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Abstract: In this paper, we show that loop groups and the universal cover of Diff+(S1)
can be expressed as colimits of groups of loops/diffeomorphisms supported in subin-
tervals of S1. Analogous results hold for based loop groups and for the based diffeo-
morphism group of S1. These results continue to hold for the corresponding centrally
extended groups. We use the above results to construct a comparison functor from the
representations of a loop group conformal net to the representations of the correspond-
ing affine Lie algebra. We also establish an equivalence of categories between solitonic
representations of the loop group conformal net, and locally normal representations of
the based loop group.
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1. Introduction and Statement of Results

In the category of groups, the concept of colimit is a simultaneous generalisation of the
notions of direct limit, and amalgamted free product. Given a diagram of groups {Gi }i∈I
indexed by some poset I (i.e., a functor from I viewed as a category into the category
of groups) the colimit colimI Gi is the quotient

colimI Gi = ( ∗i∈I Gi
)
/N

of the free product of the Gi by the normal subgroup N generated by the elements
g−1 fi j (g) for g ∈ Gi , where fi j : Gi → G j are the homomorphisms in the diagram.
If the diagram takes values in the category of topological groups (i.e., if the Gi are
topological groups and the fi j are continuous), then we may take the colimit in the
category of topological groups. The underlying group remains the same, but it is now
endowed with the colimit topology: the finest group topology such that all the maps
Gi → G are continuous.

In the present paper,we show that loopgroups and theuniversal cover ofDiff+(S1) can
be expressed as colimits of groups of loops/diffeomorphisms supported in subintervals1

of S1.
Let now G be a compact Lie group, and let LG := Map(S1,G) be the group of

smooth maps of S1 := {z ∈ C : |z| = 1} into G. This is the so-called loop group of G.
For every interval I ⊂ S1, let L IG ⊂ LG denote the subgroup of loops whose support
is contained in I . If G is simple and simply connected, then LG admits a well-known
central extension by U (1) [GW84,Mic89,PS86]:

0 U (1) L̃G LG 0. (1)

Letting L̃ I G be the restrictions of that central extension to the subgroups L IG, our main
result about loop groups is that

LG = colim
I⊂S1

L IG and L̃G = colim
I⊂S1

L̃ I G,

where the colimit is taken in the category of topological groups.
Let �G be the subgroup of LG consisting of loops that map the base point 1 ∈ S1

to e ∈ G, and all of whose derivatives vanish at that point. We call �G the based loop
group ofG (this is the version of the based loop group that was used in [Hen15]). Letting
�̃G be the central extension of �G induced by (1), we prove that

�G = colimH

I⊂S1, 1 �∈ I̊
L I G and �̃G = colimH

I⊂S1, 1 �∈ I̊
L̃ I G,

where I̊ denotes the interior of an interval I , and colimHGi denotes the maximal Haus-
dorff quotient of colim Gi , equivalently, the colimit in the category of Hausdorff topo-
logical groups.

Let Diff+(S1) be the group of orientation preserving diffeomorphisms of S1, and
let ˜Diff+(S1) be its universal cover (with center Z). Given a subinterval I ⊂ S1 of the
circle, we write Diff0(I ) for the subgroup of diffeomorphisms that fix the complement
of I pointwise. The groups Diff0(I ) are contractible and may therefore be treated as

1 The the poset of subintervals of S1 is not directed, so the colimits in question are not direct limits.
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subgroups of ˜Diff+(S1). The group Diff+(S1) admits a well-known central extension
by the reals, called the Virasoro–Bott group [Bot77,KW09,TL99]. We write DiffR

+ (S1)
for the Virasoro–Bott group and DiffR×Z

+ (S) for its universal cover. We then have the
following system of central extensions:

Diff+(S1)DiffR+ (S1)

˜Diff+(S1)DiffR×Z
+ (S1)

R

R

Z ZR × Z

00

000

0

0

0 0

0

At last, let us write DiffR

0 (I ) for the restriction of the central extension by R to the
subgroups Diff0(I ) ⊂ Diff+(S1). Our main result about diffeomorphism groups is that

˜Diff+(S
1) = colim

I⊂S1
Diff0(I ) and DiffR×Z

+ (S1) = colim
I⊂S1

DiffR

0 (I ).

Let Diff∗(S1) be the subgroup of Diff(S1) consisting of diffeomorphisms that fix
the point 1 ∈ S1, and are tangent up to infinite order to the identity map at that point.
We call it the based diffeomorphism group of S1. Let DiffR∗ (S1) be the restriction of the
central extension by R to Diff∗(S1). We also prove that

Diff∗(S1) = colimH

I⊂S1, 1 �∈ I̊
Diff0(I ), DiffR∗ (S1) = colimH

I⊂S1, 1 �∈ I̊
DiffR

0 (I ).

Remark. All our results are formulated for the C∞ topology (uniform convergence of
all derivates), but they hold equally well for groups of Cr loops S1 → G, r ≥ 1, and for
groups of Cr diffeomorphisms of S1, r ≥ 2 (with the exception of Sect. 3.3.1, which
seems to requires r ≥ 4 [CDVIT18]).

In the third section of this paper, we apply the above results about (central extensions
of) LG and Diff(S1) to the representations of loop group conformal nets. For each
compact simple Lie group G and integer k ≥ 1, there is a conformal net called the loop
group conformal net. It associates to an interval I ⊂ S1 a von Neumann algebra version
of the twisted group algebra of L IG.

Weconstruct a comparison functor from the representations of a loopgroup conformal
net to the representations of the corresponding affine Lie algebra. We also establish an
equivalence of categories between solitonic representations of the loop group conformal
net, and locally normal representations of the based loop group. This last result is needed
in order to fill a small gap between the statement of [Hen17, Thm.1.1] and the results
announced in [Hen15, §4 and §5].
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2. Colimits and Central Extensions

The category of topological groups admits all colimits. If {Gi }i∈I is a diagram of topo-
logical groups indexed by some small category I, then the colimit G = colimI Gi can
be computed as follows. As an abstract group, it is given by the colimit of the Gi in the
category of groups. The topology on G is the finest group topology that makes all the
maps Gi → G continuous.

Let us call a small category I connected if any two objects i, j ∈ I are related
by a zig–zag i ← i1 → i2 ← i3 → i4 . . . in ← j of morphisms. Similarly, let us
call a diagram connected (‘diagram’ is just an other name for ‘functor’) if the indexing
category I is connected.

We recall the notion of central extension of topological groups:

Definition 1. Let G be a topological group, and let Z be an abelian topological group.
A central extension of G by Z is a short exact sequence

0 −→ Z
ι−→ G̃

π−→ G −→ 0

such that Z sits centrally in G, the map ι is an embedding (Z is equipped with the
subspace topology) and there exist a continuous local section s : U → G̃ of π , where
U is an open neighbourhood of e ∈ G.

Note that for U and s as above, the map s · ι : U × Z → G̃ is always an open
embedding.

Proposition 2. Let {Gi }i∈I be a connected diagram of topological groups, let

G := colimI Gi ,

and let ϕi : Gi → G be the canonical homomorphisms. Assume that there exists a
neighbourhood of the identity U ⊂ G, and finitely many continuous maps fi : U → Gi ,
fi (e) = e, such that

∏

i
ϕi ◦ fi (x) = x ∀x ∈ U

(the fi are indexed over an ordered finite subset of the objects of I).
Let 0 → Z → G̃ → G → 0 be a central extension of G, and let G̃i be the induced

central extensions of Gi (the pullback of G̃ along the map ϕi : Gi → G). Then the
canonical map

colimI G̃i → G̃

is an isomorphism of topological groups.2

2 For i → j a morphism in I, the map G̃i → G̃ j is the unique group homomorphism which makes the

diagrams
G̃i → G̃ j
↓ ↓
Gi → G j

and
G̃ j

↗ ↘
G̃i −→ G̃

commute (by the universal property of the pullback defining G̃ j ).



Loop Groups and Diffeomorphism Groups of the Circle as Colimits 541

Proof. The diagram is connected, so all the central Z ’s in the various G̃i get identified
in colimI G̃i . Moreover, the canonical map ιZ : Z → colimI G̃i is an embedding,
because the triangle

Z

colimI G̃i

G̃

ιZ

commutes. The quotient is easily computed:

(
colimI G̃i

)
/Z = colim

(
Z −→−→ιZ

0
(colimI G̃i )

)

= colimI
(
colim(Z →→ G̃i )

) = colimI Gi = G,

so the sequence 0 → Z → colimI G̃i → G → 0 is a short exact sequence of groups. To
show that it is also a short exact sequence of topological groups, we need to argue that the
projection map colimI G̃i → G admits local sections. Pick neighbourhoods Ui ⊂ Gi
of the neutral elements and local sections si : Ui → G̃i . The map x �→ ∏

i si ( fi (x)),
defined on the finite intersection U := ⋂

f −1
i (Ui ) ⊂ G, is the desired local section.

We have two exact sequences of topological groups, and a map between them:

0 Z colimI G̃i colimI Gi 0

0 Z G̃ G 0

By the five lemma, the middle vertical map is an isomorphism of groups. It is an isomor-
phism of topological groups because both G̃ and colimI Gi are locally homeomorphic
to a product U × Z . ��

2.1. Loop groups. Wewrite S for a manifold diffeomorphic to the standard circle S1 :=
{z ∈ C : |z| = 1}, and call such a manifold a circle. We write I for a manifold
diffeomorphic to [0, 1], and call such a manifold an interval. All circles and intervals
are oriented.

