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Abstract: We study the adjacency matrices of random d-regular graphs with large but
fixed degree d. In the bulk of the spectrum [—2+/d — 1 + €, 2+/d — 1 — ¢] down to the
optimal spectral scale, we prove that the Green’s functions can be approximated by those
of certain infinite tree-like (few cycles) graphs that depend only on the local structure of
the original graphs. This result implies that the Kesten—McKay law holds for the spectral
density down to the smallest scale and the complete delocalization of bulk eigenvectors.
Our method is based on estimating the Green’s function of the adjacency matrices and
a resampling of the boundary edges of large balls in the graphs.
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1. Main Results I: Spectral Density and Eigenvectors

1.1. Introduction. Random regular graphs with fixed degree d are fundamental models
of sparse random graphs and they arise naturally in many different contexts. The spectral
properties of their adjacency matrices are of particular interest in computer science,
combinatorics, and statistical physics. The relevant topics include the theory of expanders
(see e.g. [71]), quantum chaos (see e.g. [72]), and graph ¢-functions (see e.g. [76]).
There has been significant progress in the understanding of the spectra of (random and
deterministic) regular graphs. For fixed degree these results generally concern properties
of eigenvalues and eigenvectors near the macroscopic scale, and their proofs use the local
tree-like structure of these graphs as an important input. On the other hand, dense regular
graphs belong to the random matrix universality class and their spectral properties are
known to resemble those of Wigner matrices. In this paper, we introduce an approach
that allows the Green’s function method of random matrix theory to make use of the
local tree-like structure of the random regular graph, while it also captures key random
matrix behavior.

Throughout the paper, A = A(G) is the adjacency matrix of a (uniform) random
d-regular graph G on N vertices. Thus A is uniformly chosen among all symmetric
N x N matrices with entries in {0, 1} with Zj Ajj =d and A;; = 0 for all i. Note
that A has the trivial constant eigenvector with eigenvalue d. We also use the rescaled
adjacency matrix H = A/+/d — 1, and we denote the set of (simple) d-regular graphs
on N vertices by Gy 4.

Below we first discuss some known consequences of the tree-like and of the random
matrix-like structure.

Tree-like structure. It is well known that most regular graphs of a fixed degree d > 3
are locally tree-like in the sense that: (i) for any fixed radius R (and actually for R =
clog,_ N), the radius- R neighborhoods of almost all vertices are the same as those in
the infinite d-regular tree; (ii) the R-neighborhoods of all vertices have bounded excess,
which is the smallest number of edges that must be removed to yield a tree; see e.g.
Proposition 4.1 below. The tree-like structure is important for the following results,
valid in general for deterministic graphs and in some cases requiring randomness as
well.

1. For regular graphs with locally tree-like structure, the macroscopic spectral density
of A converges to the Kesten-McKay law [53,63], characterized by the density
dzdfxz% [4(d — 1) — x2],. For random regular graphs, the Kesten-McKay law
was established on spectral scales (log N)™¢ [15,32,44] by using the fact that the
locally tree-like structure holds with high probability in neighborhoods of radius
£2(log N).

2. Forregular graphs with locally tree-like structure, the eigenvectors v of A are weakly
delocalized: their entries are uniformly bounded by (log N)~¢||v||2 [24,32,44] and
their £2-mass cannot concentrate on a small set [24]. If, in addition, the graphs
are expanders, the eigenvectors of A also satisfy the quantum ergodicity property
[14,15,25].

3. For random regular graphs using the locally tree-like structure as important input,
for any fixed ¢ > 0, the nontrivial eigenvalues of A are contained in [—2+/d — 1 —
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g,2+/d — 1 + ¢]. This was conjectured in [13] and proved in [42]; see also [20,70]
for recent alternative arguments. It was also shown that the scale ¢ can actually be
taken to be (log N)™° in [20].

Random matrix-like structure. For random matrices of Wigner type, precise estimates
on the spectral properties of these matrices were proved (see e.g., [38,39,56,74]):

1. The spectral density in the bulk is given by the semicircle law on all scales larger
than N~1.

2. The eigenvectors are uniformly bounded in £*°-norm by N
correction).

3. The extremal eigenvalues are concentrated on scale N

4. Bothbulk and edge universality holds; in particular, the distributions of the extremal
eigenvalues are the same as those of Gaussian matrix ensembles (Tracy—Widom
distributions).

~1/2 (up to logarithmic

-2/3.

The first three properties usually can be proved via estimates on the Green’s function;
the proofs of universality involve Dyson Brownian Motion or other comparison methods
(see [39] for a review).

For random d-regular graphs withd € [N®, N?/37¢], properties (i), (ii), and also bulk
universality were proved in [18, 19] [the lower bound on d can be relaxed to (log N )* for
properties (i) and (ii)]. Simulations indicate that (i)—(iv) hold for random regular graphs
of fixed degree [46,50,67,68].

In this paper, we consider random regular graphs of large but fixed degree d. One
of our key ideas to prove the properties (i) and (ii) is to use switchings to resample
the boundaries of large balls (see Sect. 7). This operation preserves the local tree-like
structure and it also captures sufficient global structure in random regular graphs. This
resampling generalizes and adds a geometric component to the local resampling method
we introduced with Knowles in [19] for random regular graphs with d > log N. The
idea of using some form of switchings in studying random regular graphs goes back
at least to [64], where it was used in the enumeration of such graphs; see also [80] for
further applications in enumeration. Finally, to analyze the propagation of the boundary
effect to the interior of the ball in the Green’s function, we explicitly compute the Green’s
function of the tree-like graphs.

Notation. Fortwo quantities X and ¥ depending on N, we use the notations X = O (Y)
if Y is positive and |X| < Y; X = O(Y) if X, Y are positive and there exists some
universal constant C such that X < CY; X =o(Y), X K Y orY > X if Y is positive
and limy 00 X/Y =0; X = 2(Y) if X, Y are positive and liminf y_, oo X/Y > 0. We
write [[a, b]] = [a, b] N Z and [N] = [1, N].

1.2. Spectral density and eigenvector delocalization. Our main result, Theorem 2.4, is a
precise estimate on the local profile of the Green’s function down to the smallest possible
spectral scales, with high probability. Its statement requires several definitions, and we
therefore only state it in Sect. 2. In the remainder of this section, we state some direct
consequences of Theorem 2.4, which can be stated in elementary terms. The proofs of
these corollaries are given in Sect. 2.4.

1.2.1. Spectral density 1Itis well-known that, with high probability, the spectral measure
of the rescaled adjacency matrix H = A/+/d — 1 converges weakly to the rescaled
Kesten—-McKay law with density given by
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~ x_2>1 V4=

1.1
d—1 d 2 (.1

pd(x) = <1 +
This convergence can be expressed as m(z) = my(z) +o(1) for any z € C; independent
of N, where m,(z) is the Stieltjes transform of pg, and m(z) is the Stieltjes transform
of the empirical spectral measure of H,

N

1 1 1
ma(2) :/)L_Zpd()»)d)h m@) =2 (1.2)
j=1"

and C; = {z € C : Im[z] > 0} is the upper half-plane. The imaginary part of the
spectral parameter z € C; determines the scale of the convergence. In particular, the
convergence m(z) — my(z) for all fixed z corresponds to the convergence on the
macroscopic scale, i.e., for intervals containing order N eigenvalues. The following
theorem gives the convergence on the optimal mesoscopic scale Im[z] > 1/N, away
from the spectral edges at & 2.

Theorem 1.1 (Local Kesten—-McKay Law). Fix ¢ > 4, o > 8and /d —1 =2 (v +
1)229+45 Then with probability 1 — o(N o8 \ith respect to the uniform measure on
CIR

Im(z) —ma(z)| = O(log N)™* (1.3)
uniformly for
log N 48a+1
z€D:= {z € C, :Im[z] > %, lz+ 2> (logN)“/2+1} . (1.4

While Theorem 1.1 shows that the spectral density (or its Stieltjes transform, which is
the trace of the Green’s function) does concentrate, the individual entries of the Green’s
function of the random regular graph with bounded degree do not concentrate; see also
Remark 2.5 below. This is different from the typical examples in random matrix theory,
and it is one of the reasons that the fixed degree graphs require a more delicate analysis.
For example, the random regular graph contains a triangle with probability uniformly
bounded from below. For graphs with bounded degree, triangles and other short cycles
have a strong local influence on the elements of the Green’s function, and thus the
spectrum.

The spectral density of random regular graphs at scales much larger than the typical
eigenvalue spacing has been studied in [15,32,44,78]. Results for spectral density near
the typical eigenvalue spacing only appeared very recently [19], where the semicircle law
down to the optimal mesoscopic scale was established for degree d € [£4, N?/3&=2/3]
with £ = (log N)2. The methods of the current paper could be extended from fixed d to
d growing slowly with N, for example to the range dy < d < (log N)* beyond which
the results of [19] apply. Thus the results of this paper complement those of [19]. For
simplicity, we restrict this paper to the most interesting case of fixed degree d.

1.2.2. Eigenvectors Theorem 2.4 implies delocalization estimates of the eigenvectors
in the bulk of the spectrum.
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Fig. 1. Theorem 1.2 shows that a random d-regular graph has only completely delocalized eigenvectors with
probability 1 — o(N~®*8)_On the other hand, it is not difficult to show that a random d-regular graph
has localized eigenvectors with probability £2(N —d+2) For example, a random 3-regular graph contains the
subgraph shown on the left with probability £2(N ™~ 1y For comparison, also notice that an Erd6s—Rényi graph
with finite average degree contains localized eigenvectors with probability £2(1); see the right figure

Theorem 1.2 (Eigenvector delocalization). Fix « > 4, > 8 and v/d —1 > (v +
1022943 Then, with probability 1 — o(N~®*8) with respect to the uniform measure on
G .4, the eigenvectors v of H whose eigenvalue . obeys | £+ 2| > (log N)Y'=9/2 gre
simultaneously delocalized:

” ” _ \/E(log N)24(x+1/2
v S
= VN

Theorem 1.2 shows that with probability 1 — o(N ~“*3), the eigenvectors are com-
pletely delocalized. On the other hand, it is easy to see that, with probability £2 (N ~%*2),
the random d-regular graph has a localized eigenvector (see Fig. 1). In particular, (1.5)
cannot hold with probability higher than polynomial in 1/N. Moreover, the Erd6s—
Rényi graph with finite average degree d has localized eigenvectors with probability
£2(1). Thus (1.5) with probability tending to O is false for the Erd6s—Rényi graph with
finite average degree d.

The delocalization of eigenvectors of (random and deterministic) regular graphs has
been studied in [14,15,24,25,32,44,57,78] (see also [69] for a survey of results on
eigenvector delocalization in random matrices). Our result implies the optimal bound of
order 1/+/N (up to logarithmic corrections) on the £°°-norms of the (bulk) eigenvectors
of random regular graphs.

For (deterministic) locally tree-like regular graphs, it has been proved that the eigen-
vectors v are weakly delocalized in the sense that ||v]co < (log N)™¢||v]2 [24,32,44],
and that eigenvectors cannot concentrate on a small set, in the sense that any vertex set
V C [NT with Y, .y |v; | > e|lv]l>» must have at least N°©) elements [24]. Moreover,
for (deterministic) locally tree-like regular expander graphs, it was proved that the eigen-
vectors v satisfy a quantum ergodicity property: for all @ € RY with |all < 1 and
Zi a; = 0, averages of | Zi a; Ul-2|2 over many eigenvectors v are close to 0 [14,15,25].

Theorem 1.2 and the exchangeability of the random regular graph also imply the fol-
lowing isotropic version of Theorem 1.2, implying that the eigenvectors are delocalized
not only in the standard basis, but in any deterministic orthonormal basis. In addition, a
probabilistic version of the quantum unique ergodicity property (QUE) holds for these
graphs. Note that estimates (1.7), (1.8) are not uniform over all g or X. Therefore g and
X cannot be chosen depending on the random graph.

vl (1.5)
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Corollary 1.3. Under the assumptions of Theorem 1.2, the following estimates hold
with probability 1 — o(N~°*8) with respect to the uniform measure on Gy 4. For any
deterministic q', ..., qM e RN with ||g"|l, = 1 and 29" = 0 (M can depend
on N), and for all normalized eigenvectors v* whose eigenvalue L obeys |rx £ 2| >
(log N)'=%/2 we have:

1. (Isotropic delocalization) The eigenvectors are delocalized in directions q™ :

max (g™ o) < (log N)?**1/2(log N +log M)?

k,m «/ﬁ

2. (Probabilistic QUE) The eigenvector densities are flat with respect to the test vectors
m

q--

(1.6)

(log N)*8*1(log N +log M)?
N .

< (1.7)

max
k,m

N
Y awh?
i=1
In particular, with probability 1 — o(N~“*3), simultaneously for any deterministic

indexsets X!, ..., XM c N1, and all eigenvectors v* with |\ £ 2| > (log N)!=%/2,

3 b = X", o (o N)®*! (log N +log M)*/[X™]
! N N ’

(1.8)

jexm

The proof of Corollary 1.3 makes strong use of the exchangeability of the random
regular graph. On the other hand, the proof of Theorem 2.4, and its consequences The-
orem 1.1 and Theorem 1.2, do not exploit exchangeability in a significant way, and we
believe that the method could be extended, for example, to graphs with more general
degree sequences.

1.3. Related results. Macroscopic eigenvalue statistics for random regular graphs of
fixed degree have been studied using the techniques of Poisson approximation of short
cycles [31,52] and (non-rigorously) using the replica method [66]. These results show
that the macroscopic eigenvalue statistics for random regular graphs of fixed degree are
different from those of a Gaussian matrix. However, this is not predicted to be the case
for the local eigenvalue statistics. Spectral properties of regular directed graphs have
also been studied recently [27,28].

The second largest eigenvalue A of regular graphs is of particular interest. For the case
of fixed degree, see in particular [20,29,42,43,70]. The conjecture that the distribution of
the second largest eigenvalue on scale N ~2/3 is the same as that of the largest eigenvalue
of the Gaussian Orthogonal Ensemble [71] would imply that slightly more than half of
all regular graphs are Ramanujan graphs, namely d-regular graphs with Ay < 24/d — 1
(for explicit and probabilistic constructions of sequences of Ramanujan graphs, see
[59,61,62]). The spectrum of random regular graphs has also received interest from the
study of ¢ -functions, as it can be related by an exact relationship to the poles of the Thara
¢-function of regular graphs [17,49]; see also [76,77].

Another interesting direction related to the spectral properties of random regular
graphs concerns the phase diagram of the Anderson model. The model was originally
defined on the square lattice Z¢, but only limited progress was made for the delocalization
problem in this setting. A simplified model on the infinite regular tree (Bethe lattice) is
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well-understood [2—10,54]; see also [11] for a review. At large disorder, it is known that
the Anderson model on the random regular graph exhibits Poisson statistics [45]. The
eigenstates of the Anderson model on the random regular graph have also been studied
in connection with many-body localization [30,60].

In random matrix theory, the local spectral statistics of the generalized Wigner ma-
trices are well understood; see in particular [21,34,36-41,51,74]. Many results on local
eigenvalue statistics also exist for Erd6s—Rényi random graphs, in particular [34,35,
47,48]; the latter results apply down to logarithmically small average degrees. Similar
results have also been proved for more general degree distributions [1,12]. However,
these types of results are false for the Erd6s—Rényi graph with bounded average degree.
For a review of other results for discrete random matrices, see also [79]. For the eigen-
vectors of random regular graphs with d € [N¢, N?/37¢], the asymptotic normality was
proved in [22]; see also the prior results for generalized Wigner matrices [23,55,75].
For random regular graphs of fixed degree, a Gaussian wave correlation structure for the
eigenvectors was predicted in [33] and partially confirmed in [16].

2. Main Results II: Local Approximation of the Green’s Function

2.1. Graphs. The main result of this paper, Theorem 2.4 below, is a precise local ap-
proximation result of the Green’s function. It in particular implies the results stated in
Sect. 1. To state it we require several definitions, which we give now.

Graphs, adjacency matrices, Green’s functions. Throughout this paper, graphs G are
always simple (i.e., have no self-loops or multiple edges) and they have vertex degrees at
most d (non-regular graphs are also used). The geodesic distance (length of the shortest
path between two vertices) in the graph G is denoted by distg (-, -). For any graph G, the
adjacency matrix is the (possibly infinite) symmetric matrix A indexed by the vertices of
the graph, with A;; = Aj; = lifthereisanedgebetweeni and j,and A;; = 0 otherwise.
Throughout the paper, we denote the normalized adjacency matrixby H = A//d — 1,
where the normalization by 1/+/d — 1 is chosen independently of the actual degrees of
the graph. Moreover, we denote the (unnormalized) adjacency matrix of a directed edge
(i, j) by eij,i.e. (e;j)x = 8ix8;;. The Green’s function of a graph G is the unique matrix
G = G(z) defined by G(H — z) = I for z € C,, where C, is the upper half plane.

In Appendix B, several well-known properties of Green’s function are summarized;
they will be used throughout the paper. The Green’s function G (z) encodes all spectral
information of H (and thus of A). In particular, the spectral resolution is given by
n = Im[z]: the macroscopic behavior corresponds to n of order 1, the mesoscopic
behavior to 1/N <« n < 1, and the microscopic behavior of individual eigenvalues
corresponds to 1 below 1/N.

Subsets and Subgraphs. Let G be a graph, and denote the set of its edges by the same
symbol G and its vertices by G. More generally, throughout the paper, we use blackboard
bold letters for set or subsets of vertices, and calligraphic letters for graphs or subgraphs.
For any subset X C G, we define the graph G®) by removing the vertices X and edges
adjacent to X from @, i.e., the adjacency matrix of G &) is the restriction of that of G
to G\X. We write G® for the Green’s function of G . For any subgraph X C G, we
denote by dX = {v € G : distg(v, X) = 1} the vertex boundary of X in G, and by
dpX = {e € G : eis adjacent to X but e & X'} the edge boundary of X in G. Moreover,
for any subset X C G, we denote by dX and dgX the vertex and edge boundaries of the
subgraph induced by G on X.
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Neighborhoods. Given a subset X of the vertex set of a graph G and an integer r > 0,
we denote the r-neighborhood of X in G by B, (X, G), i.e., it is the subgraph induced by
Gontheset B, (X, G) = {j € G : distg(X, j) < r}. Inparticular B, (i, G) is the radius-r
neighborhood of the vertex i.

Moreover, given vertices i, j in G and r > 0, we denote by &, (i, j, G) the smallest
subgraph of G that contains all paths of length at most » between i and j. Namely,

&r(i, j,G) := {e € G : there exists a path from i to j
of length at most r containing e}. (2.1)

Notice that &, (i, j, G) C B, (i, G) UB,(j, ).

Trees. The infinite d-regular tree is the unique (up to isometry) infinite connected d-
regular graph without cycles, and is denoted by ). The rooted d-regular tree with root
degree c is the unique (up to isometry) infinite connected graph that is d-regular at every
vertex except for a distinguished root vertex o, which has degree c.

2.2. Tree extension. The local approximation of the Green’s function of a graph will be
defined in terms of the tree extension, defined next.

Definition 2.1 (Deficit function). Given a graph G with vertex set G and degrees bounded
by d, a deficit function for G is a function g : G — [[0, d]] satisfying degg W) <d—g)
for all vertices v € G. We call a vertex v € G extensible if degg(v) < d — g(v).

Definition 2.2 (Tree extension). Let Gy be a finite graph with deficit function g.

1. The tree extension (abbreviated TE) of Gy is the (possibly infinite) graph TE(Gp)
defined by attaching to any extensible vertex v in Gp a rooted d-regular tree with
root degree d — g(v) — deggo(v).

2. The Green’s function of Gy with tree extension, denoted P (Gp), is the Green’s func-
tion of the (possibly infinite) graph TE(Gy).

See Fig. 2 for an illustration of the tree extension. In our main result, stated in Sect. 2.3,
we approximate the Green’s function of a regular graph at vertices i, j by that of the tree
extension of a neighbourhood of i, j. This requires specification of a deficit function,
which we will usually do using the following conventions for deficit functions, assumed
throughout the paper.

Conventions for deficit functions. Throughout this paper, all graphs G are going to be
equipped with a deficit function g. The interpretation of the deficit function g(v) is that
it measures the difference of the actual to the desired degree of the vertex v. We use the
following conventions for deficit functions.

— If the deficit function of G is not specified explicitly, itis given by g(v) = d —degg(v).
Thus no vertex is extensible and the tree extension of G is trivial: G = TE(G).

— If X'is a subset of the vertices of G, and g is the deficit function of G, then the deficit
function g’ of G is given by g'(v) = g + degg (v) — degge (v), unless specified
explicitly.

Thus when removing the edges incident to X from G, these are also absent in the tree
extension.
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Fig. 2. The left figure illustrates a finite graph Go; its extensible vertices are shown as grey circles. The right
figure shows the tree extension TE(Gy), in which a rooted tree (darkly shaded) is attached to every extensible
vertex

— If H C G is a subgraph (which was not obtained as G &) for some set X), then the
deficit function of H is given by the restriction of the deficit function of G on H,
unless specified explicitly.

Thus any vertex v in H C G has the same degree in the tree extension TE(H) as in

TE(9).

The above conventions are illustrated in Fig. 3. In particular, in the case that G is a
d-regular graph, the deficit function is always g = 0, so that TE(G) = G. Moreover, by
our conventions, the tree extension of a subgraph H C G is again a d-regular graph.

Definition 2.3. Given an integer r > 0, we call P;; (&, (i, j, G)) the localized Green’s
Sfunction of G at vertices i, j.

Thus the localized Green’s functions at i, j is the Green’s function of a graph that
itself depends on a small neighborhood of 7, j. However, the dependence of the graph on
i, j is weak, in the sense that, up to a small error, the graph &, (i, j, G) could be replaced
by any neighborhood of 7, j that is not too small and not too large; see Proposition 5.2
and Remark 5.3.

In our main result Theorem 2.4, we will show that the Green’s function G;; (G) can be
approximated by the localized Green’s function P;; (€, (i, j, G)). To interpret this result,
we note the following elementary properties of the localized Green’s function.

— Ifdist(i, j) > r, then &-(i, j, G) is the empty graph; thus P;;(E-(i, j, ), z) = 0.

— If &-(i, j, G) has no cycles (thus it is a tree), then TE(E, (7, j, G)) is an infinite tree.
In particular, if G is d-regular, then TE(E, (i, j, G)) is the infinite d-regular tree ),
and therefore P;; (&, (i, j, G), z) = G;j(Y, z). By a straightforward calculation (see
Sect. 5), it then follows that

disty (7. )
Py, 9.0 = Gy, =mae) ()T )

where mg and m, are the Stieltjes transforms of the Kesten—-McKay and semicircle
laws; see (2.3) below.
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? G = TE(G™)

Fig. 3. Given a graph G (with the standard deficit function g = d —degg), the top figure illustrates a subgraph
‘H C G, which by our conventions inherits its deficit function from G by restriction. Thus all vertices in H
have the same degrees in the tree extension TE(H) as in G = TE(G). The bottom figure illustrates the graph
G&) obtained by removing a vertex set X. By our convention on the deficit function, the tree extension of
GX) s then trivial

— If &.(i, j, G) has bounded excess, then upper bounds similar to the right-hand side
of (2.2) hold. In particular, P;;(E£(i, j, r), z) is uniformly bounded in z € C, and

decays exponentially in the distance with rate log(|ms.(2)|/+/d — 1) (see Sect. 5).

Kesten—McKay and semicircle law. Throughout this paper, the Stieltjes transforms of
the Kesten—McKay law and that of the closely related semicircle law play an important
role. Let pg (x) be the density of the (normalized) Kesten—-McKay law (1.1) and ps. (x) :=

L /[4 — x2], that of Wigner’s semicircle law. We denote their Stieltjes transforms by

bz
md(z)=/§d(x) dx, mge(z) :=/i“(x) dx, zeC,. (2.3)

Then mg4(z) is explicitly related to m.(z) by the equation (see also Proposition 5.1)

1 N mxc(z)
—z—dd—1)""mee(z) 1—@—-1D""m2(2)

mg(z) = (2.4)

Moreover, it is well known that m.(z) is a holomorphic bijection from the upper half
plane C; to the upper half unit disk D, := {z € C : |z] < 1}, and that it satisfies the
algebraic equation
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7=- (mm(z) + ) , ze€Cy,, (2.5)

My (2)

and in particular that |mg.(z)| < 1.

2.3. Main result. Recall that Gy 4 denotes the set of simple d-regular graphs on the
vertex set [N]. Throughout the paper, we control error estimates in terms of (large
powers of) the parameter

_ Imse@) < 1 ’ (2.6)

d—1 d—1
where z € C,. We will often omit the parameter z from the notation if it is clear from
the context.
Our main result is the following theorem.

Theorem 24. Fix @ > 4, > 8 and J/d—1 > (o + 1)2°°", and set ¢, =
lelog,_;log N] and r. = 2L, + 1. Then, for G chosen uniformly from Gy 4, the
Green’s function satisfies

|Gij(G.2) — Pij (&, j.§). 2)| < Imye(2)|q(2)"™, 2.7)

q):

with probability 1 — o(N~“*®), uniformly ini, j € [N1, and uniformly in z € D, where
D is as in (1.4). Here we assume that N > No(o, w, d) is large enough and that Nd is
even.

‘We emphasize that, for fixed d, the right-hand side of (2.7) convergesto0,as N — oo,
uniformly in the spectral domain D. The constants in the statement of the theorem can
be improved at the expense of a longer proof and a more complicated statement. We do
not pursue this.

2.4. Interpretation of Theorem 2.4; proofs of Theorems 1.1, 1.2, and Corollary 1.3.
Theorem 2.4 states that, in D, the Green’s function G;;(G) is well approximated by
P;j (&, @, j, G)), which is random, but only depends on the local graph structure of
G near the vertices i and j. Since the local structure of a random regular graph is
well understood, the theorem has a number of consequences. Specifically, under the
assumptions of the theorem, it is well known that there are « > 0 and § > 0 such that,
with R = |«xlog,_; N], one can assume that the radius-R neighborhoods of all but
N many vertices of G coincide with those of the infinite d-regular tree, and that the
R-neighborhoods of all other vertices have excess at most w (see e.g. Proposition 4.1).
Moreover, for the vertices i that have radius-R tree neighborhoods, we have (see e.g.
Proposition 5.1)

Pii (&, (1, G)) = mg. (2.8)

The vertices whose R-neighbourhood has bounded excess still satisfy (see e.g. Propo-
sition 5.2)

|Pii (&, (i, 1, G))| < 3lmycl/2 < 3/2. (2.9)

Together with this information on the local graph structure, the result of Theorem 2.4
implies the results stated in Sect. 1.
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Remark 2.5. The equation (2.7) implies that the individual entries of the Green’s function
do not concentrate. For example,

Gii(z) = P;i(&,(i,i,G),2) + O(log N)™*

and the first term on the right-hand side can be easily seen to depend strongly on the
local graph structure. Its fluctuation is of order 1.

Proof of Theorem 1.1. Equations (2.7) and (2.8) imply that G;; (z) = mg(2)+ O (|msc(2)
lg(z)"*) forall z € D and at least N — N~ vertices i € [N]]. For the remaining vertices,
by (2.9), we still have |G;;(z)| < 2. Thus

1 N
m@) =~ ; Gii(2)
=ma(2) + O(Imsc(2)lq(2)*) + ON ™) = mq(z) + O(log N) ™,
as claimed. 0O

Proof of Theorem 1.2. (2.7) and (2.9) imply that |G;;(z)| < 2 for all i € [N]] and all
z € D. Taking z = A +i(log N)**1 /N it follows that

Im([z]|v; |?

o (log N) ™' =N v; >,

2> Im[G;i(2)] >

which implies the claim (1.5). O

Proof of Corollary 1.3. In [19, Section 8], it is proved that any exchangeable random
vector (Yi)lN:1 satisfies, for any (deterministic) g € RV with >;qi=0and) ql.2 =1,

and for any p > 1,
pz p
= <O< )) E|Y;|P. (2.10)
log p

Let ¢ be the indicator function of the event that for all eigenvectors v with H-eigenvalue
IA£2| > (log N)' =%/ the estimate ||v]| oo < &|[v]|2 holds, where & = +/2(log N)>+1/2
/~/N.Let v* be the normalized eigenvector corresponding to the k-th largest H -eigenvalue
M, and set ¥; = qubl(Mk + 2| > (log N)1=2/2) The (Y,-)I.N=1 are exchangeable, by
the exchangeability of the random regular graph. By (2.10) with p = ¢(log¢)!'/* and
Markov’s inequality, for ¢ large enough,

N p

Z‘IiYi

i=1

E

N
P <¢’1 (13 £ 21 > Qog N)!~/2) 3 gk < ;25) > | — etz
i=1

By a union bound over k € [N] and over m € [M]], it follows

N
P <¢ maqulme < §2§> > 11— NMe¢og)*
k,m P
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where the maximum over k is over all £ with |4 £ 2| > (log N)'=%/2_Since P(¢p =
0) = 0(N“"+8), by Theorem 1.2, and choosing ¢ = 2_1/4(log M +1log N), we have

N 24a+1/2 2
log N log N +log M
P(‘?*‘XE ok  Log NI P (os ¥+ Jos M) ) > 1 —o(N"*),
,m
i=1

VN

which implies the claim. The proof of (1.7) is analogous, using ¥; = (vf‘)2¢1(|k +2| >
(log N)!=¢/2y. 1o

3. Proof Outline and Main Ideas

In this section, we give a high-level outline of the proof of Theorem 2.4, whose details
occupy the remainder of the paper. The proof is based on the general principle that, for
small distances, a random regular graph behaves almost deterministically, while on the
other hand, for large distances, it behaves much like a random matrix.

3.1. Parameters. Throughout the paper, we fix constants @ > 4, w > 8,0 < § < 1/w,
0 <k <8/Qw+2),VJd—1 > (w+1)2°*** and set £, = [alog, ;log N] and
ry = 2€4+1. Wealsoset R = |« log,;_; N], and write r = 2¢+1, where £ is a parameter
chosen such that

£ e [y, 2L,]. (3.1

Our argument relies on resampling the boundary edges of neighborhoods of radius £.
On the one hand, to have enough randomness, we need ¢ to be at least loglog N to get
order log N edges on the boundary. One the other hand, in Sect. 10 we need to show
that removing a small ball of radius £ has a small effect on the Green’s function. For this
estimate, we need to take the radius ¢ small. To make the estimate clean, in this paper
we fix £ to be of order loglog N. We always assume that Nd is even and sufficiently
large (depending on the previous parameters).

3.2. Structure of the proof. The proof consists of several sections, which we briefly
describe in this section. Here, we also define several subsets of Gy 4, namely the sets

27(z,0) C Rz, 0) C 27 (z,0) C 2 CGyna, 21(z,8) C2CGCGpna.

