϕ.

Hence indeed the dual Schlesinger system corresponds to the Hamiltonian reduction
of this particular case of the simply-laced isomonodromy system, for every choice of
ideal/coadjoint orbit.

Remark 10.2. After considering the reduction with respect to the GL(W ∞)-action, there
is still a residual action at the peripheral nodes. This action is not that of the whole group
GL(W 0), but rather of the subgroup

∏
i∈I 0 GL(Vi ) ⊆ GL(W 0), which is a maximal

torus. Taking the quotient with respect to the full action yields the moduli spaceM∗
dR of

isomorphism classes of meromorphic connections (10.1) on a trivial holomorphic vector
bundle. This moduli space is isomorphic to themoduli space for logarithmic connections
of the previous section (the isomorphism being obtained from the Harnad duality), and
thus we have two different descriptions of the same complex symplectic manifold.

10.6. Quantum Hamiltonian reduction. Here we show that the quantum Hamiltonian
reductionof the simply-lacedquantumHamiltonian (10.3) yields a quantumHamiltonian
system whose semiclassical limit is the same as that of the DMT system (10.5). The idea
is again to rephrase the “quantum” change of variable R̂i j := Q̂i P̂j in algebraic terms.

As in Proposition 9.4, one can construct a quantumcomomentmap μ̂∗ : U (g∗) −→ A
by showing that the natural formula makes sense, that is:

μ̂∗(R̂i j ) =
∑

k

(Q̂i )k · (P̂j )k .
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Applying this morphism to the DMT Hamiltonians yields

μ̂∗(ĤDMT
i

) = μ̂∗
⎛

⎝
∑

j �=i

R̂i j R̂ j i

ti − t j

⎞

⎠ =
∑

j �=i

Tr(Q̂i P̂j Q̂ j P̂i )

ti − t j
. (10.9)

The same arguments of Section then show that the quantum Hamiltonian reductions
of (10.9) with respect to the G∞-action—at a two-sided ideal Î ⊆ U (g∞)—yields the
DMTHamiltonians (10.5). Moreover, (10.9) is obtained from the simply-laced quantum
Hamiltonianρ1(Ĥ1) bymoving the anchor of the degenerate 4-cycles from their centre to
a peripheral node. More precisely, if one replaces the quantum isomonodromy potential
with

Ŵ ′
i :=

∑

m∈Ii \{i}

∑

j,l∈I\Ii

αi jα jmαmlαli

ti − tm
,

then by construction one has μ̂∗(ĤDMT
i

) = Tr(Ŵ ′
i ).

We now proceed to show that these Hamiltonians have the same semiclassical limit
of the simply-laced quantum Hamiltonians (10.3). To state this properly we introduce
the formal deformation parameter � into the picture. Let then Rees(A) ⊆ A[�] be the
Rees algebra of A as in Definition 5.4, and Â ⊆ A��� its completion as defined in 5.2.
Then the system (10.9) can be encoded into the connection

∇̂′ := d −
∑

i∈I 0

Ĥ ′
i dti ,

where H ′
i := Tr�(Ŵ ′

i ). This connection is defined on the trivial bundle Â ×B −→ B as
the universal simply-laced quantum connection, and we compare the two.

Theorem 10.3. The Â-valued one-form ∇̂ −∇̂′ on B vanishes in the semiclassical limit.

Proof. We must show that the element

〈∇̂ − ∇̂′, ∂ti 〉 =
∑

j �=i

Tr(Q̂i P̂j Q̂ j P̂i ) − Tr(P̂j Q̂ j P̂i Q̂i )

ti − t j
· �

4 ∈ Rees(A) ⊆ Â

lies in the kernel of the semiclassical limit (5.2) for all {ti }i ∈ B. Actually more is true:
all summands have vanishing semiclassical limit because

σ4

(
Tr(Q̂i P̂j Q̂ j P̂i )

)
= Tr(Qi Pj Q j Pj ) = Tr(Pj Q j Pi Qi ) = σ4

(
Tr(P̂j Q̂ j P̂i Q̂i )

)
,

in the identification gr(A) ∼= A0. ��
Hence indeed one can add a semiclassically vanishing term to this particular case

of the simply-laced quantum connection, so that the quantum Hamiltonian reduction
equals the DMT connection—for every choice of ideal/coadjoint orbit.

11. The FMTV Connection and the Generic Complete Bipartite Graph

In this sectionwe combine the results of Sects. 9 and 10 to prove that the quantumHamil-
tonian reduction of the simply-laced quantum connection for a generic complete bipar-
tite graph is semiclassically equivalent to the connection of Felder–Markov–Tarasov–
Varchenko (FMTV) [FMTV00].
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11.1. Simply-laced quantum connection of a bipartite graph. Theconstructions ofSects.
9.1 and 10.1 generalise as follows. One still has k = 2 and a(J ) = {+∞, 0}, but G is now
an arbitrary bipartite graph on nodes I = I 0

∐
I ∞. The base space of times becomes

B = C
I ∞\{diags} × C

I 0\{diags}.
Next we attach finite-dimensional vector spaces {V ∞

i }i∈I ∞ and {V 0
i }i∈I 0 to the nodes of

G, and set W ∞ = ⊕
i∈I ∞ V ∞

i and W 0 = ⊕
i∈I 0 V 0

i , so that the space of representations
of G in V = W ∞ ⊕ W 0 is

M = Hom(W ∞, W 0) ⊕ Hom(W 0, W ∞).