2.1.1. The free loop group Let G be a compact, simple, simply connected Lie group.
Throughout this section, we fix a circle S, and write LG := Map(S,G) for the group
of smooth maps from S to G. Given an interval I , we denote by L IG be the group of
maps I → G that send the boundary of I to the neutral element e ∈ G, and all of whose
derivatives vanish at those points. If I is a subinterval of S, we identify L IG with the
subgroup of LG of loops with support in I .

Theorem 3. For every circle S, the natural map

colim I⊂S L I G → LG

(colimit indexed over the poset of subintervals of S) is an isomorphism of topological
groups.
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The group LG = Map(S,G) admits awell-known central extension L̃G, constructed
as follows. Let g be the Lie algebra ofG. The Lie algebraC∞(S, g) of LG admits a well-
known 2-cocycle given by the formula ( f, g) �→ 1

2π i

∫
S〈 f, dg〉. (Here, 〈 , 〉 : g×g → R

is the basic inner product – the smallest G-invariant inner product whose restriction to
any su(2) ⊂ g is a positive integer multiple of the pairing (X,Y ) �→ −tr(XY ).) This
cocycle can be used to construct a central extension of C∞(S, g) by the abelian Lie
algebra iR. The latter can be then integrated to a simply connected infinite dimensional
Lie group L̃G with center U (1) [GW84,Mic89,PS86,TL99].

Let L̃G
k
be the quotient of L̃G by the central subgroup μk ⊂ U (1) of k-th roots of

unity.

Theorem 4. Let S be a circle. Given an interval I ⊂ S, let us denote by L̃ I G the pullback
of the central extension L̃G → LG along the inclusion L I G → LG. Then the natural
map

colim I⊂S L̃ I G → L̃G

is an isomorphism of topological groups.

More generally, let L̃ I G
k
be the pullback of L̃G

k
along the inclusion L I G → LG.

Then the natural map

colim I⊂S1 L̃ I G
k → L̃G

k

is an isomorphism of topological groups.

Lemma 5. (i) Let S be a circle and let I = {Ii } be a collection of subintervals whose
interiors cover S. Then the subgroups L Ii G generate LG.
(ii) Let I be an interval and let I = {Ii } be a finite collection of subintervals whose
interiors cover that of I . Then the subgroups L Ii G generate L I G.

Proof. The two statements are entirely analogous. We only prove the first one. First of
all, since S is compact, we may assume without loss of generality that n := |I| < ∞.
Let exp : g → G be the exponential map, and let u ⊂ g be a convex neighbourhood of
0 such that exp|u : u → G is a diffeomorphism onto its image U := exp(u).

Given a partition of unity φi : Ii → [0, 1], every loop γ ∈ Map(S,U ) ⊂ LG can be
factored as

γ =
n∏

i=1

γi (2)

with γi (t) = exp
(
φi (t) · exp−1(γ (t))

)
. (Note that the γi commute.) The subgroup

generated by the L Ii G therefore contains Map(S,U ). The latter is open and hence
generates LG. ��

Let I be a collection of subintervals of S whose interiors form a cover and that is
closed under taking subintervals: (I1 ∈ I and I2 ⊂ I1) ⇒ I2 ∈ I. If I1, I2 ∈ I are such
that I1 ∩ I2 is an interval, then the diagram

L I1∩I2G

LI1G

LI2G

colimI L IG

ι1

ι2

(3)
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clearly commutes. When I1, I2 ∈ I have disconnected intersection and γ has support
in I1 ∩ I2, it is not clear, a priori, that ι1(γ ) = ι2(γ ). Letting J1, J2 be the connected
components of I1 ∩ I2, we can rewrite γ as a product γ = γ1 γ2, with γi ∈ L Ji G. We
then have

ι1(γ ) = ι1(γ1 γ2) = ι1(γ1)ι1(γ2) = ι2(γ1)ι2(γ2) = ι2(γ1 γ2) = ι2(γ ).

So the diagram (3) always commutes, evenwhen I1∩ I2 is disconnected. Given γ ∈ L IG
for some I ∈ I, we also write γ for its image in colimI L IG. This element is well-
defined by the commutativity of (3).

The following result is a strengthening of Theorem 3:

Theorem 6. Let I be a collection of subintervals of S whose interiors form a cover, and
that is closed under taking subintervals. Let N � colimI L IG be the normal subgroup
generated by commutators of loops with disjoint supports:

N := 〈
γ δ γ −1δ−1

∣∣ supp(γ ), supp(δ) ∈ I, supp(γ ) ∩ supp(δ) = ∅ 〉
.

Then the natural map (
colimI L IG

)
/N → LG (4)

is an isomorphism of topological groups.

Before embarking in the proof, let us show how Theorems 3 and 4 follow from the
above result.

Proof of Theorem 3. Let I be the poset of all subintervals of S. By Theorem 6, the map
(colim I⊂S L I G)/N → LG is an isomorphism. So it suffices to show that N is trivial.
Given two loops γ1, γ2 ∈ LG with disjoint support, let I ⊂ S be an interval that contains
the union of their supports. The commutator of γ1 and γ2 is trivial in L IG. It is therefore
also trivial in the colimit. ��
Proof of Theorem 4. It is enough to show that the colimit which appears in Theorem 3
satisfies the assumption of Proposition 2. The maps γ �→ γi used in Eq. (2) provide the
required factorization. So Theorem 3 implies Theorem 4. ��
Proof of Theorem 6. Given γ ∈ L IG for some I ∈ I, we write [γ ] for its image in
(colimI L IG)/N .

Let {J j } j = 1...n be a cover of S such that each J j ∩ J j+1 is an interval (in particular J j ∩
J j+1 is non-empty) and the other intersections are empty (cyclic numbering). The J j may
be chosen small enough so that each union J j−1 ∪ J j ∪ J j+1 is in I (cyclic numbering).
Let U ⊂ G be as in the proof of Lemma 5. By (2), any loop γ ∈ Map(S,U ) ⊂ LG
can be factored as γ = γ1 . . . γn , with γ j ∈ L Jj G. Moreover, that factorisation may be
chosen to depend continuously on γ . This provides a local section of the map in (4):

(colimI L IG)/N LG

Map(S,U )

[γ1]...[γn ]
γ

�→

The map (colimI L IG)/N → LG is surjective by Lemma 5. Since there exists a
continuous local section, all that remains to do in order to show that it is an isomorphism
is to prove injectivity.
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Let g be an element in the kernel. By Lemma 5, we may rewrite g as a product
[γ1][γ2] · · · [γN ], with γi ∈ L Ji G for Ji ∈ I. Since g is in the kernel of the map to LG,
the relation

γ1 γ2 . . . γN = e (5)

holds in LG.
Any loop γ ∈ Map(S,U ) can be factored as γ = γ1 · · · γn with γ j ∈ L Jj G. The

set U := L J1G · · · · · L JnG = {γi . . . γn | γ j ∈ L Jj G} is therefore a neighbourhood of
e ∈ LG. Moreover, it is visibly path connected. Since π2(G) = 0 [PS86, §8.6], we have

π1(LG) = π1(�G × G) = π2(G) × π1(G) = 0.

So, by Lemma 7, Eq. (5) is a formal consequence of relations of length 3 between the
elements of U .
Lemma 7. Let G be a simply connected topological group, let U ⊂ G be a path-
connected neighbourhood of e ∈ G, and let F be the free group on U . Then the kernel
of the map F → G is generated as a normal subgroup by words of length 3.

(In other words, any relation between elements of U is a formal consequence of
relations of length 3 between elements of U .)
Proof. Let gε1

1 gε2
2 . . . gεN

N ∈ F , gi ∈ U , εi ∈ {±1}, be a word in the kernel of the map
F → G. We want to show that the relation

gε1
1 gε2

2 . . . gεN
N = e (6)

is a formal consequence of relations of length 3 between elements of U .
For every i , pick a path γi : [0, 1] → U from e to gi . Since G is simply connected,

there exists a disk D2 → G that bounds the loop

e
γ

ε1
1−− gε1

1

g
ε1
1 γ

ε2
2−− gε1

1 gε2
2

g
ε1
1 g

ε2
2 γ

ε3
3−− gε1

1 gε2
2 gε3

3 −− · · · −− gε1
1 gε2

2 . . . gεN
N = e. (7)

Triangulate D2 finely enough and orient all the edges so that, for each oriented edge
x −− y, the ratio x−1y is inU . The orientations along the boundary are chosen compatibly
with the εi ’s in (6). Now forget the map D2 → G and only remember the triangulation
of D, along with the labelling of its vertices by elements of G.

Before subdividing D, the word that one could read along the boundary of D was
gε1
1 . . . gεN

N . After subdividing D, that word is now of the form (h11h12 . . . h1n1)
ε1

(h21h22 . . . h2n2)
ε2 . . . . . . (hN1hN2 . . . hNnN )εN , with hi j ∈ U and

hi1hi2 . . . hini = gi . (8)

Each little triangle x − y− z− x of the triangulation corresponds to a 3-term relation
among elements of U . Depending on the orientation of the edges, this 3-term relation
could be any one of the following eight possibilities:

(x−1 y)(y−1z)(z−1x) = e (x−1 y)(y−1z)(x−1z)−1 = e (x−1 y)(z−1 y)−1(z−1x) = e (x−1 y)(z−1 y)−1(x−1z)−1 = e

(y−1x)−1(y−1z)(z−1x) = e (y−1x)−1(y−1z)(x−1z)−1 = e (y−1x)−1(z−1 y)−1(z−1x) = e (y−1x)−1(z−1 y)−1(x−1z)−1 = e.