These sets depend on parameters z € C, and £ € N (and also on the previously fixed
parameters).

Small distance structure; the set 2. The small distance behavior is captured in terms
of cycles in neighborhoods of radius R. For any graph, we define the excess to be the
smallest number of edges that must be removed to yield a graph with no cycles (a forest).
Then, with R, w, § as fixed above, we define the set 2 C G N.4 to consist of graphs such
that

— the radius- R neighborhood of any vertex has excess at most w;

— the number of vertices that have an R-neighborhood that contains a cycle is at most
N°.

The set £2 provides rough a priori stability atsmall distances. All regular graphs appearing

throughout the paper will be members of £2. It is well-known that P(£2) > 1—o(N —w+dy.

see Proposition 4.1.
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Green’s function approximation; the sets $2(z, £) and 2~ (z, £). For z € C,, we define
the set £2(z, £) C 2 to be the set of graphs G such that for any two vertices i, j in [N]],
it holds that

|Gij(2) — Pij(&:i, j. §). 2)| < Imyelq” (3.2)

Our main goal is to prove that £2(z, £) has high probability uniformly in the spectral
domain z € D. That £2(z, £) has high probability is not difficult to show if |z]| is large
enough; see Sect. 6. To extend this estimate to smaller z, we define the set £27 (z, £) C
£2(z, £) by the same conditions as £2(z, £), except that the right-hand side in (3.2) is
smaller by a factor 1/2:

1
Gij(2) — Pij (&, j. ). 2)| < S lmscld” (3.3)

Our main goal can then be achieved as follows. We recall the spectral domain D from
(1.4). In (16.15), we will define sets A, whose union covers D. Forany z € DN Ay, we
aim to show that if £2(z, £) has high probability, then the event £2(z, £)\$2~ (z, £) has
very small probability, so that £27 (z, £) still has high probability. Then, by the Lipschitz-
continuity of the Green’s function, it follows that 27 (z, £) C §2(z’, £) for small |z — 7|,
and thus that £2(z/, £) also has high probability. This can then be repeated to show that
£2(z, £) holds for all z € D N A, with high probability. Since these sets Ay all together
cover D, it follows that §2(z, £,) holds for all z € D with high probability.

Local resampling. To show that §2(z, £)\$2~ (z, £) has small probability, we use the
random matrix-like structure of random regular graphs at large distances. To this end, we
fix a vertex, without loss of generality chosen to be 1, and abbreviate the £-neighborhood
of 1 (as a set of vertices in [[ V] and as a graph, respectively; see Sect. 2 for our notational
conventions) by

T=B.1,9), 7 =D581,0). 34)

In Sect. 7, we resample the boundary of the neighborhood 7 by switching the bound-
ary edges with uniformly chosen edges from the remainder of the graph. The switched
graph is often denoted by G. On the vertex set T, it coincides with the unswitched graph
G, but the boundary of 7 in the switched graph G is now essentially random compared
to the original graph G.

Given G, the switching is specified by the resampling data S, which consists of u
independently chosen oriented edges from G The local resampling is implemented
by switching a boundary edge of 7 with one of the independently chosen edges encoded
by S. In fact, in this operation, not all pairs of edges can be switched (are switchable
in our terminology) while keeping the graph simple. Therefore, given S, we denote by
Ws C [1, ] the index set for switchable edges (see Sect. 7 for the definition), whose
switching leaves the uniform measure on Gy 4 invariant. For notational convenience,
without loss of generality, we later assume that Wg = {1,2,3,...,v} where v < u
throughout the paper (except in the definition in Sect. 7).

Switching from G to _C'; Throughout Sects. 8—15, we condition on a graph G that satisfies
certain estimates, and only use the randomness of the switching that specifies how to
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modify G to G. By our choice of £ and using 7 has bounded excess (which we can
and do assume), the number of edges in the boundary of 7 is about (log N)?(D. The
randomness of these edges ultimately provides access to concentration estimates, which
exhibit the random matrix-like structure of the random regular graph at large distances.

Note that, if we remove the vertex set T from G, our switchings have a simpler effect
than in G: they only consist of removing the edges {b;, ¢;} and adding instead {a;, b;},
for i € Wg. Therefore, instead of studying the change from G to G at once, it will be
convenient to analyze the effect of the switching in several steps. For this, we define the
following graphs (which need not be regular).

— @ is the original unswitched graph;

— G is the unswitched graph with vertices T removed;

— ¢D is the intermediate graph obtained from G(™ by removing the edges {b;, ¢;}
with i € Wg;

— G is the switched graph obtained from G by adding the edges {a;, b;} with
i_ € Ws;and

— G is the switched graph Ts(G) (including vertices T).

Following the conventions of Sect. 2.2, the deficit functions of these graphs are given
by d — deg, where deg the degree function of the graph considered, and we abbreviate
their Green’s functions by G, GO, ¢D GO and G respectively.

Distance estimates. To use the local resampling, we require some estimates on the local
distance structure of graphs and some a priori estimates on their Green’s functions.
These are collected in Sects. 8-9. In fact, we use both the usual graph distance (of the
unswitched and switched graphs) and a notion of “distance” that is defined in terms of
the size of the Green’s function of the graph from which the set T is removed (again for
the unswitched and switched graph).

The need for the Green’s function distance arises as follows. While estimates that
involve sums over the diagonal of the Green’s function can be controlled quite well
using only the graph distance, estimates of sums of off-diagonal terms are more delicate
because the number terms is squared compared to the diagonal terms. By direct combi-
natorial arguments, it would be difficult to control large distances sufficiently precisely.
However, to understand spectral properties, it is the size of the Green’s function rather
than distances themselves that is relevant; and while the size of the Green’s function
between two vertices is directly related to the distance between them if there are only
few cycles, on a global scale (where many cycles could be present) cancellations can
make the Green’s function much smaller. These cancellations are captured in terms of
a Ward identity, which states that the Green’s function of any symmetric matrix obeys
(see also Appendix B)

InG
—Z|G,,<z>| ), (3.5)

Removing the neighborhood T and stability under resampling; the sets 2] (z, £). Our
goal is to show that estimates on the Green’s function of G improve near the vertex 1
under the above mentioned local resampling. For this, we work with the Green’s function
of the graph G obtained from G by removing the vertex set T (on which the graph
does not change under switching).
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As a preliminary step to showing that the estimates for the Green’s function improve,
we show that they are stable under the operation of removing T and resampling, i.e.,
roughly that the estimates analogous to those assumed continue to hold. More precisely,
in Sect. 10, we show that if G € £2(z, £), then the (non-regular) graph G M obeys the
analogous estimate

\Gij(gm, ) — P& G j.G™), z>\ < 2lmgelq” (3.6)

We define the set .{2;’(1, l) C Q2 similarly as the set £2(z, £), except that G is replaced

by the graph G M (and with different constant), i.e., .Qf'(z, £)isthesetof G € £ such
that

(G @D, 2) = Py(Erti, 1. 9P, )| <2mecly” (3.7)

Clearly, by (3.6), we have 2(z, £) C 27 (z, £). In Sect. 11, we show that if G obeys
the (stronger) estimate (3.6), then with high probability the resampled graph obeys
G e 2%z, 0.

Locally improved Green'’s function approximation; the sets 2 (z, £). We define the set
2{(z,0) C 2 of graphs satisfying the improved estimates (15.1)—(15.4) near the vertex
1, with constant K = 2'0. In Sects. 12—15, it is proved that if we start with a graph
G € 2] (z, £), with high probability with respect to the local resampling around vertex
1, the switched graph g” belongs to .Qi (z,0).

Involution. To sum up, the argument outlined above shows that, for any graph G in
£2(z, £), with high probability with respect to the randomness of the local resampling,
the switched graph é is in the set .Qi (z, £). However, our goal was to show that a uniform
d-regular graph G is in £2](z, £), except for an event of small probability. This follows
from the statement we proved for G using that our switching acts as an involution on the
larger product probability space (see Proposition 7.5).

Self-consistent equation. The sets .Qf'(z, £) and .Qi (z, £) depend on the choice of vertex
1. However, for any i € [N]], we can define £2/(z, £) in the same way, by replacing the
vertex 1 in the above definitions by vertex i (or using symmetry). By a union bound,
then also the union of the events £2/(z, £) over i € [[N] holds with high probability. On
the latter event, we derive (in Sect. 16) a self-consistent equation for the quantity

1 @)
09 =~ ). GO

(i,))eE

where the sum ranges over the set of oriented edges in G, and G (G) is the Green’s
function of the graph G with vertex i removed. On the infinite d-regular tree, it is
straightforward computation to show that G;lj) (z) = mgc(z) holds for any directed edge

(i, j) (see Proposition 5.1). For the random regular graph, we will show that Q (G) obeys
[see (16.6)]

d—2
0(G) —my = ﬁmdmffﬂ(Q(g) — Myge) + error.
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The main result of Sect. 16, proved using this self-consistent equation, is that, for any
z€DN Ay,

(1 2ic0ce2 o,
ISi<N

where Ay C C; is a domain on which the self-consistent equation is not singular (see
Sect. 16 for details). In the final step, we will use different choices of £ to cover the
entire spectral domain D.

Conclusion. In summary, in Sects. 10-16, we show that the probability of £2(z, £)\
£27 (z, ¢) is negligible. By the Lipschitz property of the Green’s function, 27 (z, £) C
£2(7/, £) given that |z — 7’| is small enough. It follows that if 27 (z, £) holds with high
probability, then 27 (z, £) N £27(z’, £) holds with high probability. This can then be
repeated to show that £2(z, £) holds for all z € D N A, with high probability. The proof
of Theorem 2.4 is then completed by showing that D C Uy¢fe, ,2¢,7A¢ and thus £2(z, £5)
holds for all z € D with high probability.

3.3. Random walk picture. We conclude this section with the following random walk
heuristic for the Green’s function. The Green’s function G, (G, z) has a formal expansion
in terms of walks in G from i to j with complex z-dependent weights:

Gij(G.2)=— ) (d— 1) 2wl (3.8)

wii—j

where the sum ranges over all walks w from i to j of length |w|. In several parts of
the paper, it might be useful to think about the Green’s function in this picture, though
we never use it directly. However, the expansion (3.8) is only absolutely convergent for
|z] > +/d — 1, where the formal sum is dominated by the shortest walks. In our case
of primary interest, Im z < 1 (with Re z inside the spectrum of the adjacency matrix),
the expansion becomes highly oscillatory and is not absolutely convergent. Long walks
become dominant and the Green’s function can only remain bounded due to significant
cancellations.

On the tree, it is easy to compute the Green’s function exactly. In particular, one
finds that the Green’s function is bounded for all z € C,, and that, roughly speaking,
each step of a walk contributes a factor —m.(z)/+/d — 1. A popular and very efficient
method to exhibit the required cancellations that result from the tree structure is via
nonbacktracking walks.

Our main effort is not in exhibiting the cancellations resulting from the tree structure,
but it is rather in exhibiting the cancellations of very long walks, where the tree structure
ceases to be effective. To obtain these cancellations, we exploit the randomness of the
random regular graph in combination with a Ward identity. Using a multiscale approach
(implemented via a continuity argument), we successively prove that the Green’s function
remains bounded even for small Im z, and moreover that it has good decay. Such bounds,
together with linear algebra (Schur complement formula, resolvent identity), allow to
obtain well-defined partially resummed versions of random walk identities, in which the
crucial cancellations are accounted for nonperturbatively.



540 R. Bauerschmidt, J. Huang, H.-T. Yau

4. Structure of Random and Deterministic Regular Graphs

In this section, we collect some properties of random and deterministic regular graphs,
which we use in the remainder of the paper.

Excess of random regular graphs. For any graph G, we define its excess to be the smallest
number of edges that must be removed to yield a graph with no cycles (a forest). It is
given by

excess(G) := #edges(G) — #vertices(G) + #connected components(G). 4.1)

There are different conventions for the normalization of the excess. Our normalization
is such that the excess of a tree or forest is 0. Note that if H C G is a subgraph, then
excess(H) < excess(G). We will use the following well-known estimates for the excess
in random regular graphs.

Proposition 4.1. Let § > 0 and w > 1 be an integer. There is k > 0 such that, if
R = |k log,;_| N|, then the following holds for a uniformly chosen random d-regular

graph G on [N, with probability at least 1 — o(N~“*%) for N > No(d, w, 8) large
enough.

— All R-neighborhoods have excess at most w:
foralli € [N]), the subgraph Bg (i, G) has excess at most w. 4.2)
— Most R-neighborhoods are trees:
{i € [N] : the subgraph Bg (i, G) contains a cycle}| < N°. 4.3)
In fact, one can take k < §/ 2w + 2).
Proof of Corollary 1.3. The statements are well known; for completeness, we sketch

proofs in Appendix A.1. O

Excess and the number of non-backtracking walks. The next proposition bounds the
number of non-backtracking walks (NBW) between two vertices in a graph in terms
of the excess of the graph. Here a non-backtracking walk of length n is a sequence of
vertices (io, ..., i) such that the edge {ix—1, ix} is adjacent to {ik, ix+1} and such that
the walks makes no steps backwards, i.e., ix—1 7 ix+1-

Proposition 4.2. Let G be a graph with excess at most w. Then the following hold.

— For any vertices i, j € G, and any k > 1, we have
H{NBW from i to j of length distg(i, j) + k — 1}| < 20k, 4.4)

— For any subgraph H C G and two vertices i, j in H such that E¢(i, j, G) C H, we
have

[{NBW from i to j of length £ + k which are not completely in H}|
< 2a)(k+1)+]' 4.5)

The graph G does not need to be regular or finite, and self-loops and multi-edges are
allowed.

Proof of Corollary 1.3. The statements are presumably also well known; lacking a ref-
erence, we include their proofs in Appendix A.2. O
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Boundary of a neighborhood. In the remainder of the paper, given a graph G on [N]],
we will often fix a vertex, chosen without loss of generality to be 1, and denote its
£-neighborhood by 7 = B(1, G), with corresponding vertex set T = B,(1,G). We
further enumerate g T as {eq, e, . .., e, }, 1.€., ¢; are the edges with one vertex in T and
one in [N]\T, and correspondingly dT as {ay, ..., a,}, where g; is the endpoint of ¢;
notin T. We also write T; = {v € G : distg(1,v) =i} fori =0,1,2,..., ¢

Proposition 4.3. Let G be a d-regular graph on [N, assume that Br(1, G) has excess
at most w, and that £ < R. Then the following hold.

— After removing T, most boundary vertices of T are isolated from the other boundary
vertices:

[{p € 1, nll : 3q € [1, uI\{p}, distgm (ap, ag) < R/2}| < 20. (4.6)

— After removing T, any vertex x € [N]\T can only be close to few boundary vertices
of T:

, 4.7)
(4.8)

i{p € [[1, ull : distgm (x, ap
l{v € Ty : distg\7(x, v

Notice that the graph G\7 is slightly larger than G because the edges between the
vertices Ty and [N]\T are not removed.

Bound on deficit functions. Finally, we have the following deterministic bound on the
deficit functions for the connected components of the subgraph obtained from Bg(1, G)
by removing a set of vertices U.

Proposition 4.4. Let G be a d-regular graph on [[N1|, and assume that B := Bgr(1, G)
has excess at most w. Then the following hold.

— Let A be the annulus obtained by removing T from B. Then the sum of the deficit
Sfunction over any connected component of A satisfies Y g(v) < w+ L.

— Given U C By(1, G), let BV be the subgraph given by removing the vertices U
from B. Then the sum of the deficit function over any connected component of B
satisfies Y g(v) < w + |U|.

For the above statements, recall that we view A and BV as subgraphs of B (which
has zero deficit function) and that their deficit functions are given by our conventions in
Sect. 2.2.

In the remainder of this section, we prove Propositions 4.3 and 4.4 (Fig. 4).

4.1. Proof of Proposition 4.3. Abbreviate B = Bg(1, G). By assumption the ball 3 has
excess at most w. Let 4 be the annulus obtained by removing T from 5. We partition
[1, ]l into sets {A1, A2, A3, ...}, such that i and j are in the same set Ay if and only
if g; and a; are in the same connected component of .4. We label the sets Ay such that
A1l = [A2] =2 -+ 2 |Ag|l > 1 = |Ag+1] = --- and let i; be a labeling such that
AU~ UAy =i, i2,...,18).

Lemma 4.5.

a <o, B<L20, |[Ajl<o+l forallj. 4.9)
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Fig.4. The two vertices a; which are encircled together are close in the sense that they are in the same connected
component of the annulus .A. Proposition 4.3 shows that, since 3 has excess at most o, this happens for at
most 2w of the a;. In addition, it shows that any vertex x outside T can only be close to at most w + 1 of the a;

Proof of Corollary 1.3. For any finite graph G, we set

x (G) := #connected components(G) — excess(G) = #vertices(G) — #edges(G),
(4.10)

where the second equality follows from the definition (4.1) of excess(G). In particular,
for any e € G, we have x(G\e) = x(G) + 1.

As aball, B has by definition exactly one connected component, and by assumption it
has excess at most w. Thus x (B) > 1 —w. Werecall that ¢; is the edge on the boundary of
7T containing g;. Thus the graph B\{e;,, . . ., ¢;,} has atmost o+ 1 connected components:
the component containing the vertex 1 and the components containing the vertices a;
withi € A; for some j € [1, a]l. (Notice for i € A; with j > «, we did not remove
the edge e;. Therefore g; is still connected to 1.) Thus x (B\{e;,, - ..., €iy D<a+l. 1t
follows that

T+a > xB\leq.....ei) = xB)+ B> 1—w+p,

and thus 8 < o + w. Since, by definition, we have g = Z?:l |A;| = 2a, the first two
inequalities in (4.9) follow. The third inequality is trivial for i > «, and for i < o, we
have

o
wra>f =7 |Aj] > 1Al +2e - 1),
j=1

which implies that |A;| < w —a +2 < w+ 1 asclaimed. O

Proof of (4.6). By definition, any i, j such that distgar) (ai,aj) < R/2 belong to the
same connected component of A. (Indeed, a; is at distance £ + 1 from the vertex 1 and
R > (, and thus Bg,2(a;, G) C Bforany i € [1, u]l.) In particular, if the set A;
containing i has size 1, then for any j € [1, n]\{i}, we have distgm (ai, a;) > R/2.
Recalling that 8 < 2w is the number of i for which the set A; containing it has size
greater than 1, the claim (4.6) follows from (4.9). O
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Proof of (4.7). The claim is trivial if x ¢ B since we then by definition have
distg('Jr)(x, {ar,a2,...,a,}) 2 R—4{€ > R/2.

Thus, assume that x € B. Let A; be such that x and the vertices a; withi € A;
are in the same connected component of 4. We first show that those vertices a, with
p € Ay where k # j do not contribute to (4.7). Indeed, then x and a, are in the
different connected components of .A. But since Br,2(a,, G) C B, it then follows that
distgar)(x,ap) > R/2. Therefore |{p € [[1, u] : distgar)(x,ap) < R/2}| < |Aj], and
the claim (4.7) follows from the third inequality in (4.9). O

Proof of (4.8). By the same proof, (4.7) also holds with £ replaced by ¢ — 1, i.e., with
T = B¢ (1, G) replaced by By_; (1, G), including in Lemma 4.5. This gives

{v e T - distge, 0,00 (x,v) < R/2}| <o+ 1.

Then claim then follows since G\7 C Q(B“—l(l’g)). m]

4.2. Proof of Proposition 4.4.

Proof of Proposition 4.4. For the first statement, viewing the annulus A as a subgraph
of G, the bound (4.9) immediately implies that the sum of deficit function over any
connected component of A satisfies ) g(v) < max; |Aj| < o+ 1.

For the second statement, let k = |U| and write U = {u, us, ..., u}. Let X C [N]
be the set of vertices of any given connected component of 4. Define

B; ::Xﬂauiziv’i,vé,...,vai‘}, i=1,2,...,k,

where du is the set of neighbors of the vertex u in G. Notice that g(v) = 0 unless
v € By U---U By. Thus

k k
D e <Y D g <Y B < U+ Y (IBi| - D). (4.11)
veX i=1 veBy i=1 i=1

so that the claim follows from
k
Y (B -1) < o. (4.12)
i=1

To prove (4.12), we consider the graph

k
H =B\ (i, vi} {ui v}, .o i vfg, ).

i=1

Note that H is obtained from B by removing exactly Z{'(:I (|Bi] — 1) edges and that H
is connected. Since by assumption 3 has excess at most w, after removing any o + 1
edges, it cannot be connected. This implies (4.12). 0O
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5. Trees and Tree Extension

For the infinite regular tree and for the rooted infinite regular tree with given root degree,
it is elementary to compute the Green’s function explicitly, as done in the following
proposition.

Proposition 5.1. Let ) be the infinite d-regular tree. For all 7 € Cy, its Green’s function
is

e (2) )di“y""” 5.1)

ny(z) =my(2) <_ 71

Let )y be the rooted infinite d-regular tree with root degree d — 1. Its Green’s function

IA)
M (2) 26(x,y)+2 My (2) disty, ()
Cn@ = = - . (52
e md(Z)< ( d—l) ( d_1> (5.2)

where £(x,y) is the depth of the common ancestor of the vertices x and y in ). In
particular, if x is the root of Yy, then Gy (z) = myc(2).

The proof is given below. More general results for Green’s functions on regular trees
are discussed e.g. in [9, Section 3] and references given there.

The main results of this section are the following estimates for P;;(Go, z), the Green’s
function of the tree extension TE(Gy) of a graph Gy, as defined in Definition 2.2.

Proposition 5.2. Let > 6 and /d — 1 > 2°*2. Let Gy be a finite graph with vertex
set Go and deficit function g. Assume that (i) any connected component of Gy has excess
at most w, and that (ii) the sum of deficit function over any connected component of Gy
satisfies Y g(v) < 8w. Then the following holds for all z € Cy and all i, j € Gy.

1. The Green’s function P;;(Go) of TE(Go) satisfies
|Pij(Go, )] <2 Imse(2)]g ™90, (5.3)
and the diagonal terms satisfy the better estimate

[mse(2)]
YR
2. Let Hy C Go be a subgraph with vertex set Hy. Then for any two vertices i, j in

Ho such that E¢(i, j) C Ho, the ij-th entries of the Green’s functions of the tree
extensions of Go and Ho satisfy

[ P;i (Go, 2) — my(2)] <

(5.4)

|Pij(Go, 2) — Pij(Ho, 2)| < 2% |mse(2)1g". (5.5)

Item (i) states that P;;(Go) is bounded and has (up to constants) the same decay as the
Green’s function of the infinite d-regular tree ). In particular, (5.3) and (5.4) together
with (2.4) imply that

[Pij(Go. D) < (1+8ij/2)|mse(2)]. (5.6)

Item (ii) states that P;;(Go) depends only weakly on Go. Especially, it implies the the
following principle, which is used repeatedly throughout Sects. 10-15.



Local Kesten—-McKay Law for Random Regular Graphs 545

Remark 5.3 (Localization principle). Let X be a (small) set of vertices in a graph G.
For vertices 7, j € X, itis often convenient to replace P;; (&, (i, j, G)), namely the ij-th
entry of the Green’s function of the graph TE(E,- (i, j, G)) whichitself depends on i, j, by
P;; (Go) of a graph Gy which is independent of i, j and contains &, (i, j, G) for i, j € X.
In this situation, we abbreviate P = P(Gp). The estimate (5.5) then implies that P;; and
P;j(&(i, j, G)) are close in the sense

|Pij (&G, J, G)) — Prj| < 2% mgelg™! (5.7)

provided the assumptions of (5.5) are obeyed.

5.1. Proof of Proposition 5.1. The proof of Proposition 5.1 is a straightforward conse-
quence of the Schur complement formula (B.4).

Proof. Letdisty(x, y) = 1. The Schur complement formula implies
-1 -1

G(x) — —
_ (xy) - »’
2+@d =D nm Gal 2+ W@ =D Y G

yy

(5.8)

where 0y is the set of adjacent vertices of y in ). By homogeneity, G;);) is independent
of x and y if disty (x, y) = 1 and therefore equal to the unique solution to the equation
m = —1/(z+m) withImm > 0, which is m.. Applying the Schur complement formula
again, it follows that

—1

G =
T z4dd = D7 lmye

= mg. (5.9)

This proves (5.1) and (5.2) for x = y. The case disty (x, y) = 1 then follows, e.g., from

d
1= XV:ny(ny - Z(S)?x) = —ﬂny — Zmgq, (5'10)
which, using 1 + zmg + ddT]mdmsc = 0, implies
Jd —1 .
Gy = Y= (1 amy) = — 222, (5.11)

as claimed. The general case is similar by induction. O

5.2. Proof of Proposition 5.2 for g = 0. For the proof of Proposition 5.1, we require the
notion of covering of a graph. Given a graph G, a graph G together with a surjective map
7:G— Gisa covering of G if foreach x € @ the restriction of 7 to the neighborhood
of x is a bijection onto the neighborhood of 7z (x) on G. Every d-regular graph is covered
by the infinite d-regular tree ) which is its universal covering.

The Green’s functions of a graph G and a cover G with covering map w : G—G
obey the following identity. For each x € G and w(x) =i € G, we have

Gij) = Y Gy, (5.12)

yir(y)=j
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if the right-hand side is summable (see Appendix B for the elementary proof of (5.12)).
In particular, if G is an infinite simple d-regular graph and 7 : Y — G its universal
covering map, where Y are the vertices of ), then by (5.1) and (5.12), for any vertex
x € Y such that 7 (x) = i, the resolvent entries of the graph G are given by

Gij=ma Y. <— Zzsil

yir(y)=j

)disty (x,y)

k

. . Mge

= my Z |{NBW from i to j of length k}]| (— ) , (5.13)
k>distg (i, ) vd =1

where we recall that NBW is short for non-backtracking walk (or path). For the number
of non-backtracking paths, recall the estimates of Proposition 4.2. Using these, the proofs
of (5.3) and (5.5) are straightforward from (5.13) if g = 0.

Proof of (5.3) for g = 0. For vertices i, j in different connected components of Gy, we
have P;; (Go) = 0 and there is nothing to prove. Therefore, we can assume that i and j
are in the same connected component.

Since we assume g = 0, the tree extension G; = TE(Gy) is d-regular, and (5.13)
implies

k
P;ij(Go,z) = my E [{NBW in G; from i to j of length k}| <— Mse ) .
— d—1
k>dist(i, j)
(5.14)

Since Gp has excess at most w, the same is true for G . By the estimates for the number of
non-backtracking paths from Proposition 4.2, the right-hand side of (5.13) is summable,
provided that «/d — 1 > 2®*2, and

k>1 k>1
< |md|2wqdislg0(i,j) 24—](
>0

< 2% g g Oi8t00 o)
This completes the proof if g =0. O
Proof of (5.5) for g = 0. As in the proof of (5.3), we can assume thati and j are in the

same connected component of Gg. By (5.13), since all the non-backtracking paths from
i to j of length < ¢ are contained in H(, we have

P;j(Go.2) — Pij(Ho,2) = ma Y _ |{NBW from i to j of length € + £,
k>1

e l+k
not completely in Ho}| (— d“ 1) .
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By (4.5), we therefore have

o0
|Pij(Go, 2) — P;j(Ho. 2)| < Imal ZZ“’("”)Hq“k
k=1

o
k—1
— |md|22w+1qf+l Z (qu) < 22(D+2|msc|qf+l’
k=1

again provided that v/d — 1 > 2¢*2. This completes the proof if g = 0. O

5.3. Proof of Proposition 5.2 for g # 0. To extend the bounds (5.3) and (5.5)to g # 0,
we use an alternative representation of P;;(Go) given as follows. In Definition 2.2,
P;j(Go, z) is defined as the Green’s function of the infinite graph obtained by attach-
ing a d-regular tree at every extensible vertex of Gy. The next lemma shows that it is
equivalently given by attaching to every extensible vertex a self-loop with z-dependent
complex weight. The proof of the lemma follows by application of the Schur complement
formula.

Lemma 5.4. Let z € C,. Then for vertices i, j € Gy,
P;j(Go.2) = (Hy —2)~!

where H» is the normalized z-dependent adjacency matrix obtained by attaching to
any extensible vertex v in Gy a self-loop with complex weight —mg.(2)(d — g(v) —

degg, (v))/vd — 1.

Proof. Let G| = TE(Gy), and denote the normalized adjacency matrix of Gy and G by
Hp and Hj respectively. Then Hj has the block form

| Hy B !
w5 )
where D is the normalized adjacency matrix of several copies of )y (which we recall
is the infinite d-regular tree with root degree d — 1), and By, is 1/4/d — 1 if y is an
extensible vertex of Go and x the root of one of the former copies of the tree ), and

B,y = 0 otherwise. By the Schur complement formula (B.3), it follows that, for any
i, j € Go,

Gij(G1.2) = (Hi —2);' = (Hy—z = B'(D -2 'B);".
Since B'(D—z)"'Bisa diagonal matrix, indexed by the extensible vertices in Gy (which

are disjoint), and since B is normalized by 1/+/d — 1, it follows from (5.2) with x =y
that

d — g(v) —degg, (v)

(B/(D - Z)_IB)UU = Myely is extensible d—1

Thus H, = Hy — B'(D — z)~ ! B and the claim of the lemma follows. 0O
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As previously, we abbreviate G; = TE(Gp), and denote by G, the finite z-dependent
graph with complex weight obtained by attaching at each extensible vertex v of Gy a
self-loop with weight —m;.(z)(d — g (v) —degg, (v))/+/d — 1. Moreover, to extend (5.3)
and (5.5) from g = 0 to g # 0, we denote by G, the same graph as Gy but with deficit
function ¢ = 0, by G| = TE(G) its tree extension, and by G the finite z-dependent
graph with complex weight obtained by attaching at each extensible vertex v of G, a self-
loop with weight —m.(2)(d —degg, (v))/~/d — 1. We denote the normalized adjacency
matrices of G, and G} by H> and H, respectively.