It is equipped with the symplectic form ωa = Tr(d Q ∧ d P), where Q : W ∞ −→
W 0 and P : W 0 −→ W ∞ are linear maps with components Qi j : V ∞

j −→ V 0
i and

Pi j : V 0
j −→ V ∞

i . There is thus a coarser decomposition with Qi : V ∞
i −→ W 0 and

Pi : W 0 −→ V ∞
i . Finally, write T 0 = ∑

i∈I 0 t0i Id0i and T ∞ = ∑
i∈I ∞ t∞i Id∞

i , where
Id0i is the idempotent for V 0

i ⊆ W 0 and Id∞
i the idempotent for V ∞

i ⊆ W ∞.
These data parametrise meromorphic connections as (3.3), which in this case spe-

cialise to

∇ = d −
(

T 0 +
∑

i∈I ∞

Qi Pi

z − t∞i

)

dz, (11.1)

and are defined on the trivial vector bundle W 0 × CP1 −→ CP1. If one sets P̃ Q =
ad−1

T ∞
[
dT ∞, P Q

]
and Q̃ P = ad−1

T 0

[
dT 0, Q P

]
, then the isomonodromic deformations

of (11.1) are coded by the simply-laced Hamiltonian system

� = 1

2
Tr

(̃
P Q P Q

)
+
1

2
Tr

(̃
Q P Q P

)
,

defined on the trivial symplectic fibrationM×B −→ B. The simply-laced Hamiltonians
spell out as

H∞
i := 〈�, ∂t∞i 〉 =

∑

k∈I ∞\{i}

∑

j,l∈I 0

Tr(Pil Qlk Pk j Q ji )

t∞i − t∞k
+

∑

j∈I 0

t0j Tr(Pi j Q ji ),

H0
j := 〈�, ∂t0j

〉 =
∑

l∈I 0\{ j}

∑

i,k∈I ∞

Tr(Q ji Pil Qlk Pk j )

t0j − t0l
+

∑

i∈I ∞
t∞i Tr(Q ji Pi j ). (11.2)

The universal simply-laced quantum connection of Definition 7.2 specialises to

∇̂ = d − �̂ = d −
∑

i∈I ∞
Ĥ∞

i dt∞i −
∑

j∈I 0

Ĥ j
0 dt0j ,

and is defined on the trivial vector bundle Â×B −→ B, where A := W (M∗, {·, ·}) is the
Weyl algebra and Â the completion of its Rees algebra as in Proposition 5.2. The main
Theorem 7.1 assures that ∇̂ is strongly flat, and the explicit formulæ for the universal
simply-laced quantum Hamiltonians are

Ĥ∞
i =

∑

k∈I ∞\{i}

∑

j �=l∈I 0

Tr(P̂il Q̂lk P̂k j Q̂ ji )

t∞i − t∞k
· �

4 +
∑

k∈I ∞\{i}

∑

j∈I 0

Tr(Q̂ jk P̂k j Q̂ ji P̂i j )

t∞i − t∞k
· �

4
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+
1

2

∑

j∈I 0

t0j

(
Tr(P̂i j Q̂ ji ) + Tr(Q̂ ji P̂i j )

)
· �

2,

Ĥ0
j =

∑

l∈I 0\{ j}

∑

i �=k∈I ∞

Tr(Q̂ ji P̂il Q̂lk P̂k j )

t0j − t0l
· �

4 +
∑

l∈I 0\{ j}

∑

i∈I ∞

Tr(P̂jl Q̂li P̂j i Q̂ j i )

t0j − t0l
· �

4

+
1

2

∑

i∈I ∞
t∞i

(
Tr(Q̂ ji P̂i j ) + Tr(P̂i j Q̂ ji )

)
· �

2. (11.3)

The simply-laced quantumHamiltonians are the functions ρ1(Ĥ∞
i ), ρ1(Ĥ0

j ) : B −→ A,
as in Definition 7.3, obtained from the evaluation � = 1.

11.2. Classical Hamiltonian reduction and the JMMS system. It is shown in [Boa12]
that (11.2) controls isomonodromic deformation equations which correspond to the
lifted equations of the system of Jimbo–Miwa–Môri–Sato (JMMS) [JMMS80] (Equa-
tion A.5.9). Moreover, the change of variable Ri = Qi Pi provides the JMMS equations
themselves ([JMMS80], Equation 4.44 or A.5.1). We now rephrase this fact in our nota-
tion, showing that the classical Hamiltonian reduction of the simply-laced Hamiltonians
(11.2) yields the JMMS system.

First, similarly to Sect. 10.5, we restrict T 0 to have simple spectrum in order to
recover the setup of [JMMS80]. Let W 0 be a vector space of dimension n, and consider
elements Ri ∈ g := gl(W 0) ∼= gln(C). Set t ⊆ g to be the standard Cartan subalgebra,
and choose T 0 = diag(t01 , . . . , t0n ) ∈ treg. Let also Confm(C) ∼= C

m\{diags} be the
space of configurations of m-tuples of ordered points in the complex plane, and write
{t∞i }i such an m-tuple.