The whole disc is a van Kampen diagram exhibiting the relation

(h11h12 . . . h1n1)
ε1(h21h22 . . . h2n2)

ε2 . . . (hN1hN2 . . . hNnN )εN = e (9)
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as a formal consequence of the above 3-term relations (see [Ol’91, Chapt 4] for gener-
alities about van Kampen diagrams).

The relation (6) is a formal consequence of the relations (9) and (8). Therefore, in
order to finish the lemma, it remains to show that (8) is a formal consequence of relations
of length 3 between elements of U . By construction, gi j := hi1 . . . hi j is in U for every
j ≤ ni . Therefore

gi, j hi, j+1 = gi, j+1

is a 3-term relation between elements of U . One checks easily that (8) is a formal
consequence of the above 3-term relations. ��

We have shown that Eq. (5) is a formal consequence of relations of length 3 between
elements of U = L J1G · · · · · L JnG. It is therefore a formal consequence of certain
relations

(δ1 δ2 . . . δn)
ε1(δn+1 . . . δ2n)

ε2(δ2n+1 . . . δ3n)
ε3 = e (10)

of length 3n between elements of the subgroup L Jj G. Here, δi , δn+i , δ2n+i ∈ L Ji G. The
implication (10) ⇒ (5) is formal: any group generated by subgroups isomorphic to the
L Jj G’s in which the relations (10) hold also satisfies the relation (5).

In order to prove that the equation [γ1][γ2] . . . [γN ] = e holds, it is therefore enough
to show that the relations

([δ1] [δ2] . . . [δn]
)ε1

([δn+1] . . . [δ2n]
)ε2

([δ2n+1] . . . [δ3n]
)ε3 = e (11)

hold in (colimIL IG)/N . Using that [δi ]−1 = [δ−1
i ], we may rewrite (11) as:

3n∏

i=1

[αi ] = e, (12)

with αi :=

⎧
⎪⎨

⎪⎩

δ
ε1
i ′ i ′ = i if ε1 = 1; i ′=n+1−i if ε1 =−1, when 1 ≤ i ≤ n

δ
ε2
i ′ i ′ = i if ε2 = 1; i ′=2n+1−i if ε2 =−1, when n + 1 ≤ i ≤ 2n

δ
ε3
i ′ i ′ = i if ε3 = 1; i ′=3n+1−i if ε3 =−1, when 2n + 1 ≤ i ≤ 3n.

At this point, it is useful to note that, for any γ ∈ L Jj G and δ ∈ L JkG, (J j , Jk ∈ I),
the following equation holds:

[δ][γ ][δ]−1 = [δγ δ−1]. (13)

If k = j ± 1, this is true because J j ∪ Jk ∈ I. If k �= j ± 1, then γ and δ have disjoint
supports, [δ][γ ][δ]−1[γ ]−1 ∈ N , and both sides of (13) are equal to [γ ]. Conjugation
by a loop does not increase supports. So we can iterate Eq. (13) to get:

[δ1] . . . [δs] [γ ] [δs]−1 . . . [δ1]−1 = [δ1 . . . δs γ δ−1
s . . . δ−1

1 ]. (14)

Let σ ∈ S3n be a permutation such that ασ(3k−2), ασ(3k−1), ασ(3k) ∈ L JkG for every
k ∈ {1, . . . , n}. By Lemma 8, there exist words wi ∈ (colimIL IG)/N in the [α j ]’s so
that

3n∏

i=1

[αi ] =
3n∏

i=1

wi [ασ(i)]w−1
i .
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By (14), we have wi [ασ(i)]w−1
i = [wiασ(i)w

−1
i ] where, in the right hand side, we have

identified wi with its image in LG. Let βi := ασ(i). Recall that our goal is to show that
Eq. (12) holds. So far, we have shown that

3n∏

i=1

[αi ] =
3n∏

i=1

wi [βi ]w−1
i

=
n∏

k=1

[
w3k−2β3k−2w

−1
3k−2

][
w3k−1β3k−1w

−1
3k−1

][
w3kβ3kw

−1
3k

]

=
n∏

k=1

[
w3k−2β3k−2w

−1
3k−2w3k−1β3k−1w

−1
3k−1w3kβ3kw

−1
3k

]
.

Letting χk := w3k−2β3k−2w
−1
3k−2w3k−1β3k−1w

−1
3k−1w3kβ3kw

−1
3k , we rewrite this as:

3n∏

i=1

[αi ] =
n∏

k=1

[χk].

By construction, supp(χk) ⊂ Jk . Since χ1χ2 . . . χn = e in LG, and since Jk ∩ Jk+2 = ∅,
the support of each χk is contained in (Jk ∩ Jk−1) ∪ (Jk ∩ Jk+1). We can thus write χk
as χk = χ−

k χ+
k with supp(χ−

k ) ⊂ Jk ∩ Jk−1 and supp(χ+
k ) ⊂ Jk ∩ Jk+1. Finally, since

χ1 χ2 . . . χn = e, we have χ+
k χ−

k+1 = e. It follows that

3n∏

i=1

[αi ] =
n∏

k=1

[χk] = [χ−
1 χ+

1 ][χ−
2 χ+

2 ] · · · [χ−
n χ+

n ]
= [χ−

1 ][χ+
1 ][χ−

2 ][χ+
2 ] · · · [χ−

n ][χ+
n ]

= [χ−
1 ][χ+

1 χ−
2 ][χ+

2 χ−
3 ] · · · [χ+

n−1χ
−
n ][χ+

n ]
= [χ−

1 ][χ+
n ] = e.

��
Lemma 8. Let Fn = 〈a1, . . . , an〉 be the free group on n letters. Then for any permuta-
tion σ ∈ Sn, there exist words wi ∈ Fn so that

n∏

i=1

ai =
n∏

i=1

wi aσ(i)w
−1
i .

Moreover, the wi may be chosen so that each ai appears at most once in each wi .

Proof. Lettingw1 := a1 . . . aσ(1)−1,wehavea1 . . . an = (w1aσ(1)w
−1
i ) a1 . . . âσ(1) . . . an .

Now use induction on n to rewrite a1 . . . âσ(1) . . . an as
∏n

i=2 wi aσ(i)w
−1
i . ��

2.1.2. The based loop group Fix a base point p ∈ S, and let�G ⊂ LG be the subgroup
consisting of loops that map p to the neutralelement of G, and all of whose derivatives
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vanish at that point. We call �G the based loop group of G. Let �̃G be the central
extension of �G induced by the basic central extension (1) of LG.

The arguments of the previous section can be adapted without difficulty to prove the
following variants:

�G = colim
I⊂S1

(L IG ∩ �G), �̃G = colim
I⊂S1

(L̃ I G ∩ �̃G).

(The proofs are identical to those in the previous section: replace every occurrence of
LG by �G, and every occurrence of L IG by L IG ∩ �G.)

It is also possible to express �G and �̃G as colimits over the poset of subintervals
whose interior does not contain p, provided one works in the category of Hausdorff
topological groups as opposed to the category of topological groups.

Definition 9. Given a diagram {Gi }i∈I of Hausdorff topological groups, let us write
colimH

I Gi for the colimit in Hausdorff topological groups. Equivalently, this is the
maximal Hausdorff quotient of colimI Gi .

Given an interval I , we write I̊ for its interior. The next result does not seem to hold
when the colimit is taken in the category of topological groups:

Proposition 10. The natural maps

colimH

I⊂S1, p �∈ I̊
L I G → �G and colimH

I⊂S1, p �∈ I̊
L̃ I G → �̃G (15)

are isomorphisms of topological groups.

Proof. Let I be the poset of subintervals of S whose interior does not contain p, and
let N � colimI L IG be the normal subgroup generated by commutators of loops whose
supports have disjoint interiors. The proof of Theorem 6 applies verbatim (using a cover
{J j } j=1...n for which the J j ∩ J j+1 are intervals for 0 < j < n, J0 ∩ Jn = {p}, and
all other intersections empty) and shows that the map (colimI L IG)

/
N → �G is an

isomorphism of topological groups. Since �G is Hausdorff, the natural map
(

colimH

I⊂S1, p �∈ I̊
L I G

)/
NH → �G

is therefore an isomorphism, where NH denotes the image of N in colimH
IL IG.

We wish to show that NH is trivial. Let γ and δ be two loops whose supports have
disjoint interiors. Write S\{p} as an increasing union of closed intervals Ii ⊂ S, and
write

γ = lim γi δ = lim δi ,

with supp(γi ) ⊂ Ii , supp(δi ) ⊂ Ii , and supp(γi )∩supp(δi ) = ∅. The commutator [γi , δi ]
is trivial in L Ii G, and therefore in colimI L IG. By uniqueness of limits (this is where we
use Hausdorffness3), it follows that [γ, δ] = [lim γi , lim δi ] = lim[γi , δi ] = lim e = e
in colimH

IL IG. This show that NH is the trivial group, and that the first map in (28) is
an isomorphism.

Proposition 2 is stated in the category of topological groups, but it also holds in
the category of Hausdorff topological groups (with identical proof: just replace every
occurrence of colim by colimH). The first isomorphism in (15) therefore implies the
second one. ��

3 In the absence of the Hausdorffness condition, we could only deduce [γ, δ] ∈ lim[γi , δi ] = closure({e}).
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Similarly, letting �̃G
k
be the pullback of L̃G

k
along the inclusion �G → LG, the

natural map

colimH

I⊂S1, p �∈ I̊
L̃ I G

k → �̃G
k

(16)

is an isomorphism of topological groups. The proof that this map is an isomorphism is
identical to that of the second isomorphism in (15).