Proof of (5.3) for g # 0. By Lemma 5.4 and the case g = 0, we have
/ / distg, (i, ) -1 w+1
I’ = max [Gij(G5, )l (Imselg®™a®) < 2041,
i,j€Go
Our goal is to estimate
RN |
I i= max [Gij(G2, 2l (Imgelg ™)
i,jeGo
Notice that H, — H} is a diagonal matrix with entries

mscg(v)

(Hy, — Hé)vv = i—1 v € Gy, (5.15)
and the resolvent formula (B.1) implies
G(Gy. 2ij — GG, 2)ij = Y, Gin(Gh, D)(Hy — Hy)wG (G2, D). (5.16)

UEG()

By multiplying both sides of (5.16) by (|msc|qdi5t90 (@1)=1 we obtain

N distgy (i, /)) !
1Gij (G2, 2| | |Imselg™ 90

< I+ Z F’F|(H2 _ Hz/)vv“mscmdiStQO (i,v)+distg0 (v,j)—distgo(i,j)
veGo

8w2w+l
rr Z g(v) <29 4+ —— < 29ty )2,

<I'+ T

d—1 veGy
where the first inequality uses the triangle inequality distg, (i, v) +distg, (v, j) — distg,
(i, j) = 0and g < 1, and the second and third inequalities follow from the assumptions
> gw) < 8w, A/d—12 20+2 and w > 6. By taking the maximum on the left-hand
side of the above inequality and rearranging it, we get I’ < 2**2. 0O

Proof of (5.5) for g £ 0. The extension to the case g # 0 again follows by comparing

to the case g = 0. We define H> and H, analogously to G, and G. Our goal now is to
bound

. -1
I = max Gij(G) — Giy ()| (Imyelg 1)
i,j€Ho
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The resolvent identity (B.1) and (5.15) imply
mscg(v)

Gij(Gh) = Gij(@) = ) Gin(G))— - Guj(@), (5.17)
UGGQ

Gij(Hy) — Gyy(H) = 3 G,-U<H’2>"’C;%‘J(f)cvj(m). (5.18)
veHy

For vertices 7, j € Hy, set
£(i, j) := max{¢ : all paths in Gy from i to j of length < £ are contained in Hyp},

and given any v € Go, we abbreviate £ = £(i, j), {1 = distg, (i, v), €2 = distg, (v, j).
To bound I', we distinguish two cases:

1. £y +4¢2 > £+ 1. Then already (5.3) implies

wg( v) scg( v) 22w+4g<v> 41

d—1 el

2. {41 +4> < L. Then by assumpt10n we must have v € Hy, and £(i, v) > £ — £, and
£(v, j) = £ — £. Therefore, using the case g = 0 for |G;,(G}) — Gy (H})| and
(5.3) for |G (G2)| and |Gy (H5)],

Gv] (gz) sz(Hz) ij (H2)| <

‘Gw(gz)

mrcg(v) Gv] (G) — le(Hz)mvcg(v)

‘sz(gz) Gv] (H2)

< "";%i”)(|Giv(g§)—G,»U(H’zn|ij(gz)|+|G,-v<H’2>||ij(gz)—ij(Hz)|)

2w+2 r +22a)+2
< ( 8 (v) |mxc|q£+l-
d—1
Taking the difference of (5.17) and (5.18), dividing both sides by |m.|g*@/*!, and
then taking the maximum over i, j € Hp, this leads to

2w+2(1-v + 22a)+2)

I < 22w+2+T Z g(U)

veGy

Since by assumptions " g(v) < 8w, v/d — 1 > 2”2 and w > 6, again rearranging the
above expression, we get I < 22¢+3_ This finishes the proof. O

6. Initial Estimates

As the first step of the proof of Theorem 2.4, we now show that (2.7) holds whenever
|z| = 2d — 1. Indeed, the following proposition states that (2.7) holds deterministically
for |z] > 2d — 1 under the assumption that the graph has locally bounded excess, which
is guaranteed to hold with high probability by (4.2). (Related results appear in [32].)

Proposition 6.1. Let w > 6, /d > 292 gnd N > No(w, d) large enough. Let G be
a d-regular graph on N vertices, wzth excess at most o in any radius- R neighborhood.

Then for any z € Cy with |z| > 2d — 1, and any i, j € G, the Green’s function of G
satisfies

Gij(x) = Pj (&, j, ), 2| < Imyclq (6.1)
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6.1. Proof of Proposition 6.1. To prove Proposition 6.1, we need an upper bound on the
entries of the Green’s function. It can be obtained, for example, by the Combes—Thomas
method [26].

Lemma 6.2. For any finite simple graph G with degree bounded by d, and any 7 with
|z| > 2d —1,

1 1

1Gij(2)] < 7 1Gij(2)| < d — D)dstg@n2 (6.2)

Proof. We denote the normalized adjacency matrix of G by H (where we recall that
the normalization of the entries is always by 1/4/d — 1). The first bound in (6.2) is
immediate since the spectrum of H is contained in [—d/+/d — 1,d/+/d — 1], which
implies that

1 1
— < -
Izl —d/vd—1 d

To show the second bound, set T = % log(d — 1). Fix a vertex i, and define the diagonal
matrix M by

|Gij ()| < (6.3)

Mj; = exp{rdistg(i, j)}.
Then we have
Gije™ 6D — (5, MGM™'8;) = (8;, MHM™' —2)7'5;).
The entries of the matrix M H M ~! are given by
(MHM_I)xy — prdistg (i,x)—distg(i,y))ny.

If Hyy # 0, then [distg (i, x) — distg (i, y)| < 1, and

-1
m)?x2|(MHM Jayl < det/Vd —1<d,
y

max MHM ™Y, | <de"/d—1<d.
g z){:l( )xyl e/

Therefore | M HM ™" oo o0 and |M HM™"||;_, are bounded by d, and by interpola-
tion

IMHM ™ o2 < VIMHM =151 IM HM ™ oo 00 < d.

Therefore, the spectrum of M HM ~1is contained in the set {z € C : |z| < d}.In partic-
ular, for z such that |z] > 2d — 1, its distance to the spectrum of M HM —lisatleast 1,
and thus

|Gijerdistg(i,j)| — |(81’ (MHM—I _ Z)_15i>| < 1’

which implies (6.2). This completes the proof. O
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Proof of Proposition 6.1. Letrg := [r+1—2(r +2)log,;_; |ms:|1 = O(r). Then, for
vertices i, j such that distg(i, j) > ro, Lemma 6.2 implies

r+1

IGij(2)] < [mselq

(d — 1)r0/2 S

and in particular (6.1) follows since g < 1/4/d < 1/2and P;; (& (i, j,G)) =0.
Thus we can assume distg (i, j) < ro. Let Qo = Byy+r (i, G), let G| = TE(Gyp) be the
tree extension of Gg, and let P be the Green’s function of G;. Then, by (5.5), we have

|Pij — Pij (& Gy o O] < 2% mgelg™ (6.4)

Therefore, it suffices to prove the claim with P;; (&, (i, j, G)) replaced by P;;, and an
additional factor 1/2 on the right-hand side. Let Ty := B,,(i, G) and 9Ty = {v € G :
distg (v, Top) = 1}. By the Schur complement formula (B.4),

Glry = (H —z~B'G™B)"",
Plyy=(H —z—B'PTB)™",

where H is the normalized adjacency matrix on Tg induced by G and B is the part of
the adjacency matrix of the edges from 0T to Ty. Taking the difference of the last two
equations, for any i, j € Ty,

G =Pyl < Y 1B (IGE01+1PGO1) 1(BG), 1
x,y€dTy

Since the radius- R neighborhood of 7 has excess at most w, each row of B contains at most
w + 1 nonzero entries. Therefore, by (5.3), Lemma 6.2, and noticing that distg (i, x) >
ro + 1 and distg(y, j) = ro+ 1 — distg (i, j), we have

w+1

w+2 ro+1 .
|(PB Jix| <27 (w + g™, |(BG)y1| < d— 1)(r0+1—distg(i,j))/2’

where we recall the definition g = |m.|/+/d — 1. Moreover, it follows from (4.6) that

|{x € 8Ty : distgay (x, 9To\{x}) < R/2}| < 20

using that R > 2ry. Therefore, by the second bound of (6.2), |G§C11y‘°) | < (d—1)"R/*for
all x, y € 3Ty except for the diagonal entries and at most 4w” off-diagonal entries. By
the first bound of (6.2), for these remaining entries we have |Gg°)| < 1/d. The same
bounds hold for PT0) instead of GT0). As a result, we obtain

2a)+2(w + I)qu0+1

_ . (To) (To)
(G P)t]| < d— 1)(r07distg(i,j)+l)/2 Z (|(ny0 |+ |P 0 )xy|)
x,yedTy

_ 27 @+ )2 mge [ (10To| +40”  |0Tof?
= (d — 1)r0+1—distg(i,j)/2 d + d— 1)R/4
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Using that |0To| < d(d — 1), that |my.| < 1/d for |z| > 2d —1,thatd — 1 > 2(w+1),
as well as that R > 4rg, the right-hand side is bounded by

(G — P)ii| < 2w+3(w+1)2|msc|r0+l (d(d— 1)’ + 4? dZ(d_ 1)2r0)
- ijlx

d— 1)r0+17distg(i,j)/2 d + d— 1)R/4

20t (g + 1)2 Qw2 - "
S @ = Dyo2=dsgG D2 S (g = 1)y < 29 msclq™,

where we used that distg (i, j) < ro. Together with (6.4), we conclude that
1
|Gij (@) = PG, D, D] < @27+ 27D myelg™ < Slmyelg”, (6.5)

where the last inequality follows from ¢ = |my.|/v/d —1 < 273@*2 using that
Vd—T1z2%2 O

7. Local Resampling by Switching

In this section, we define a local resampling of a random regular graph by using switch-
ings. We effectively resample the edges on the boundary of balls of radius ¢, by switching
them with random edges from the remainder of the graph. This resampling generalizes
the local resampling introduced in [19], where switchings were used to resample the
neighbors of a vertex (corresponding to ¢ = 0). The local resampling provides an ef-
fective access to the randomness of the random regular graph, which is fundamental for
the remainder of the paper.

7.1. Definitions. To introduce the local resampling, we require some definitions.

Graphs and edges. We consider simple d-regular graphs on vertex set [ N ]| and identify
such graphs with their sets of edges throughout this section. (Deficit functions do not
play arole in this section.) For any graph G, we denote the set of unoriented edges by E,
and the set of oriented edges by E := {(u, v), (v, u) : {u, v} € E}. Forasubset S C E,
we denote by S the set of corresponding non-oriented edges. For a subset S C E of
edges we denote by [S] C [[V] the set of vertices incident to any edge in S. Moreover,
for a subset V C [N]] of vertices, we define E|y to be the subgraph of G induced on V.

Switchings. A (simple) switching is encoded by a pair of oriented edges S = {(v1, v2),
(v3, v4)} C E. We assume that the two edges are disjoint, i.e. that |[{vy, v2, v3, v4}| = 4.
Then the switching consists of replacing the two edges {vy, v2}, {v3, v4} by the two edges
{v1, va}, {v2, v3}, as illustrated in Fig. 5. We denote the graph after the switching S by
Ts(G), and the new edges S’ = {(v1, v4), (v2, v3)} by

T(S) =S (7.1)

(Double switchings, which we used in [19], are not needed in this paper; henceforth we
will therefore refer to simple switchings as switchings.)



Local Kesten—-McKay Law for Random Regular Graphs 553

Fig. 5. The switching encoded by the two directed edges S = {(v1, v2), (v3, v4)} replaces the unoriented
edges {v1, va}, {v3, va} by {v1, va}, {2, v3}

a5 = ae

a al

Fig. 6. The figure illustrates the neighborhood 7" = B, (1, G) (within the shaded area) and its edge boundary
dg 7, consisting of the edges ¢; = {/;, a;}, 1 < i < p. Our local resampling switches the switchable edges ¢;
(corresponding to i € Wg) with randomly chosen edges from the remainder of the graph (not shown). Several
exceptional cases can occur. In particular, the vertices a; are not necessarily distinct (e.g., as = ag in the
figure), and the boundary vertices /; may have different degrees in the graph obtained by removing the set 7°
(e.g., I has only one outgoing edge in the figure, while most of the other /; has two outgoing edges)

Resampling data. Our local resampling involves a center vertex, which by symmetry
we now assume to be 1, and a radius €. Given a d-regular graph G, we abbreviate
T =B¢(1,G) and 7 = B¢ (1, G). The edge boundary dg7 of 7 consists of the edges in
G with one vertex in T and the other vertex in [ N]]\T, as illustrated in Fig. 6. Our local
resampling switches the edge boundary of 7" with randomly chosen edges in G(* if the
switching is admissible (see below), and leaves them in place otherwise.

To be precise, given a graph G, we enumerate dg7 as 0g7 = {ej, e2,...,e,}, and
orient the edges e¢; by defining e; to have the same vertices as ¢; and to be directed from
avertex /; € T toavertex @; € [N]\T. The directed edges e; = (I;, a;) are illustrated
in Fig. 6. Note that 1 and the edges ey, ..., ¢, depend on G.

Then we choose (b1, ¢1), ..., (by, c,) to be independent, uniformly chosen oriented
edges from the graph G M j.e., the edges of G that are not incident to T, and define

Sl' Z{ei,(b,',C,')}, S= (Sl,Sz,...,Sﬂ). (7.2)

The sets S will be called the resampling data for G. By definition, the edges ¢; are
distinct, but the vertices a; are not necessarily distinct and neither are the vertices /;.
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Admissible switchings. Fori € [[1, u]l, we define the indicator functions

I =1,(G,S) = 1(][Si]l =4, Els;1 = Si)»
Ji=Ji(G,S) =1([Si]1N[S;]l < 1forall j #1i),

and the set of admissible switchings
Ws = W(G,S) ={i el ull: 1;(G,8)Ji(G,S) = 1}. (7.3)

The interpretation of I; = 1 is that the graph E|[g,] is 1-regular. The interpretation of
Ji = 1is that the edges of S; do not interfere with the edges of any other S;. Indeed,
the condition [[S;] N [S;]| < 1 guarantees that the switchings encoded by S; and §;
do not influence each other, meaning that T, and T, commute. We say that the index
i € [[1, ull is admissible or switchable if i € Wg.

Let v := |Wg| be the number of admissible switchings and iy, iz, ...,i, be an
arbitrary enumeration of Wg. Then we define the switched graph by

159) = (Ts, o---o Ts, ) (©) (7.4)
and the switching data by
T(S; | € W,
T(S) = (T:(SD). ... Tu(Sw). Ti(Si) = {S,( ) 8 Z WZ; (75)

7.2. Reversibility. To make the structure more clear, we introduce an enlarged proba-
bility space. Equivalently to the definition above, the sets S; are uniformly distributed
over

Si(G) ={S C E: S ={e, e}, e is not incident to T},

i.e., the set of pairs of oriented edges in E containing e; and another oriented edge in
G™. Therefore S = (S1, So, ..., S,.) is uniformly distributed over the set S(G) =
S1(G) x -+ x Su(9).

Definition 7.1. For any graph G € Gy 4, denote by («(G) = {G} x S(G) the fibre of local
resamplings of G (with respect to vertex 1), and define the enlarged probability space

Grna=tGra)= || «O
GeGy g

with the probability measure P(G,S) = PGPg(S) = (1/|Gn.41)(1/1S(G)]) for any

G,S) € GN,d. Here P(G) = 1/|Gy 4| is the uniform probability measure on Gy 4, and
for G € Gy 4, we denote the uniform probability measure on S(G) by Pg.

Let 7w : GN,d — Gpn.4, (G,S) — G be the canonical projection onto the first
component.

Proposition 7.2. 7w is measure preserving: P =P o 7~ 1.



Local Kesten—-McKay Law for Random Regular Graphs 555
Proof. Note that 71 (G) = ((G). Therefore

- - - 1
Paa'@) =Pu@n= ) PGS =PG ), S - P@. 06
SeS(G) SeS(9)

as claimed. O

On the enlarged probability space, we define the maps

T:Gnag— Gna T(G.S) = (Ts(G), T(S)), (7.7)
T:Gya— Gna, T(G,S) :=n(TG,8)) =TsG). (7.8)

For the statement of the next proposition, recall that Gy 4 denotes the set of sim-
ple d-regular graph on [N]. For any finite graph 7 on a subset of [N], we define
Gna(T) :={G € Gy.g : Bi(1,G) = T} to be the set of d-regular graphs whose
radius-£ neighborhood of the vertex i in G is 7 .

Proposition 7.3. For any graph T, we have
T(W(Gn.a(T)) C t(Gn.a(T)). (7.9)
and T is an involution: T o T = id.

Proof. The first claim is obvious by construction. To verify that T is an involution, let
(G,S) € GN,d and abbreviate (G, S) = T(G, S). Then, due to (7.9), the edge boundaries
of the £-neighborhoods of 1 have the same number of edges 1 in QN and G. Moreover,
we can choose the (arbitrary) enumeration of the boundary of the ¢-ball in G such that,
forany i € [1, u], we have T;(S;) € S; (é). Define

Ws=W(G.S) = (i € [l ull: 1:(G.$)J;(G.S) = 1}.

We claim that WS = Ws. First, by definition of switchings, we have [7;(S;)] = [S;]
for any i € [1, u]l. Thus J,~(§’;, S) = Ji(G,S), and it suffices to verify that [; (g", S) =
1;(G,S) also holds for all i € [1, u]. Fori ¢ Ws, the switching of S; does not take
place, i.e., g~|[5,.] = §|s;1 and therefore I; (C;, S) = I;(G.S). On the other hand, for
i € Ws, the subgraph G|[s,1 is 1-regular, i.e., /;(G, S) = 1, and the other S; with j € Wg
intersect S; at most at one vertex. Therefore, Gls,] = Ts,Gls;1 and the graph Glisy is
again l-regular, i.e., [; (é, S) = 1 as needed.

In summary, we have verified the claim WS = Ws. By definition of our switchings,
it follows that 7'(S) = S and Ty (_C'; ) = G. Therefore T is an involution. O

Proposition 7.4. T and T are measure preserving: PoT'=PandPoT ! =P,

In other words, that T is measure preserving means that if G is uniform over Gy 4,
and given G, we choose S uniform over S(G), then Ts(G) is uniform over Gy 4.

Proof. We decompose the enlarged probability space according to the £-neighborhood
of I as
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-GN
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A 4

Fig. 7. The figure illustrates the idea of Proposition 7.5. The horizontal axis represents the set of graphs Gy 4,
and the vertical direction the fibres of possible switchings. In particular, the sets £2, £2/, 2, £2 are represented
on the horizontal axis. The area in medium and dark grey represents £2 = T~!(£2). The sets £2” and £2* and
their preimages can be illustrated analogously, but for simplicity we assume for the figure that 2 = 2%, The
lightly shaded area bounded by the vertical bars is ¢(£2). In (7.12), we devide £2\£2’ into the part contained in
1(£22%) (the second term) and the part outside of ¢(£27) (the first term). The part inside ¢(£27) is small because
of assumption (iii). To bound the part outside ¢(£2%), we use that T is an involution. This implies that the
image under T of the area in dark gray is contained in ¢(§2) (thus its projection to the horizontal axis lies in
£ as shown in the figure), and not intersecting £2*. Its contribution is small by assumption (ii), which implies
that ¢(£2) contains most of 2+

Gn.a = JGn.a(T), where Gy a(T) = L(Gn.a(T)). (7.10)
T

Notice that, given any 7, the size of the set S(G) is (by construction) independent of
the graph G € Gy 4(7). Therefore, given any 7, the restricted measure I~P’|GN a(T)is
uniform, i.e., proportional to the counting measure on the finite set G ~.4(7). Since, by
Proposition 7.3, the map T is an involution on G N.d(T), itis in partlcular a bijection
and as such preserves the uniform measure IP’lG ~N.4(T). Since T acts dlagonally in
the decomposmon (7.10), this implies that the map T preserves the measure PP. Since
P=Ponx'andT =7 oT,it immediately follows that also 7 is measure preserving:

PoT '=PoT 'on '=Porn! =P,
as claimed. O

The following general proposition, which makes use of the involution property of T,
is central to our approach. The idea of its proof is illustrated in Fig. 7.

Proposition 7.5. Given events 2 C 2+ C 2 C Gy.4 and 2' C 2, assume

1. P(Gn.a\2) < qo.
2. Pg(Ts(G) € .Q\.Q+) q1 forall G € 2, and
3. Pg(Ts(G) € 2\2') < qa forall G € 2*.

Then P(£2\(£2 N 2")) < qo + q1 + 2.
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Roughly, the proposition shows that if, for most graphs G € Gy 4, an event holds for
the switched graph Tg(G) with high probability under the randomness of the switching
S, then it also holds with high probability on Gy 4. This enables us to condition on a
(good) graph G for much of the paper, and then only use with the randomness of S which
has a simple probabilistic structure.

More specifically, in our application of the proposition, the set £2 is a large set of
regular graphs obeying rough a priori estimates (there are only few cycles), the set £2
is a set of graphs for which the Green’s function obeys good estimates, and the set £2’
is a sets of graphs on which the Green’s function obeys better estimates (near a given
vertex). The proposition states that if with respect to the resampling most graphs obey
the better estimates, then these estimates also hold on the original probability space with
high probability. The sets to which the proposition will be applied are further discussed
in Sect. 3. The proposition will be applied in Sect. 16.

Proof. We define 2 = T~1(£2), 2' = T~'(2’) and 2+ = T~1(£2%), and abbreviate
A\B = A\(A N B) for any sets A, B. Since

Tl @\2)=T'"Q\T~ Q) = 2\2, (7.11)

and since 7 is measure preserving, and since 7" is a measure preserving involution, we
have

P(2\2) = P(2\2)) = P(2\(£2' Ut(2%)) + P((2*) N 2)\2)
<PR2\(2'Uu2) + P(u(2H) N T (2)\2")
=P2) +P((2H N T (2)\2), (7.12)
where 2 = T(S}\([}/ U(£2%)). To bound the probability of 2, we make the following
observations. First, Qc T(f)) C 1(£2). Second, any element (é , S) € £ can be written
as G = T(G,S) forsome G ¢ 2% and S € S(G). Since T is an involution, this (G, S)
must in fact be given by (G, S) = T(_C’; , S). Together this implies that (Q , §) ¢ 2%, and
thus that £ has no intersection with 2%. As a result,
P(2\2") < P(2)\2%) + P((2H) N T (2)\2")
=P)\T'(2) +P((2) N T~ (2)\2%)
+P(u(2H N T (2)\2")
<P@ N GNO\T 1 (2) +P((2) N T H(2)\2)
+P((@2H N T (2)\2)
< qo+q1+4q2,

where the second inequality follows since Gy 4 D 2 and the last inequality follows
from the assumptions (i)—(iii). O

7.3. Estimates for local resampling. In the following, we give some basic estimates for
the local resampling. In particular, we show that, with high probability, most edges are
switchable.
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Proposition 7.6. Let § > 0.
1. For any x € [NI\T,

2
Pg(bi = x) =P(c; =x) < v (7.13)
2. For any positive integer w, we have
Pg(I|Ws| > n —3w) =1— o(N~@). (7.14)

Proof. To prove (i), we recall that, for any i, the oriented edge (b;, ¢;) is uniformly
chosen from the oriented edges of ¢, By definition of T, there are at least Nd /2 —
(d+dd—1)+---d(d — 1) edges in GD, and since for any vertex x € G0, the
degree obeys deggar) (x) <d,

d 2
< —.
Nd —=2(d+d(d—1)+---d(d—1% ~ N

Pg(b; = x) =Pg(c;i = x) <

To prove (ii), we need to analyze the events /; J; = 0 more carefully. We define the
disjoint sets

Ao={i €lll,nll: I; =0},

Ar={i € [[1, nl\Ao : {bi, ci} N (Ujxilej DI = 1},

Ay ={i € [[1, ul\Ao U Ay : |{bi, ci} N (Ujxifbj, c;Hl > 1},

Az ={i € [1, ul\Ao U Ay U A, : there exists j such that[; =;
and [[e;] N {bj, c;} = 1},

and claim that
[, ul\Ws={ielll,ul: ;Ji =0} C AgUA; UArU As. (7.15)

Indeed, if i € [[1, u]]\Ws, then I; = O or J; = 0. Clearly, if I; = Otheni € Ay C

ApU A1 UAyU Az, On the other hand, if J; = 0, there exists some index j € [1, w]\{i}

such that |[S;] N [S;]| > 1, and there are two possibilities (recall that ¢; = {l;, a;} and

ej =1{lj,a;}):

1. [; # lj. Then either |{b;, ¢;} N {bj, c;}| = 1;0r [{b;,c;} N[e;]l = 1 and |[e;] N
{bj,cjll =2 1.

2. l; = I;. Then either |{b;, ¢;} N {bj, c;}| = 1;0r |{b;,c;} N [e;]l = 1; or |[e;] N
{bj.cj}l = 1.

Either way, J; = O impliesi € A1 U Ay U A3z, and (7.15) holds. To bound the number of

elements on the right-hand side of (7.15), we first note that | A3| < 2|AgU Aq]. In fact if

i € As, then there exists some j such that |[e;] N {b;, c;}| = 1, and thus j € Ag U Aj.
Since any {b;, c;} can intersect at most two edges ¢; with [; =[;,

A3l < > i€l pull: ki =1jand [{bj, c;} Nleil] > 1} < 2|Ag U Ayl
JjEAQUA
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Therefore, it follows that

L, u\Ws| = I{i € [1, ull : I; J; = 0}

< 3|Ao U Ail +[A2] < 3[Ao| +3|A1] + Azl (7.16)

We will show that

P(|Ao| + [A1] + 5|A2] = ) = o(N~“*), (7.17)
which implies the claim since

P(IL, n\Ws| = 3w) < P(3]Aol +3|A1] + [A2| > 3w)

<P( Aol + A1l +3142] > @) = o(N~**).

To prove (7.17), first notice that there is a subset A5, C Ay with |A}| > |A3|/2 such
thati € A/ implies |{bl,c,}ﬂ(U1¢A/ {bj,c;Pl > L Hence if |[Ag|+]A1]+|A2]/2 2 w,
then there exist disjoint index sets Ao C Ay, A1 C Ay, A2 = A/ such that |A0| + |A1 |+
|A’ | = w and

Viedy, =0,
VieAr,  Hbiei} N (Ujzile Dl > 1, (7.18)
Vie Ay, b e} N (Ujgaylbjc;Dl =1
The condition /; = 0 is equivalent to distg({a;, l;}, {bi, ¢;}) < 1. Therefore, by (7.13),
Pg(l; =0) < Pg(dlstg({a,,l Lobi) < 1) +Pg(distg({a;, i}, c;) < 1) (7.19)

8d
< —#{x e ¢ :distg({a, I}, x) < 1} < —. (7.20)
N N
Similarly, since | U; [e;]] < 2u,
8
P (l(bi. ci} N (Ujziles Dl = 1) < o, (7.21)

N

and, for any i € A’z, we have

. 8
Pg (Hbiaci} N Uz, 1bj, cjil = 1‘51‘,] ¢ A’2) < —.

Finally, there are at most (34)® disjoint sets Ao, Al, A’z C [[1, ]l such that |A0| + |A1 |+
|A/2| = w, and therefore

PG (140l + 41| + §142] > o)

< (Bu)” max Pg(the sets Ag, Ay, A satisfy (7.18)
 max g 2

(7.22)

Ag,A1, A,
= (3u)” max l"[Pg(I =0) [ [ Po({bi. ci} N (Ujzile; DI = 1)
Ao.Ar, 2iedo icA;
[T 2o (1tbi, et 0 (U, 5, 10y )1 > 1]85. 7 ¢ A3)
iGA/

8d 8 8
(3#)‘” max 1_[ l_[ o ]5 o(N~*%),

lEA() i€A] teA’z
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where the maxima are over all disjoint sets Ao, Ay, A C [[1, u] such that |A0| + |A1 |+

|A’ | = w, and where we used that the probability factorlzes since the sets Ag, A, A’
are disjoint. O

Remark 7.7. Throughout Sects. 8-15, we fix a d-regular graph G € Gy 4 on the vertex
set [ V], and abbreviate its £-neighborhood of 1 by

T=B,(1,G), 7T =DB5¢1,3G). (7.23)
We also write
T; = {v e G :distg(1,v) =i}, (7.24)

for the set of vertices at distance i from 1.

Further, we enumerate the boundary edges g7 as {l;, a;} for i € [1, u]l, where
l; € Tand a; € [NI\T. We denote the resampling data by S = (S1, S2,...,Su),
where S; = {(l;, a;), (bi, c;)} fori e [[1, ull, and (b1, c1), ..., (by, cy) are chosen
independently and uniformly among oriented edges from the graph G(™. We denote by
S(G) the set of all possible switching data, so that S is uniformly distributed on S. Given
switching data S, we denote the set of admissible switchings by Ws. Without loss of
generality, we will assume for notational convenience that Wg = {1, 2, 3, ..., v} where
[Ws| =v < .

To study the change of graphs before and after local resampling, we define the fol-
lowing graphs (which need not be regular).

— @ is the original unswitched graph;

— ¢ is the unswitched graph with vertices T removed;

— G is the intermediate graph obtained from G by removing the edges {b;, c;}

with i € Wg;

— G js the switched graph obtained from ¢ by adding the edges {a;, b;} with

i € Ws; and

— @ is the switched graph 7s(G) (including vertices T).
Following the conventions of Sect. 2.2, the deficit functions of these graphs are given by
d — deg, where deg is the degree function of the graph considered, and we abbreviate
their Green’s functions by G, G, G, G™ and G respectively.

8. Graph Distance Between Switched Vertices

This section provides estimates on the distances between the vertices participating in
the switching, in the graph with vertices T removed (before and after switching). It can
be helpful to think about these estimates in terms of the sets K, C [N]\T defined by
Ko = Brra(ai, 6), K = Brra(xi, GO\{bi, ¢;}}), where x; € {b;, c;},
(8.1)
and illustrated in Fig. 8. In (4.6), (4.7), it is shown that

— (4.6) except for at most 2w many, the K, does not intersect the other K.
— (4. 7)any x € [N]J\T is in at most w + 1 many of the sets K.

Roughly speaking, in this section it is shown that, for any graph G € £2, the following
estimates hold with high probability under Pg:
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Fig. 8. For the vertices x € {a;, b;, ¢;} participating in the switching, we denote by K, their radius-R /4
neighborhoods in the unswitched graph, with b; and ¢; disconnected and the set T removed. The typical Ky
are disjoint from the other K, and in the typical case, the sets K, and K. exchange their roles under switching

— (8.2)any x € [N]\T is in at most w of the sets Kp;

— (8.3) any K, intersects at most w of the Kp;

— (8.4) any K, intersects at most 2w of the other K, Kj;
— (8.5) except for at most w many, the K, are trees.

By symmetry, the same statements hold with b replaced by c. More precisely, in the
remainder of this section, we show that the estimates stated in the following propositions
hold.

Proposition 8.1. For any graph G € §2 (as in Sect. 3.2), the following holds with Pg-
probability at least 1 — o(N~“*?):

— Any vertex x € [NI\T is far away from most vertices in {by, ba, ..., b, }:
[{i € [T, Il = distgen (x, bi) < R/2}| < w. (8.2)
— Most indices i € [[1, u]l are good:

Bsl < 3w, withB, ={i €[, ul:
distgm (ai, {aj, br = j € [1, ul\{i}, k € [1, ul}) < R/2},
(8.3)
IBy| < 2w, withB,={i e [[1, ] :
distgm (bi, faj, b = j € [1, ull, k € [1, wI\{i}}) < R/2},
(8.4)

Be| < w, withB. ={i € [1, ull : Br(ci, G is not a tree }. (8.5)

Note that B, is the set of indices i such that K, is not disjoint from all sets other K,
and Kj, and that B, is the set of indices i such that K, is not disjoint from all other sets
Kp and K.