The JMMS system is a time-dependent classical Hamiltonian system controlling the
isomonodromic deformations of meromorphic connections of the form

∇ = d −
(

T 0 +
m∑

i=1

Ri

z − t∞i

)

dz,

on the trivial vector bundle W 0 × CP1 −→ CP1. The isomonodromy problem is the
following: let T 0 and {t∞i }i vary inside the product B := treg ×Confm(C), and look for
residues Ri ∈ g such that the (extended) monodromy data of the new connection are the
same as those of ∇. This is the combination of the isomonodromy problems of Sects. 9
and 10, and it also admits an Hamiltonian formulation via the JMMS Hamiltonians,
defined on the trivial Poisson fibration gm × B −→ B.

The explicit formulæ for the JMMS Hamiltonians are

H JMMS,∞
i =

∑

k �=i

Tr(Ri Rk)

t∞i − t∞k
+ Tr(Ri T

0),

H JMMS,0
j =

∑

k �= j

∑

i,p

(Ri ) jk(Rp)k j

t0j − t0k
+

∑

i

t∞i Tr(Ri e j j ),

(11.4)

where e j j ∈ t is a diagonal element of the canonical basis of g. Indeed, this is precisely
equation A.5.13 of [JMMS80], written in our notation.
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Remark 11.1. We have written down this half-expanded form to make it apparent that
this is the same formula as A.5.13 of [JMMS80], up to replacing Ai , A∞, ci , a j with
Ri , T 0, t∞i , t0j , respectively. The full expansion of the linear terms are

Tr(Ri T
0) =

∑

j,l

(Ri ) jl T
0

l j =
∑

j,l

(Ri ) jlδl j t
0
j =

∑

j

t0j (Ri ) j j ,

and
∑

i

t∞i Tr(Ri e j j )=
∑

i

∑

k,l

t∞i (Ri )kl(e j j )lk=
∑

i

∑

k,l

t∞i (Ri )klδ jkδ jl =
∑

i

t∞i (Ri ) j j .

The leading term of H JMMS,∞
i provides the Schlesinger Hamiltonian (9.6). Similarly

the leading term of H JMMS,0
j provides a generalisation of the dual Schlesinger Hamil-

tonian (10.7). This generalisation amounts to the fact that now one allows for several
simple poles, instead of just one.

To relate (11.4) with the Hamiltonian reduction of (11.2) we have to consider the
special case of the simply-laced isomonodromy systems where dim(V 0

j ) = 1 for all

j ∈ I 0, so that |I 0| = dim(W 0) = n, and then C
I 0\{diags} is identified with the regular

part treg of the standard Cartan subalgebra t ⊆ g = gl(W 0). Choose now i ∈ I ∞, and
consider the product maps μi : T ∗ Hom(V ∞

i , W 0) −→ g sending (Qi , Pi ) to Qi Pi ,
as done in Sect. 9.5. This is the moment map for the Hamiltonian GL(W 0)-action on
T ∗ Hom(V ∞

i , W 0), and then we consider

μ :=
⊕

i∈I ∞
μi : M −→ gm, μ : (Q, P) �−→ (Qi Pi )i∈I ∞ .

The pull-back μ∗ : Sym(g∗)⊗m −→ Sym(M∗) = A0 is a Poisson map relating the
JMMS Hamiltonians (11.4) and the simply-laced Hamiltonians (11.2). If one keeps the
above notation for the coordinate functions on gm and T ∗ Hom(V ∞

i , W 0), then

μ∗((Ri ) jk
) = Q ji Pik, (11.5)

because indeed the ( j, k)-component of the residue Ri is the composition of linear maps
Q ji Pik : V 0

k −→ V 0
j .

Proposition 11.1. One has μ∗(H JMMS,∞
i

) = H∞
i and μ∗(H JMMS,0

j

) = H0
j for all

indices i ∈ {1, . . . , m} and j ∈ {1, . . . , n}.
Proof. The full expansions of the linear term of H JMMS,∞

i transforms as
∑

j

μ∗(t0j (Ri ) j j
) =

∑

j

t0j Q ji Pi j =
∑

j

t0j Tr(Pi j Q ji ),

where in the last passage one uses the fact that Q ji Pi j : V 0
j −→ V 0

j is a complex number.

Similarly, the linear term of H JMMS,0
j becomes

∑

i

μ∗(t∞i (Ri ) j j
) =

∑

i

t∞i Q ji Pi j =
∑

i

t∞i Tr(Q ji Pi j ).
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Next one computes
∑

i �=k

μ∗(Tr(Ri Rk)
) =

∑

i �=k

∑

j,l

(
μ∗

i (Ri ) jl
)(

μ∗
k(Rk)l j

) =
∑

i �=k

∑

j,l

Q ji Pil Qlk Pk j

=
∑

i �=k

∑

j,l

Tr(Pil Qlk Pk j Q ji ),

and
∑

k �= j

∑

i,p

μ∗(
(Ri ) jk(Rp)k j

) =
∑

k �= j

∑

i,p

(
μ∗(Ri ) jk

)(
μ∗(Rp)k j

)
=

∑

k �= j

∑

i,p

Q ji Pik Qkp Ppj

=
∑

k �= j

∑

i,p

Tr(Q ji Pik Qkp Ppj ).