2.2. Diffeomorphism groups. The material in this section is largely parallel to the one
in the previous section, with one notable difference. Whereas conjugating by a loop
never increases the support, conjugating by a diffeomorphism does typically increase
supports. This introduces a number of small subtleties.

Recall that we write S1 := {z ∈ C : |z| = 1} for the standard circle, and S for a
manifold diffeomorphic to S1. All our circles are assumed oriented.

2.2.1. Diff(S1) and its universal cover Given an interval I , wewriteDiff0(I ) ⊂ Diff(I )
for the group of diffeomorphisms of I that are tangent up to infinite order to the identity
map at the two boundary points. If I is a subinterval of a circle S, then this group can be
equivalently described as the subgroup Diff0(I ) ⊂ Diff+(S) of diffeomorphisms with
support in I .

Theorem 11. Let S be a circle, and let ˜Diff+(S) be the universal cover of the group of
orientation preserving diffeomorphisms of S. Then the natural map

colim I⊂S Diff0(I ) → ˜Diff+(S)

is an isomorphism of topological groups.

The Lie algebraX(S) of smooth vector fields on S has a well known central extension
by iR, constructed as follows. Upon identifying S with S1, it can be described as the

central extension associated to the 2-cocycle ( f ∂
∂z , g

∂
∂z ) �→ 1

12

∫
S1

∂ f
∂z (z)

∂2g
∂z2

(z) dz
2π i .

In terms of the topological basis �n := −zn+1 ∂
∂z of the complexified Lie algebra, this

cocycle can also be described by the formula4:

(�m, �n) �→ 1
12 (m

3 − m)δm+n,0. (17)

The corresponding central extension of X(S1) is a universal central extension in the
category of topological Lie algebras [GF68]. Since X(S) and X(S1) are isomorphic as
topological Lie algebras, the former also admits a universal central extension by iR
(universal central extensions are well defined up to unique isomorphism).

Finally, the universal central extension of X(S) integrates to a central extension 0 →
R → DiffR

+ (S) → Diff+(S) → 0, called the Virasoro–Bott group of S [KW09, Chapt
II.2][Bot77][TL99] (where we have identified iR with R for notational convenience).
Let DiffR×Z

+ (S) be the universal cover of the Virasoro–Bott group.

4 The cocycle (17) is cohomologous to (�m , �n) �→ 1
12 · m3δm+n,0, but the former is usually preferred

because it is PSL(2, R)-invariant.
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Theorem 12. Let S be a circle. Given an interval I ⊂ S, let us denote by DiffR

0 (I ) the
pullback of the central extensionDiffR

+ (S) → Diff+(S) along the inclusionDiff0(I ) →
Diff+(S). Then the natural map

colim I⊂S DiffR

0 (I ) → DiffR×Z

+ (S)

is an isomorphism of topological groups.

Remark 13. The central extension DiffR
+ (S1) → Diff+(S1) is non-trivial not only as an

extension of Lie groups, but also as an extension of abstract groups. To see this, one can
argue as follows:

Let PSL(2, R)(n) be the subgroup of Diff+(S1) corresponding to the subalgebra
SpanR{i�0, �n − �−n, i�n + i�−n} of X(S1). That Lie algebra lifts to a Lie algebra

SpanR{(i�0, i
12 · n

2−1
2 ), (�n − �−n, 0), (i�n + i�−n, 0)} in the central extension of X(S1).

The latter integrates to a subgroupof theVirasoro–Bott group isomorphic toPSL(2, R)(n):

PSL(2, R)(n)

DiffR
+ (S1)

Diff+(S1)

sn (18)

Moreover, since PSL(2, R)(n) has trivial abelianization,5 the lift sn is unique (without
any continuity assumptions).

Assume by contradiction that there exists a section s : Diff+(S) → DiffR
+ (S) which

is a group homomorphism, possibly discontinuous. By uniqueness of the lift (18), we
would then have s|PSL(2,R)(n) = sn , from which it would that follow that

sn|PSL(2,R)(n)∩PSL(2,R)(m) = sm |PSL(2,R)(n)∩PSL(2,R)(m) .

But PSL(2, R)(n) ∩ PSL(2, R)(m) is the circle subgroup with Lie algebra SpanR{i�0},
and one can easily check at the Lie algebra level that sn|S1 �= sm |S1 .

A similar argument shows that the central extensionDiffR×Z
+ (S) → ˜Diff+(S) remains

non-trivial when viewed as an extension of abstract groups.

The next remark provides an answer to a question by Vaughan Jones:

Remark 14. Theorem 12 can be used to show that the central extension DiffR
+ (S) →

Diff+(S) remains non-trivial upon restricting it to a subgroup Diff0(I ). We first note
that, since Diff0(I ) is perfect [Tsu02], for any J ⊂ I ⊂ S, the inclusion map ιRJ I :
DiffR

0 (J ) → DiffR

0 (I ) is uniquely characterized by the fact that ιRJ I |R = idR, and that it
covers the inclusion map ιJ I : Diff0(J ) → Diff0(I ).

Suppose by contradiction that the central extension was trivial: DiffR

0 (I ) ∼= R ×
Diff0(I ). Then we would have ιRJ I = idR × ιJ I , from which it would follow that

DiffR×Z

+ (S) ∼= colim I⊂S DiffR

0 (I )
∼= colim I⊂S

(
R × Diff0(I )

)

∼= R × colim I⊂S Diff0(I ) ∼= R × ˜Diff+(S),

contradicting the non-triviality of the central extension DiffR×Z
+ (S) → ˜Diff+(S).

5 The commutators
[
( λ 0
0 1/λ ), ( 1 a

0 1 )
]
and

[
( λ 0
0 1/λ ), ( 1 0

b 1 )
]
generate a neighbourhood of the identity in

PSL(2, R).
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The main technical tool in our proofs of Theorems 3 and 12 is a kind of partitions of
unity for diffeomorphisms. The result is very similar to [DFK04, Lem.3]. Let

Diff<d(R) := {ϕ ∈ Diff(R) : |ϕ(t) − t | < d}
be the set of diffeomorphismsof displacement smaller thand. Similarly, letDiff<d(S1) :=
{ϕ ∈ Diff(S1) : |ϕ(t) − t | < d}.
Lemma 15. (i) There exist continuous maps ( )− , ( )+ : Diff<d(R) → Diff<d(R) such

that, for every ϕ ∈ Diff<d(R), we have:

ϕ = ϕ−ϕ+, supp(ϕ−) ⊂ (−∞, d ], supp(ϕ+) ⊂ [−d,∞).

(ii) Let I−, I+ ⊂ S1 be two subintervals that cover the standard circle. Assume that
each connected component of I− ∩ I+ has length 2d. Then there exist continuous maps
( )− , ( )+ : Diff<d(S1) → Diff<d(S1) such that, for every ϕ ∈ Diff<d(S1), we have:

ϕ = ϕ−ϕ+, supp(ϕ−) ⊂ I−, supp(ϕ+) ⊂ I+.

Proof. Weonlyprove thefist part of the lemma (the secondpart is completely analogous).
Let σ : R → [0, d] be amonotonic function such that σ(t) = 0 on (−∞,−d], σ(t) = d
on [d,∞), and σ ′(t) < 1. Given ϕ ∈ Diff<d(R), we let ϕ+ be the unique solution of the
functional equation ϕ+(t)−t

ϕ(t)−t = σ(ϕ+(t))
d :

R

R

ϕ

t=−d t=dt

ϕ(t) ϕ+(t)

σ (t)

It has support in [−d,∞), and satisfiesϕ−1
+ (t) = ϕ−1(t) for every t ≥ d. The diffeomor-

phism ϕ− := ϕ ϕ−1
+ has displacement smaller than d, and support in

(−∞, d ]. ��
Given a subinterval I of R or S1, let Diff<d

0 (I ) := Diff0(I ) ∩ Diff<d(I ).

Corollary 16. Let {Ii }i = 1...n be a cover of S1 such that each intersection Ii ∩ Ii+1 (cyclic
numbering) has length 2d for some d, and the other intersections are empty:

I1

I2I3

I4

I5 In

···

Then any element ϕ ∈ Diff<d(S1) can be factored as ϕ = ϕ1 . . . ϕn, with ϕ j ∈
Diff<d

0 (I j ). Moreover, the factorisation can be chosen to depend continuously on ϕ.
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Proof. Apply Lemma 15(ii) to write ϕ = ϕ1ϕ+ with ϕ1 ∈ Diff<d
0 (I1) and ϕ+ ∈

Diff<d
0 (I2 ∪ · · · ∪ In). Then use Lemma 15(i) to write ϕ+ = ϕ2 . . . ϕn with ϕi ∈

Diff<d
0 (Ii ), for 2 ≤ i ≤ n. ��

Lemma 17. (i) Let I be an interval and let I = {Ii } be a finite collection of subintervals
whose interiors cover that of I . Then the subgroups Diff0(Ii ) generate Diff0(I ).

(ii) Let S be a circle and let I = {Ii } be a collection of subintervals whose interiors
cover S. Then the subgroups Diff0(Ii ) generate ˜Diff+(S).

Proof. We only prove the second statement (the first one is completely analogous).
Assume without loss of generality that S = S1. Let {J j } j = 1...n be a refinement of
our cover such that each J j ∩ J j+1 has length 2d, for some constant d > 0, and the
other intersections are empty (cyclic numbering). Write ϕ as a product ϕ1 . . . ϕm of
diffeomorphisms of displacement smaller than d. Now apply Corollary 16 to each ϕi to
rewrite it as a product ϕi = ϕi,1 . . . ϕi,n , with ϕi, j ∈ Diff0(J j ). ��

Let I be a collection of intervals in S1 whose interiors form a cover, and that is closed
under taking subintervals. As in (3), for any I1, I2 ∈ I, the diagram

Diff0(I1 ∩ I2)

Diff0(I1)

Diff0(I2)

colimI Diff0(I )

ι1

ι2

(19)

commutes. Given a diffeomorphism ϕ ∈ Diff+(S1)with support in some interval I ∈ I,
we also write ϕ for its image in colimI Diff0(I ). This element is well-defined by the
commutativity of (19).