We will show that the estimates (8.3) and (8.4) also imply the following estimates
for the switched graph G0,

Proposition 8.2. Assume (8.3) and (8.4).
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— Forany index i € [1, u]\(By U By),

distsr) ({ai, bi}, {aj, bj = j € [1, nI\{i}}) > R/2. (8.6)
— Forany vertex x € [N]\T,

I € 1. 1]« distgen (v, {ai, bi}) < R/4)| < So. (8.7)

The remainder of this section is devoted to the proofs of Propositions 8.1-8.2.

8.1. Proof of Proposition 8.1. Recall that the oriented edges (b;, ¢;) are independent
and distributed approximately uniformly, so that (7.13) holds. The claims essentially
follow from this.

Proof of (8.2). Inany graph with degree bounded by d, the number of vertices at distance
at most R/2 from vertex x is bounded by 1 +d +d(d — 1) +---+d(d — HR2-1 ¢
2(d — 1)R/2. By (7.13) therefore

_1\R/2
gHa-Hr

Pg(distgm (x, bi) < R/2) N (8.8)
Since the by, ..., b, are independent, it therefore follows that
4(d — HRIZN\®
P(Ifi € [1. ] : distgem (x. b)) < R/2)| > ) < (Z) (%) < N7,

where in the last inequality we used (4(d — )R/2p)® < 23¢(d — 1)(R/ZH+De « N8
by the choice of parameters in Sect. 3. O

Proof of (8.3). Recall the annulus A, and sets A, A, ... from Lemma 4.5. By (4.9),

[AfU---UAy| <2w,and forany i € Agq1 U A2 U - -+, a; is at least distance R in
G from other vertices a;. It follows that

Pg (i € [1, ]l = distgen (ai, {aj. by : j € [1, wI\{i}. k € [1, uID}| < R/2} > 3w)
<Pg (I{i € Ags1 UAgsa U+ distgem (@, (b1, ba, ..., by} < R/2) > ).

By a union bound, the right-hand side is bounded by

> Pg (distgm (@i, bjy) < R/2,.... distge (ai,. bj,) < R/2),

A B
where A’ = {i1,...,iw}, B' = {j1,..., jw}, and the sum over A’ runs through the
subsets of Ag] U Agso U -+ - with |A’| = w, the sum over B’ runs through subsets of
[1, u] with | B’| = w. Notice that if a; and a,, are in different connected components

of A, then distgar) (ax, bi) < R/2 and distgm (am,bj) < R/2 imply b; and b; are in
different connected components of A (those of ax and a,,, respectively), and in particular
then b; # b;. As a consequence, the indices j, ... j, must be distinct, and in particular
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the random variables b, ..., b;, are independent. Thus the previous expression is
bounded by

Z Pg (distgem (ai,, bj,) < R/2) - Pg(distgm (ai,. bj,) < R/2)

A B

2 _ 1\R/2\ @
< (M> (%) K N~
w

where we used that there are (Z) choices for A’ and B’ respectively, and the estimate
8.8) withx =a;,,...,a,,. O

w

Proof of (8.4). Similarly, to prove (8.4), by the union bound we have
Pg (i € 1, ull : distgen (i, {aj, by 2 j € [1, k€ [1, pI\(i}) < R/2}| > 20)
<) Pg (Vi € B, distge (bi {aj, be < j € [1, ull. k € [1, wIN(i}) < R/2),
B/

where B’ runs through all subsets of [1, u]] with |B’| = 2. Next, we notice that, if
for alli € B’, we have distgar)(b,-,{aj,bk joe I, ul,k € [1, nl\{i}}) < R/2,
then there must be subset B” C B’ with |B”| = w such that for all i € B”, we have
distge (b;, {aj, by : j € [1, 1], k € [1, uI\B"}) < R/2. By relabeling, without loss
of generality, we assume that B” = {4 —w+1,u —w+2, ..., u}. Conditioned on
S1,82,..., Su—w, we have

Pg (dist(b,-, {ar,az, ... au. bi,ba. ... bu_oh) < R/2| S1. 85, ...,S,H,)
< 8u(d — H*?/N,
foranyi € [u — w+ 1, u]l. Therefore,
Zpg (Vi € B/, distgm (b, {aj, by : j € [L, nll. k € [1, uI\{i}}) < R/2)
>

<Y Pg (Vi € B” distge (b, {a;. bi ¢ j € [1, pnll. k € [1, uI\B"}) < R/2)
B//

)R\
< (M) <8M(dN 1) ) < N-o
w

since there are (Z ) choices for B”. This completes the proof. O

Proof of (8.5). By the assumption G € £2, all except at most N° many vertices have
radius- R tree neighborhoods. In particular, the same holds for G M, By (7.13), it follows
that

Pg (the radius- R neighborhood of ¢; contains cycles) < 2N —l

By the union bound, and using that the number of ways to choose w + 1 elements from
w elements is bounded from above by u®*!,

Pg (I{i € [[1, u]l : radius-R neighborhood of ¢; contains cycles}| > @ + 1)
< Ma)+1 (2N—1+5)w+1 < (2M)w+1N_w_1+(w+l)5 < N—w+8

given that § < 1/w and using that u© < 2(d — Dt = (log N by the choice of
parameters in Sect. 3. O
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8.2. Proof of Proposition 8.2.

Proof of (8.6). By the definition of the sets B, and By, for any i € [1, u]\(B, U Bp),
we have

distgm ({ai, bi}, {aj, b; 2 j € [1, uI\{i}) > R/2. (8.9)

Since GO is obtained from GP by removing the edges {b;, ¢;}; <, and adding the edges
{ai, bi}i<v, the claim (8.6) directly follows from (8.9). O

Proof of (8.7). We consider three cases. Ifdistgm (x,{a;, bi}) > R/4foralli € [1, u]l,
then the claim is trivial. If distgm (x,{ai, bi}) < R/4forsomei € [1, ul]\(B, UBp),
then (8.6) implies that

diStG(T) ()C, {aja bj }) 2 diStg('H') ({ai7 aj}v {ajv b] }) - diStg('JI‘) (X, {aia bi })
> R/2— R/4 = R/4,

for any j € [1, w\{i}. Thus |[{i € [1, u] : distg~<T)(x, {a;,bi}) < R/4}| =1 < Sw
as claimed. In the remaining case, distgm (x, {a;, bi}) < R/4 is only possible for i €
B, U By,. Therefore |{i € [[1, ] : distGm(x, {a;, b;}) < R/4}] < |B, UBy| < 5w as
claimed. O

9. The Green’s Function Distance and Switching Cells

The bounds provided in the Sect. 8 provide accurate control for distances at most R /2.
However, random vertices are typically much further from each other, and as mentioned
in Sect. 3, we require stronger upper bounds on the Green’s function for such large
distances. These bounds are in fact a general consequence of the Ward identity,

Im[G;;(z)]

G:i(2)? = e 9.1

Z 1Gij(2)] il ©.1)
J

which holds for the Green’s function of any symmetric matrix [see (B.6)]. To make use

of it, we introduce a much coarser measure of distance in terms of the size of the Green’s

function as follows.

9.1. Definition. Given a parameter M > 0 (ultimately chosen in (9.4) below), we define
arelation ~ on [N]\T by setting x ~ y if and only if

max (GO > - (9.2)
«dist(x,u) <4r, uv = / ’ :
l;‘:((ii |slt(( Y, v)) zir N n

where the distance in the maximum is with respect to the graph G(T, and 5 = Im[z].
The relation ~ induces a graph R on the vertices {a1, ..., ay, b1, ..., b,}. We partition
{ai,...,au, by, ..., by}intoits ~-clusters. More precisely, we define I; to be the vertex
set consisting of the union of the connected components of R containing any element of
{ai,az, ..., a,}, and we define I, . . ., I, be the vertex sets of the remaining connected
components of k.
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O
L

Fig. 9. Left figure. The S-cells are clusters of vertices that are close to one of the edges {b;, ¢;} in the sense of
the Green’s function distance ~. The S-cell S; contains all a; (the vertex boundary of 7 in the original graph)
as well as those b; which are close to any of the @; in the sense of the Green’s function distance. Right figure.
Since the switching may decrease distances between vertices, the S’-cells are defined by joining the S-cells
which have vertices that are close to each other

Definition 9.1 (Cells).
— Define sets St, Sy, ..., S¢ C [1, N] called S-cells by

Si = By, (I;, ). 9.3)

For any vertex x € [N]\T, we write x ~ S; if there is y € I; such that x ~ y.

— Define S}, ...,S,, C [1, N] called S'-cells by combining the S-cells which are
close to each other after switching: we set S| = S; and join S-cells S; and S; with
i,j>1 ifdistg(T)(Si, Sj) < 2r.

The S- and S’-cells are illustrated in Fig. 9. The S-cells are defined in terms of the
unswitched graph. In the switching process, distances between S-cells may decrease.
This is accounted for by the coarser S’-cells. For later use, we note the following ele-
mentary properties of S-cells:

— Forany x € S; and y € S; such that i # j we have |G§£)| < M//Nn.

— For any vertex x € [N]\T, if x #* S;, then for any y € S;, |Gg)| < M//Nn.
— If by € S;, then also ¢ € S;; and, consequently, if by € S then ¢; € S.

9.2. Estimates. From now on, we fix the parameters M and o’ by
M =d*(logN)’, o = |logN]|, 9.4)
where § > 0 was fixed in Sect. 3. The next proposition shows that the cells do not cluster.

Proposition 9.2. For any graph G € 22 (z, £) (as in Sect. 3.2), with probabililty at least
1 — o(N~®*%) under S, the following estimates hold:

— Any x € [NI\T is ~-connected to fewer than o' of {b1, b3, ..., by},
Hiell,ul:x~b} <o 9.5)

In particular, x is ~-connected to at most @' of the S-cells.
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— Except for at most ' many indices i, the vertex b; is a singleton in the graph R, and
thus the S-cell containing b; is disjoint from {aj, by : j € [1, ull, k € [1, u]\{i}}:

i € IL, pull b ~{aj, be : j € [, wll k € [L, nI\{iI} < o (9.6)

In particular, each S-cell contains at most ' of {by, by, . .., bu}.
— Most S'-cells are far from the other vertices participating in the switching:

i e [[1,v] :b; € S/j,such that j =1 or
dist(S'j, {ak, b, cm k€ [1, nI\{i}, m € [1, vI\{i}}) < R/4}|
< o + 5. 9.7)
In particular, each S'-cell contains at most @' + 5w of {b1, by, ..., b,}.

In the remainder of this section, we prove the above proposition. It is essentially a
straightforward consequence of the definitions, combined with union bounds.

9.3. Proof of Proposition 9.2. The following two lemmas collect some elementary prop-
erties of the Green’s function graph R on {ay, ..., ay, b1, ..., b, } that we require.

Lemma 9.3. Let G € 2] (z, £) (asinSect. 3.2) and x, y € [NI\T. Then we have x # y
implies distgmr) (x,y) > 8r.

Proof. We show that distgmr) (x,y) < 8r implies x ~ y. To this end, assume that
distgar) (x,y) < 8r. Then there must be a vertex u such that distgmr) (x,u) < 4r and
distgm (y, u) < 4r. Moreover, by the definition (3.7) of .Qf“(z, £) and estimate (5.4),

also |GD (2)| > |mye(2)|/2 = M//N7, and thus x ~ y. O
Lemma 9.4. Let G € 2 (z, £) (as in Sect. 3.2) and x € [N]\T. Then
Pg(bi ~ x) < 16(d — 1)¥" /M. 9.8)

Proof G € £2}(z,£) and (5.4) imply that Im[G'Y] < |G{Y| < 2. Thus the Ward
identity (B.6) implies

Z G =Im(GR1/m < 2/n. 9.9)

For any vertex x € [N]\T, set

V, = {i e INI\T: 1GD| > M/,/Nn},

Ve=1i e INI\T :distgry (i, | V| <4r
jEB4 (x,GM)

The 1nequahty (9.9) implies V.| <2N /M?, and since any vertex has at most 2(d — 1)*
vertices in its radius-4r neighborhood, we also have |V, | < 8(d—1)% N/M?. Moreover,
i ¢ V, implies thati 7 x. Thus
2
Pg(bi ~ x) < Pg(bi € Vi) < |Vl <16 — DY /M,

where the second inequality holds because b; is approximately uniform (7.13). O
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Proof of (9.5). The proof is similar to that of (8.2). By the union bound and (9.8), we

have
_ 1)\8r o
P({i € [1, ull : by ~ x}| > &) < (Z) (%)

< (log N)oleeN « N,
where, in the second inequality, we used (%) < ¢ and that
16ud® /M < 1641 a0 d =18 (log )~
since 1 < d**! and by the definition of M (9.4). O

Proof of (9.6). The proof is similar to that of (8.4). Indeed, by the union bound and
9.8),

Pg (i € [1, wl = bi ~ {aj, b = j € [1, ull, k € [1, wI\{i}}} = o)
//2
w\ (16(d — D\ slogN -
< —_— < (log N)7310eN/2 o N=@
() (50 (log V) <
asneeded. 0O

Proof of (9.7). Recall the index sets B,, B, C [[1, u] from (8.3), (8.4), and let i ¢
B, U By, be such that b; # {ax, by, : k € [1, ull, m € [[1, v]\{i}}. Denote the S-cell
containing b; by S; then S is not S| and it is disjoint from {by : k € [1, u]\{i}}.

By the definition of B,, B, and since b; and c; are adjacent in G M we have

distgm ({ai, bi, ci}, {ak, bm, cm + k € [1, nI\{i}, m € [1, vING}D) = R/2 - 2.
(9.10)

Since the graph G is obtained from G by removing edges {b;, ¢;} <, and adding
edges {aj,bj}j<v, we also have

distser ({ai, bi, ci} ak, b, e 2 k € L1, wI\{i}, m € [1, vINi}}) > R/2 = 2.
©.11)

Moreover, for any other S-cell S; # S, S, we have

distg(vﬂ-) S,S;) = =2r +diStG(T) (b, 1) —2r 2 R/2 -2 —4r > 2r,

where we used (9.11), r < R and the definition (9.3) of S-cells, i.e. S = By, (b;, Q(T))
and S; = By, (I;, GM). Thus S is a S'-cell itself, and
distgr) (S, {ak, bm, cm < k € [1, uI\{i}, m € [1, vI\{i}})
2 diStg(T) (biv {akv bmv Cm : k S [[17 /L]]\{l}, m e [[13 U]]\{l}}) - 2}"
> R/2—-2r —2> R/4,
where we used r <« R. Therefore only i € B, UBj or b; ~ {ay, by, : k € [1, u]l,m €

[1, vII\{i}} contribute to the statement (9.7). Thus, combining (9.6) with the estimate
B, UBp| < 5w from (8.3), (8.4), and with (9.6), the estimate (9.7) follows. 0O
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10. Stability Under Removal of a Neighborhood

The following deterministic estimate shows that removing the neighborhood T from the
graph G has a small effect on the Green’s function in the complement of T.

Proposition 10.1. Let z € C, and /d — 1 > (0 + )220 and let G € 2 (as in
Sect. 3.2) be a graph such that, for all i, j € [N],

|Gij — Pij (&G, j. 9| < Imselq” (10.1)
Then, for all vertices i, j € [N]\T, we have
G\ — Pij (& j. G < 2miclq” (102)

As discussed in Sect. 3, the removal of T is useful because our switchings have a
smaller effect in D than they do in G. Indeed, in the original graph G, our switchings
have the effect of removing two edges and adding two edges, while in G our switchings
only remove the edges {b;, ¢;}; <, and add the edges {a;, b;}; <, . In the next few sections,

we therefore work with G and its switched version G, and only return to the full
graph in Sect. 13.

The remainder of this section is devoted to the proof of the proposition. The main
ingredients are that (i) given any i, j, there can only be a few vertices in T that are close
to i or j, by the deterministic assumption on the excess of R-neigborhoods, and (ii) that
for all other vertices in T, the decay of the Green’s function implied by (10.1) shows
that the removal of them has a small effect (Fig. 10).

Fig. 10. The innermost disk shows T, the second largest disk the set X, and the outermost disk Gg. For any
i, j € X, the graph & (i, j, G) is contained in G
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10.1. Step 1: removal of vertices close to i or j. From (7.24), recall that T = {v € G :
distg(1, v) = ¢} is the set of inner vertex boundary of 7. The first step of the proof of
Proposition 10.1 consists of removing the vertices in T, that are close to i or j. The set
of such vertices is

U={veT:distg\7(, v) <r}U{veT,:distg\7(j,v)} <1}, (10.3)

where G\ 7 is obtained from G by removing the subgraph 7 induced by G on T (but not
removing Ty). Then |U| < 2w + 2 by (4.8). The following proposition shows that the
Green’s function remains to be locally approximated after removing U.

Proposition 10.2. Under the assumptions of Proposition 10.1, for any vertex set U C T
with |U| < 2w + 2,

G — Py (&G j. GV < Blmyelg” /2. (104)

The proof of Proposition 10.2 follows a general structure that occurs repeatedly in
similar estimates throughout the paper.

1. The first ingredient in this structure, which we refer to as localization, replaces the
Green'’s function P;; (&, (i, j, G)) of the vertex-dependent graph &, (i, j, G) by the
Green’s function P;; = P;;(Go) of a graph G that does not depend on i, j, by
an application of Remark 5.3. For this, among other things, we need to verify the
assumptions of Proposition 10.2.

2. The second ingredient, which we refer to as the starting point for the argument,
is an algebraic relation that expresses the quantity to be estimated in a convenient
form. The starting point typically follows from the Schur complement formula or
the resolvent formula.

3. The third ingredient is a collection of previously established estimates required to
estimate the expressions given by the starting point. It typically includes estimates
on elements of Green’s functions and graph distances.

The actual proofs then usually follow by combination of the above ingredients. In princi-
ple, this step is straightforward, but often several different cases need to be distinguished,
which makes some of the arguments appear somewhat lengthy.

Below we provide the first instance of the strategy described above to prove Propo-
sition 10.2.

Localization. We approximate P;; (£, (i, j, G)) by a vertex independent Green’s function
P;; according to Remark 5.3, applied with Go = B3,(1, G) and X = B (U, G). We
abbreviate

G =TEGy), P=GG), GV =T1EG/"”), PY=ciG").

Verification of assumptions in Proposition 5.2. As subgraphs of G € £2, the radius-R
neighborhoods of Gy and gé‘“) have excess at most w. By convention, the deficit function

of Gy vanishes, on each connected component of g(()“” , the deficit function of G obeys
> g(v) < w+ Q2w +2) < 8w, by Proposition 4.4. Thus the assumptions for (5.5) are
verified for both graphs. For any i, j € X, it follows from (5.5), we have

|Pij (&G, j, 9)) = Pij| < 2°Plmyclg"™! (10.5)
P (& . G0 = P | < 22 mgelg™, (10.6)

provided that /d — 1 > 2°*2,



570 R. Bauerschmidt, J. Huang, H.-T. Yau

Starting point. To remove U, we apply the Schur complement formula (B.4): for any
i,jeg®,

Gij—G) = Y Gir(Glu)y,!Gyj.

x,yelU
U _
Pj— P = 3" Pu(Plu)g) Py (10.7)
x,yelU
Our goal is to show that the difference G;U) — Pl.(;U) is small, by using that the difference

of G and P is small. As evident from the right-hand sides of (10.7), for this we require
upper bounds on the entries of G and (G|[U)_1 (and analogously for P and (P|U)_1).

Green'’s function estimates. By assumption (10.1) and (5.3)—(5.4), we have

|Gxxl = Imal — Imgc|/4 — Imgelq” = 3lmyel /5,
|Gl <29 myclq + Imyclg” (x #w), (10.8)
|Gl < Imselq” (distg (x, w) > r).

These bounds imply the upper bounds for the entries of (G|y)~! stated in the fol-
lowing claim. The claim essentially follows from the fact that the off-diagonal entries
of G|y are much smaller than the diagonal entries which have size roughly m..

Claim 10.3. Under the assumptions of Proposition 10.1, for any U C T with |U| <
2w+2,andany x,y € U,

(Gl | < 2/Imgel, 1(Plo)) ] < 2/ Imyel. (10.9)

Proof. By the identity G|y(G|y)~! = Iyxy, we have

Sry = Gux(Glu)iy + Y Gxw(Glu)yy- (10.10)
wel\{x}

Let I' := max, ycu |(G|[U);y1 |. Then (10.8) and (10.10) imply

GGl I <8+ D Gl <1+ Q7q +q")[Ullmge| T
wel\{x}

Taking the maximum over x, y € U in the equation above and using (10.8) gives

5 5 r
r< ~(2q +¢"|UIT < +—,
3|mge| 3 3|myge| 6

provided that +/d > (w+ 1)29%. I' < 2/|my.| follows by rearranging. The same
argument apphes to P |U, and we obtain (10.9). O

Proof of Proposition 10.2. First consider the case that at least one of i and j is not in X
(i.e. far from U). Then &, (i, j, G) = &-(i, j, GV)), and (10.4) follows directly from
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|Gij — GSU)| = Z Gtx(G|U) G)’l
x,yelU

< Qg +¢")q" [UP mgc >/ Imse]) < Imselq” /2,

where we used (10.8), (10.9) and that +/d > (w+ 1)22“’+7
Next consider the main case i, j € X. By (10.5)—(10.6), it suffices to bound the
right-hand side of

U U _ _
1G5 = P <1G = Pl + Y [Gia(Glu)) Gy = Pu(Plu)yy Py
x,yelU

(10.11)

which follows from taking difference of expressions in (10.7). By (10.1) and (10.5)—
(10.6), since for all vertices i, j € X and x,y € U C T, all subgraphs &, j, G),
&G, x,9),E 0, j,G), E(x,y,G) are contained in Gy,

2w+3 1
|Gij - Pij|a |Gix — Pixl, |Gyj - Pyj|a |ny - xy| |msc|q +250% |mg |qr+

(10.12)
Together with (10.9) and the resolvent formula (B.1), it follows that
I(Glu)yy — (Pl | =[Gl (Glu = Plu)(Plu) ™yl
< AU +22Pg)q" [Imye. (10.13)

Using (10.8), (10.9), (10.12), and (10.13), the sum on the right-hand side of (10.11) is
bounded by

Y 1Gix = Pl (Gl Gyjl + Y |Pix(Plu) 1Gyj — Pyl

x,yelU x,yeU
+ Y PGy — (PR 11Gy,
x,yeU
< dimclg” (1+2299%) (JUPQ™2g +4") + U @72 +4")?) < Imoclq’ /4

(10.14)

where we used that </d > (w + 1)22%*10 The claim follows by combining this
bound for (10.11) with (10 5) (10 6). O

10.2. Step 2: estimate of G S.T) using GSJ). Next we pass from GSU) to GS.T) . By definition

of U, there are no vertices in T\U that are close to i or j in the graph G Thus the step
mostly follows from the decay of the Green’s function together with the assumption that
there are few cycles.

Starting point. Define Gy = B3, (1, G) and G; = TE(Gp) as in Sect. 10.1. The normal-
ized adjacency matrices of GV and ng) = TE(g(()U)) have the block matrix form
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HO p’ HO Bi
B D |’ By D |’
where HV) is the normalized adjacency matrix of 7). The nonzero entries of B and
By occur for the indices (i, j) € {a1, ..., a,} x T¢\U and take values 1/+/d — 1. Notice

that éi = (Bl )ij- We denote the normalized Green’s functions of G U and G %U) by GO
and PD respectively. By the Schur complement formula (B.4), for any i, j € [N]\T,

Gl =w-20;'=67"- > GGV ;6 (10.15)
x,yeT\U
and also
Py =HY -z — B{(D) —2)7' By, (10.16)
GOy '=HY -z —B'(D-2)7"'B. (10.17)

Claim 10.4. For any x € T,\U,

> PP < 2(z0+ D). (10.18)
yeT\U

Proof. For any x € T,\U, by (10.16) we have

Y APYmwgt= D IHY — 2= B{(D1 =)' Bi)yyl

yeT\U yeT\U
< Y HD +lzl+ Y IB{(DI =) Byl
yeT\U yeT\U
<2t e 3 1B{(DI =2 Byl (10.19)
Z 1 —Z 1 .
X /—d S 1 Xy

In the last inequality, we used that the excess of 7 is at most w so that for any

x € T,\U, we have deg7w) (x) < w+1 and thus ZyeT\U ny (w+1)/+/d — 1. The
terms in the last sum in (10.19) vanish unless y € T,\U. Therefore the sum is bounded
by

Y Bl (D1 = D |(BDa + Y (Bl (D1 = gt 1 (B,

ielll,pl i#jelll,nl
lj=x lj.;€T\U

L Z L (D1 — 2) b | + Y D=2kl (10.20)
lEII] n| iZEjelll,ul

For the first sum in (10.20), the number of vertices a; adjacent to x is at mostd — 1. For the
second sum, by (4.6), forall pairsi # j with at most (2w)?> exceptions, distgm (a;, a;) >
R /2. For these pairs, a; and a ; J are in different connected components of the graph G, M
which means that |(D — z) | = 0. Therefore there are at most (2w)> non-vanishing

terms in the second sum. We use also that

(D1 = 2 | = Paga; (TEGG)) < 3lmsel/2,
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which follows from (5.6), provided that v/d — 1 > 220+3 Therefore,

Qw)? . 3 Qw)?
. < —Dgal < = . .
(10.20) (1 T i’jgl[ﬁfu]] I(D1 = 2) 4,4, 2Imscl 1+ i1 (10.21)
By combining (10.19) and (10.21), we have shown that
_ w+1 3 Q2w)?
> PPy | < —m==+ Izl + Simecl (1 + ) <20+ D,
yeT\U -
provided that +/d — 1 > 8(w + 1). This completes the proof. 0O
Claim 10.5. For any x, y € T\U,
G — P < 2Imelq”, (10.22)
GV Inwy, — (PPlmwir | < 48(1z] + D' (10.23)
Proof. Define matrices WV and £ by
GVny = POy +W, (10.24)
GV = PP + €. (10.25)
\ \

From (10.4), (10.5)—(10.6), for any x, y € T\U, we have [W,| < 2|my.|q". We claim
the same estimate holds for the entries of the matrix £. Notice from (10.16), (10.17) that
Exy # Oonly for x, y € Ty\U. Let I' := maxy yem\u |Exy| = maxy yeT,\U [Exyl. By
taking the product of (10.24) and (10.25),
£+ PP We+POnp) " WEPInm ! =o. (10.26)
For any x, y € T\U, therefore
eyl < D0 1P 11|
i,jeT\U
+ > 1P Wi PP ;)|
i,jeT\U
< IM\UIQImeelgHT Y 1P lmm)i|
ieT\U
+Qmselg) Y 1P Y 1P ;)|
ieT\U jeT\U
<4(lzl + D(d = D @lmselgM T +4(1z] + D> Qlmyelg”)
< T/2+4(z] + 1> @lmselg”).
For the second inequality, we used [Wyy| < 2|mg.|q"; for the third inequality we used
IT\U| < |T| < 1+d+dd—1)+---+d(d — 1)1 <2(d — 1)¢, and (10.18); for the
last inequality, we used » = 2¢ + 1, so that (d — 1)¢q” < (d — 1)™"/? and |zm,.| < 2.
Taking the maximum on the right-hand side of the above inequality, and rearranging,
we get
I < 16(1z] + 1)?|mselg” < 48(1zl + Dy,

as claimed. 0O
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Proof of Proposition 10.1. To prove the proposition, we define U by (10.3), and show
that

G = G < Imgclg” /4. (10.27)

This implies the claim. Indeed, the definition of U implies that &, (i, j, G (U)) =&, J,
G¢M), and therefore (10.2) follows from (10.5)—(10.6), (10.27) and Proposition 10.2:

Gy — P (& j. 6T
T U U U .. U
<G = G 1+1Gy" = P+ 1Py (60, j, G — B
< Imselg” /4 + 3Imgelq” /2 + 2P mgelq"™" < 2lmyelq”

Thus it remains to prove (10.27). By definition of U, we have distgw) ({i, j}, T\U) >
r, and therefore Proposition 10.2 implies

) [(®)
max (1621161} < 3mycla” /2 < 2miclg” (10.28)

Furthermore, by (10.15),

T U U 0)
G =6 1< > 16 HY -2 - B'GT By, G
x,yeT\U

<AlmgelPq® Y 1HY — 2= B{(D1 — 27 By + &)yl (10.29)
x,yeT\U

with £ as in (10.25). For the sum, we have

S IHD — 2 B{(Dy — ) By + )|

x,yeT\U
< Y HD+ YT (BDual(D1 =20, (B)ai,
x,yeT\U i jell,ul

[;.1;€T\U

+ |z||T\U| + |T\U|? £
|zl T\U| + |T\ Ix‘ryrggleyl

1 _
< 2 HY = 37 D=2

x,yeT\U i,jell,ul
+2(d — Dz +4d — D (48(Iz| + Dg") (10.30)

where we used |T\U| < 2(d — 1)* and (10.23). By our assumption G € §2, the subgraph
7T has excess at most w. Therefore the total number of edges of 7 is bounded by
ITl+w<1l+d+dd—1)+---+dd—1D"""+w<2(d - 1)t and

2(d —1)*
Z )
ny < ?. (10.31)

x,yeT\U
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By the same argument as for (10.21), we get
1

-1 Z [(Dy — Z)aa,|
ijeumu
=7 2 D=5 1+ D D=2,
16[[1 wnl i#jell,ul
3 20\ _3 2w)?
< [mgel 1 +( ) < [msel 2d — 1)g+( ) (10.32)
2 \d—1 d—-1 2 d—1

where we used 1 < 2(d — 1)*!. By combining (10.30)—(10.32), we have
> I(H—z—B{(D1—2) "B + &)yl
x,yeT\U
<2(d — Dzl +4d — D" (48(1z] + 1gq")
2(d — D .
+ (d ) +3|msc| Z(d—l)e ( a))
d—1 2 d—1
< 5(zl+ Dd — D'

Combining the above estimate with (10.29), and using |zm .| < 2

|GSD G(U)| < Amge*q* 5(z) + D(d — D'
20(]z] + 1) |mse|
ST el S macld’ /4.

This finishes the proof. O

11. Stability Under Switching

We recall the S-cells and S’-cells from Definition 9.1, and the set of switching data S(G)
from Sect. 7.2. The results of this section are the following stability estimates.