Up to a change of indices one thus recovers formulæ (11.2). ��
The same construction of Sects. 9.5 and 10.5 shows that the Hamiltonian reduction

of the simply-laced Hamiltonians (11.2) with respect to comoment map for the action of
the Lie algebra g∞ := ⊕

i∈I ∞ gl(V ∞
i ) on A0 corresponds to the JMMS Hamiltonians

(11.4)—at any idealI ⊆ Sym(g∞).We keep denoting R(A0, g
∞,I) theHamiltonian re-

duction, and πI : Ag∞
0 −→ R(A0, g

∞,I) the canonical projection, so that the elements
πI(H∞

i ) and πI(H0
j ) are the Hamiltonian reductions of (11.2) for (i, j) ∈ I ∞ × I 0.

In order to relate this with the JMMS Hamiltonians we use a canonical identification
g∞ ∼= gm , whichweobtain by further restricting the simply-laced isomonodromy system
to the case where V ∞

i = W 0 for all i ∈ I ∞. Hence on the whole we attach n one-
dimensional vector spaces {V 0

j } j∈I 0 to the nodes inside the part I 0, and then we attach

one and the same n-dimensional vector space W 0 = ⊕
j∈I 0 V 0

j to the m nodes inside
the part I ∞. Then there is a canonical isomorphism Sym(g∗)⊗m ∼= Sym(g∞), and if the
Hamiltonian reduction is taken at the idealI ⊆ Sym(g∞) then the idealI′ ⊆ Sym(g∗)⊗m

corresponds to it under the isomorphism. Geometrically, the choice of I is the choice of
coadjoint G∞-orbit O ⊆ (g∞)∗ ∼= g∞, where G∞ := ∏

i∈I ∞ GL(V ∞
i ) ⊆ GL(W ∞);

similarly, I′ corresponds to an m-tuple of adjoint GL(W 0)-orbits O′ ⊆ gm .
There is now a natural injective morphism

ϕ : Sym(g∗)⊗m/
I′ −→ R(A0, g

∞,I),

induced by the composition of the projection πI after the map μ∗ (11.5). Finally Propo-
sition 11.1 yields the following.

Theorem 11.1. The classes of the JMMS Hamiltonians (11.4) inside Sym(g∗)⊗m
/
I′

match up with πI(H∞
i ), πI(H0

j ) ∈ R(A0, g
∞,I) under the natural correspondence ϕ.

Hence indeed the JMMS system corresponds to theHamiltonian reduction of this par-
ticular case of the simply-laced isomonodromysystem, for every choice of ideal/coadjoint
orbit.

Remark 11.2. As explained in Sects. 9.5 and 10.5, one can then take the quotient for the
residual action of the group acting at the nodes I 0. This is the action of an algebraic
torus

∏
j∈I 0 GL(V 0

j ) ∼= (C∗)n—the maximal torus of GL(W 0)—and the quotient is the
moduli space M∗

dR of isomorphism classes of meromorphic connections (11.1) on a
trivial holomorphic vector bundle.
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11.3. FMTV is a quantisation of JMMS. In this section we give explicit formulæ for the
quantumHamiltonians of the systemof Felder–Markov–Tarasov–Varchenko [FMTV00]
(FMTV), i.e. the dynamical connection, when g = gln(C). Then we show that the
FMTV Hamiltonians are semiclassically equivalent to the PBW-quantisation of the
JMMS Hamiltonians (11.4).

Let m ≥ 1 be an integer, g a simple Lie algebra and t ⊆ g a Cartan subalgebra.
Then we generalise the KZ equations for g adding on an additional parameter μ ∈ treg.
Define the element �̂(i j) ∈ U (g)⊗m as in Sect. 9.2. Similarly, let μ̂(i) ∈ U (g)⊗m be
the embedding of μ̂ = ιU (μ) on the i th factor, where ιU : g ↪→ U (g) is the universal
inclusion. Then we construct the universal KZ bundle with fibre U (g)⊗m , defined over
the base space B = treg × Confm(C), and we consider the following system of linear
partial differential equations for a local section ψ :

∂ψ

∂t∞i
=

⎛

⎝μ̂(i) +
∑

1≤ j �=i≤m

�̂(i j)

t∞i − t∞j

⎞

⎠ ψ, (11.6)

where μ̂(i) and �̂i j act by left multiplication. This is Equation 3 of [FMTV00].2

Equation 4 on the same page then provides a system of differential equations which
is compatible with (11.6): the dynamical equations. This is a system of differential
equations for ψ with respect to the variable μ ∈ treg. To write them, let R = R(g, t)

be the root system of the pair (g, t), and consider the PBW-quantisations êα, f̂α ∈ U (g)
of the vectors eα ∈ gα , fα ∈ g−α—which compose an sl2-triplet together with hα =
[eα, fα] ∈ t. Finally, make a choice of positive rootsR+ ⊆ R. Then we impose that the
derivative of ψ in the direction of μ′ ∈ t be given by:

∂ψ

∂μ′ =
⎛

⎝
∑

1≤i≤m

t∞i (̂μ′)
(i)

+
∑

α∈R+

〈α,μ′〉
〈α,μ〉 êα · f̂α

⎞

⎠ ψ, (11.7)

where 〈·, ·〉 : t∗ ⊗ t −→ C is the dual pairing, (̂μ′)
(i) ∈ U (g)⊗m acts via left multipli-

cation and êα · f̂α denotes the left multiplication of
∑

i, j ê(i)
α · f̂ ( j)

α ∈ U (g)⊗m . The full
FMTV system consists of the two sets of Eqs. (11.6) and (11.7).