The following result is a strengthening of Theorem 3:

Theorem 18. Let I be a collection of intervals in S1 whose interiors form a cover, and
that is closed under taking subintervals. Let N� colimI Diff0(I ) be the normal subgroup
generated by commutators of diffeomorphisms with disjoint supports. Then the natural
map (

colimI Diff0(I )
)
/N → ˜Diff+(S

1) (20)

to the universal cover of Diff+(S1) is an isomorphism of topological groups.

Before embarking in the proof, let us show how Theorems 11 and 12 follow from the
above result.

Proof of Theorem 11. Without loss of generality, we take S = S1. Let I be the poset of
all subintervals of S1. By Theorem 18, the map (colim I⊂S1 Diff0(I ))/N → ˜Diff+(S1)
is an isomorphism. So it suffices to show that N is trivial. Given diffeomorphisms with
disjoint support ϕ,ψ ∈ Diff+(S1), there exists an interval I ⊂ S1 such that both ϕ and
ψ are in Diff0(I ). The commutator of ϕ and ψ is trivial in Diff0(I ). It is therefore also
trivial in the colimit. ��
Proof of Theorem 12. The maps ( )− , ( )+ : Diff<d(S1) → Diff(S1) in Lemma 15(ii)
show that the colimit which appears in Theorem 11 satisfies the assumption of Proposi-
tion 2. Theorem 12 therefore follows from Theorem 11. ��
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Proof of Theorem 18. Given a diffeomorphism ϕ ∈ Diff+(S1) with support in some
interval I ∈ I, we write [ϕ] for its image in the group (colimI Diff0(I ))/N .

Let {J j } j = 1...n be a cover of S1 such that each intersection J j ∩ J j+1 (cyclic number-
ing) has length 2d for some d, and the other intersections are empty. The J j are chosen
so that each J j−1 ∪ J j ∪ J j+1 is in I (cyclic numbering) and the distance between
J j and J j+2 is greater than 6d. By Corollary 16, any element ϕ ∈ Diff<d(S1) can be
factored as ϕ = ϕ1 . . . ϕn , with ϕ j ∈ Diff<d

0 (J j ). Moreover, that factorisation may be
chosen to depend continuously on ϕ. After identifying Diff<d(S1) with an open subset
of ˜Diff+(S1), this provides a local section of the map in (20):

(colimI Diff0(I ))/N ˜Diff+(S1).

Diff<d(S1)

[ϕ1]...[ϕn ]
ϕ

�→

The map (20) is surjective by Lemma 17, and admits continuous local sections.
It remains to prove injectivity. Let g ∈ (colimIDiff0(I ))/N be in the kernel of the

map to ˜Diff+(S1). By Lemma 17, wemay rewrite it as a product [ϕ1][ϕ2] . . . [ϕN ], where
each ϕi is in some Diff<d

0 (J j ). By assumption, the relation

ϕ1ϕ2 . . . ϕN = e (21)

holds in ˜Diff+(S1). Our goal is to show that the relation

[ϕ1][ϕ2] . . . [ϕN ] = e (22)

holds in (colimI Diff0(I ))/N .
Any x ∈ Diff<d(S1) can be factored as x = x1 . . . xn with x j ∈ Diff<d

0 (J j ), so the
setU := Diff<d

0 (J1) . . .Diff<d
0 (Jn) = {xi . . . xn : x j ∈ Diff<d

0 (J j )} is a neighbourhood
of e ∈ ˜Diff+(S1). The set U is visibly path-connected. By Lemma 7, Eq. (5) is therefore
a formal consequence of certain relations of length 3 between the elements of U :

(ψ1 ψ2 . . . ψn)
ε1(ψn+1 . . . ψ2n)

ε2(ψ2n+1 . . . ψ3n)
ε3 = e, (23)

ψi , ψn+i , ψ2n+i ∈ Diff<d
0 (Ji ). In order to prove that (22) holds, it is therefore enough

to show that the relations
([ψ1][ψ2] · · · [ψn]

)ε1
([ψn+1] · · · [ψ2n]

)ε2
([ψ2n+1] · · · [ψ3n]

)ε3 = e (24)

hold in (colimIDiff0(I ))/N . Using that [ψi ]−1 = [ψ−1
i ], we rewrite (24) as

3n∏

i=1

[αi ] = e, (25)

with αi :=

⎧
⎪⎨

⎪⎩

ψ
ε1
i ′ i ′: = i if ε1 = 1; i ′: = n+1−i if ε1 =−1, when 1 ≤ i ≤ n

ψ
ε2
i ′ i ′: = i if ε2 = 1; i ′: = 2n+1−i if ε2 =−1, when n + 1 ≤ i ≤ 2n

ψ
ε3
i ′ i ′: = i if ε3 = 1; i ′: = 3n+1−i if ε3 =−1, when 2n + 1 ≤ i ≤ 3n.

As in (13), for any ϕ ∈ Diff0(J j ) and ψ ∈ Diff0(Jk), the following equation holds:

[ψ][ϕ][ψ]−1 = [ψϕψ−1]. (26)
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We would like to replace [ψ] in (26) by an arbitrary word [ψ1] . . . [ψs]:
[ψ1] · · · [ψs] [ϕ] [ψs]−1 · · · [ψ1]−1 = [ψ1 · · ·ψs ϕ ψ−1

s · · · ψ−1
1 ]. (27)

However, for general ψi ∈ ⋃
k Diff0(Jk) it is not clear that (27) should hold, be-

cause each time one conjugates ϕ by a diffeomorphism, its support grows. If we in-
sist, however, that the ψi have small displacement, so as to control the supports of
ψrψr+1 . . . ψs ϕ ψ−1

s . . . ψ−1
r+1ψ

−1
r , then Eq. (27) will hold. The precise version of (27)

that we will need is he following: Let ψi ∈ ⋃
k Diff

<d
0 (Jk), and let ϕ ∈ Diff0(J j ). If

there are at most three ψi ’s whose support is in J j−1 and not in some other Jk , and at
most three ψi ’s whose support J j+1 and not in some other Jk , then Eq. (27) holds. The
proof is an iteration of the argument used for (26), while keeping track of the size of the
supports. (This only uses the fact that the distance between J j and J j+2 is greater than
3d. Later, we will use that it is greater than 6d.)

Let σ ∈ S3n be a permutation such that ασ(3k−2), ασ(3k−1), ασ(3k) ∈ Diff<d
0 (Jk).

By Lemma 8, there exist words wi in the [α j ]’s so that
∏3n [αi ] = ∏3n

wi [ασ(i)]w−1
i .

Moreover, these words can be chosen so that each [αi ] appears at most once in each wi .
By (27), we then have:

wi [ασ(i)]w−1
i = [wiασ(i)w

−1
i ].

Recall that our goal is to show that (25) holds. Let βi := ασ(i). So far, we have:

3n∏

i=1

[αi ]=
3n∏

i=1

wi [βi ]w−1
i =

n∏

k=1

[
w3k−2β3k−2w

−1
3k−2

][
w3k−1β3k−1w

−1
3k−1

][
w3kβ3kw

−1
3k

]

=
n∏

k=1

[
w3k−2β3k−2w

−1
3k−2w3k−1β3k−1w

−1
3k−1w3kβ3kw

−1
3k

]
.

Letχk := w3k−2β3k−2w
−1
3k−2w3k−1β3k−1w

−1
3k−1w3kβ3kw

−1
3k so that

∏3n [αi ] = ∏n[χk].
By construction, supp(χk) ⊂ J+k , where J+k is obtained from Jk by by enlarging it by
3d on each side. The crucial property of those slightly larger intervals is that J+k does
not overlap with J+k+2. The relation χ1χ2 . . . χn = e holds in ˜Diff+(S1) so the support of
each χk is contained in (J+k ∩ J+k−1)∪ (J+k ∩ J+k+1). We can thus write χk as χk = χ−

k χ+
k ,

with supp(χ−
k ) ⊂ J+k ∩ J+k−1 and supp(χ+

k ) ⊂ J+k ∩ J+k+1. Since χ1 χ2 . . . χn = e, we
must have χ+

k χ−
k+1 = e. Finally, as in the proof of Theorem 6,

3n∏

i=1

[αi ] =
n∏

k=1

[χk] = [χ−
1 χ+

1 ][χ−
2 χ+

2 ] · · · [χ−
n χ+

n ]
= [χ−

1 ][χ+
1 χ−

2 ][χ+
2 χ−

3 ] · · · [χ+
n−1χ

−
n ][χ+

n ] = e.

��

2.2.2. The based diffeomorphism group Choose a base point p ∈ S, and let Diff∗(S) ⊂
Diff(S) be the subgroup of diffeomorphisms that fix p and that are tangent to idS up to
infinite order at that point. We call this group the based diffeomorphism group of S. Let
DiffR∗ (S) be the restriction of the central extension by R to Diff∗(S). The arguments of
the previous section can be adapted without difficulty to prove the following variants:

Diff∗(S) = colim
I⊂S

(
Diff0(I ) ∩Diff∗(S)

)
, DiffR∗ (S) = colim

I⊂S

(
DiffR

0 (I ) ∩DiffR∗ (S)
)
.