Proposition 11.1. Let z € C,, G € 2 (as in Sect. 3.2) be a d-regular graph, and K > 2
be a constant such that, for all i, j € [N]\T,

G\ = P& j.6™). )| < Klmyelq". (11.1)

Then there exists an event F(G) C S(G) with Pg(F(G)) = 1 — o(N~*), explicitly

defined in Sect. 11.1 below, such that for any S € F(G) such that G = Ts(G) € 2 the
following hold:

— Fori, j € [NI\T,
Gy = P& j.6T). 2] < 2K |myelq” (112)

— For(i)i, j € [NI\T in different S-cells, or (ii) i, j € [N]\T such that j € S; and
i *S; for somet,

A(T)
IG;; 7| < (11.3)

3
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— Fori, j € [NI\T,
G = P&, . 6. )l 27K |mgelq” (11.4)

For all estimates, we assume /d — 1 > max{(w + 1)2229*10 28(w + DK}, 0'q" <« 1
and that /N7 = M(d — 1) (where M is as in (9.4)).

In particular, for any G € £2(z, £), Proposition 10.1 implies that the assumptions of
Proposition 11.1 are satisfied with K = 2. Thus Propositions 10.1 and 11.1 together
show that, for any graph G € £2(z, £), with high probability under S, the switched graph
G belongs to 27 (z, 0) (as in Sect. 3).

11.1. Definition of the event F(G). We fix M and o’ by (9.4). We will prove Proposi-
tion 11.1 with the set F(G) C S(G) defined by the following conditions on the switching
data S:

1. Atleast u —3w edges are switchable, i.e. the event in the probability in (7.14) holds:

[Ws| > n —3w. (11.5)
2. All except for w of the vertices {c, 2, ..., ¢, } have radius-R tree neighborhoods
in g™, i.e. (8.5) holds.
3. The vertices {ay, ...,ay, by, ..., b,} do not cluster in the sense of distance, i.e.
(4.6)—(4.8) and (8.2)—(8.4) hold.
4. The vertices {b1, b2, ..., b,} do not cluster in the sense of the Green’s function,
i.e. (9.5)—(9.7) hold.
Then, for any G € £2{ (z, £), we have
Pg(F(G)) = 1 — o(N~9). (11.6)

Indeed, (i) follows from Proposition 7.6, (ii) follows from (8.5), (iii) follows from Propo-
sitions 4.3 and 8.1, and (iv) follows from Proposition 9.2.

11.2. Proof of (11.2). The proof of (11.2) follows the structure described below (10.4).
Moreover, similarly to the proof of Proposition 10.1, we distinguish between vertices
i, j that are close to the edges that get removed in going from G™ to G and vertices
that are far from these edges. We first focus on i, j that are close to those edges that get
removed.

Localization. First, wereplace P;; (&, (i, j, G)) by the vertex-independent Green’s func-
tion P;;, using Remark 5.3 with

Go = B3, ({b1, b2, ..., by}, G, X =By ({b1,b2,...,b,},GT).  (11.7)

Moreover, we define Qo to be the graph obtained by removing the edges {b;, ¢;}i<v
from Gy. The deficit function of Gy is defined to be the restriction of that of G™. We
abbreviate

Gi =TE@Go). P=G(G). G =TEGo). P=G@G).

Notice that C; 1 is equivalently obtained by removing the edges {b;, ¢;}i<, from Gi. The
following properties of Gy follow from (8.3) and (8.4).
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Claim 11.2. Assume (8.3) and (8.4). Then each connected component of either Gy or QAO
contains at most Sw elements from {ay, ..., a,, by, ..., b,}. More precisely,

i e [1, nll:ai e K} < 3w, [{i € [1,v]:bi € K}| <20, (11.8)

where K is the vertex set of any connected component of Gy or Gy.

Proof. The claim follows directly from (8.3) and (8.4) and the definitions of Gy
and Gop. 0O

Verification of assumptions in Proposition 5.2. Since both Gy and ng are subgraphs of
G € £2, their radius-R neighborhoods have excess at most w. Let K be the vertex set
of any connected component of Gy or Go. Since the deficit function of Gy (respectively
_C’;o) is the restriction of that of G(T (respectively _C'; (T)), any of the vertices a;, b;, ¢; € K
contributes 1 to the sum of the deficit function over K. By Claim 11.2, the sums of
the deficit functions over any of the connected components of Gy and ng are therefore

bounded by 3w + 2 x 2w < 8w. Thus the assumptions of (5.5) are verified for both Gy
and Gy, and for any i, j € X,
|Pyj = Pij (& (G, j. G < 22 mgelg"™, (11.9)

provided that /d — 1 > 2¢*2 and an analogous estimate holds for P. Up to asmall error,
we can therefore use P instead of P(E,((i, j, ™)) and P instead of P(E,((i, j, GD)).

Starting point. By the resolvent identity (B.1), we have:

G('JI') _ G(T) — G(T)AG(T), (11.10)
P—P=PAP, (11.11)

where A = Zzzl (ebpcy *+ecpby)/~/d — 1. Taking the difference of (11.10) and (11.11),
we obtain

N ~ 1 ~
T T T
Gz(j) — Pij = (ngj) — P,'j) + E ((;I(X) — Pix)Pyj

d—1 (x,y)ek

1 ™, AT 5
MV > GEX)(G;].) = Pyj), (11.12)
(x.y)€E

where the summation is over the oriented edges
(-xv )’) € E = {(bla cl)s ) (bl)v CU)! (Clv bl)s ) (clh bl))} (] 113)

We regard (11.12) as an equation for G™ — P, and will show that é;}r) - P j 18 small
as a consequence of the smallness of GT — P.



578 R. Bauerschmidt, J. Huang, H.-T. Yau

Green'’s function estimates. We first collect some estimates on Green’s functions, used
repeatedly:

T . .
'ij>| Pl | Pijl < 2lmygel. (alli, j),
IGP1 < Klmgelg” (distgen (i, j) > 2r), (11.14)
|G§Ek)| Gl | < < M//Nn, (i, by are in different S-cells, or i o by).

ick

The first estimate follows from (5.6), and (11.1); the second estimate follows from
assumption (11.1), and P;; (&, (i, J, GM)y) = 0; the last estimate holds by the definition
of ~in Sect. 9.1.

Proof of (11.2) fori, j € X. By assumption and (11.9), the first term in (11.12) is
bounded by K |mc|q" + 223 |my.|q"*'. For the second term on the right-hand side of

(11.12), similarly |G — Pr| < K|myelg” +22%3mg|q"*". Moreover, P,; = 0if y
and j are in different connected components of éo Thus by Claim 11.2, we have f’y i #0
for at most 4w vertices y € {b;, c; : i € [[1, v]}, for which we use |Py]| 2|mgc| by
(11.14). Combining these bounds, the second term in (11.12) is bounded by

1

T
D 1G = PirllPyj| < 8w(K +2%7H ) myclg"™. (11.15)
(x,y)eE

To estimate the last term in (11.12), we denote

ri=max |G} — By,
i,jexX

Noticing that X C U_,S;, we decompose the last sum over E in (11.12) according to
the cases in (11.14) as

Z[...]ZZ[...]+Z[...]+Z[...]
E E; E; E;

where here and below [ - - - ] abbreviates the terms in the last sum in (11.12) and
E| = {(bk, ck), (ck, b) : i, by are in different S-cells},
E> = {(bx, ck), (ck, b) : i, by are in the same S-cells, and distg) (i, by) > 2r},
Es = {(by, ci), (ck, br) : i, by are in the same S-cells, and dlStg(T) (i, by) < 2r}.

Notice that, for any (x, y) € E, we have |(G(T) — I3)y]| < I by the definition of I".
For (x,y) € E1, |G},’| < M//Nyby (11.14), and |E1] < 2v < 4(d — D1,

i T o) < X DTEMT
m A VN7 '
(x.»)€E;

For (x, y) € E2,|G2)| < K|myclq” by (11.14), and | E2| < 2 by (9.6),

r T 2K |imge|q" T
Z["']< Z |G§x)|<?fl-
E; (x,y)eE>

ﬂ
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For (x, y) € E3, IGSCT)| < 2|mg| by (11.14), and there are at most such 2w terms, i.e.
|E3| < 20, by (8.2),

r dolmg.| "
(T) sc

S-1< > G < —F—=.

E; vd =1 ks d-1

Combining the sums over E1, E;, E3, we get

1 M AT 5 r
Va1, Z)E|G,-x G = Pyl < 5
X,y)E

provided that v/d — 1 > 20w, 'q” <« 1 and /N7y > (d — 1)*' M. Thus (11.12) leads
to

G — Byl <1 +80g) (K + 22w+3q) myelq” + I'/4.
Taking the supremum over i, j € X, we obtain
4
I < S(1+380q) (K + 22w+3q) mselq”

From this estimate, and from (11.9) to estimate f’,-j - P (&3, J, G My), we find
G\ = P& j. 6D UG — Pyl +1Pyj — Pyj(E:(G . 6D
< 50+ 80g) (K +227%) Imgelg” + 22 mlg ™
< 2K|msclq”, (11.16)
provided that «/d — 1 > 22“*3_ This concludes the proof of (11.2) fori, j € X. O

Proof of (11.2) in the remaining case. In the remaining case at least one of 7, j is not
contained in X; and by symmetry we can assume that i ¢ X. Then &, (i, J, Q(T)) =

&3, ], G¢M) and the graphs on both sides of the equality also have the same deficit
function. It therefore suffices to show that |(A;SD — GSD| is small. By the resolvent
identity (11.10), we have

1 A
T GG (11.17)

T (y)eE

A(T) (T)
|Gij _Gij |<

Since i ¢ X, we have distgm) (i, {bk, ck}) > 2r and therefore, by (11.14),

G| < Kimygelq” forany x € {bi, c; - i €1, v]}. (11.18)

For the case that exactly one of i, jisin X, i.e.i & X and j € X, we now decompose
the set E defined in (11.13) as E = E| U E, U E’;, where
EY = {(bk, cx), (ck, by) : distgen (by, j) < 2r},
ES = {(br. cx), (ck, by) =i ~ by, distgen (by, j) > 2r},
E5 = {(bk, cx), (ck, br) 1 i # by, distge (by, j) > 2r}. (11.19)
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. . A (T . A
For (x, y) € Ef,since y, j € X, |G| < Py (& (v, j, G +2K Imyclq” < 2lmie|
by (11.16) and (5.6), and there are at most 2w terms, i.e. |E}| < 2w by (8.2),

1 A (T) 4K w|msclqg”
YL l<——= Y (KimslgNIG})| < —=—=—
E| =1 e d-1

where now [---] refers to the terms in the sum in (11.17). For (x,y) € E}, since
v, Jj € X, |G| < 2K |myclq” by (11.16), and | E}| < 20 by (9.5),

1 A 20 (K |mge|qg") (2K r
E [---]< § (K|msc|qr)|G(T)| < ' (K|msclqg") 2K |mgclg )
! d_l / Y d_l
E, (x,)€E)

For (x, y) € E%, |Gg)| < M/+/Nn by the definition of ~, |GSJD| < 2K|mgclq" by
(11.16), and |E}| < 2v < 4(d — D,

1 M M
-] < ——Q2K|m "< 8K(d — D) g —.
%:[]\/d_IZ«/N_n(|SC|q) @= D™
3

a (x.y)eE}
Combining the sums over E', E’, E, from (11.17) we obtain
A(T T
G = G < Kimyelq”

provided that v/d — 1 > 20w, 'q"” < 1 and /N7y > (d — 1)**' M. This concludes the
proof of (11.2) fori ¢ X and j € X,
A(T .. Ah A(T ..
Gy = PG j. 6D =16y = PG, j. ™))
A(T T T ..
<IG) = G1+1G) = Py, j, 6T
< 2K |myelq’. (11.20)

For the case that i, j ¢ X, noticing that distgm (bk, j) > 2r, we decompose the
set E as E = E, U E;, where E’, and E’ are defined in (11.19). By (11.20), for any

(x,y) € E, Pyj(&(y, J, C;(T))) = 0 and thus |G(T)|yj < 2K|mg|q". Then the same
argument as above implies

A(T T
G = G < Kimyelq"

This finishes the proof of the stability of GM. o

11.3. Proof of (11.3). We again follow the structure described below (10.4), except that
no localization step is required to prove (11.3).
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Starting point. Under both conditions given for (11.3), we have IG(T)l < M//Nnby
the definition of ~ as in Sect. 9.1. By the resolvent identity (11.10), we therefore have

M AM
> 1GLNGY . (11.21)
(x,y)eE

A o M 1
Gl < ——+

VN  Jd—1
where E isasin (11.13). Notice thatifi, j are in different S-cells, then forany (x, y) € E,
either i, x are in different S-cells, or y, j are in different S-cells. Similarly if j € S, and
i %S, for some 7, then for any (x, y) € E, either |G(T)| < M //Nn,or the vertices y, j
are in different S-cells. The claim (11.2) follows by analyzmg (11.21) as an inequality
for these GST)

Green’s function estimates. We first collect some estimates on Green’s functions of
G and GO, which are repeatedly used in the proof: for (x, y) € E asin (11.13),

2|mgel, (all x),
(T) Klmsclq", (distgm (i, x) > 2r),
G:.'| < 11.22
1G] M//Nn, (i, x are in different S-cells; ( )
or i 7 the S-cell containing x).
A 2 11
|G(,1D| < Imsel, (all y), (11.23)
M 2K|msclq", (distger (v, j) = 2r).

These estimates follow from (11.1)—(11.2), together with (5.6) for the bound for all x, y,

and using that P; (&, (i, x, GD)) = Ofordistger (i, x) > 2r andthat Py; (€ (y, j. ¢My) =
0 for dist G (v, j) = 2r. The last bound in (11.22) holds by the definition of ~.

Proof of (11.3), case (i). We verify (11.3) in the case that i, j are in different S-cells.
Denote

A(T
I' :==max max |G§j)|,
N#0 €Sy, €S

and now abbreviate by [ - - - ] the terms in the sum in (11.21) including the 1/ Jd—1
prefactor. We divide the set E according to their relations to the cells S;, and S;, as
E=E{UE,UE3UE4U Es, where

Ey ={(x,y) €Sy : distgm (i, x) < 2r},

E; = {(x,y) €Sy : distgm (i, x) > 2r},

E3 ={(x,y) €Sy, : distgm (y, j) < 2r},

Ey={(x,y) €Sy, : distgm (y, j) > 2r},

Es ={(x,y) €S, US,}.
For (x,y) € E1, |E1| < 2w from (8.2), i.e. |{k € [1, v] : dist(i, bx) < 2r}| < w, and
|(’;‘§?| < I, by the definition of I". Thus, by (11.22),

Z[ 4a)|msc|1—'
a1
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For (x,y) € E», |Es| <
Z[

For (x,y) € E3, |E3| <
Z[

For (x, y) € E4, |E4]
by (11.22)~(11.23),

dI1<

E4

Finally, for (x, y) € Es, we use |Es| < 2v

2w from (9.6),1.e.|S;, N{b1, ...

< 2w’ from (9.6), and distgA(T) (v, j)
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,by}| < @' Thus, by (11.22),

2Kw Imselg"I"
d—1

2w from (8.2), and by (11.22)—(11.23),

M Awlmg|

NATINZEY

> distgar) (v, j) > 2r.Thus,

M AKo'|mgclq”

VN Jd—1

< 4(d—1)%' and |G| < I' which holds

by the definition of I". Thus, by (11.22),

Z[...]
Es

Esin (11.21) leads to

Combining the sums over E1, ...,

M

4d - DM

Vd=T1JNy

~

(4a)|msc| + 2Ka)/|msc|q’) r
+

A(T
Gl <

VN

d—1

. (4wlmge| + 4K o' Imsclq”) M
d—1

N AM(d — D2 p

VN J/Nn

By taking the maximum over i, j as in the assumption and rearranging the inequality,

we get

r <2m/\/Nn,

provided that /d — 1 > 20w, 0'q" <« 1 and /Ny > M(d — 1)**1.

(11.24)

O

Proof of (11.3), case (ii). For j € S; andi 7 S;, we now decompose the set E accord-
ing to their relations to vertex i and the cell S; as E = E| U E, U E{ U E} U E,

with

E| = {(bk, cx), (ck, by) :

EY = {(bk, cr), (ck, br)
E’5 = {(bk, cx), (ck, br)
= {(br. ct), (ck bi)

E5§ = {(bk, cx), (cx, bi)

For (x.y) € E}. |E}| <

< 4(d — D™, and by (11.24), |G(T>|

i 7 b, bx &S},

i ~ by, distgm (i, by) < 2r, by & St},
i ~ by, distgem (i, b) > 2r, b & Si),
b €Sy, dlstgar) (br, j) < 2r},

b € Sy, distg (b, j) > 2r}.

< 2M/\/Nn, since

y, j are in different S—ce]ls Thus, combining with (11.22),
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2M?* 1
] <4Ad - )T :
D R T

For (x,y) € E), y, j are in different S-cells. We have: |E,| < 2w from (8.2), i.e.
Ik € 1, v] : dist(i, b) < 2r}] < o, and |G““| < 2M//N7 by (11.24). Thus, by
(11.22),

Bw|mgc|M
Z[ S V- 1/mn

For (x,y) € EY, y, j are in different S-cells. We have: |E}| < 2o from (9.5), and
|é(yj,r')| < 2M//N7 by (11.24). Thus, by (11.22),

4Kw/qr+1M

Z[... < =7 7
, VN7

E3

For (x, y) € E/, |Eﬁt| < 2w from (8.2), and (11.22)—(11.23),

dw|mge|M
Z[ S V- 1/Nn

For (x, y) € E5, |E5| < 20’ from (9.6), and dist 5 G (v, j) = distgmn (y, j) = 2r, since
in the graph G (M, by and ¢y are adjacent. Thus, comblmng with (11.22)—(11.23),

4Kw/qr+1M
DIl —Fne—.
~/Nn

Ej

Therefore, (11.21) can be bounded by

~ /o r+l 200 _ 1\¢+1/2
67 < Lolmsc|M  8Kw'q™ M 8M (dN 1) > _ M
n

+ + &S )
JVNn («/d —1/Nn VN7 VN7
given that +/d > 200, w'q" < 1and /Ny > Md - 1" o

11.4. Proof of (11.4). As in previous arguments, we follow the structure described
below (10.4).

Localization. The switching vertices that are not on the boundary of T after switching
aregivenby {ai, ..., ay, b1, ..., b,}.FromSect. 9.1, werecall the partition {I;, I, . . . , I}
of this set. (Thus the I; are the connected components of the Green’s function graph R,
with all connected components containing any of the vertices a; joined to I1.) The close
vertices X U X, and the larger subgraph Gy are defined by

Go := B3 ({ar, ..., au, bi, ..., by}, GO, (11.25)
X) =By (.67), X =By U UL, G¢M). (11.26)
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By our construction of S-cells and S’-cells, it follows that X| = S§; = S/] and X, =
Ur,Si = U;.‘/:ZS;.. By our conventions, the deficit function of the graph Gy is the re-
striction of that on G0 . We define the graph ng by removing edges {b;, c;}i <, from Gy
and GO by adding edges {a;, b; }i<v to ng. The graphs ng and Q~o are given the restricted
deficit functions from ™ and ™ respectively. We abbreviate

Gi =TE(G), Gi=TE ), P=GG), G =TEGy), P=GG).

Notice that the graph G is obtained by removing the edges {b;, ¢;}i<y» from Gy, and that

the graph G is obtained by adding the edges {b;, a;};<, to G1. We use the following fact
throughout this section.

Claim 11.3. If (8.3) and (8.4) hold, then each connected component of Go contains at
most 10w elements in {ay, ...,ay,, b1,..., by}, ie

Hi elll,ull:a; e K} +|{i elll,v]:b; €K} < 10w, (11.27)

where K is the vertex set of any connected component of Go.

Proof. (11.27)1s a consequence of Propositions 8.1 and 8.2. More precisely, if a; € K or
b; € Kforsomei € [1, u]\(B, UBp), then K is disjoint from {ay, a2, ..., ay, b1, by,

., by\{ai, b;}. Therefore |{i € [1,ull : ai € K}|+ |{i € [1,v] : b; € K}| <
2B, UBy| < 10w. O

Verlﬁcatlon of assumptions in Proposition 5.2. By assumption G = Ts(G) € £2. Since

Go and Go can be viewed as subgraphs of G and G respectively, the radius-R neighbor-
hoods of them have excess at most w. Moreover, the same argument as in Sect. 11.2

implies that the sum of the deficit functions on each connected component of Go and
that of go are bounded by 8w. Therefore the assumptlons for (5.5) are verified for both
graphs Qo and go Thus (5.3)—(5. 5) hold for P and P and as in (11.9), we can use P
instead of P (&, (i, J, Q(T))) and P instead of P (&G, J, GMy).

Starting point. The proof is similar to that of (11.2). By the resolvent identity (B.1), we
have

GO _GM = GMAGD, (11.28)
P—P=PAP (11.29)
where A = ZZ:l(ebkak +eqp,)/~/d — 1. Taking difference of (11.28) and (11.29), we
have
(”‘;1(31‘) th = (G(T) ﬁij) + Z (G(T) ix)ﬁyj
(x veE
AM &M _
N Z G, (G} — Py, (11.30)
(x ek

where the sums are over the ordered pairs

('x7 y) € E = {(als b])a st (a\)a bl))a (b17 al)v R} (bl)’ al))}' (11'31)

We regard (11.30) as an equation for GM — 13, and will show that GO — P is small,
using that G — P is small by (11.2).



Local Kesten—-McKay Law for Random Regular Graphs 585

Green'’s function estimates. We collect some estimates on Green’s function, which are
repeatedly used in the proof:

A~ T A ~ . .
GV 1By 1] < 2iml. Gl
|é)| < 2K |mgelq", (diStg(T) @@, j) = 2r), (1132

1
|(A}§irk)|, |G§1rk)| < 2M/\/Nn, (i, by are in different S-cells; or i # by).

The first estimate follows from (5.6) and (11.2); the second estimate follows from
Pij(& (G, j,G™)) = 0 and (11.2); the last estimate is from (11.3).

Proof of (11.4) fori, j € X1 UX,. Forthesecond term on the right-hand side of (11.30),
it follows from (11.2) that |ég) — Py <2K|myelq” +2%%3 mye|q"*!'. Moreover, again
13/V j = 0if y and j are in different connected components of C;O. Thus, by Claim 11.3,
we have ﬁyj # 0 for at most 10w vertices y € {a; : i € [1, ull} U {b; : i € [1, v]}, and

for these we again have |13y il < 2|mgc| by (11.32). Altogether, the second term on the
right-hand of (11.30) is bounded by

1

o A
716 = Pl Pyl < 200Q2K + 22 g) mgelq".
(x,y)eE

i

To estimate the last term in (11.30), we denote

. ) ~(T) . D ~(T)
Il := max |Pij_Gij l, I = max |Pij_G,~/~ |
i,jeXy ieXy,jeXUXy -

Our goal is to prove that
I, Dy < 24K myclq” (11.33)

In the following, we first derive an estimate for I>. We assume that i € S; for some
t # 1,and j € X; UX,. We decompose the set E [as in (11.31)] according to their
relations to the S-cell S;: E = E{ U E, U E3, where

Ey={(x,y):x €S},
E; ={(x,y) : x €5, distgm (i, x) < 2r},
E; ={(x,y):x €Sy, distgm (i, x) = 2r}.

Notice thatforany (x, y) € E, by the definitionof I'7, I>, we always have | 15y j— CN}SJD | <

max{I, I>}. For (x,y) € Ej, we have |[E{| < 2v < 4(d — 1)**!. Since i, x are in
different S-cells, by (11.32),

max{I7, I>}.

;

1 . 4d — D 2m
(T)

E 1< E G: |max{l, 7} <

E; (x,y)eE;

For (x, y) € E,, we have |E;| < 2w by (4.7) and (8.2). Thus, by (11.32),

4olmg|

Vd—1

max{Il7, I3}.

Vd—1

1 A(T
S1< Y 16 Imax{Iy, 1) <
E, ek
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For (x, y) € E3, we have |E3| < ' from (9.6), and combined with (11.32),

1 A (T) 2K &' |msc|q”
Dl IS = > G Imax{I, I3} < === max{I}. I3}.
E; =1 ek d-1

Combining the sums over E, E;, E3, fori € X5 and j € Xj U X;, (11.30) leads to
8(w+1)
Jd -1

glven VN7 > Md — )", /d > 20w and o'q" <« 1. Moreover, taking the
maximum over all ieXyandj € Xl U Xz, we get

8w+
Jd—1

Next, we estimate [7. To this end, we decompose the set E [as in (11.31)] according
to the cases in (11.32) as E = E| U E, U E; U E}, where

G} = Pyjl < 200g + 1) 2K + 228 g)|myclq" + max{Iy, Iy},

D < (20wg + DK +2%q) Imyclq” +

ax{I, D). (11.34)

E/ = {(x,y) : x € Xy, distgm (i, x) < 2r},
={(x,y) :x,y € Xy, distgm (i, x) > 2r},

E’3 ={(x,y) :x € X1,y € Xo, distgm (i, x) > 2r},

E, ={(x,y) :x e Xp}.

For (x,y) € E}, |E| < 2w from (4.7) and (8.2). |P,; — GSJTH < max{I1, I} by the
definition of I'7, I>. Therefore, by (11.32),

Z[...]<
E

A 4wlmg|
(T) sc
E / |Gix |max{1"1,1"2}< ﬁmax{ﬂ,f‘z}.
(x,y)GEl

For (x, y) € E), |E}| < 2o from (9.6), and |15yj — Gg)l < I from the definition of
I Thus, by (11.32),

Z[...]<
E)

A(T
16N < 4Kwq™ .
(x,y)eE)

For (x, y) € B}, we have |E}| < 2v < 4(d — 1!, and |P; — G| < I, from the
definition of . Thus, by (11. 32)

Z[...]<
E

Z |G(T)|F2 SK(d 1)E+lqr+1 D.
(x,y)GEg

For (x, y) € E}, we have |E}| < v < 2(d — )™, and |Py; — G(T)| < max{ly, I}
from the definition of I, I'5. Thus, by (11.32),

Z[...]<
E,

1
A(T) 4d — W pm
> UG + ) € ———— max{I}, I})}.
(x.y)eE, d=1/Nn
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Using r = 2¢ + 1, and combining the above estimates in (11.30), we obtain that, for all
i,j€Xy,

~(T) ~ 20+3 ’ 8(w+1) < do+4 )
G:."— Pi|<20wg + 1)K +2 mgelqg’ + I+| 8K + ——— | I3,
IG;; i1 < 20wq + 1)( q)|msclq Ji— Ji—i)"

given /N7 > M(d — 1) and w'q" <« 1. Taking the maximum over the left-hand
side, we have

1 < Q0wq + DK + 22539 maclq” + 2D <8K + ﬂ) .
Ja—1 Ja—1
(11.35)

Finally, the claim (11.33) follows by combining (11.34) and (11.35), provided that
Vd =1 > max{(w + 1)222¢+10 28(4 + 1)K }. Therefore for any i, j € Xj UX,, we
have

~(T . LA = ~ ~ ..o
Gy = P& j. G < IGD = Pyyjl + 1By — Pij(&r i j. G
< 24K |mclg” + 22 mgclg"™" < (4K + Dlmyelq”,
(11.36)
which implies the bound stated in (11.4). O

Proof of (11.4) for the remaining case. Fori ¢ X; UX, and j € X U X,, first note
that &, (i, J, G(T)) =&, J, G ™) and that both graphs have the same deficit function.
To prove (11.4), we will show that |G(T) E}r)l is small. To this end, we start from the
resolvent identity (11.28), which states that

- ~ 1 ~ ~
(T) (T) Ty, ~(M
Gy’ =G| < == D2 161G} (11.37)
(x,y)eE
By the definition of the sets X1, X, for any (x, y) € E, we have distgam (i,x) > 2r
and |G(T)| < 2K|mg|q" by (11.32). We simply decompose the set E [as in (11.31)]
accordlng to their distance to the vertex j as E = E{ U E,, where
Ey = {(x,y) : distge (v, j) < 2r},
Ep = {(x,y) :distgm (y, j) = 2r}.

For (x,y) € Ej, we have |E;| < 10w by (11.27) in Claim 11.3. Moreover, |G$)| <
|Pyi (& (v, jo G|+ 24K? + 1)|myclg” < 2|myc| by (11.36). Thus, combining with
(11.32), we have

D -1 < 40K wlmylg™",
E,

where here [ - - -] denotes the terms in the sum in (11.37). For (x, y) € E,, we have
|Es| < 2v < 2(d— 1!, and |G§P| < (24K 2+ 1)|myclq” by (11.36), since Py; (&, (y,
j, G™M)) = 0. Thus, combining with (11.32),

) 52 = D!

<2KQ4K? + 1)|mye
DL 1< 2K QK + Dlmiel g™ ————

E;
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Combining the sums over E, E;, we get

2 2r2(d = D™

Gy — G| < 40K wg™! + 2K Q4K + 1)|myc2q < 100K |myelq”,

Jd —1
provided that /d — 1 > 20w. Similarly, in the case i, j ¢ X;| U X, we have
~(M) AT A(T) A
|Gij _Gij | < /— Z |Gix ”Gyj |
(x,y)eE
(d )€+1

< 2K (24K2 + D|mye* g < 100K 3 |mgelq”

Jd —1
Therefore, fori ¢ X; UXs and j € X1 UXjpori, j ¢ X; UXj, we obtain
~(T P-4 ~(T ~(T ~(T .. A
Gy = Py (&G, j. GPDI<IGY) = G +1GL = P, j, GD))l
< 100K 3 myelq” + 2K Imgclg™ < 27K |myclq”

This completes the proof of (11.4). O

12. Improved Decay in the Switched Graph

In the graph G = 75(G), the edge boundary 97 and the vertex boundary 37 of 7 are
given by

8ET={(11’&1)5(12752)7"’(I[Laapt)}a H:: 87:{&17a2""7aﬂ}7 (12'1)

where the vertices a; = ¢; with i € [1, v] are those that get switched, and the vertices
a; = a; withi € [[v + 1, u] are those for which the switching does not take place. Here
recall from Remark 7.7 that we assume without loss of generality that the index set of
admissible switchings is Wg = [[1, v] C [[1, n]l.

The result of this section is the following proposition, showing that (i) between most
vertices in I the Green’s function is small; (ii) for any vertex not in I, the Green’s
function between it and most vertices in I is also small. This decay asserted by the
proposition is better than that between the boundary vertices of 7 which we assumed
in the unswitched graph. This improvement is crucial for the subsequent sections, in
particular for the derivation of the self-consistent equation.