One can next encode these linear differential equations into a connection ∇̂FMTV

defined on the trivial bundle U (g)⊗m ×B −→ B, which we call the FMTV connection:

∇̂FMTV = d −
∑

1≤i≤m

ĤFMTV,∞
i dt∞i −

∑

i≤ j≤n

ĤFMTV,0
j dt0j , (11.8)

where n := dim(t) is the rank of g and {t0j } j is the coordinate system on the open subset
treg ⊆ t induced from global coordinates on t ∼= C

n . The time-dependent quantum
operators ĤFMTV,∞

i , ĤFMTV,0
j are by definition the FMTV Hamiltonians, for which

we give explicit formulæ in the case where g := gln(C), and t is the standard Cartan
subalgebra of diagonal matrices.

2 We replaced u, zi , �
(i j) withψ, t∞i , �i j , respectively.Moreover, we consider the universal KZ equations

instead of choosing irreducible finite-dimensional highest weight g-modules Vi , and thus we replace V =
V1 ⊗ · · · ⊗ Vm with U (g)⊗m . Finally, the choice of a complex parameter k is not relevant here.
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Proposition 11.2. The FMTV Hamiltonians for g = gln(C) read:

ĤFMTV,∞
i =

∑

i �=k

∑

j,l

ê(i)
jl · ê(k)

l j

t∞i − t∞k
+

∑

j

t0j ê(i)
j j ,

ĤFMTV,0
j =

∑

k �= j

∑

i,p

ê(i)
jk · ê(p)

k j

t0j − t0k
+

∑

i

t∞i ê(i)
j j ,

(11.9)

for all i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, where (ei j )i j is the canonical basis of g.

Proof. The root system is R(g, t) = {αi j }i �= j , with αi j (diag(t1, . . . , tn)) := ti − t j . A
root is positive if i > j , and the element μ ∈ treg corresponds to the diagonal matrix
T 0 = diag(t01 , . . . , t0n ) = ∑

j t0j e j j .
The Cartan term of (11.6) then becomes

μ̂(i) = (̂T 0)
(i) =

∑

j

t0j ê(i)
j j ,

and we know that the KZ term expands to (9.5).
To differentiate along a generic direction μ′ ∈ t it is enough to consider partial

derivatives with respect to the system of fundamental coweights (e j j ) j , which is a basis
of t. If j ∈ {1, . . . , n} is fixed then we let μ′ = e j j , and the Cartan term of (11.7) reads

∑

i

t∞i (̂μ′)
(i) =

∑

i

t∞i ê(i)
j j .

Finally, the rightmost term of (11.7) expands as follows:

∑

α>0

〈α,μ′〉
〈α,μ〉 êα · f̂α =

∑

k>l

∑

i,p

〈αkl , e j j 〉
〈αkl , T 0〉 ê(i)

kl · ê(p)
lk

=
∑

j>l

∑

i,p

〈α jl , e j j 〉
〈α jl , T 0〉 ê(i)

jl · ê(p)
l j +

∑

i,p

∑

k> j

〈αk j , e j j 〉
〈αk j , T 0〉 ê(i)

k j · ê(p)
jk

=
∑

k �= j

∑

i,p

ê(i)
jk · ê(p)

k j

t0j − t0k
,

where we used 〈αkl , e j j 〉 = δk j − δl j and 〈αkl , T 0〉 = t0k − t0l . ��
The next proposition compares the FMTV Hamiltonians with the PBW-quantisation

of the JMMS system (11.4), as time-dependent quantum operators B −→ U (g)⊗m .

Theorem 11.2. Take g = gln(C) in the FMTV system, and fix indices 1 ≤ i ≤ m,
1 ≤ j ≤ n. Then:

(1) One has ĤFMTV,∞
i = QPBW

(
H JMMS,∞

i

)
pointwise on B.

(2) The time-dependent quantum operator ĤFMTV,0
j −QPBW

(
H JMMS,0

j

)
vanishes in the

semiclassical limit.

Hence the FMTV connection is a quantisation of the JMMS system.
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Proof. As for the linear terms of (11.4), one hasQPBW
(
t0j e(i)

j j

) = t0j ê(i)
j j , and analogously

QPBW
(
t∞i e(i)

j j

) = t∞i ê(i)
j j , since the PBW-quantisation reduces to the universal inclusion

on elements of degree one, and the result follows by linearity. Next, it has been shown
in Sect. 9.4 that the PBW-quantisation of the Schlesinger Hamiltonians (9.6) yields the
KZ Hamiltonians (9.5), whence on the whole one has the first identity in the statement.

For the PBW-quantisation of the leading term of H JMMS,0
j instead one computes:

QPBW

( ∑

i,p

∑

j �=k

(Ri ) jk(Rp)k j

t0j − t0k

)
=

∑

i,p

∑

j �=k

1

2(t0j − t0k )

(
ê(i)

jk · ê(p)
k j + ê(p)

k j · ê(i)
jk

)

=
∑

i,p

∑

j �=k

ê(i)
jk · ê(p)

k j

t0j − t0k
+

∑

i

∑

j �=k

ê(i)
kk − ê(i)

j j

2(t0j − t0k )
,

using the identity
[
ê(i)

k j , ê(p)
jk

] = δi p
(
ê(i)

kk − ê(i)
j j

)
inside U (g)⊗m .