554 A. Henriques

The proofs are identical to those in the previous section: replace every occurrence of
Diff(S1) by Diff∗(S1), and every occurrence of Diff0(I ) by Diff0(I ) ∩ Diff∗(S1).

It is also possible to express the groups Diff∗(S) and DiffR∗ (S) as colimits over the
poset of subintervals whose interior does not contain p, provided one works in the
category of Hausdorff topological groups:

Proposition 19. The natural maps

colimH

I⊂S, p �∈ I̊
Diff0(I ) → Diff∗(S) colimH

I⊂S, p �∈ I̊
DiffR

0 (I ) → DiffR∗ (S) (28)

are isomorphisms of topological groups.

Proof. The proof is identical to that of Proposition 10. Let I be the poset of subintervals
of S whose interior does not contain p, and let N � colimI Diff0(I ) be the normal
subgroup generated by commutators of diffeomorphisms whose supports have disjoint
interiors. The proof of Theorem 18 applies verbatim (using a cover {J j } j=1...n for which
the J j ∩ J j+1 have length 2d for some d, J0 ∩ Jn = {p}, and all other intersections are
empty) and shows that the map (colimI Diff0(I ))

/
N → Diff∗(S) is an isomorphism

of topological groups. Since Diff∗(S) is Hausdorff, the natural map
(

colimH

I⊂S1, p �∈ I̊
Diff0(I )

)/
NH → Diff∗(S)

is an isomorphism, where NH denotes the image of N in colimH
IDiff0(I ). The end of

the proof consists in showing that NH is trivial. The argument is identical to the one in
Proposition 10. ��

3. Application: Representations of Loop Group Conformal Nets

Fix a compact, simple, simply connected Lie group G, and let k > 0 be an integer. Let g
be the complexified Lie algebra of G. There is a certain central extension ĝ of g[z, z−1]
called the affine Lie algebra. There is also a conformal net AG,k associated to G and k,
called the loop group conformal net (we will review these notions below).

It is well believed among experts that there should be an equivalence between the
category of representations of AG,k and a certain category of representations of ĝ (see
Conjecture 23 for a precise statement). In this section, leveraging Theorems 4 and 12,
we prove one half of this conjecture. Namely, given a representation of the loop group
conformal net, we construct a representation of the corresponding affine Lie algebra:

Rep(AG,k) � Rep(ĝ).

3.1. Loop group conformal nets and affine Lie algebras.

3.1.1. Loopgroup conformal nets Let S be a circle. Let L̃G be the basic central extension
of LG = Map(S,G), and let L̃G

k
be its quotient by the central subgroup μk ⊂ U (1)

of k-th roots of unity. Upon identifying U (1)/μk with U (1), we get a central extension

0 U (1) L̃G
k

LG 0
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called the level k central extension of LG. Given an interval I ⊂ S, we write L̃ I G
k
for

the restriction of that central extension to the subgroup L IG:

0 U (1) L̃ I G
k

L I G 0. (29)

The latter only depends on I and not on the choice of circle S in which the interval is
embedded.

Recall that the group algebraC[G] of a group G is the set of finite linear combinations
of elements of G. We write [g] ∈ C[G] for the image in the group algebra of an element
g ∈ G. Given a central extension 0 → U (1) → G̃ → G → 0, the twisted group algebra
of G is the quotient of C[ G̃ ] by the relation [λg] ∼ λ[g], for λ ∈ U (1) and g ∈ G̃.

Following [BDH15, §1.A], a conformal net is a functor from the category of inter-
vals and embeddings to the category of von Neumann algebras and ∗-algebra homo-
morphisms (satisfying various axioms). Associated to each compact, simple, simply
connected Lie group G and integer k ≥ 1, there is a conformal netAG,k called the loop
group conformal net. The loop group conformal net sends an interval I to a certain von
Neumann algebra AG,k(I ). The latter is a completion of the twisted group algebra of
L IG associated to the central extension (29). In particular, there is a homomorphism

L̃ I G
k → U

(AG,k(I )
)

(30)

from L̃ I G
k
to the group of unitaries ofAG,k(I ). The homomorphism (30) is continuous

for the topology on L̃ I G
k
induced from the C∞ topology on L IG, and the strong

operator topology onU (AG,k(I )). We refer the reader to [BDH15, §4.C][GF93][Hen16,
§8][TL97][Was98] for background on loop group conformal nets.

Wewrite B(H) for the algebra of bounded operators on a Hilbert space H , andU (H)

for the group of unitary operators.

Definition 20. A representation of a conformal netA on aHilbert space H is a collection
of actions (i.e. normal, unital, ∗-homomorphisms) ρI : A(I ) → B(H), indexed by the
subintervals I ⊂ S1, which are compatible in the sense that ρI |A(J ) = ρJ for every
J ⊂ I ⊂ S1.

We write Rep(A) for the category of representation of A, and Repf(A) for the sub-
category whose objects are finite direct sums of irreducible representations.

3.1.2. Affine Lie algebras Let gR be the Lie algebra of G, and let g := gR ⊗R C be its
complexification. The affine Lie algebra ĝ is the central extension of g[z, z−1] by the
2-cocycle ( f, g) �→ Resz=0〈 f, dg〉, where 〈 , 〉 denotes the basic inner product on g
(c.f. Sect. 2.1.1).6 The Kac–Moody algebra is the semi-direct product C � ĝ associated
to the derivation ( f, a) �→ (−z ∂ f

∂z , 0) of ĝ. We write �0 for the generator of C in the
semi-direct product.

Definition 21 ([Kac90, Chapt. 3 and 10]). Let k ∈ N. A representation ρ of ĝ on a vector
space V is called a level k integrable positive energy representation if:

6 This normalization ensures that the set of possible levels of integrable positive energy representations of
ĝ is exactly the set N of non-negative integers.
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1. It is the restriction of a representation of C � ĝ for which the generator L0 := ρ(�0)

of C is diagonalizable, with positive spectrum.
2. For every nilpotent element X ∈ g and every n ≥ 0, the operator Xz−n acts locally

nilpotently on V (the operators Xzn are automatically locally nilpotent for n > 0).
3. The central element 1 ∈ C ⊂ ĝ acts by the scalar k.

We note that the choice of operator L0 is not part of the data of an integrable positive
energy representation.

WewriteRepk(ĝ) for the category of level k integrable positive energy representations
of ĝ, and write Repkf (ĝ) for the subcategory whose objects are finite sums of irreducible
representations.

It is well known that every object of Repk(ĝ) can be equipped with a positive definite
ĝ-invariant inner product [Kac90, Chapt. 11], and thus completed to a Hilbert space. The
action of ĝ extends to an action on the Hilbert space by unbounded operators, and the
real form

(
g[z, z−1]∩C∞(S1, gR)

)⊕ iR ⊂ ĝ acts by skew-adjoint operators. The latter
can then be integrated to a strongly continuous positive energy unitary representation of

L̃G
k
[GW84,TL99]. (A unitary representationG → U (H) is called strongly continuous

if it is continuous with respect to the strong operator topology on U (H).) In order to

have a better parallel with Definition 21, we prefer to view representations of L̃G
k
as

representations of L̃G, via the quotient map L̃G → L̃G
k
:

Definition 22 ([PS86, §9.2]). A strongly continuous unitary representation ρ : L̃G →
U (H) is called a level k positive energy representation if:

1. It is the restriction of a representation S1 � L̃G → U (H), for which the generator
L0 := −i d

dt

∣∣
t=0(ρ(eit , 1)) of S1 has positive spectrum.

2. λ ∈ U (1) ⊂ L̃G acts by scalar multiplication by λk .

We note that the action of S1 ⊂ S1 � L̃G is not part of the data of a level k positive
energy representation.

Wewrite Repk(LG) for the category of level k positive energy representations of L̃G,
and Repkf (LG) for the subcategory whose objects are finite direct sums of irreducible
representations.

3.2. The comparison functors Rep(AG,k) → Repk(LG) and Repk(LG) → Repk(ĝ).
It has long been expected that there should be a one-to-one correspondence between
representations ofAG,k and level k integrable positive energy representations of ĝ. One
way to state this is as an equivalence of categories:

Repf(AG,k) ∼= Repkf (ĝ).

We prefer the following statement, as it excludes the possibility of AG,k having repre-
sentations which are not direct sums of irreducible ones:

Conjecture 23. Let Vecf be the category of finite dimensional vector spaces, and let
Hilb be the category of Hilbert spaces and bounded linear maps. Then there is a natural
equivalence of categories:

Rep(AG,k) ∼= Repkf (ĝ) ⊗Vecf Hilb.
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Here, the objects of Repkf (ĝ)⊗Vecf Hilb are formal expressions of the form
⊕n

i=1 Vi ⊗Hi

withVi ∈ Repkf (ĝ) andHi ∈ Hilb, andHom(Vi⊗Hi , V ′
j⊗H ′

j ) = HomRepkf (ĝ)(Vi , V
′
j )⊗C

HomHilb(Hi , H ′
j ).

Remark 24. For G = SU (n), Conjecture 23 is a consequence of [Xu00, Thm. 2.2],
[KLM01, Thm. 33], and [Xu00, 42, Thm. 3.5].

Theorems 29 and 30 below, together with Remark 31 (or Remark 24), prove one half
of Conjecture 23. Namely, they combine to a fully faithful functor

Rep(AG,k) → Repkf (ĝ) ⊗Vecf Hilb. (31)

This proves, among other things, that every representation of AG,k is a direct sum of
irreducible ones, and that there is an injective map (conjecturally a bijection) from the
set of isomorphism classes of irreducible objects of Rep(AG,k) to the set of isomorphism
classes of irreducible objects of Repk(ĝ).