Proposition 12.1. Under the same assumptions as in Proposition 11.1, let S € F 9
(as in Sect. 11.1) and assume that G = Ts(G) € §2 (as in Sect. 3.2). Then there exists
J C [, v with |J| > v — & — 6w such that, for any k € J,

|Gl(312| < 22K mgelg? ! ifi = aj for some j € [1, uI\J, (12.2)
|fok)| <22 K% mye|g? 2 if i = aj for some j € J\{k}, (12.3)
|Gf3rk)| < 22K mye|g¥ ™! ifi 7 bi and distger (i, ar) > 2r, (12.4)

provided that /d — 1 > max{(w + 1)2222+10 28(w + 1)K}, that o'q" <« 1 and that
/Ni’]q3r+2 > M.
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The proposition uses the randomness of the resampling via the properties of the
Green’s function that are encoded by the S’-cells. Indeed, recall that if ¢; was a random
index, independent of ¢M andi , then the size of the right-hand sides would be of order
1/V/Nn < |mge|g>*?* by the Ward identity (B.6). The remainder of this section is
devoted to the proof of the proposition.

12.1. Preliminaries. To prove Proposition 12.1, we use the same setup as in the proof
of (11.4). Thus, from (11.25)—(11.26) and the paragraph below, recall the sets X1, X,
and the graphs Gy, @0, Qo, and that the set X; U X is contained in G¢ (the vertex set of
Go). We also recall the S’-cells defined in Sect. 9.1.

We will prove Proposition 12.1 with the set / C [[1, v]| given by the set of indices
k € [1, v] such that the following conditions hold:

1. bg, cr € X5 (i.e. the S-cell containing by and ¢y is not Sy);
2. Bgr(ck, Q(T)) is a tree;
3. the S’-cell S’ containing by and ¢y is not S’l (as implied by (i)) and satisfies

distgm, (S, {am :m € [1, uI\{k}} U {bp, ¢ = m € [1, vIN{Kk}}) > R/4. (12.5)

By the assumption S € F(G), and using the definition of F'(G) given in Sect. 11.1, note
that (8.5) and (9.7) hold. (8.5) implies that condition (ii) in the definition of J is true
for all k € [1, v]] with at most w exceptions. (9.7) implies condition (i), and further that
condition (iii) is true for all k € [1, v] with at most " + 5w exceptions. It follows that

[J|=>v—o — 6w,

as asserted in the statement of Proposition 12.1. With this definition of J/, to prove Propo-
sition 12.1, we now follow the structure described below (10.4) (without the localization
step, which is not required here).

Starting point. For the remainder of this section, we fix k € J and denote the S'-cell
containing ¢ by S'. Notice that, by the definition of J, the S’-cell ' is not S}, and that it
is equal to the S-cell containing ck. For any 7 arising in the statement of Proposition 12.1,
we either have i € I, in which case i and ¢ are in different S-cells (by definition of J,
the S-cell of ¢ does not contain any a;), or otherwise i 7* by. Noticing that by and c
are in the same S-cell, in both cases, the estimate (11.3) with j = ¢, holds. Therefore,
since the graph GM s given by adding the edges {a;, b;}i <y to ¢, by the resolvent
formula (B.1), we have

(T) (T) (T) A (T) M M &),
Giol| = |G + = 2 O Oha| S e+ 7= 2 100 Glal
(x,y)eE (x,y)eE
(12.6)

where the summation is over the ordered pairs

(x,y) € E={(a1,b1),..., (av, b)), (b1, a1), ..., (by,a)}. (12.7)

By our assumption on 7, the first term on the right-hand side of (12.6) is smaller than the
right-hand sides of (12.2)-(12.4), so we only need to estimate the sum on the right-hand
side of (12.6).
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Green’s function estimates. To estimate the sum on the right-hand side of (12.6), we
use the following estimates on Green’s functions, which hold for (x, y) € E:

2|my.| (all x),
|(A}(T)| < 2K |msclq” (('hSt s (0, X) 2 2r), (12.8)
= 2M//Nn (i and x are in different S-cells,
or i 7% the S-cell containing x),
= 2|mgcl (all y),
G < 5 12.9
Dl S\ T Kmgelgr istgen (0, ) > 20). (129

The last bound in (12.8) holds by (11.3). The remaining estimates follow from Proposi-
tions 11.1, together with (5.6) for the bound for all x, y; using that P;, (&, (i, x, G™)) = 0
for the bound for distgr, (i, x) > 2r and using also that Py, (€, (y, c, ¢M)) =0 for
the bound for distg(qr) (y, cx) = 2r.

Distance estimates. Since the estimates (12.8)—(12.9) depend on distances, we need

some estimates on distances in the graphs C; M and Q (D These are summarized in the
following lemma.

Lemma 12.2. Let k € J and S’ be the S'-cell that contains cy. Then the following
estimates hold.

1. In the graph C;(T), the vertex cy is far away from {ay, ..., a,, b1, ..., by}:
distgm (cx,{ar, ...,au, b1, ..., by}) > 2r. (12.10)
2. IfdistG(T) (i,S') > 2r, then
dlStg(T) (i,ar) > dlStg(T) (i,ar) > (12.11)
3.Ifi € X| and dlstg<T) (i, ax) = 2r, then
distgm) i,S) > 2r. (12.12)
Notice also that, by the definition of J, we have {m € [1, v] : by, € S'} = {k}.
Proof. To prove (i), it follows from (12.5) from the definition of J that
distgw) (ck, {am : m € [1, uI\{k} U {by, : m € [1, v\{k}}} > R/4 > 2r.

It remains to prove dists G (ck, {ak, bx}} > 2r. Given any geodesic in Q(T) from ¢y to
{ak, br}, we dlstmgulsh two cases. In the first case that the geodesic contains any of the
edges {am, by }m<v, the condition (12.5) which holds by the definition of J, implies that
its length is larger than 2r. In the second case that the geodesic contains none of the

edges {am, b )m<y, it a path on the graph G

Therefore, to prove (i), it suffices to show that (12.10) holds with the graph ¢M
replaced by Q(T). By the condition by, cx € X, and since by, ci are adjacent in M, it
follows from Lemma 9.3 that distgr) (bx, ax) > 8r, and therefore that

dist am (ck, ax) = distgen (ck, ax) > 8r > 2r.
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Moreover, since ¢ has radius-R tree neighborhood in G| and since in G the edge
{bx, cx} is removed compared to G (T), we have

diStQ(T) (b, cx) > R > 2r.

This completes the proof of (12.10) with G replaced by G¢™, and thus the proof of
).

For (i), since ay and by € S’ are adjacent in the graph ¢M, we have

distg"(']r) (l, ak) 2 distg"(']r) (l, S/) -1 2 2r.

The first inequality in (12.11) is trivial since ¢ c g,

To prove (iii), note that any geodesic from i to S’ in G either contains ag, or does
not contain the edge {ax, by }. In the first case that the geodesic contains ag, its length is
at least 1 + distgm (i, ar) > 2r, as desired. In the second case,

disté(jr) G,S) > distg(m\{%bk}(xl U XQ\S/, SH = diStg(T) Xy u XZ\S/, S > 4r,

where the first inequality holds sincei € X;UX;\S', and the last inequality follows from
the definition of the S-cells and Lemma 9.3. Recall that the graph G(™ is obtained from
g by adding the edges {a,, by }m<y and removing the edges {b;, ¢y }m<v- And by
the definition of the set J, we know {by, cx} C S' and {b,,,, ¢,y : m € [1, vI\{k}} C XjU
X, \S'. Therefore, the graph GO\ {ag, by} and GT are different only on the subgraphs
induced on S’ and X U X;,\S', and the equality in the above equation holds. O

Remark 12.3. Recall the random walk representation of the Green’s function from Sect. 3.3.
In terms of the random walk heuristic, together with the a priori estimates (12.8)—(12.9)
on the Green’s function, one can understand the bounds of Proposition 12.1 as follows.
For the left-hand side of (12.2), the walk with most weight is i — ax — br — cy.
Since distg~<T) (i,ar) > 2r and distg(m (b, cr) = 2r, the walks i — a; and by — ¢
each contribute at least a small factor ¢”; the walk ay — by has at least one step and thus
contributes at least a factor g. Therefore |(~;§112| < q" xqxq" = q**!. For the left-hand
side of (12.3), the walk with most weightisi =c¢; — b; — aj — ay — by — ¢, and
it therefore follows that |(~;gk)| <q" xqxq" xqxq" =q>*. For the left-hand side
of (12.4), the walk with most weight is i — a; — by — cx, and thus |C~}§2rk)| < g+t

The proof of Proposition 12.1 essentially follows from the heuristic described in
Remark 12.3, which can be made rigorous by combining the estimates on the Green’s
function of (12.8)—(12.9) with those on the distances stated in Lemma 12.2. This requires
a division into a number of cases and is done carefully below.

12.2. Proof of (12.2). Let
I := max {|éfgj| i € X1 such that distgr (i, §) > 2r} , (12.13)
o= max{|f}§g)| ieXpandi gs’}. (12.14)
Thus I7 is the maximal size of the Green’s function between c; and vertices in X

which is away from ', and I is the maximal size of the Green’s function between c
and vertices in X, which is in different S’-cells from cy.
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Proposition 12.4.
max{I, I} < 27K mgelg® ™!, (12.15)

provided that /d — 1 > max{(w + 1)22%**10 23(w + 1)K}, that 'q" < 1, and that
/Nﬁq2r+2 2 M.

Given Proposition 12.4, the claim (12.2) is an immediate consequence.

Proof of (12.2). It suffices to show that the left-hand side of (12.2) is bounded by
max{l7, I>}. First, if i € X5, then i = ¢; for some [ # k, and by the definition of
J, then ¢; ¢ S'. Thus the left-hand sides of (12.2) is bounded by I'>. Second, if i € X,
then either i = a; or i = ¢; for some [ # k. In either case, by the definition of J,
distgm) (i,S') > R/4 — 2r > 2r. Thus the left-hand side of (12.2) is bounded by I7.

O

Proof of Proposition 12.4. We first derive a bound for I'|. Let i obey the conditions in
the definition of I in (12.13). We divide the sum over the set E in (12.6) according to
the cases in (12.8)—(12.9)as E = E; U --- U E5, where

E = {(ax, bi)},

E> = {(b, ar)},

Es ={(bi,a) : 1 #k, b € X3},

Eqy={(ar, b)) : 1 #k, b € X3},

Es = {(ar, b)), (bi,a1) : 1 #k, by € X;}.
For (ay, by) € E1, we have dlStG(T) (i,ax) = 2r by (12.11) and dlStg(T) (b, cx) = 2r by
(12.10). Thus, by (12.8)—(12.9),

Z[ <2K|mulq Y2 K3 myelq" )
d—1

For (by, ar) € E,, we have by € X; and i € X, which implies i and by are in different
S-cells. Thus, by (12.8)—(12.9),

Z[ 1< 2M  2|my.| - 4qM
S YN Va1 VN

For (b;, a;) € E3, we again have that i and b; are in different S-cells (since b; € X;) and
distger (a1, cx) = 2r by (12.10). Thus, by (12.8)=(12.9) and |E3| < pt < 2(d — D,

Z[ \/_29K3(d )Z+]qr+l.

For (a;, by) € E4,there are atmostw+1 indices/ such thatdistgm (i, ar) < dists 4m (i, al) <

2r by (4.7), and at most |E4| < i < 2(d — 1)**! indices such that distger) (7, a;)

Moreover, we have b; € X5 and also by ¢ S’ by the definition of J. Thus, by (12.8) and
the definition of I,

Z[ 1< <( +1) 2|myge| +2(d — 1)£+1 2K|msc|qr) .
£, Jd —1 d—1
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For (x,y) € Es, there are at most 10w pairs (x, y) € Es such that distG(T) (i,x) <
2r by (8.7) in Proposition 8.2, at most 2w’ pairs such that distg~<T) (i, x) > 2r since

X1 N {b1, ..., by} < @ by (9.6). Thus, by (12.8) and |G{¢)| < I

2 2K 4
SI1< (10a) sel | o 2Kl )1‘1.
Es

Vda—-1 — Jd-1

Combining the sums over Ej, ... Es, and taking the maximum over i obeying the
conditions in the definition of I in (12.13), we get

M
< <2+4 +29K3) B il il as
1 q \/N_U | sc|q

+(20wq +4Ka)'qr+1)1"1 + 2w+ 1)g +4K) 1. (12.16)

Tobound I, leti € X; be as in the definition of I. Let S” be the S’-cell containing i,
and notice that " # S”, S| from the definition of I;. We now divide E = E|U---UE},
where

Ey ={(x,y):x € X1}, (12.17)
E, ={(b,ap) : by € Sy = {(bk, )}, (12.18)
E5 = {(b;,a) : by €S}, (12.19)
E, = {(bi.a) : by € Xo\(S' US")}. (12.20)

For (x,y) € E/, i and x are in different S-cells (since x € X; and i € X;) and
distgen (v, k) > 2r by (12.10). Since |E}| < 2u < 4(d — et

2M 27K3|msclq"
VN Jd—1

DU 1<4d -t
E}

For (bx,ar) € E’, i and by are in different S-cells since i € S” and by € S by
assumption. Moreover, we have distgm (ax, cx) > 2r by (12.10). Thus

Z[ 1< 2M 27K3|msc|q’
- S UNy Jd—1
2

For (b;, a;) € E, there are at most 5w indices ! such that distg(T) (i, by) < 2r by (8.7)
in Proposition 8.2, and at most [E| < [{{ € [1,v] : b; € §"}| < & + 5w indices

such that dist 5., (i, b;) = 2r by (9.7). Moreover, |Gggk| < I (since distgm (a;,S) >
R/4—2r > gr by the definition of J). Thus

2mge 2K r
Z[-..]<<5w 75| +(a)’+5w)M) r.
E}

Vd-1 7 Jd-1

For (b;, a;) € E/,,i and by are in different S-cells; a; and ¢ are in different S-cells (since
a; € S| and ¢; € S); there are at most |E))| < u < 2(d — D! terms. Thus

Srr<2w - 2 T
& VN Nd—1
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Combining the sums over E /], .., E 21’ and taking the maximum over i obeying the
conditions in the definition of I, we get

M
D < <2+210K3 +28K3qr+1> M
v Nn

+ <10wq +2K (o +50)g" ! +

4(d— D) 2m
¥> I (12.21)

VN7
In summary, in (12.16) and (12.21), we have shown that
I'n <a+bly+cl, I <0o+ely,

where a, b, ¢, 0, ¢ are explicit constants given in (12.16) and (12.21). By plugging the
second estimate into the first one, noticing b + ce < 1, and using the explicit values of
a, b, ¢, 0, ¢, it follows that

N < (@+)/(1—(b+ce) < 22K myclg™™, D <o+elt < 22K mgelg™™!,

provided that /d — 1 > max{(w + 1)2220+10 28(4) + 1)K}, that w'q” < 1, and that
/qu2r+2 >M. O

12.3. Proofs of (12.4) and (12.3).

Proof of (12.4). To bound the left-hand side of (12.4), consider first the case that i €
X1UXy: (1) ifi € Xy and distg~m (i, ax) = 2r,itfollows by (12.12) that distgm 1,8 >
2r. Thus the left-hand side of (12.4) is bounded by I7; (ii) if i € X, and i 7 by, then
i ¢ S, and the left-hand side of (12.4) is bounded by I>. Therefore (12.4) follows from
Proposition 12.4.

For the remaining case i ¢ X; U X, and i % by, we bound the sum over E in
(12.6). By the definition of X; and X, distgar) @ f{ar,...,au,b1,...,by}) > 2r,and
therefore also in G < GM. Thus (12.8) implies |G| < 2K |myc|q" for all x €
{ai,...,ay, by, ..., by}

For (x, y) = (ax, bx), (bx, ax), we have distgm) (y, cx) > 2r by (12.10), and thus
|(~;9£,2| < 27K3|mye|g” by (12.9). The remaining y # ay, by satisfy either the condition
in (12.13) or in (12.14). Therefore |G§2| < max{[l7, In} < I, and there are at most

21 < 2d(d — 1)* such terms.
In summary, we have shown

- 2M

(T) 9 4 2r+1 1 ¢

|Gick| < \/__n +2°K |msc|q r+ +(2qu+ YR2d(d — 1)) I
< 212K5|msc|qzr+l,

provided that \/Nn > Mq‘zr—z, where weused r =2+ 1. 0O

Proof of (12.3). Itremains to estimate Gﬁ?fgk for j € J\{k}. As previously, we denote by
S’ the S’-cell containing cx, and now denote by S” the S’-cell containing ¢ ;. The estimates
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in Lemma 12.2 on distances from ¢y also apply with ¢ replaced by c¢;. Similarly to the
bound of I, we use formula (12.6) and devide E as E = E{ U ---U E5, where

E;={(x,y):x € Xy, x # a},

E; = {(ax, br)},

E3 = {(bi.ap) : by € S’} = {(bk, ax))},
Ey=A{(b,a;) : by €S"} = {(bj,aj)},
Es ={(bi,a;) : by € X\ (S'US")).

Notice that for any x € {ay, ..., ay, by, ..., by}\{b;}, by the definition of J, x, ¢; are
in different S-cells, and thus |G{,}| < 2M//N7 by (12.8). Moreover, by the definition

of J, forany y € {ay,, by, : m € [1, v]\{k}}, we have distg(T) »v,S) > R/4—2r > 2r

and thus y satisfies the condition either in (12.13) or in (12.14). It follows that |G§Ez <

max{I, I3} < I'. For (x, y) € Ej. Since |E1| < 21 < 4(d — 1)1, it follows that

SUd<a@-nmL O
. VN /d—1

For (x.y) = (ar. b) € Ep. By (12.10), distgr, (bx. cx) > 2r, and thus |Gy | <
2K |myelq”

Z[ 1< 2M 27K3\mgelq”
E> B N d—1 .

For (x.y) = (be.ax) € Es. By (12.10), distger (ax. cx) > 2r, and thus |Gl | <

27K3|myelq"

2M 27K3|msc|qr

2l

For (x,y) = (bj,a;) € Ey4, by (12.10) with ¢, replaced by c;, we have the distance
estimates

diStG(T) (cj. {ar,...,au, by, ..., by} > 2r.
In particular, disté(T>(cj,bj) > distg(m(cj,bj) > 2r, and |(A}g£j| < 2K |mygc|g" by
(12.8). Thus

2K r
Z[...] < %FI
E, h

For (x, y) € Es, since |Es| < u < 2(d — 1)1, it follows that

Sr<ad -y AL O
E- VN d—1
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The above discussion combined with (12.15) leads to the estimate

~ (T M
G0«
JjCk Nn

< 212K5|m3‘c|q3r+29

24+2°K3¢™! ¥ 12(d — 1)“1/21“]) +2Kg™

provided that /N7ng>*> > M. 0O

13. Stability Estimate for the Switched Graph

Proposition 13.1. Under the assumptions of Propositions 11.1, for S € F(G) (as in
Sect. 11.1) such that G = Tg(G) € £2 (as in Sect. 3.2), the Green’s function of the
switched graph satisfies the weak stability estimate that for all i, j € [N]],

1Gij ()] < 1G] < 2. (13.1)
Moreover, the off-diagonal entries of the Green’s function satisfy the following improved
estimates around vertex 1. For all vertices x € [[2, N1,

Gir — P& (1, x, G| < (@ + D22 K g g (13.2)

For all estimates, we assume that ~/d — 1 > max{(w+1)222¢+10 28(w+ 1)K}, a/Zqé <
1 and /N1g>** > M.

13.1. Preparation of the proof. As in (12.1), we denote by dg7 the boundary edges
of 7 in the switched graph G, and the corresponding boundary vertex set by I =
{ai, ay, ..., ay}. Let J be the index set of Proposition 12.1. Throughout the follow-
ing proof, C represents constants that may differ from line to line, but depends only on
the constant K of (11.1) and the excess w. As in previous proofs, we follow the structure
described below (10.4).

Localization. To prove Proposition 15.1, we replace P;; (&, (i, j, ) by a vertex inde-
pendent Green’s function P;; according to Remark 5.3, applied with Gy = Bz, (1, G)
and X = B,, (1, G). We abbreviate

Gi =TEGy), P=G@Gn, ¢"=TEG"), PP =06G"),
Notice that Q~I(T) is the same as removing the vertices T from g], and thus P =
GM@Gy).

Claim 13.2. Let k € J (as in Sect. 12.1), and let K be the connected component of Go
containing ay = ci. Then

{m e l1, ull : am € K} = {k}, (13.3)
and
dist s (i, ax) < 3r. 13.4
max distger (7, dk) < 3r (13.4)
Proof. (13.3) follows from the condition (12.5) in the definition of J, i.e. from distgm)

(ag, {am - m € [1, M]l\{k}}) > R/4 > 6r. (13.4) follows from (13.3) and the construc-
tion of the subgraph Gy. O
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Verification of assumptions in Proposition 5.2. As subgraphs of G, both Gy and Q(T)
have excess at most w. The deficit function g of go vanishes. By Proposition 4.3, on each
connected components of Q~(§T), the deficit function obeys Y g(v) < w + 1 < 8w. Thus
the assumptions for (5.5) are verified for both graphs Qo and ééT), and we have (5.7):

PyE, 1.9 = Py, [Py 1. 6T = B | <228 myelg™! (13.5)
fori, j € X, provided that v/d — 1 > 292,

Starting point. The normalized adjacency matrices of G and G respectively have the

block form
H B H B
B D| |B D |

where H is the normalized adjacency matrix for 7, and B (respectively B)) corresponds
to the edges from I to Ty, where [ is the set of boundary vertices of 7T in the switched
graph G as defined in (12.1), and Ty is the inner vertex boundary of 7 as in (7.24). To be
precise, the nonzero entries of B and B1 occur for the indices (i, j) € I x T, and take
values 1/+/d 1. Notice that B, = (B] )ij; in the rest of this section we will therefore
not distinguish B and B.

By the Schur Complement formula (B.3), we have

Glr=(H—-z-BGDB)™", (13.6)
Plr=(H—-z—BPDB)~!, (13.7)

and, by the resolvent identity (B.1), the difference of (13.6) and (13.7) is
Glr — Plr = (G — PYB'(G™ — PDYBP + PB' (G — PMYBP. (13.8)

In terms of the random walk heuristic described in Sect. 3.3, (13.8) has the inter-
pretation that only walks that exit T contribute (see Fig. 11). We will adopt suggestive
terminology corresponding to the random walk picture below. By Proposition 12.1, the
Green’s function GT) is small between most vertices in I. This is the main reason that the
right-hand side of (13.8) is small. In the following, we analyze the various contributions
precisely.

13.2. Boundary. The following lemma estimates the weight of “walks” from x € T to
Ty, the inner vertex boundary of 7. It depends on the distance of x to the boundary, or
equivalently that from x to 1.

Lemma 13.3. Assume that QN() has excess at most w. For vertices x € Ty, i.e. x is at
distance £\ from vertex 1, we have

D 1Pyl < (@+ D270 + Dm0 @ — 102 (13.9)
kelll,pll



598 R. Bauerschmidt, J. Huang, H.-T. Yau

Fig. 11. Only walks that exit T contribute to (13.8)

For vertices x € Ty, and y € Ty,, with £1 = €2, we have

O (w+ 1)2220%0 (0, — 05 +2) L
20 Pull Pyl < S g s PO a310)

ke[[1,u]l

The proof of the lemma uses the following combinatorial estimate on the distances
of a vertex x to Ty (which is the inner vertex boundary of 7).

Lemma 13.4. Assume that the graph Qo = B3,(1,G) has excess at most w. Given

x € Ty,, let Ly be the multiset consisting of 2(w + 1)(d — 1)t copies of the number

gt =28 for €3 € [[0, £11), and let K be the multiset K, = {qdiStGO(x’i) 21 € Ty}. Then

the k-th largest number of K is smaller than or equal to the k-th largest number of L.

We postpone the proof of the lemma to Appendix A.3. Given the lemma, the proof
of Lemma 13.3 is completed as follows.

Proof of Lemma 13.3. To prove (13.9), we use
_ ~ dists (x.i
S 1Bl <@ =1 Y 1Bl <2972d = Dimye] Y g0,
kel[1,u] i€Ty ieTy

by Proposition 5.2. Defining the multiset L, as in Lemma 13.4, the inequality continuous
with

272(d = Dlmgel Y g0

i€eTy
£
<27(d = Dlmye| Qo +2) Y (d = D hgam20
£3=0

< (@ + 123y + 1) |mge| 0 (@ — 1EE0/2T

This finishes the proof of (13.9).
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For the proof of (13.10), we use
> 1Pl Pyl
kel[L,u]l
@1 Y 1Pl Pyl <22 Pd = 1) Y g™ M,
i€T, ieT,

We define the multisets L, and Ly as in Lemma 13.4. More precisely, L consists of
2(w+1)(d —1)% copies qu€+€1—223 for £3 € [[0, £1]], and L consists of 2(w+1)(d —
1)~ copies of g“+272 for £3 € [[0, £,]]. By the rearrangement inequality, we have

Z qdistéo (x,i)qdistg0 (v,i)

ieT,
1%
< Aw+ 1)2 Z(d _ l)z—e3qe+zl—2e3qe+£2—2e3
£3=0
£
+ Z d— l)e—e3qe+zl—2z3q4—z2
l3=L+1

4w+ 1)2 (L, —€2+2)| Pt-ti=t2
(d — 1)(@1—52)/2 s¢ ’

This finishes the proof of (13.10). O

~

Remark 13.5. In the worst case, when x = 1, we have
D 1Pyl < (@+ D27 g [ (d — D (13.11)
kell1,pull
Moreover, when x, y € Ty,, we have
3 1Pl Pyl < (@ + 1222 g [P 720%2(d — 1), (13.12)
kelll, 1l

These special cases will be used below.

13.3. Outside T. The following proposition shows that the weight of “walks” outside
T is small. It essentially follows from Proposition 12.1.

Proposition 13.6. Under the assumptions of Proposition 13.1, foranyvertex j € [NJ\T
such that distg~(1, J) < 2r, we have

- T - (T .
Y16y = P < Colmyelq” (13.13)
kelll,ull
Moreover, for any vertex j € [N]\T such that distg~(1, Jj) > 2r, we have

o )
> |G§k}| < Co'|myelq”, (13.14)
kelll,u]
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and
T T
Z |Gék21m - a(ka) | < Cw/2|mvc|q ) (13.15)
k#me[[1,ul

where the constants C depend only on the excess w and K (from Proposition 11.1). For
all estimates, we assume /d — 1 > max{(w + 1)222®*10 28(w + DK}, 0'q" < 1 and

/qu3r+2 2 M

Claim 13.7. Let j € [NI\T be as in the statement of Proposition 13.6. Then

[{k € [[1,v]: distg(T) (J,ar) < R/4}| < (13.16)
|{k € [[l,v]]:distg(qr)(j,&k) < R/2}| <w+1. (13.17)
Proof. The first claim follows from (8.7). The second one follows from (4.7) by consid-

ering the graph C; , since by our assumption C; € 2, the R-neighborhood Bg (1, G) has
excess at most w. 0O

Proof of Proposition 13.6. Recall the index set J C [[1, v] defined previously in Sect.
12.1. To prove (13.13), we decompose [ 1, n]] according to the relations between {ay,
bi, ci} and vertex j as [1, u]l = J1 U Jo, where

J1=tkelJ:j#b, distg(T)(j,ak) > 2r, and distg~(T>(j, ar) = R/2},
Jo =1, uI\J1.

By the defining relation (11.5) of F(G) and Proposition 12.1, we have |J| > v —
@ — 6w > u — o — 9w. Combining with (13.16), (13.17) and (9.5), which states that
Hk e [1,v]:j ~ b} <o, we get

[J1] > pn =20 — 150w, || <20 +150.
Bounding by the total number of terms, we also have |J;| < u < 2(d — 1)**!. Now,

for k € Jy, we have a; = c; and the conditions for (12.4) are satisfied. Moreover, for
k € Ji, we have dlstgm (ax, j) = R/2, and therefore by (13.4) the vertices a and j

are in different connected components of QO ; it follows that |P~T) | = 0. Therefore, by
(12.4),

T _ 5T (T)
D16, — P jl= 3 1G]
kel keJy
<2(d — D' QK Imgelg®h) < 2B K myelg”. (13.18)
For k € Jp, by (11.4) and (13.5),
> |GSB ﬁgfﬂ < Qo' +160)27K3 +229%39) Imyclq”. (13.19)
kel

Then (13.13) follows by combining (13.18) and (13.19).
For (13.14), again, we split the sum over J; and over J> as above. For k € Ji,
similarly to (13.13), we have

kelJy
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For k € J,, we note that distg(&k,j) > distg~(1, Jj)— distg(l,&k) >2r—4{ >r,so

that Pz, ; (& (ak, j, G™)) = 0. Therefore, by (11.4), we have

Y IGE < 20 + 150027 K myclg” (13.21)
keJr

Again (13.14) follows by combining (13.20) and (13.21).
For (13.15), we split the sum over

{k#mel,ull} =tk #mell, ul\J}U {k € [1, ul\J,m € J}
Ulke J,m e[, uI\J} U {k #m e J}.

Since |[1, uI\J| € &' + 9w, for k # m € [[1, u]\J, by Proposition 11.1 and (13.5),

~(T T
> |ng;m — ;k; | < (@ +90)2Q7K3 + 223 ) myclq".
ktmell 1 ul\J

For k € [1, u]\J,m € J, by (13.3) a; and a,, are in different connected components
of G§", and thus | P | = 0. By (12.2),

(T) (T) ~(T)
Z |Gakam - aka | = Z |Gij |

kelll,ul\J,meJ kelll,u\J,meJ
(@ +90)2(d — D Q0K mye|g® )

<
< (@' +90)2' K melq”

The same estimate holds for k € J, m € [1, u]\J. For k # m € J, the same reasoning
as above gives ﬁgf’g = 0. By (12.3) and noticing that | /| < u < 2(d — 1)**!, we have

(T (11‘) (T)
Z |Gak“m - ak”m' - Z | Ay dm |
k#melJ k#melJ
< 4(d _ 1)2Z+2212K5 |msc|q3r+2 g 214K5|msclqr

Now (13.15) follows by combining the above four cases. O

13.4. Proof of (13.2). The proof of (13.2) follows essentially from (13.8) and the fact
the difference of G™ and P(D is small (Proposition 11.1).