Hence ĤFMTV,0
j andQPBW

(
H JMMS,0

j

)
have the same leading term,which implies that

they have the same semiclassical limit once one reintroduces the deformation parameter
via the Rees construction. Namely the correction term

ĤFMTV,0
j − QPBW

(
H JMMS,0

j

) =
∑

i

∑

j �=k

ê(i)
kk − ê(i)

j j

2(t0j − t0k )

has order one, but it comes with a power of � greater than one; thus by definition it lies
in the kernel of the semiclassical limit (5.2). ��
Remark 11.3. One can nowmake sense of the statement that the DMT connection (10.5)
is essentially a particular case of the FMTV connection. Indeed, by taking m = 1 the
FMTV Hamiltonian ĤFMTV,0

j becomes

ĤFMTV,0
j =

∑

k �= j

ê jk · êk j

t0j − t0k
,

for 1 ≤ j ≤ n. The analogous Hamiltonian of the DMT system (10.5) instead is

ĤDMT
j =

∑

k �= j

ê jk · êk j + êk j · ê jk

2(t0j − t0k )
=

∑

k �= j

ê jk · êk j

t0j − t0k
+

∑

k �= j

[
êk j , ê jk

]

2(t0j − t0k )

= ĤFMTV,0
j +

∑

k �= j

êkk − ê j j

2(t0j − t0k )
.

The lower-order correction is the exact analogous of the difference between the simply-
laced quantum connection and the DMT connection, as discussed in Sect. 10.6.
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11.4. Quantum Hamiltonian reduction. In this sectionwe show that the quantumHamil-
tonian reduction of the simply-laced quantum Hamiltonians of a generic complete bi-
partite graph is semiclassically equivalent to the FMTV Hamiltonians (11.9).

Analogously to Sects. 9.6 and 10.6, one can show that the “quantum” change of
variable (R̂i ) jk = Q̂ ji P̂ik has the algebraic meaning of applying a quantum comoment
map μ̂∗ : U (g)⊗m −→ A = W (M∗, {·, ·}) to the FMTV Hamiltonians (11.9). The
quantum comoment is defined by

μ̂∗((R̂i ) jk
) = Q̂ ji · P̂ik,

which yields

μ̂∗(ĤFMTV,∞
i

) =
∑

i �=k

∑

j,l

Tr(Q̂ ji P̂il Q̂lk P̂k j )

t∞i − t∞k
+

∑

j

t0j Tr(Q̂ ji P̂i j ),

μ̂∗(ĤFMTV,0
i

) =
∑

k �= j

∑

i,l

Tr(Q̂ ji P̂ik Q̂kl P̂l j )

t0j − t0k
+

∑

i

t∞i Tr(Q̂ ji P̂i j ).

These operators are obtained from the simply-laced quantum Hamiltonians ρ1(Ĥ∞
i ),

ρ1(Ĥ0
j ) by changing anchors, since they are by definition traces of quantum cycles

anchored at nodes in the part I 0 ⊆ I . Hence there exist quantum potentials Ŵ
′∞
i and

Ŵ
′0
j for (i, j) ∈ I ∞ × I 0 such that

μ̂∗(ĤFMTV,∞
i

) = Tr
(
Ŵ

′∞
i

)
, and μ̂∗(ĤFMTV,0

i

) = Tr
(
Ŵ

′0
j

)
,

and we now show that this quantum system has the same semiclassical limit of the
simply-laced quantum connection by adapting the argument of Sect. 10.6. Consider the
Rees algebraRees(A) ⊆ A[�] of A—ofDefinition 5.4—and its completion Â ⊆ A���—
of Proposition 5.2. Then we compare the universal simply-laced connection (11.3) with
the connection

∇̂′ := d −
∑

i∈I ∞
Ĥ

′∞
i dti −

∑

j∈I 0

Ĥ
′0
j dt j ,

where Ĥ
′∞
i := Tr�

(
Ŵ

′∞
i

)
and Ĥ

′0
j := Tr�

(
Ŵ

′0
j

)
. Both these connections are defined

on the trivial bundle Â × B −→ B, and we inspect their difference.

Theorem 11.3. The Â-valued one-form ∇̂ −∇̂′ on B vanishes in the semiclassical limit.

Proof. The proof is analogous to that of Theorem 10.3. One can compute explicitly

〈∇̂ − ∇̂′, ∂t∞i 〉 = Ĥ
′∞
i − Ĥ∞

i

and
〈∇̂ − ∇̂′, ∂t0j

〉 = Ĥ
′0
j − Ĥ0

j

for all i, j . This yields polynomials in � in which the coefficient of �
4 (resp. �

2) has
order strictly smaller then four (resp. two), whence these elements lie in the kernel of
the semiclassical limit (5.2). ��
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Hence indeed one can add a semiclassically vanishing term to this particular case
of the simply-laced quantum connection, so that the quantum Hamiltonian reduction
equals the FMTV connection—for every choice of ideal/coadjoint orbit.
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Appendix A: Coordinate Computations

Throughout this appendix we make a choice of global Darboux coordinates on (M, ωa)

so that [
X̂α

i j , X̂α∗
kl

] = {Xα
i j , Xα∗

kl } = εαα∗δilδ jk ∈ {−1, 0, 1},
where α is an arrow of G with opposite arrow α∗, and εαα∗ = −εα∗α ∈ {±1} is a sign
depending on the orientation of G: we set εαα∗ = 1 if α has positive orientation. All
other quantum commutators and classical Poisson brackets vanish.