Remark 25. An alternative proof of the above result can be found in the unpublished
manuscript [CW16].

Remark 26. Constructing the inverse functor of (31) requires something called “local
equivalence”. Results about local equivalence can be found in [Was98, Thm.B in §17]
and [TL97, Prop. 2.4.1 in Chapt. IV]. The unpublished preprint [Was90, §15] seems to
contain most of the ingredients of a proof, but falls short of being a complete argument.

Remark 27. By the results in [KLM01, App.D], the existence of an injective map from
the set of isomorphism classes of irreducibleAG,k-reps to the set of isomorphism classes
of irreducible positive energy ĝ-reps implies that every AG,k-rep is a direct sum of
irreducible ones. This fact could have been used to simplify the proof of Theorem 29
(specifically the direct integral argument) by assuming from the beginning that L0 is
diagonalizable. We have opted instead for a more self-contained exposition.

Remark 28. The corresponding questions for the Virasoro conformal net have been stud-
ied by anumber of people.Carpi [Car04], basedon results byLoke [Lok94] andD’Antoni
and Köster [DFK04], proved that every irreducible positive energy representation of a
Virasoro conformal net comes from a positive energy representation of the Virasoro
algebra with same central charge. The converse (local normality) was shown to hold by
Weiner [Wei17] (with partial results by Buchholz and Schulz-Mirbach [BSM90]), and
the positive energy condition was removed in [Wei06].

Theorem 29. For every representation of the loop group conformal net AG,k , the ac-

tions of the subgroups L̃ I G
k ⊂ U (AG,k(I )) assemble to a level k positive energy

representation of the loop group. That construction yields a fully faithful functor

Rep(AG,k) → Repk(LG). (32)

Proof. Let H be a representation ofAG,k . By definition, H is equipped with compatible
actions AG,k(I ) → B(H) for all I ⊂ S1. Precomposing by the maps (30), we get a

compatible system of homomorphisms L̃ I G
k → U (H). By Theorem 4, these assemble

to a strongly continuous action

L̃G
k = colim I⊂S1 L̃ I G

k → U (H). (33)
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By construction, any λ ∈ U (1) ⊂ L̃G
k
acts by scalar multiplication by λ.

By the diffeomorphism covariance of the loop group conformal nets ([BDH15,
Prop. 4.3] with [GW84, Thm. 6.7] or [TL99, Thm. 6.1.2]), there exist canonical maps

DiffR

0 (I ) → AG,k(I ) which assemble to homomorphisms DiffR

0 (I ) � L̃ I G
k →

U (AG,k(I )). Composing with the map to U (H) and using (33), we get a compati-

ble system of maps DiffR

0 (I ) � L̃G
k → U (H). By Theorem 4, these then assemble to

a strongly continuous action

DiffR×Z

+ (S1) � L̃G
k → U (H).

Precomposing by the quotient map L̃G → L̃G
k
, we get an action of DiffR×Z

+ (S1)� L̃G
such that every λ ∈ U (1) ⊂ L̃G acts by scalar multiplication by λk . In particular, we
get an action of (S1)Z

� L̃G on H , where (S1)Z ⊂ DiffR×Z
+ (S1) denotes the universal

cover of S1 ⊂ DiffR
+ (S1). The main result of [Wei06] shows that the generator L0 of

(S1)Z has positive spectrum.
So far, we have constructed a representation of L̃G on H that satisfies all the con-

ditions of a level k positive energy representation, except that the S1 is replaced by its
universal cover (S1)Z. In order to show that H is a positive energy representation (Def-
inition 22), we need to modify the action of (S1)Z so that it descends to an action of
S1.

Decompose H as a direct integral according to the characters of the central Z ⊂
(S1)Z:

H =
∫ ⊕

θ∈U (1)
Hθ .

(This direct integral will turn out to be a mere direct sum, but don’t know this at the mo-
ment.) Direct integrals for loop group representations are tricky, because disintegration
theory only applies to separable locally compact groups, and L̃G is not locally compact.
So we proceed with care. In particular, we never make the claim that the Hilbert spaces
Hθ carry actions of L̃G.

For each θ ∈ U (1), extend the character n �→ θn of Z to a character z �→ zlog(θ)/2π i

of (S1)Z (principal branch of the logarithm). LetCθ denote the vector spaceC, equipped
with the action of (S1)Z given by the above character. Then the representation

H ′ :=
∫ ⊕

θ∈U (1)
Hθ ⊗ Cθ

of (S1)Z descends to a representation of S1 whose generator has positive spectrum (the
spectrum of L0 has been modified by a bounded amount). As mere vector spaces, we
have Cθ

∼= C, and therefore H ′ ∼= H . Use this isomorphism to equip H ′ with an action
of L̃G. We wish to show that the actions of S1 and of L̃G on H ′ assemble to an action
of S1 � L̃G.

Pick a countable dense subgroup (S1)Z
� ⊂ (S1)Z that contains the central Z, and let

S1� := (S1)Z
� /Z ⊂ S1. Pick an (S1)Z

� -invariant countable dense subgroup L̃G� ⊂ L̃G.
Since Z is central in (S1)Z

� � L̃G�, the Hilbert spaces Hθ carry representations of
(S1)Z

� � L̃G� for almost all θ . By construction, on almost each Hθ ⊗ Cθ , the action
of (S1)Z

� � L̃G� descends to an action of S1� � L̃G�. The actions of S1� and L̃G� on
H ′ therefore assemble to an action of S1� � L̃G�. At last, since S1� � L̃G� is dense in
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S1 � L̃G and since the actions of S1 and L̃G on H ′ are strongly continuous, these two
actions assemble to an action of S1 � L̃G. This finishes the proof that H ′, and hence H ,
is a positive energy representation of L̃G. ��

Positive energy representations of S1 � L̃G come with no smoothness assumptions.
It is therefore not clear, a priori, that it should be possible to differentiate them. Zellner
showed that, in such a representation, the set of smooth vectors is always dense [Zel15,
Thm2.16]. One can therefore differentiate it to a representation of the corresponding
Kac–Moody Lie algebra. We present an alternative proof of that same result. (Our proof
does not cover the case G = SU (2): it relies on the fact that every rank 2 sub diagram of
the affine Dynkin diagram of G is of finite type, something which holds for all groups
except for SU (2).)

Theorem 30. Let G �= SU (2). A level k positive energy representation L̃G → U (H)

can be differentiated to a level k integrable positive energy representation of ĝ on a
dense subset of H. This construction yields an equivalence of categories

Repk(LG) → Repkf (ĝ) ⊗Vecf Hilb.

Remark 31. For G = SU (2) (and indeed for any compact simple group Lie group G),
Theorem 30 follows from [Zel15, Thm2.16].

Proof. An integration functor Repkf (ĝ) → Repk(LG) was constructed in [GW84] and
[TL99]. The functor sends irreducible representations of ĝ to irreducible representations
of L̃G. It is therefore visibly fully faithful.

The category Repk(LG) is tensored over the category of Hilbert spaces (i.e., the
tensor product of a positive energy L̃G representation with a Hilbert space is again a
positive energy L̃G representation). So the above functor extends to a functor

Repkf (ĝ) ⊗Vecf Hilb → Repk(LG), (34)

which is again visibly fully faithful. In order to show that the functor (34) is an equiva-
lence of categories, we need to show that it is essentially surjective.

Let TG , TL̃G , TS1�L̃G be the maximal tori of G, L̃G, and S1 � L̃G, so that

TL̃G = U (1) × TG and TS1�L̃G = S1 ×U (1) × TG .

Let �G , �L̃G , �S1�L̃G be the character lattices of TG , TL̃G , and TS1�L̃G , and let

�k := {
χ ∈ �S1�L̃G

∣∣χ(λ) = λk for every λ ∈ U (1)
}

(an affine sublattice canonically isomorphic toZ×�G).Wewrite�+
k ⊂ �k for the set of

possible highest weights of irreducible highest weight level k integrable representations
of C � ĝ [Kac90, Chapt. 10]. Let π : �k → �G be the projection map, and let Ak :=
π(�+

k ) ⊂ �G . The finite set Ak parametrizes the isomorphism classes of irreducible
objects of Repk(ĝ).

Let H be a level k positive energy representation of L̃G. By definition, the action of
L̃G extends (in a non-unique way) to an action of S1 � L̃G such that the generator of
S1 has positive spectrum. Pick such as extension of the action. Then H decomposes as
the Hilbert space direct sum of its weight spaces:

H =
⊕

λ∈�k

�2
Hλ.
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Let P := {λ ∈ �k | Hλ �= 0}. The affine Weyl group Ŵ = NTS1�L̃G/TS1�L̃G acts on
�k , and preserves P . By the positive energy condition, P is contained in the “half-space”
Z≥0 × �G ⊂ Z × �G = �k . Combining this with its Ŵ -invariance, we learn that P is
contained in a paraboloid.

Let D be the affine Dynkin diagram associated to G. Every node a ∈ D corresponds
to an embedding SU (2) ↪→ L̃G. We write SU (2)a for the subgroup of L̃G which
is the image of that embedding. Let Ta ⊂ TS1�L̃G be the subgroup of the torus which
centralizes SU (2)a , and let�a be the corresponding quotient of�S1�L̃G , with projection
map pa : �S1�L̃G → �a (�a is the character lattice of Ta). The kernel of pa has rank
one. Let us also define �k,a := pa(�k).