Claim 13.8. Forall x € T,
1G1x = Pral < (@+ D2 K myelg”
Moreover, for x € T\{1}, we have the stronger estimate

1G1x — Pixl < (@ + D22 K3 mc g™ (13.22)
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Proof of Proposition 13.6. Let I'T = maXyeT |f}1 X — P x|. Then the first term on the
right-hand side of (13.8) is bounded by

I((G — PYB'(G™ — PD)BP),|

(T) (T)
— GGt = P2 11Py.]
kel[[1,u]l me[[1,u]
Fl(Cw/qr+1) B

< W Z | Pp,,x|

- melll,u]
< M(Ca' g™ M (@ + 127 mye |1 (@ — 1))
< Co'lmgelg™ 'y, (13.23)

where we used (13.13) and (13.11). Next we bound the second term on the right-hand
side of (13.8). For, say x € Ty,, we have

BB/ 5T\ 7 1 5 T T
(PB(GD — PTYBP) | < —— D 1PuliGy, — Pig 1Pl

aray akak
kel[1,u]l
1 T T
v D IPulIGRg — Big 1Py,

k#me[[l,u]l

(13.24)
By (5.3) and (5.6), for any k, m € [1, n]],

|Pil < 2% Imgelg, 1Pyl < 2lmsel. (13.25)

We can estimate the first term in (13.24) in the following way:

1 5 1M _ pM
— P IG) — B |1y
kell1, ]
< 2w+2q€+1 (27K3 + 22w+3q)qr+1 Z |ﬁlkx|
kel[1,pll

g (C()+ 1)22w+5(£1 + 1)(27K3 +22w+3q)qr+ﬁl’

where in the first inequality we used (13.25), (11.4) and (13.5), in the second inequality
we used estimate (13.9). For the second term in (13.24), we have

1

5 T T
1 2 1PullGL; — Pig 1IP]
k#Fme[l,u]]
T T
< 2w+2ql+1 Z |Gikl)l B a(ka) 129) < Ca)/2 r+£+2

k#melll,u]]
where we used (13.15) and (13.25). It follows that

|Glx - ﬁlxl < Cw/|msc|qe+lrl
+o+ D227 + DRTK? + 22973 9)g" 0 + Co?g" 2. (13.26)
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By taking the maximum over x € T and rearranglng it, we have I'l < (w+1)2°@*13K3|
mse|q”, provided that w?q® <« 1 and v/d — 1 > (w + 1)222¢+10,
For (13.22), it follows from (13.26), the estimate of 'y and £; > 1,

|élx _ 131x| \ C(,()/ r+l+1 + ((1) + 1)22w+6(27K3 + 22w+3q)qr+1 + Cw/zqr+f+2

< (w+ D22QTK? + 1)g™!, (13.27)
provided that w?¢¢ « 1 and /d > (w+1)2220410, g

Proof of (13.2). For x € T\{1}, the estimate (13.2) follows from (13.27) and (13.5):

Glx — P (&1, x, g))‘ < }Glx - Islx + ’PU(gr(lvx’ .C;)) - ﬁlx

< (w + 1)22w+6(27K3 + l)qr+] + 22w+3|msc|qr+l < (CU + 1)22w+14K3|msc|qr+l .

Thus it only remains to prove (13.2) for x ¢ T.
For x € By, (1, G)\T, we have by the Schur complement formula (B.4):

G=—GBGD, P=—pFPD

Therefore, by taking the difference of these two equations,

G p 5~ 1AM _ AT
|G1x_P1x| ,— Z |Gllk||P&x Gax|
kEIIl ul ¢ g
1 ~ D T
V7 Y 1Gu = PP (13.28)

ke[[L,pll

For the first term in (13.28), notice that by combining (13.25) and (13.22), we have
G| < IG iy, — Pu | + | Pry ] < 277 mielq”. (13.29)
The first term in (13.28) is bounded by

1 .
= S 16 lBT -6 < cqtt Y 18T — 6P < calgmt,

agx agx
kelll,pll kelll,pll

where we used (13.13). For the second term in (13.28), since = £2, its radius-R
neighborhood of vertex 1 has excess at most w. By (4.7) there are at most w + 1 indices
k € [[1, u]l, such that g is in the same connected component as x in the graph Gy. Thus,

~( ) are zero for all k € [[1, u]] except for at most w + 1 of them, and they are bounded

|ng22| < 2lmye| by (5.6).

1
vd—1

A 5 11 p(T
Y 1w, = Py lIP)] < @+ 1P K g g7,
kell1,ul

where we used (13.22). Combining the arguments above, they lead to

|G1x _ P1x| <25K3|m |qr+l +C0)/ r+£+1
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given that /d > (w+ 1)2229+10_ The estimate (13.2) for x € By, (1, G)\T follows,
provided w%g ¢ << 1
For x ¢ ]B%g,(l, G), we have

- 1 N T
Gl < > GG )|

Vd =1,
< 2a)+3qi+] Z |G$))c| < Ca)/ r+0+1 < qr+]’ (13.30)

kell,u]

where we used (13.29) and (13.14). This finishes the proof of (13.2). O

13.5. Proof of (13.1).

Proof of (13.1). For x,y € T, we denote I" = max, ye1{|Gry — Pyy|}. Then, by the
Schur complement formula (13.8),

|Gy — Pyl < 1((G = PYB'(GD — PDYBP) | + (PB (G — PTD)YBP),,|.
(13.31)

The estimate of the first term follows the same argument as that for (13.23):
(G — PYB' (G — PT)BP)y| < Co|myclg™' I < I)/2.
For the second term, similarly, we have

]@é/(éﬂb — P™)BB),,

b (T) p(T)
\ﬁ |lek||Ga ik Pamk||Pky|
ke[l

! p A~ (T) 5T 1 5
" d—1 Z |PXIk | |G&kam - P&k(}m | | le)"

k#Eme[[1,u]]
Clmgclq” - = T T
<= 2 PadlPul @’ 3 16, — PG|
kelll,nll k#Emelll,ul

< Cw/2|msc|qr7

where we bounded |ﬁxlk l, |ﬁlmy| < Clmyc| and used the estimates (11.4), (13.12) and
(13.15). Therefore, by taking supremum of both sides of (13.31) and rearranging, we
have I' < Cw'?|myclq”.

Forx € T and y € By, (1, Q~)\T, the same argument as for (13.28) implies:

|ny - ~)cy|
A~ p(T) (T) 5(T)
= D 1GalIP = Gl + —=== D G = PulI Py
/ kX agx /d agx
kel[l mi| ke[[l 4l
T T (T
<Cq Y | a(ky) ng§|+cd2 oy |Péky)|<Ca)/2|msc|qr+l.

kell,ul kelll,xl
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where we bounded |G x| < Clmy|, and used the estimate (13.13), the bound for I" and
the fact that for all £ € [[1, p]] with at most @ + 1 exceptions, P (T) =0.

Forx € Tand y ¢ By, (1, g), similarly, we have:

~ ~ T
|Gyl < Y 1GqlIGE) < Cq Y 1GL < Callmyelg™,

1
vd —1 kel[1,u]] kel[1,u]]

where we bounded |lek| < C|my,| and used the estimate (13.14).
For x, y € By, (1, Q)/ T, we have the Schur complement formula (B.3):

By taking the difference,
G-P=GD_pD4@GD - pDBGEEGD
+ BDBG - BYFG® + POBBEGD — pD),

. ~(T) _ (T % 5
Notice that |Gl — Py | < Clmgclq”, 1Guya,, | < Climgel, | P
Py, | < Cw'*|mye|q", we have

,,,| < Clmg| and |lelm -

= (T T), Clmse| (T
Gy = Pyl < Clmsclg” + Y 16y = Pig) I =716 g |

k,mell1, 1]
1), Co?Imselq” =t Ty, Clmsel =T T
+ D Pl Gl D PG IG, — Bl
k d—1 my k mYy mYy
k,me[[1,u] k,me[[1,u]
(13.32)
The following estimates follow from Proposition 13.6:
pM (T)
o IPG Do 1GE < Clmgel,
kel[1,p] me([1,ul
T T ~(T (T
6D — PP > 160 - P < Collmyelg”
kelll,ull mel[ll,p]]

Therefore (13.32) simplifies to
|Gx) - xyl Cwlzlmsclq

Finally, for x & B, (1, G) ory ¢ Bo.(1, g"), by symmetry we assume x & By, (1, Q),
we have

od T
G, |G|

amy

. 1 (T
(GPBGBG Ml <o— ) 16
k,melll,ul

=), Clmsel| =T 2
< D G TIGE | < Calimaelg™?,
k,me[[1,u]
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where we used (13.14), thus,
Gy — G| < CoImyelq™.

Altogether we proved that
Gij = Pij(&:G, j, )| < Clmyeloq" < ¢**,

provided that w2’ <« 1. The weak stability estimates (14.10) follows by combining

with (5.6). This finishes the proof of (13.1). O

14. Concentration in the Switched Graph

The result of this section is the following proposition, which shows that the average of the
Green’s function of G over the vertex boundary of T concentrates under resampling of
the edge boundary of T. This part is where the condition that the edge boundary contains
> log N edges is important.

More precisely, recall the vertex boundary I = {a;,a»,...,a,} of 7 in G from
(12.1). For any finite graph H (not necessarily regular and not necessary on N vertices),
we define

! 0
QM. =~} Gj/(H.2), (14.1)
(i,))eE
where E denotes the set of oriented edges of H, and G® (H, z) the Green’s function of
the graph obtained from H by removing the vertex i. Notice that we always normalize

(14.1) by Nd, irregardless of the actual number of oriented edges in H (which can be
smaller than Nd).

Proposition 14.1. Sets 2] (z, £) and 2 are as defined in Sect. 3.2. Let 7 € Cy and
G € £2{(z, £). Thenthere exists anevent F'(G) C F(G) (asin Sect. 11.1) withprobability

Pg(F'(G)) = 1 — o(N~**) such that for any S € F'(G) with Ts(G) € 2,
L § (A o i
; ]; < aray ~ *akai (& (a, ax, Q(T)))) N (Q(g) — me)
< 2(10g N)1/2+5|mxc|qr
h NG

providedthat /d — 1 > max{(w+1)222*10 28(w+1)K}, 0?q" <« 1 and /Nng>*? >
M

, (14.2)

To prove Proposition 14.1, in Lemma 14.3, we first show a similar statement for
the unswitched graph G in which the problem becomes a concentration problem of
independent random variables. Then we prove Proposition 14.1 by comparision, using
the estimates of Proposition 11.1, and the fact that the change from Q(g~ ,2)to Q(G M, Z)
is small (Lemma 14.4). Proposition 11.1 is applicable since, by the definition of set
27 (z, £)in Sect. 3, any graph G € 2} (z, ¢) satisfies the assumptions in Proposition 11.1
with K =210,

The following proposition is used repeatedly in this section. It follows from exactly
the same argument as Proposition 10.2, and we therefore omit the proof.
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Lemma 14.2. Given z € C,, aconstant K' > 2, and G € $2. Let H be one of the graphs
G, GM G or G, and suppose that

|Gij(H, 2) — Pij (&, j, H), )| < K'Imselg” (14.3)
Then, for any vertices i, j in HY), we have

1Gij(H™, 2) — Pij(&r i, j, H™), 2)| < 2K Imyelq”, (14.4)

provided that ~/d > (w + 1)22%*10 Here all graphs have deficit function g =
d — deg, and we recall that H™) is the graph obtained from H by removing the vertex x.

14.1. Estimate for the unswitched graph. The next lemma shows concentration of a
certain average of the Green’s function in the unswitched graph.

Lemma 14.3. For any z € C, and G € 22} (z, £), we define the set F'(G) C F(G) (as
in Sect. 11.1) such that

o
(6 = Paarten . 07 — (06T — )
k=1

(log N)Y2*|myc|q"

< . 14.5
NG (14.5)

Then Pg(F'(G)) = 1 — o(N~9*9),

Proof of (13.1). Let

Xi = G — P (E(cky cr, GTP9)), ke [, ull.

CkCk

Conditioned on the graph ¢ ,therandomsets Sy, S», ..., S, areindependent and iden-
tically distributed, and thus X, X», ..., X, are i.i.d random variables. By Lemma 14.2
and the assumption that G € .Qf(z, £), for any k € [1, n]l, we have

| Xkl < 2K |myclq",

where K = 20, By Azuma’s inequality for independent random variables, it therefore
follows that

(‘ Zxk—E[X]

k=1

S 2Kidmela™) e (g
NG

In the following, we still need to estimate E[X;]. Let E be the set of oriented edges
of GM. By definition, T is the £ neighborhood of the vertex 1, and by the trivial
bound it intersects at most d + d(d — 1) + --- +d(d — 1)* < 2(d — 1)**! edges.
Thus Nd — 4(d — 1)**! < |E| < Nd. Using that, by Lemma 14.2, we also have

|Gl§31’1) Pii (&0, g(TJ)))| 2K |mgc|q”, it follows that



608 R. Bauerschmidt, J. Huang, H.-T. Yau

1 ; )
EIXe = 3 Gy = Pi(&(.i.G™D))

(i.))eE
I ) ey 8K msclg”(d — D!
= WU%E}EGH P = P& i, GT) + 0¢ v
=00~ — Y PiE i, 0T+ 0< (). (14.7)
Nd o SAN

(i.))eE

Moreover, since by assumption G € £2, all except for at most N? vertices have radius- R
tree neighborhoods in G, and therefore

{i € [1, NI\T : B,(, ¢M)isnota d-regular tree}|
<Hielll, NI :B.(i,G)isnotatree}| + |{i € [1, N] : distg(i, T) < r}|
<N +2(d — 1) <2N°.
For the vertices i contained in the set on the left-hand side, we have the bound | P;; (&, (i, i,

g@ )))I < 2|mg.| from (5.4). For the other vertices i, whose r-neighborhood in G is
a d-regular tree, we have the equality P;; (&, (i, i, G ™Yy = my,. Therefore

1 .
i O P 1. G = e+ O<BNT) (14.8)
(i,))eE

Combining (14.7), (14.8), and taking r = (log N2 J(4K) in (14.6), we get

P (‘% > - (2@™) —mi)
i=1

< o~ (log )" /(32K%)

WV

2Kt|mgc|lq" 10
+
ﬁ N1-6

Since N~ « (log N)V/**|my.|q" / /1, it follows that (14.5) holds with overwhelm-
ing probability, and we can define F'(G) C F(G) as claimed with probability

PG(F'(@) > Pg(F(G)) — e~ (0N ™/GKD — (=),

where we used (11.6). This completes the proof. O

14.2. Changing 0G M)y 10 Q(g). The next lemma shows that we can replace Q(G (M)
by Q(G) up to a small error. It follows from the general insensitivity of the quantity O
to small changes of the graph.

Lemma 14.4. Forz € C, G € 2} (z,0) and S € F(G) with Ts(G) € £2, we have

36d2f+2
Nnp

1066™M, 2) — 0(G,2)| < (14.9)

providedthat /d — 1 > max{(w+1)222*10 28(w+1)K}, 0?q* < 1and /Nng3** >
M.
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The proof of Lemma 14.4 uses Lemma 14.5 below, which is a direct consequence of
the Ward identity (B.6).

Lemma 14.5. Given a graph G with degree bounded by d. We denote by E the set of
oriented edges of G, by H its normalized adjacency matrix, and by G = (H — z)~ ! its
Green’s function. Then, if for some z € Cy and any (i, j) € E, it holds that

1Gij () < |Gj; ()] <2, (14.10)
then for any vertex x € G,
; 8d
Y6k < —. (14.11)
(i,j)€E 1

Proof. By the Schur complement formula (B.5) and the Ward identity (B.6), we obtain

2 2
M2 _ - GijGjx ) GijGjx
Z G 17 = Z Gm_G—j/‘ < Z 2|Gixl +2’G—//'
(i.j))eE (i.))eE - (i.j))eE J.
. 4dIm[G,,] _ 8d
<4 ) 1Gi P <4) degg(DIGi P < ———= < —,
(i,))eE i n

as claimed. O

We will prove Lemma 14.4 in two steps, by proving
A dup A ~ du
106G —2@G™)I < 5. 106D) =@M < 57—, (14.12)
2Nn 2Nn

and

34d2€+2
Nn

106G - 09 < (14.13)

Then (14.9) follows by combining (14.12) and (14.13), and using that 1 < 2(d — 1)¢*1.
In preparation, we recall from Proposition 13.1 that, for all vertices i, j € [N]],

1Gij ()| <1Gj; ()] < 2. (14.14)

Proof of (14.12). The proofs of both estimates in (14.12) are analogous, and we only
prove the first one. Denote by E the set of oriented edges of G, and by A =
ZZ: 1(epper + eciny)/~/d — 1 the difference of the normalized adjacency matrices of

the graphs _C'; M and ¢ . Then by the resolvent formula (B.1),

A(TJ) (Tj) A(TJ) (Tj)
DG =6 1<Y ] Y 1617 40,67
(i,j)eE X,y (i,j)eE
1/2

~(Ti Ti 16d,LL
g ZAxy Z |G§x])|2 Z |G§yij)|2 g ~ 1’
x,y (i.j)eE (i.J)cE e
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where we used (14.11) [and that both graphs G(™ and g satisfy condition (14.10) by
the definition of .Qf’(z, £) and (11.2)]. Therefore,

A 1 . 1 A (T 7 ;
T T (Tex) Tbh (Tj) (Tj)
0™ - 0@M)| < 57 X 16+ G+ o Y 16 — 6
kel[1,v] (i,j)eE
< 4v|mge| N 16du < du ’
Nd Nns/d—1 ~ 2Nn
where in the estimate of the first term, we used |Gg,2i)|, |Ggfk")| < 2|myc| which follows

from combining (3.7), Lemma 14.2, and (5.4). O

(14.15)

Proof of (14.13). The normalized adjacency matrices of G takes the block form

H B

B D]’
where H is the normalized adjacency matrix for 7°, and B corresponds to the edges from
I'to Ty, where I is the set of boundary vertices of 7 in the switched graph G as defined

in (12.1). We denote by E the set of oriented edges of G, By the Schur complement
formula (B.3), we have

~(Tj) _ ~() 1 ~(T)) ~() A(T))
D L A R s SO DR DR A
(i.))eE kmelll,ull i, j)eE

It follows from (14.14) and (B.5) that |Gl(lfl)m | < 4. Therefore the above expression is
bounded by

~(Tj) _ ~() 4 ~(Tj) 7(Tj)
Z IGii _Gii I < d—1 Z Z |Gi§k Gizmi |

(i,j)eE k.melll,ull (i,j)eE
12
4 ~ (T ~ (T
SFEID O DN olcel
k.mel[l,ull \(G,j)eE (i,j)eE

32dpu? _ 32d%t+2
Tad-1 T g

where we used (14.11) (since G satisfies condition (14.10) thanks to the definition of
27 (z, £) and (11.4)). Therefore, we have

~ ~ 1 o e 1 o .
0™ - 0@ < Y 16D +E e Y 167 -6
{i,j} incident to T (i,))eE
- 16(d _ 1)Z+1 .\ 32d22+2 - 34d2f+2

Nd Nn Nn

) (14.16)

where for the first term we used |G§‘l/) [, |G;’}| < 4 from (14.14) and (B.5). O
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14.3. Adding of switched vertices. Recall the index set J C [1, v] from Proposi-
tion 12.1. In this subsection, we show that the following lemma.

Lemma 14.6. Forz € C,, G € 2] (z,£) and S € F(G) with Ts(G) € 2, foranyk € J,

we have
Gl = GLeP1 < 16¢7 (14.17)
and
1GD — G0 < 210K H g lg™ (14.18)

where K = 219, For both estimates, we assume /d — 1 > max{(w + 1)2220+10 28 (¢ 4
DK}, o'q" < 1 and /Nng* > M.

To prove Lemma 14.6 we need the estimates summarized in the following lemma.

Lemma 14.7. Let z € C, G € 2 (2, £), and S € F(G) with Ts(G) € $2. Then for any

index k € J, the vertex cy is far away from {ay, ..., a,, b1, ..., b,}:
distém (ck,{ar, ...,au, by, ...,by}) > distg(T) (ck,{ar,...,au,b1,...,by}) > 2r.
(14.19)
Moreover, for any x € {ay, ..., a,, by, ..., by},
G < 2KImsclg”, 1GDI< 27K mgcla”, 1Gy) | > Imgel /2, (14.20)

where K = 219 and we assume that J/d — 1 > max{(w + 1)2220+10 284 4 1)K},
w'q" < land /Ny > M@ — 1)1,

Proof. (14.19) is (12.10). The first two estimates in (14.20) follow from (14.19) and
K = 2'%in Proposition 11.1. The last estimate in (14.20) follows by taking K = 29 in
Proposition 11.1 and (5.4). O

Proof of Lemma 14.6. Notice that for G € £2{(z, £), the assumptions in Proposition
11.1 hold for K = 2'°. By the resolvent identity (B.1),

|(A;(‘Tbk) _ G(Tbk)| < Z |(A;£Tbk)||Axy||(A;(Tbk)|,
X,y

CkCk CkCk kX YCk

where A = 3" 11 opvikt €enbn + €byce,)/v/d — 1. By our choice of the index set J,
{be. et} and {by. ¢ = m € [1, vI\{k}} are in different S-cells. Thus |G431, |G} )| <

2M//N7j by (11.3). Therefore, using (B.5), and notice |Gy, | > |GL) |. we get

50 G aM
G| < |G| 4 | =k _bix | 1 6M 16D < )
| CkX | | (,‘kxl G}()’E}))k | Ckx' | bkx | m

The same estimate holds for |(A;9£,Z |. Thus the second term is bounded by

. . oM \?
Z Th, Th, 0+1/2 2
X,y |G£kxk)||Axy||G§‘Ckk)| S4d-1) o («/N_TY) s 16q :
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provided that /N7u > Mq~%/2. Similarly, now setting A = " _ (€45, + €bpan)/
/d — 1, by the resolvent identity (B.1) and (B.5), we have
y y

|(~;(T) _ G(Tbk)| < |G(T) -6 |+ |G(Tbk) - GM |

CkCk CkCk CkCk CkCk CkCk CkCk
~(T) ~(T) cibi " brc
<Y IGQNAGNG )| + | 2% (14.21)
X,y by by,

For the last term in (14.21), by (14.20), |G')) | < 2K|mylq" and |Gy} | > |mel/2,

and therefore

AT A(T)

GCkkabka < (2K|msc|qr)2 — 8K2|m | 2r
A(T) |m |/2 N& q .
Gbkbk sc

For the sum on the right-hand side of (14.21), we can split it into two,

. ) por ) A )
S UGNAGIGE = 1G) 11 Ana [IGEL 1+ Y 1GENALIGE).
X,y

CkX YCk crbi ajCk CkX YCk
(x,y)#(bk,ak)

Again, wehave |GU )| < 2M /Ny forx € {by : m € [1, vI\{k}}Ulay - m € [1, v]}.

Combining with (14.20), it follows that

(14.18)
2K "Q2TK3 r 2M 4(d — 1)¢!
< ( |msclq )d(_l |msclg”) + = ( d_)l (27K3|msclq’)+8K2|msc|q2r

10 -4 2
< 27K | mgclq "

provided that /Nng* > M. O

14.4. Proof of Proposition 14.1. Finally, using the previous lemmas, we can proof
Proposition 14.1.

Proof of Proposition 14.1. For k € J, the r-neighborhood of ¢y is a d-regular tree with
root degree d — 1 in any of the graphs G (Tor)  G(Tbr) and GO therefore, by (5.2),

Foer (Er (ck’ ek g(Tbk))> = Per (Er <Ck’ Cks Q(Tbk)))
= Peey (gr (Ck, Ck; Q(T))> = M.

On the other hand, for the indices k € [1, ull\J, by (3.7), Proposition 11.1, and
Lemma 14.2, using that for G € .Qf(z, £), the assumption of Proposition 11.1 holds

with K = 219, we have
’Ggfgf) - Pckck (gr (Ck’ Ck, g(']l'b@))‘ < 2K|msc|qra
‘chbkk) - Pckck (gr (Ck, Ck, gA(Tbk))N < 4K|msc|qr,

G = Paa (& (a1, 6D)) | < 2 Kmely’. (1422)

ayay
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The above estimates (14.22) and (14.17) give

26 - P (5 (a.00.0™)

- (égf:) - Pckck (gr (Ck, Ck» Q(Tbk)))) ’

< 0K (1 — |J|)|msc|q Z G0 _ G(Tho)|

CkCk CkCk
I

keJ
K (o r log N)1/2+8 r
< 6K (o' +9w)|myclq + (8K2|msc|q2r + 16q2r) < (log N) |msclg

u 4./

(14.23)

Moreover, by the above estimates (14.22), (14.18) and using a; = ¢ fork € J, we have
! - ~(T) B
‘; Z (G&k&k - P&k&k (gr (&k, ak’ g(’ﬂ‘))))

~ (G = Paer (& (e cx Q(Tbk>>)) ‘

(4K +2"K3)(u — |J])Im lg” T T.
< ALy ST IGR, - G
H keJ
@K +2"K3) (' +90)|Imselq” 104 o _ (log N)'/**|myc|q"
< +27 K" mgelg "<
w e

(14.24)

In the above estimates we used £ > 4log,_; log N by (3.1) so that /it > log N = '
The left-hand side of (14.2) is bounded by

2(loe N 1/2+6 r
[(14.5)] +1(14.9)] + |(14.24)] + |(14.5)| < (log V) Imsclg ,
NG

provided that /Nng¥*> > M. 0O

15. Improved Approximation in the Switched Graph

The results of this section are the following proposition, stating that the Green’s function
obeys better estimates than the original one near vertex 1. As in the previous sections,
we write G = Tg(G) and assume that S € F/(G) (as in Lemma 14.3) is such that § =
Ts(G) € £2 (as in Sect. 3.2). Throughout the proof, C represents constants depending
only on the constant K from (11.1) and the excess w, which may be different from line
to line.

Proposition 15.1. Under the assumptions of Propositions 11.1, for S € F'(G) such
that G = TsG € $2, the Green’s function of the switched graph satisfies the following
improved estimates near vertex 1.
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(i) For the vertex x = 1,
2...2¢

Gir = P& (11,90 + G5 (0G) = mao)
+0< (22w+101<3|mw|q’+1) (15.1)
(i1) For all vertices x € [[2, N1,
Giu = P (1 x, 9| < @+ D22 mclg™. (152)

Moreover, if the vertex 1 has radius-R tree neighborhood in the graph G, then the
following stronger estimates hold.

(i”) For the vertex x = 1,

4 N 1/2+6 la’
(log N) |msclq . (15.3)

Vd(d — 1)t

(ii’) For the the average of G| over the vertices x adjacent to 1,

Gll = md+m2 gf—(Q(g) mge) + Og (

1 ~ mqmsg —m m% 1 +m?2) ~
72 G+ Z= = — e (0) — )
1~x
16(log N 1/2+468 r+l
+O< (log N) |mselq ) (15.4)
Vd(d — 1)t

Forall estimates we assume that /d — 1 > max{(ai+1)222w+10, B(w+D)K}, 0%qt « 1
and /N1g>** > M, and the global quantity Q(G) is as defined in (14.1).

We use the same set-up as in Sect. 13, and notice that (15.2) is (13.2).

15.1. Proof of (15.1) and (15.3). By (13.8), we have

1
(T) (T)
G — P = d—1 Uk (Gakak - akak)
kellL, ]l
1 S By (6™ _ pM
o= > GuPu, Gy — Pyl
k#£me[[1,u]l
T T
d — Z (G11,‘ - Pllk)P”k(G((Ik()lk - Pa(ka)k)‘ (15.5)
kE[II wl

For the last term on the right-hand side of (15.5), we have

Z (G — f;uk)ﬁllk(G(T) -y

ayay aay
kelll,ull
> Cq™q " (Imgelq”)
kel[1, ]l

< Clmgelq

r+Z+2
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where we used (13.22) for the first factor, (13.25) for the second factor, and (11.4) for
the last factor. For the second term on the right-hand side of (15.5), we have

1 ~ o~ -
— Y GuPu, G5 — P

Aagam al\am
k#me[[l,u]
T T
< Cg™Y) g™ Z (G f{kim - u(ka)m)l
k#me[1,ul
< Cq2e+2(a)/2|msclq ) < C|msc|qr+z+2

provided that w'*¢ 2t « 1, where we used (13.29) for the first factor, (13.25) for the
second factor, and (13.15) for the last factor. Therefore (15.5) is bounded by

x 5 1 5 T T
Gi—Pi=—— Y PL@GS) — P+ 0 (Imelg™ ), (156)
kell,u]
where the implicit constant depends only on the excess w and K from (11.1).

Proof of (15.3). If the radius-R neighborhood of the vertex 1 is a tree, then by Propo-
sition 5.1,

2..2¢
~> mdm ~
P]lk—(d e’ Pip =mgq,
and
2 2[
~ mgn T T
Gri—ma= o Z (G = B+ 0 (Imselg™2) . (15.7)

kelll,n

Notice that & = d(d — 1) under the assumption that the R-neighborhood is a tree.
Moreover, for all k € [[1, i1,

T - L
Zz(ké)k = Paa (gr (akv ak, g(T))) = My,
and by Proposition 14.1, we can simplify (15.7) to get

4(loe N 1/2+6 r
(log N) |msc|q)' (155

Jdd — 1)t

G L
=m
11 d d

1mdm £(0G) - msc)+0<<

This finishes the proof of (15.3). O

Proof of (15.1). Since by assumption G € 2, the radius-R neighborhood of the vertex
1 has excess at most w. Therefore, there are at most 2w (d — 1) indices k € [[1, 1] such
that the non-backtracking path from 1 to /; of length £ is not unique. Let

= {k € [1, u]l : non-backtracking path from 1 to I of length £ is unique}.
For k € J’, by (5.14) in the proof of Proposition 5.2, we have

~ mq (_msc)z

3
wk  l+k—1 2w £+1
P”’(_—(d—l)e/z < myl E 2%%q <2 |md|§q

k>2
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provided that v/d — 1 > 2@+2 Therefore, for all k € J/, the following estimate holds
p2 220
Py, __MaMc +0< (22w+2qze+3) )
d—1 (d — 1)t =

For k € [[1, u]\J' by (13.25), we have | Py, | < 2°*?|my.|q*. Notice that |J'| < p <
d(d — 1% and |[1, uT\J'| < 2w(d — 1)!, it follows that

P> SIpS
L dma Td-d kell1,uI\J’ keJ’
< 2(1)(d _ 1)(22a)+5q2£+2 +d(d _ 1)(22a)+2q2l+3 < 22w+2(dq + 16(1))q2 (159)

Combining (15.9), (11.4) and (13.5), (15.6) leads to

2¢
mAL

Uk — 1)t

. . G pM
G — P = 1)(g+1) Z (G axax akak)
kell1,u]
T T
+0< <22w+2<dq+16w>q Jmax (GG, — sza)k'>
mdm% (T) 5 5 a.. G
= G-nim 2 (G, = Paa (€@ 6. G™))) + €. (15.10)

kell1,pll
where the error term is bounded
€] < 222 (dg + 160)g> (27 K |melgq” + 22 Imyclg"™)
+Ima*u2* myelq"™! /(d — 1)
< 3 % 22‘°+8K3|msc|qr+1,

provided that /d — 1 > 2%w. Therefore, by Proposition 14.1, we can simplify (15.10)
to get

m2m2t

~ ~ ~ M ~
G =Pu(& (1. 1.9) + (d—;fm)(Q(g) = mge) + 0 (22910K 3 mclg"™)
(15.11)
This finishes the proof of (15.1). O
15.2. Proof of (15.4).
Proof of (15.4). For any vertex x adjacent to 1, by (13.8), we have
~ T T
Gix— Plo=—— Z Py, Py (Gf,k;k - a(ka)k)
kelll wll
! = B (EM _ pM
+ d —1 Z Gllk Ple (Gakam - akam)
k#Fme([1,ul]
5O\ B T T
o> Gue = Pu)Pu Gy — PL2). (15.12)

k€[[1 ull
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For the last term on the right-hand side of (15.12),

1 ’]T T ~
—— > (Gu = Pu) Py (GG — PL < Cq2g ™ Y Py

ara ayag
kelll,pll kelll,u]l

< Clmgelg"™t

where in the first inequality, we used (13.22) for the first factor, and (11.4) for the last
factor; in the second inequality, we used (13.9) for the case x € T. For the second term
on the right-hand side of (15.12), we have

1
(T) pM 20+1 (T) pM
d— Z Gi P, (Gakam — Paan)| S €4 Z |Gakam = P!
k#Emelll,u]] k#Emelll,u]]
< Ca)/2|m |qr+2€+1
X

< C|msc|qr+€+l

provided that w?q* << 1, where we used (13.15). Therefore, they together lead to

~ T T
G]x - Z Pllk XIk(ng;/\ - a(ktl)k)+0(|m | r+£+l)’ (1513)
kEHl wl
where the implicit constant depends only on the excess w and K. Especially, if vertex 1
has radius- R neighborhood, then by Proposition 5.1
mqmgsc P‘(']l‘)

Ple—ﬁ, aray — Mseo
]; _ md(_msc)e i’ —m —Mgc distg (v.li)
”k (d—l)e/z ’ xlk d d—l

for any index k € [1, u]. Thus averaging (15.13) over all the vertices x adjacent to 1
(in the following, we write x ~ 1 when the vertex x is adjacent to 1), we get

mdmsc
— Z —

x~1

T T
d(d D Z (Gék;k— a(ka))ZP”k xlk+0<|m clg r+/é+1)

kell,n x~1
ma(—mge)* (T) = (T) e+l
d(d 1)4/2+1 Z (Gakak Pakak) Z PXIk +0 ('m | )
kelll,u] x~1

20—1 2
_mdm 1+ mxc) (T) (T) r+l+1
= d(d 1)Z+1/2 Z (Gakak - akak) <|m“|q )
kelll, ]l

20—1 2 1/2+6 r+l
mdm (1 +mg,) 5 16(log N) Imselg
= — Mmye) + O .
" (0(G) ~ o) <( — )

In the third line, we used the fact that for any index k € [[1, n]l, among the d children of
vertex 1, one of them is distance £ — 1 to the vertex [, and the others are d1stance £+1to
the vertex /x. In the last line, we used Proposition (14.1), and |mdm2l a1+ m Dl < 4
This finishes the proof of Proposition 15.1. O
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16. Proof of Main Results

In this section, we use the estimates established in the previous sections to prove Theo-
rem 2.4.