Proof of lem. 8.2. Write Ĉ1 = αn · · · α1 and Ĉ2 = βm · · ·β1, where αi , β j are arrows
of G. One wants to expand

[
Tr(Ĉ1),Tr(Ĉ2)

] =
∑

k,l

[
X̂αn

knkn−1
· · · X̂α1

k1kn
, X̂βm

lmlm−1
· · · X̂β1

l1lm

]
,

where k = (k1, . . . , kn) and l = (l1, . . . , lm) are suitable multi-indices. Then applying
the Leibnitz rule recursively yields two alternative expansions:

[
Tr(Ĉ1),Tr(Ĉ2)

] =
∑

k,l

∑

i, j :β j =α∗
i

[
X̂αi

ki ki−1
, X̂

β j
l j l j−1

]
X̂βm

lmlm−1
· · · X̂

β j+1
l j+1l j

· X̂αn
knkn−1

· · · X̂αi+1
ki+1ki

X̂αi−1
ki−1ki−2

· · · X̂α1
k1kn

· X̂
β j−1
l j−1l j−2

· · · X̂β1
l1lm

,

and
[
Tr(Ĉ1),Tr(Ĉ2)

] =
∑

k,l

∑

i, j :β j =α∗
i

[
X̂αi

ki ki−1
, X̂

β j
l j l j−1

]
X̂αn

km kn−1
· · · X̂αi+1

ki+1ki

· X̂βm
lmlm−1

· · · X̂
β j+1
l j+1l j

X̂
β j−1
l j−1l j−2

· · · X̂β1
l1lm

· X̂αi−1
ki−1ki−2

· · · X̂α1
k1kn

.

The result is a linear combination of words of length n + m − 2 in the alphabet X̂α
i j .

We want to write these words as traces of quantum cycles, and the condition given in
the statement gives a consistent way to do it. Indeed, say that Ĉ1 satisfies the hypothesis,
which means that it contains no pair of opposite arrows as soon as one of its arrows is
removed. Then one can permute

X̂αn
knkn−1

· · · X̂αi+1
ki+1ki

X̂αi−1
ki−1ki−2

· · · X̂α1
k1kn

= X̂αi−1
ki−1ki−2

· · · X̂α1
k1kn

X̂αn
knkn−1

· · · X̂αi+1
ki+1ki

,
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and all summands of the first expansion get the desired form:
[
Tr(Ĉ1),Tr(Ĉ2)

] =
∑

k,l

∑

i, j :β j =α∗
i

[
X̂αi

ki ki−1
, X̂

β j
l j l j−1

]
X̂βm

lmlm−1
· · · X̂

β j+1
l j+1l j

· X̂αi−1
ki−1ki−2

· · · X̂α1
k1kn

X̂αn
knkn−1

· · · X̂αi+1
ki+1ki

· X̂
β j−1
l j−1l j−2

· · · X̂β1
l1lm

=
∑

i, j :β j =α∗
i

εαi α
∗
i
Tr

(
X̂βm · · · X̂β j+1 X̂αi−1 · · · X̂α1 X̂αn · · · X̂αi+1 X̂β j−1 · · · X̂β1

)
,

where we used
[
X̂αi

ki ki−1
, X̂

β j
l j l j−1

] = [
X̂αi

ki ki−1
, X̂

α∗
i

l j l j−1

] = εαi α
∗
i
δki l j−1δki−1l j .

Hence setting

Ĉ :=
∑

i, j :β j =α∗
i

εαi α
∗
i
βm . . . β j+1αi−1 . . . α1αn . . . αi+1β j−1 . . . β1

recovers the quantum potential in the statement of Proposition 8.2, since the expansion
of the necklace Lie bracket of the semiclassical limits of Ĉ1 and Ĉ2 reads

{
Tr(C1),Tr(C2)

}
G

=
∑

i, j :β j =α∗
i

εαi α
∗
i
Tr

(
Xβm · · · Xβ j+1 Xαi−1 · · · Xα1 Xαn · · · Xαi+1 Xβ j−1 · · · Xβ1

)
,

with the same signs εαi α
∗
i
. Then indeed Ĉ is obtained by giving an anchor to all cycles

of
{
Tr(C1),Tr(C2)

}
G .

IfC2 is the only cycle satisfying the hypothesis then onemayuse the second expansion
to conclude in the same way. ��
Proof of Lemma 8.3. Looking at Fig. 6, let α be the arrow from a to b, β the arrow from
b to c and γ the arrow from c to d. Then one has:

[
Tr

(
X̂β∗

X̂β X̂α∗
X̂α

)
,Tr

(
X̂β X̂β∗

X̂γ ∗
X̂γ

)]

=
∑

i, j,k,l,m,n,o,p

[
X̂β∗

i j X̂β
jk X̂α∗

kl X̂α
li , X̂β

mn X̂β∗
no X̂γ ∗

op X̂γ
pm

]