Since P is contained inside a paraboloid, for each σ ∈ �k,a , the set �(σ) := {λ ∈
P | pa(λ) = σ } is finite. It follows that, for every σ , the representation of SU (2)a on⊕

λ∈�(σ) Hλ contains only finitely many isomorphism classes of irreducible SU (2)a
representations. In particular, the action of su(2)a on

⊕
λ∈�(σ) Hλ is by bounded oper-

ators (which are in particular everywhere defined). In this way, we obtain actions of the
Lie algebras su(2)a on the algebraic direct sum

Ȟ :=
⊕

λ∈�k

Hλ ⊂ H.

Those Lie algebras contain all the generators {Ea, Fa, Ha} of the Serre presentation of ĝ.
To check that the above generators satisfy the Serre relations, we consider rank

two subgroups of L̃G. For every pairs of vertices a, b ∈ D, the subgroup Gab ⊂ L̃G
generated by SU (2)a and SU (2)b is compact as it correspnds to the sub-Dynkin diagram
of D on the two vertices, and the latter is either A1 � A1, A2, B2, or G2 — this is where
we use that G is not SU (2). Applying the same arguments as above, we see that there
are actions of the corresponding Lie algebras gab on Ȟ . Every Serre relation is detected
in one of the Lie algebras gab. So the generators {Ea, Fa, Ha} satisfy all the relations
and we get an action of ĝ on Ȟ . Finally, we can use the action of TS1�L̃G on H (and

thus on Ȟ ) to extend the action of ĝ on Ȟ to a action of C � ĝ.
Let Lμ be the irreducible highest weight representation of C� ĝwith highest weight

μ ∈ �+
k . We write H(μ) := HomC�ĝ(Lμ, Ȟ) for the multiplicity space of Lμ inside

Ȟ , so that

Ȟ =
⊕

μ∈�+
k

H(μ) ⊗ Lμ. (35)

(Ȟ is a representation of C � ĝ satisfying the three conditions listed in Definition 21,
and the category of such representations is semi-simple in the sense that every object
is a direct sum of irreducible ones [Kac90, Chapt. 9, 10].) The multiplicity space H(μ)

can also be described as the joint kernel of the lowering operators Fa acting Hμ. By this
second description, we see that H(μ) is a closed subspace of Hμ, and thus a Hilbert
space in its own right. Letting L̄μ be the Hilbert space completion of Lμ, we can then
upgrade the isomorphism (35) to an isomorphism of Hilbert spaces:

H =
⊕

μ∈�+
k

�2
H(μ) ⊗ L̄μ (36)

(where ⊗ now denotes the Hilbert space tensor product).
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Recall the projection π : �+
k → Ak . Two representations Lμ and Lμ′ of C � ĝ are

isomorphic as representations of ĝ if and only if π(μ) = π(μ′). For λ ∈ Ak , let H [λ] :=⊕�2
π(μ)=λ H(μ). The decomposition (36) then induces a direct sum decomposition

H =
⊕

λ∈Ak

H [λ] ⊗ L̄λ.

This finishes the proof that H is in the essential image of the functor (34). ��

3.3. The based loopgroupand its representations. LetRepkl.n.(LG)be the essential image

of the functor (32). We call it the category of locally normal representations of L̃G at
level k. By Theorem 30 (and Remark 31), Conjecture 23 is equivalent to the statement
that Repkl.n.(LG) = Repk(LG) (the latter was defined in Definition 22).

In [Hen15], we introduced the category of locally normal representations7 of �̃G
at level k (Definition 32). We denote it here by Repkl.n.(�G). In that same preprint, we
announced that the Drinfel’d center of the category of locally normal representations of
the based loop group at level k is equivalent to the category of locally normal represen-
tations of the free loop group at level k, where the latter is equipped with the fusion and
braiding inherited from Rep(AG,k):

Z
(
Repkl.n.(�G)

) = Repkl.n.(LG). (37)

In the more recent preprint [Hen17], we considered the category TAG,k of solitons of the
conformal net AG,k , and proved that

Z(TAG,k ) = Repkl.n.(LG).

In order to complete our proof of (37), we need to identify Repkl.n.(�G) with TAG,k . This
is the main result of the present section.

3.3.1. Solitons and representations of�G Wework with the standard circle S1, and the
base point p := 1 ∈ S1.

Definition 32. A strongly continuous representation ρ : �̃G → U (H) is a locally
normal level k representation if

1. λ ∈ U (1) ⊂ �̃G acts by scalar multiplication by λk , and
2. for every interval I ⊂ S1, p �∈ I̊ , the action of L̃ I G extends to an action of the von

Neumann algebra AG,k(I ).

We write Repkl.n.(�G) for the category of locally normal representations of �̃G at level k.

For every conformal net A, we also have its category of solitons [BE98,Kaw02,
LR95,LX04]:

7 In the first versions of [Hen15], we called these representations “positive energy representations”. We call
them here ‘locally normal representations’ and reserve the term ‘positive energy representations’ for another
type of representations (we conjecture that the two conditions are equivalent — see Conjecture 37).
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Definition 33. A soliton (or solitonic representation) of a conformal net A on a Hilbert
space H is a collection of actions ρI : A(I ) → B(H) for every interval I ⊂ S1 with
p �∈ I̊ which satisfy ρI |A(J ) = ρJ for every J ⊂ I ⊂ S1.

There is an obvious fully faithful functor

Repkl.n.(�G) → TAG,k (38)

which takes a locally normal representation of �̃G and only remembers the actions of
the von Neumann algebras AG,k(I ), p �∈ I̊ .

Theorem 34. The functor (38) is an equivalence of categories.

Proof. We need to show that the functor is essentially surjective. Let H be a soliton
of AG,k . By definition, H is equipped with compatible actions AG,k(I ) → B(H) for
all intervals I ⊂ S1, p �∈ I̊ . Precomposing by the maps (30), we get homomorphisms

L̃ I G
k → U (H). By (16), and using thatU (H) is Hausdorff, these assemble to a strongly

continuous action
�̃G

k = colimH

I⊂S1, p �∈ I̊
L̃ I G

k → U (H).

Clearly, any λ ∈ U (1) ⊂ �̃G
k
acts by scalar multiplication by λ. Precomposing by the

quotient map �̃G → �̃G
k
, we get an action of �̃G such that each λ ∈ U (1) ⊂ �̃G

acts by λk . By construction, this is a locally normal representation. ��
Solitonic representations are also equipped with a natural action of the based diffeo-

morphism group. Let H be a soliton of AG,k . Recall that, by diffeomorphism covari-

ance, there exist homomorphisms DiffR

0 (I ) � L̃ I G
k → U (AG,k(I )) for every interval

I ⊂ S1 with p �∈ I̊ . Composing with the projection L̃ I G → L̃ I G
k
and with the action

U (AG,k(I )) → U (H), we get a compatible family of homomorphisms

DiffR

0 (I ) � L̃ I G → U (H).

By Propositions 10 and 19, these assemble to a strongly continuous action

DiffR∗ (S1) � �̃G = colimH

I⊂S1, p �∈ I̊
DiffR

0 (I ) � L̃ I G → U (H). (39)

Based on results of Carpi and Weiner [CW05,Wei06], it was proved in [DVIT18,
App.A] that the maps DiffR

0 (I ) → AG,k(I ) extend to a certain larger group involving
non-smooth diffeomorphisms. Given an interval I , let Diff1,ps(I ) be the group of orien-
tation preserving piecewise smoothC1 diffeomorphisms of I whose derivative is 1 at the
boundary points. And let Diff1,ps(S1) be the group of orientation preserving piecewise
smooth C1 diffeomorphisms of S1 that fix the base point p, and whose derivative is 1 at
that point. Let DiffR

1,ps(I ) andDiff
R

1,ps(S
1) be the corresponding central extensions byR,

constructed by using the same cocycle that was used to construct the central extensions
of Diff0(I ) and of Diff∗(I ).

By [DVIT18, App.A], the maps DiffR

0 (I ) → AG,k(I ) extend to the larger group
DiffR

1,ps(I ). The proofs in Sect. 2.2 go through with the groups Diff1,ps(I ), DiffR

1,ps(I )
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and DiffR

1,ps(S
1) in place of Diff0(I ), DiffR

0 (I ) and DiffR∗ (S1). In particular, the homo-
morphism (39) extends to a homomorphism

DiffR

1,ps(S
1) � �̃G → U (H).

Let R ⊂ DiffR

1,ps(S
1) be (the canonical lift of) the subgroup of Möbius transformations

that fixes p. Upon mapping S1 to the real line via the stereographic projection that sends
p = 1 to ∞, this group gets identified with the group of translations of the real line. We
write P for the infinitesimal generator, and call it the energy-momentum operator (if the
Hilbert space has an action of DiffR(S1), then the energy-momentum operator is given
by P = −L−1 + 2L0 − L1).

Conjecture 35. For every locally normal representation H ∈ Repkl.n.(�G) of the based
loop group, the energy-momentum operator P has positive spectrum.

Theabove conjecture has been recently provenbyDelVecchio, Iovieno, andTanimoto
[DVIT18, Thm3.4] (and is thus no longer a conjecture).

We define a positive energy representation of the based loop group to be a represen-
tation whose energy-momentum operator has positive spectrum:

Definition 36. A level k positive energy representation of the based loop group is a
continuous representation ρ : �̃G → U (H) satisfying:

1. ρ is the restriction of a representation R � �̃G → U (H) such that the infinitesimal
generator P of the group R has positive spectrum.

2. λ ∈ U (1) ⊂ �̃G acts by scalar multiplication by λk .

We note that the action of R is not part of the data of a positive energy representation.

The following is a strengthening of Conjecture 35:

Conjecture 37. A representation of the centrally extended based loop group is locally
normal if and only if it has positive energy.
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