=
∑

i, j,k,l,m,n,o,p

[
X̂β∗

i j X̂β
jk, X̂β

mn X̂β∗
no

]
X̂α∗

kl X̂α
li X̂γ ∗

op X̂γ
pm

=
∑

i, j,k,l,m,n,o,p

X̂β∗
i j X̂β

mn

[
X̂β

jk, X̂β∗
no

]
X̂α∗

kl X̂α
li X̂γ ∗

op X̂γ
pm

+
[

X̂β∗
i j , X̂β

mn

]
X̂β∗

no X̂β
jk X̂α∗

kl X̂α
li X̂γ ∗

op X̂γ
pm

=
∑

i, j,k,l,m,n,o,p

εββ∗δ joδkn X̂β∗
i j X̂β

mn X̂α∗
kl X̂α

li X̂γ ∗
op X̂γ

pm

+ εβ∗βδ jmδin X̂β∗
no X̂β

jk X̂α∗
kl X̂α

li X̂γ ∗
op X̂γ

pm

= εββ∗
(
Tr

(
X̂β∗

X̂γ ∗
X̂γ X̂β X̂α∗

X̂α
) − Tr

(
X̂β∗

X̂γ ∗
X̂γ X̂β X̂α∗

X̂α
)) = 0.

��
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Proof of Lemma 8.4. Denote β and β∗ the arrows that the two degenerate 4-cycles have
in common, with t (β) = j . Then denote α, α∗ (resp. γ, γ ∗) the remaining arrows of
the leftmost cycle (resp. of the rightmost cycle), with t (α) = j (resp. t (γ ) = j). This
means that α, β and γ come out of the common centre, whereas α∗, β∗ and γ ∗ point
towards the common centre.

Then one has:
[
Tr

(
X̂β∗

X̂β X̂α∗
X̂α

)
,Tr

(
X̂β∗

X̂β X̂γ ∗
X̂γ

)]

=
∑

i, j,k,l,m,n,o,p

[
X̂β∗

i j X̂β
jk X̂α∗

kl X̂α
li , X̂β∗

mn X̂β
no X̂γ ∗

op X̂γ
pm

]

=
∑

i, j,k,l,m,n,o,p

[
X̂β∗

i j X̂β
jk, X̂β∗

mn X̂β
no

]
X̂α∗

kl X̂α
li X̂γ ∗

op X̂γ
pm

=
∑

i, j,k,l,m,n,o,p

X̂β∗
i j

[
X̂β

jk, X̂β∗
mn

]
X̂β

no X̂α∗
kl X̂α

li X̂γ ∗
op X̂γ

pm

+ X̂β∗
mn

[
X̂β∗

i j , X̂β
no

]
X̂β

jk X̂α∗
kl X̂α

li X̂γ ∗
op X̂γ

pm

=
∑

i, j,k,l,m,n,o,p

εββ∗δ jnδkm X̂β∗
i j X̂β

no X̂α∗
kl X̂α

li X̂γ ∗
op X̂γ

pm

+ εβ∗βδioδ jk X̂β∗
mn X̂β

jk X̂α∗
kl X̂α

li X̂γ ∗
op X̂γ

pm

= εββ∗
(
Tr

(
X̂α∗

X̂α X̂β∗
X̂β X̂γ ∗

X̂γ
) − Tr

(
X̂β∗

X̂β X̂α∗
X̂α X̂γ ∗

X̂γ
))

.

Now one can orient G so that β has positive orientation, whence εββ∗ = 1, recovering
the situation depicted in Fig. 7. ��

Conclusion/Outlook

Hence, in brief we attached a flat linear connection to every choice of a complete k-
partite graph plus some decoration. Moreover, we explicitly computed the particular
case corresponding to a complete bipartite graph, and related it to the quantum system
of [FMTV00], which subsumes the connections of Knizhnik–Zamolodchikov [KZ84]
and De Concini/Millson–Toledano Laredo [MTL05]—corresponding to a star-shaped
graph.

Of course there is now an infinite family of examples of flat connections beyond
them, which arise for k ≥ 3.

For instance taking a triangle—the complete graph on k = 3 nodes—yields a flat
connection quantising the isomonodromic deformations of meromorphic connections
on the sphere with a pole of order three at infinity. In [NS11] such a quantisation was
constructed in the casewhere the leading coefficient has simple spectrum, using confluent
Verma modules. The formula for the Hamiltonian H(1)

1 in Example 3.3 on page 9 of
[NS11] is given in the absence of simple poles, and consists of a linear combination
of operators of order two and three: in the viewpoint of this article this corresponds to
a linear combination of the traces of all quantum 2-cycles and 3-cycles at a node of
the triangle, which indicates that our perspective is compatible with [NS11], with the
addition of a proof of flatness.
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Moreover, the setup of [NS11] allows for adding simple poles in the complex plane,
which in the language of this paper means splaying one node of a triangle equipped
with a degenerate reading. However no other node can be splayed, since they are all
one-dimensional; thus for example the simply-laced quantum connection of a triangle
with two nodes splayed is beyond the scope of [NS11], so looks to be new.

Finally, note that the isomonodromic deformations of arbitrarymeromorphic connec-
tions on Riemann surfaces are now known to be sections of flat symplectic Ehresmann
connections (see [Boa01,Boa14,BY15]), so we expect there are many more flat lin-
ear connections, beyond the simply-laced case of this article, that may be obtained by
quantising them (cf. Remark 4.1). In the general case the space of times will be the
space of admissible deformations of wild Riemann surface structures in the sense of
[Boa14,BY15].
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