16.1. Summary of estimates. By combining the propositions of the previous sections,
we obtain the following sequence of propositions, relating the sets

R27(z2,0) CR(z,0) C 27 (z,6) C 2 CGna, 21(z,8) C 2 CGua,
defined in Sect. 3.2. We also recall the parameters from Sect. 3.1, assume that
e by, 20,0, r=20+1, (16.1)
and (9.4), namely that
o =[logN|, M =(d—1)%1ogN)°’. (16.2)

Since, for |z] > 2d — 1, the claim of Theorem 2.4 follows from Proposition 6.1, it
suffices to prove the claim of Theorem 2.4 on the following slightly smaller domain

- (IOg N)480¢+1

D" = {z €Ci:lzl <24, Imlz] > N , lzx 21> (1ogN)—“/2+l},

(16.3)
which is the intersection of D [as in (1.4)] with {z € C, : |z] < 2d]}.

Proposition 16.1 (Initial estimates). Under the assumptions of Theorem 2.4, and the
choices of parameters given in (16.1) and (16.2), for N > N(w, d, §) large enough, we
have

P(2) = 1 — o(N~°*). (16.4)
Moreover; for any z € Cy such that |z| > 2d — 1, we have 2 C 27 (z, £).

Proof. Theestimate (16.4) follows from Proposition4.1, and the inclusion 2C 2 (2,0
from Proposition 6.1. O

Given a graph G and a vertex i, we resample the edge boundary of B, (i, G) using
switchings; without loss of generality we assume i = 1. Denote the resampled graph by
Ts(G) (which depends on the choice of i); S is the resampling data (whose distribution
depends on G).

Proposition 16.2 (Stability under resampling). Under the assumptions of Theorem 2.4,
and the choices of parameters given in (16.1) and (16.2), forz € D*, N > N(«, w, d, 5)
large enough, and any G € §2(z, £), the following holds. (i) G € 27 (z, £). (ii) There
exists a set F(G) C S(G) with Pg(F(G)) =1 — o(N~“*) such that for any S € F(G)
with Ts(G) € £2, we have Ts(G) € 27 (z, ).

Proof. The first statement G € .Qf(z, £) follows from Proposition 10.1, and the second
statement follows from Proposition 11.1 with K =2. O
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Proposition 16.3. (Improvement under resampling) Under the assumptions of The-
orem 2.4, and the choices of parameters given in (16.1) and (16.2), for z € D*,
N > N(a, w, d, ) large enough, and any G € 2{ (z, £), there exists aset F'(G) C S(G)
with Pg(F'(G)) = 1 —o(N~**) such that for any S € F'(G) with Ts(G) € 2, we have
Ts(G) € 21(z. 0).

Proof. The definition of the set F'(G) and its properties are given in Proposition 14.1.
The final statement 75(G) € .Qi (z, £) follows from Propositions 11.1 and 15.1 by taking
k=2 g

The improvement under resampling above applies to the switched graphs 75(G).
However, by general properties of 7', it implies an improvement on the original space
of graphs.

Proposition 16.4. (Improvement on original space) Under the assumptions of Theorem
2.4, and the choices of parameters given in (16.1) and (16.2), for z € D*, we have

P(2(z, O\(R2(z, £) N 2](z, £)) = o(N~*). (16.5)

Proof. By Propositions 16.1-16.3, the conditions of Proposition 7.5 are satisfied with
90, q1,q> = o(N~®*), and 2 as in Sect. 3, 2 = 2(z, ¢), 2t = 27 (z,0), and
Q' = £2{(z, £). Therefore, Proposition 7.5 implies

P(£2(z, O\($2(z, £) N .Q{(z, 0)) = O(N_“”‘S)’
which was the claim. O

Clearly, by the same argument or by symmetry, (16.5) also holds with vertex 1
replaced by any other vertex i € [N]. In particular, for any graph in the intersection of
the .Ql’ (z,¢) overi € [N]], we have the following improved estimates for the entries of
its Green’s function.

Proposition 16.5 (Self-consistent equation). Under the assumptions of Theorem 2.4,
and the choices of parameters given in (16.1) and (16.2), for any z € D* [as in (16.3)]
and N > N(a, o, d, 8) large enough, with probability 1 — o(N~**1*%) we have

(log N)'/2*3 |myclq"
(d _ 1)(€+1)/2

d—72
0(G) — mge = ——mgm?>(Q(G) — mye) + O (

o ) . (16.6)

Proof. As noted above, the same statement as in Proposition 16.4 holds with vertex 1
replaced by any other vertex i € [N]. On the union of the .Ql’ (z, £), the improvement
then holds for all i simultaneously, and by a union bound

N
P(82(z. O\ Niepng 2/(2. 0) < Y P(2(z. O\2[(z, ) = o(N~**!*),
i=1
For any graph G € mie[[N]]Q,',(Zv £), by the definition of .Ql.’(z, £) (as in Sect. 3), we
have

mim
(d _ 1)(£+1)

+0< (22“’+40|msc|qr+l) , (16.7)

Gii(G,2) = Fii(&(i,1,9),2) + (Q(9) —myc)
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and, for any j # i, we have the bound
1Gij(G.2) = P& (i, . §). D] < (@ + 122 mc|qg™. (16.8)

In the following, we derive an approximate self-consistent equation for Q(G) — my,.
Using the Green’s function identity (B.5), notice that

0(G) —my. = Z (G(l) — M) = Nd Z (ij _ 2”1] _ msc>
(z ek (i,j)eE i
1 1 GiiGijj
:_Z Gii__zé_msc s
NG 4 G
(16.9)

where E is the set of oriented edges of G, and where here j ~ i means that the vertices
i and j are adjacent to each other. Since G € 2, at least N — N? of the vertices of G
have radius-R tree neighborhoods. The contribution to Q(G) — mj. from those vertices
which do not have radius-R tree neighborhoods is O(N®~1). For any vertex i that has
radius-R tree neighborhood, by the definition of £2/(z, £),

Gii = ma = mgms —(Q(g) e)
(1OgN)1/2+5|mSC|qr
( d— 1)(4+1>/2 ) (16.10)
1 mqntge mdng 1(1+ )
a2 = (0@ — myo)
d i NZE Vd—=1
(log N)l/2+8|msc|qr+l
o ( (d — 1)&+D/2 ) (16.11)

Also, by the stability estimate Claim 13.8, for any vertex i with radius-R tree neigh-
borhood, and vertex j adjacent to i, we have |G;; — mg| = O(|lmy:|q") and |G;; —
mamge/d — 1| = O(|mgc|q"), where the implicit constant depends only on w. It
follows that

GiiGij B mdmfc

Gii d—1
2 Gy + ) — T (G — mg) + ma (G + )2
- deii
= —j%(Gij + T dm_gcl (Gii —ma) + 0(¢™). (16.12)

1 GiiGi; d—2
Gii = 2 T2 g = S g (@) i)
i -

o oz N2 m|q"
(d _ 1)(ll+l)/2 ’
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for all vertices i which have radius-R tree neighborhoods. Averaging the last equation
overi € [N], by (16.9) we then obtain (16.6), as claimed. 0O

The equation (16.6) implies

d—-2 2e+1)_1 0 ((log N2 myclq"

0(G) —mye = (1 - dTlmdmsc d— 1)((Z+1)/2

), (16.13)

provided that the term in the first bracket does not vanish. To use this equation to show that
the left-hand side is small, we require a lower bound on the term in the first bracket on the
right-hand side. Since 1 — (d — 2)mdm52,f+1 /(d — 1) may be zero on the spectral domain
D*, such a bound only holds on an ¢-dependent subset of the spectral domain, which
we now define. (In Sect. 16.2, we will use the flexibility in the choice of £ € [£,, 2¢,]
to recover the entire spectral domain.)

First, we define the Joukowsky transform ¢ to be the holomorphic bijection from the

upper half unit disk D, to the upper half plane C, given by
¢:webD;— —(w+w_l> e C,.

It is the functional inverse of z +— my (2), i.e. mg.(¢ (w)) = w. For any £ € [y, 2¢,]
as in (3.1), we define the small error parameter

(10g N)1/2+28
g0 =

= ez <dog Ny, (16.14)

as well as the sets A, C D, and A; C C, by

d—2
1 — —=m?“ 1 (Dmu(z)

A~g = {msc(z) 1z € Cy, d_1 "¢

28@}, A= ¢(Ap).
(16.15)

Proposition 16.6 (Self-consistent equation). Under the assumptions of Theorem 2.4,
and the choices of parameters given in (16.1) and (16.2), for any z € D* [as in (16.3)]
and N > N(o, w,d, §) large enough, we have

P(£2(z, )\ miEIIN]] Qi/(z’ 0) = O(N*w+1+6)'

Moreover, for z € D* N Ay and any G € mieﬂN]] .Ql.’(z, £), the normalized Green’s
Sfunction of G satisfies, for any i, j € [N],

Gij(G.2) = Pij(&:(i, j, §), D] < (@+ D22 M|y lg™!,
wherer =20 + 1.
Proof. Let z € D* N Ay. Then by the definition of the set Ay in (16.15), we have

d=2 5 | (ogN)!/22
_d_lmsc mq| =2 (d——l)(“l)/?’

and (16.13) implies

10(G) — myc| = O (Imselg” log N)?),
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where the implicit constant depends only on w. Plugging the above expression into
(16.7), we get

Gii(G.2) = Pi(&:(i 1,9, )+ O< (1422 myclg™!)

for N large enough. This finishes the proof of Proposition 16.6 by combining
with (16.8). O

16.2. Decomposition of the spectral domain. The following lemma gives a precise de-
scription of the sets Ay, stating that, except for two small regions near £1, the half disk
D, is contained in the union of the sets Ag, i.e., in Ugepe,,2¢ ]]Ae To be precise, we
define the spectral domains

Dy={zeCy:lz| <2d, Im[z] >(d—1)**logN/N, |z+ 2| >4e}, (16.16)
ﬁg:ID)Jr\{w:eigre]DLr:|0|§8[,1—84§r<1}. (16.17)

Lemma 16.7. For any £ € [y, 20, ]|, define Ay as in (16.15). Then D\ Ay is contained
in

{w O . 0<0<eg,1—¢ < r<1}U

{ ="l —g, <0 <0,1—g < r<1}U
2

U w=emelr 10| < —2 _0<r<l1}.

bt d(t+1)

As a consequence, for any 6y € (0, ), there exists some € € [[£y, 20, ]| such that
DeNfw=e%r:0<r <1} C A, (16.18)

Proof. By the definition of the set Ay, its complement is

d—2 m
1— 26+1 se < &y.
‘ d—1" 1T—m2jd—1| "
This implies that
2
m d—2
‘ e RS
and therefore
2 2E+2
2
| —m22| < | e Tse |49 +260. 16.19
‘ Sla=T =g T (16.19)

d—
From direct computation, for any 0 < r < 1 and 6 € [—m, 7], we have the following
simple estimate:

1 0 .
POl e <y eal, (16.20)
T

2
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Therefore (16.19) implies

+1
kri T 5
My ekL_jO{w =etiefr e D, ;0] < i 1),0 1 — 26D < 3}.

0

We have better estimates if mg. = %7 or my. = €7 el?r, for some 0] < % and

0 <1— 2D < %. In this case, on the complement of Ag,

d—2 1 —m?
| < [T e

Combining the above expression with (16.20), we get

d—2(1=r¥=D 204+ 1)r&Djg 1
rTT e DN <l—r2+2|9|)+284.
d—1 2 T d—1

It follows that |0 < e, and 1 — &, < r < 1. This finishes the proof of the first statement.

For the second statement, if 6y € (0, (1—§)ﬁ)u((1+§)é—+”1, ), then {z = €% :

0<r< l}ﬂﬁg* - /]e*- In the following we consider the case, 6y € [(1 — %)Z*’Tﬁ, 1+

%)f**fl]. We use the convention that (¢ mod ) € [—w /2, w/2),forany a € R. If we can
find some £ € [£y, 2¢.]], such that ((£ + 1)6p mod ) € [—7/2, —7 /8] U [n/8, 7 /2),

then there exists some integer k such that

3 km T 3
< b0 — - < ,
l+1 20+ 1) 8 +1)

8(+1)

and thus {z = ¢®r : 0 < r < 1} € Ay. In the following we prove such £ exists. By
symmetry we assume 6y € [(1 — %)ﬁ, %]. We consider the following numbers,

Ly + 1)0g mod 7, (£y +2)0g mod 7, ..., (2¢4 + 1)6y mod 7. (16.21)

If (lx+1)6pmodr) € [—n/2, —/8] U [n/8, w/2), then we can take £ = £,. Other-
wise, we assume ((£4 + 1)0p mod ) € (—x /8, w/8). Since (20, + 1)0y — (L + 1)0) =
.60 > (1 — %)f:f] > %, the above sequence (16.21) can not all stay in the interval

(—m/8,m/8). Say (£ + 1)6p mod r is the first number in the above sequence which
is not in (—m /8, w/8). We can take this ¢, then ({0p modx) € (—n/8,/8), and
(+1)fymodr) € [—7/2, =37 /8) U [r/8, m/2). This finishes the proof. O

Lemma 16.8. [. For the choice of parameters in (16.1)—(16.2), for any z € Dy, all of
the conditions in Propositions 6.1, 10.1, 11.1 and 15.1 are satisfied for K € {2, 210};
ie.,

d—1 > max{(w+ 1?2219 22w+ DK}, 0?¢' <« 1,
VNIm[z]g* "% > M.

2. Foranyl € [[€y, 2L, ]|, we have

D* C Dy C ¢(Dy). (16.22)
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Proof. 1t is straightforward to check that (i) holds. In the following, we therefore only
prove (ii). For this, notice that (d — 1)**¢ < (d — 1)*% < (log N)**, and that in
combination with (16.14), it follows that D* C D,. For the second inclusion in (16.22),
observe that, for any w = e?r such that 0 < 6 < geand 1 — gy <r < 1, we have

. 1
lp(w) +2| = |r + - 2| < 4dey,

and that we have similar estimates for w = 7 el with —gr <0< 0and1—¢g <
r < 1. Therefore,

{z€Cy:lz£2] = 4e) C P(Dy),

and Dy C (]5(254) follows. This finishes the proof of (16.22). O

16.3. Proof of Theorem 2.4. We define a lattice on D, by

- . Y/ Z
L::{EIGI"ED_F:OE%,FEF}.

The image of L under the Joukowsky transform defines a discrete approximation of D*
by

L:=¢(L)ND*. (16.23)

Notice that D* can indeed be well approximated by L, in the sense that for any z € D*
there is some z’ € L such that |z — 7| = (log N)?() /N3 Therefore, by the following
claim, we only need to prove Theorem 2.4 for z € L. The claim is a consequence of the
Lipschitz property of Green’s function.

Claim 16.9. For any € € [[£y, 2¢,]), and z, 7 € D* with |z —7'| = (log N)°V /N3, we
have

27(z,0) C 2, 0).

Proof. For any graph G € 27 (z, £), the Green’s function of its normalized adjacency
matrix satisfies

N
1Gij(2) = Gij() < 1z =21 Y 1Gim(2)Gj ()] < (log NYOV/N,

m=1

where we used |z — 7’| = (log N)°D /N3, |G, (z)| = O(1) from the definition (3.3)
of £27(z, £) and (5.6), as well as the trivial bound |G, (z")| < 1/n < N.Moreover, the
same estimate holds for | P;; (£, (i, j, G), 2) — Pij(&:(i, j, G), 2)|. As aresult,

|Gij () — P&, j. ). 2)| = |Gij () — Pij (&, j. §). 2)| + Qlog N)OV /N
< |mxc|qr,

and the claim follows. O
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Claim 16.10. For any £ € [[£,, 20, ], we have
£27(z,8) C 827 (z, 4y,
provided that /d — 1 > 2243,
Proof. LetG € 27 (z, £). Then, by (5.5) in Proposition 5.2,
Gij () = Pij (&, J,9), )|
<|Gij@ = P& (0. . G). )| + | Pij(En, (i, ]. §). 2) = Pij (0. ]. §). D)

20,42

1 1
< Fhmsela” + 8ok, 229 e 1?42 < Fmscla”™,

provided that /d — 1 > 220+3 Therefore, G € 27 (z,Ly), as claimed. O

Proof of Theorem 2.4. For any 6, € ’;/—% N (0, ), the Joukowsky transform ¢ sends the

ray {w = ¢%r : 0 < r < 1} to a branch of some hyperbola. With 6, fixed, we consider
the set

7, . ko ko+1 ko+2 ki
{rem:(b(eleor)ep*}:{m? N3 ’ N3 ""7@},

for some 0 < kg < k; < N3, and denote

i@ok
Zk=¢<e ) 1<k <N

N3
One can check that ko/N> > 1/(3d), |zk,| = 2d — 1, and |zx41 — zx| < 10d?/N? for
ko <k < k. - .
By Proposition 16.7, there exists some £ € [£,, 2¢,] such that Dy, N {e‘eor :0 <

r<1}c A(. Ther_efore, combining with (16.22), we have zx, Zxy+1, - - - » 2k € A¢. By
Proposition 16.1, £2 C £27 (z¢,, £), and

P(27 (zkg» £)) = 1 — o(N~9%). (16.24)
For any ko < k < k1 — 1, it follows from Claim 16.9 that

27 (2k, £) C 2(2ks1,0). (16.25)

By Proposition 16.6, we have
P(2(zks1, O\ Nieny 2] @xs1, 0) = o(N~H), (16.26)

and

Niern182; (zk+1, £) C 27 (2k41, D), (16.27)
provided that v/d — 1 > (w + 1)2%** Tt follows from combining (16.25)—(16.27) that

P(27 (zk, O\2 ™ (zgs1, £)) = o(N~@HH0), (16.28)
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By definition, on the set ﬂ],il: ko $2~ (2k, £), we have

1
|Gij(2) — Pij (&, j.§). )| < ElmscW,

for any z = zx, Zkg+1, - - - » 2k - Moreover, combining (16.24) and (16.28), the above
holds with high probability,

PNy @ (ke ) = 1= (k1 — ko + Do(N~ %) = 1 — o(N=*). (16.29)
Combining with Claim 16.10, the estimate (16.29) implies
P(OfL 27 (k. £)) = 1 — o(N~9HD),

The above argument is independent of 6y € % N (0, r). Thus, by a union bound,
with probability at least 1 — o(N ~®*7*%) uniformly in z € L, we have

1
|Gij(z) — Pij (&G, j.G), 2)| < §|msc|qr*. (16.30)

Since for any z € D*, there is some z/ € L such that |z — z/| = (log N)°(D /N3,
the Lipschitz property of Green’s function, Claim 16.9, implies that the above estimate
(16.30) holds uniformly for z € D*, with possibly a slightly larger constant:

Gij (@) = Pij (&, G J, 9), )| < Imyelg™. (16.31)
This is (2.7), and thus the proof of Theorem 2.4 is complete. O
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A. Combinatorial Estimates for Random Regular Graphs

A.1. Proof of Proposition 4.1.

Proof of (4.2). For w = 1, a proof of the statement is given in [58, Lemma 2.1] or [20,
Lemma 7], for example. The more general statement follows from the same proof. More
precisely, in [58, (2.4)], it is shown that for any i € [N]], the excess X; in Bg(i, G) is
stochastically dominated by a binomial random variable with n = d(d — 1)¥ trials and
success probability p = d(d — 1)®~1/N. It follows that

_ 1\R _ 1\R-1 w+1
o of(41) (45
w+1 N

= O(N—w—l(d _ 1)2R(w+1)) — O(N_w_HZK(‘”H)),
By a union bound, and using ¥ < §/(2w + 2), therefore
P(X; > w forsome i € [N])) = O (N~ @Dy — 5(N—@*3)

as claimed. 0O
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Proof of (4.3). The claim follows from [65, Theorem 4], for example. Indeed, if Bg (i, G)
is not a tree, then some edge in Bg (i, G) must lie on a cycle of length at most k = 2R,
and any edge that lies on such a cycle is in Bg(j, G) for at most 2(d — 1)¥ vertices
Jj € [N]. Thus

I{i € [N]:Bg(i,G)isnotatree}| <2(d — )X =2N“X (A.1)

where X is the number of edges in G which lie on cycles of length at most k. With
k =2R and A > 2 in [65, Theorem 4], we obtain

P(X = M) < (eS(A—l)A—SA)(d—l)k < e—c(d—l)k _ e—ch" (A2)

if M = 20Ak(d — l)k, where ¢ is some universal constant. Let My = 40k(d — l)k <
80R(d — 1)2R < 80RNZ, By a union bound, then

P(X > M) < Ne~ N < ¢=eN™/2, (A.3)

Thus, with probability 1 — e_CNZK/Z, and using ¥k < 8/2w +2) < 6/4, R = |« log,_;
N| « N*, we have

I{i € [NT: Br(,G)isnotatree}] <2N“X < 2N“My < 160RN>* < N°,  (A4)

which is better than claimed. 0O

A.2. Proof of Proposition 4.2.

Proof of (4.4). We fix vertices i, j and an integer k. Given a graph G, we denote by # (G)
the total number of non-backtracking paths from i to j of length less than distg (i, j) +k.
We modify the graph G in the three steps such that, in each step, 7 does not decrease,
and the excess remains the same. Then it suffices to prove (4.4) for the final graph.

Step 1. Given an edge ¢ = {x, y} € G that is not a self-loop and not on a geodesic from
i to j, we shrink the edge e to a point (remove e and identify its incident vertices), and
so obtain a new graph G’. There is a bijection between the oriented edges of the graph
G\{e} and those of the graph G'.

Now we show that the total number of non-backtracking paths from i to j of length
less than distg (i, j) + k = distg (i, j) + k in G is at least #;. Let (ey, ez, e3, . ..) be any
non-backtracking path from i to j in the graph G that is not a geodesic. If some eg is
(x, y) or (y, x), we remove it from the path and view the remaining part as a path from
i to j in the graph G'. In this way we get a shorter path from i to j in G'. The new path
is still non-backtracking, and we can recover the original path in G from the new path
in G’ since x # y. Therefore, the total number of non-backtracking paths from i to j of
length less than distg (i, j) + k = distg/(i, j) + k in G’ is at least .

We repeat this procedure with edges e (not on a geodesic) chosen arbitrarily as long
as possible. This creates a new graph G; (which may depend on the choice of edges in
the steps) with vertex set G;. By construction, the edges in G are either self-loops or
on geodesics from i to j. Thus the vertex set of G; decomposes into

G =VouV,u-.-u Vdistgl(i,j)v where V,,, := {v € G : distg, (i, v) = m},
(A.5)
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or equivalently, Vdislgl G,j)—m = {v € Gy : distg, (v, j) = m}. In particular, Vo = {i}
and Vdistgl G,j) = {J}. Any edge in G| is either a self-loop or has one vertex in V,, and
the other vertex in V11, for some m € [[0, distg, (i, j) — 1]I. The excess of G; is w.

Step 2. Given two edges ¢ = {vy, Up41} and ¢’ = {v,, v, ,,} with v, € V,, and
Ums1 # U, € Vi1, we remove the edge e’ and identify v, , | with v,,41, thus creating
a new graph G|. Again there is a bijection between the oriented edges of the graph
Gi\{e'} and those of the graph G .

Now we show that the total number of non-backtracking paths from i to j of lengthless
than distg (i, j) +k = distgi (i, j)+kin G| is atleast ;. Let (eq, e, e3, . ..) be any non-
backtracking path from i to j inthe graph G;.Ifeg = (v;nJrl svp)andeger # (Vs Vinsl)s
wereplace eg by (Vp11, Vi);ifeg = (v;,Hl, V) andegyr = (Ui, Ums1), We remove both
egand eg,y;if eg = (v, v;nH) and eg_1 # (Um+1, Um), We replace eg by (v, Vns1);
ifeg = (v, U)/n+1) and eg_1 = (Um+1, Upm), weremove both eg and eg_1. Then we view
the remaining part as a path from i to j in the graph G|, whose length is at most as long
as that of the original path. The new path is still non-backtracking, we can recover the
original path in G from the new pathin G i since vy+1 # v;n +1- Therefore the total number
of non-backtracking paths from i to j of length less than distg (i, j)+k = distgi @i, j)+k
in G| is at least 1.

Foranym € [0, distg, (i, j) — 2], ifin the new graph [{v : distg, (i, v) = m+1}| > 2,
we can repeat the above process to reduce it by one. We repeat this procedure as long
as possible, choosing at every step edges e and ¢’ arbitrarily such that the conditions
are satisfied. Finally, we obtain a graph G, (which again is not unique) that has exactly
distg, (i, j)+1 vertices, {vo = i, v, v2, ..., Vdistg, i, j) = Jj},suchthatdistg, (i, vy) = m
for m € [[0, distg, ; j)]l. The excess of G, is w.

Step 3. In the final step, given any edge e from v, to v,,41, if it is the only edge from v,,
to vy,+1, wWe shrink it to a point. This preserves non-backtracking paths, and it reduces
the distance between i and j by one. By shrinking all edges of multiplicity one, we
obtain a graph G3. The number of non-backtracking paths from i to j of length less than
distg, (i, j) + k is at least #;, and the excess of G3 is w.

Final step. To bound the number of non-backtracking paths from i to j in G, it suffices
to estimate the number of non-backtracking paths from i to j in the graph G3. Let
£ = distg, (i, j), s be the total number of self-loops in G3, w,, + 1 the multiplicity of the
edge {vp—1, Um}, form € [[1, £]], and set w = max|gu<e¢ Wi Since G3 has excess ,
s+ an: | Wn = . The maximum degree of the graph Gz is bounded by 2s + 2w + 2.
Now any non-backtracking path from to j of length £ +k necessarily contains the edges
(vo, v1), (v1,v2), ..., (ve—1, v¢), and for each of them there are wi+1, wy+2, ..., we+1
choices respectively. For other steps, there are at most 2s + 1 + 2w choices. The total
number of such paths is bounded by

V4
<€ Zk> s +1+2w)* [ (wn + 1), (A.6)

m=1
under the condition s + Zf;::l w;; = . Note that (A.6) increases if we decrease s by 1
and increase some wy, in such a way that w increases by 1. Therefore (A.6) achieves its
maximum at s = 0. We denote

C+k T
o=, (1+2w) H(wm+1).
m=1
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Since 1 +n < 2" for any n € Ny and an:l w;,; = w, we then have ap < an:l(wm +
1) < 2%. For a; with k > 1, notice that v = Zi:l w, = w+ (£ — 1) so that
w < w— (£ —1),and thus

L+k
a, < T(l +2w)ag—1 < L+ 1)Qw — 20+ 3)ay_

20 +5)?2
< %ak—l < (2% — Dag—1,

given that w > 6. Therefore
o <ap+a+--+ap gzw(1+(2w— D20 — 1)k—1) < 20k,
This finishes the proof. O

Proof of (4.5). Let H be the vertex set of H, wg be the excess of the subgraph H, and
‘H the subgraph induced by G on H. If distg (i, j) > £ + 1, then (4.4) implies

#{non-backtracking paths from i to j of length ¢ + k, not completely in H}
< #{non-backtracking paths from i to j of length ¢ + k} < 20k,

and the claim (4.5) follows. Therefore, in the following, assume that distg (i, j) < £, and
also that H, G are connected (otherwise, we can replace H by its connected component
containing i and j, and G by its connected component containing ). For any non-
backtracking path from i to j which is not completely contained in H, let e be the first
edge in the path which does not belong to . There are three possibilities for such edge
e: (i) e € H. We denote the set of such edges by Ej. (ii) If we remove e from G, then
G\{e} breaks into two connected components. It is necessary that the component not
containing i, j contains cycles. We denote the set of such edges by E». (iii) e & H, and
if we remove e from G, G\{e} is still connected. We denote the set of such edges by E3.

We consider the graph G\{E| U E; U E3}, from G by removing edges E1 U E; U E3.
It consists some many connected components, one corresponds to the graph H, others
are in one-to-one correspondence with the connected components of G\'H, the graph
from removing H from G. Notice from the definition of these edge sets E, E», E3, each
connected component of G\'H contains exactly one edges in E; or at least two edges in
E3. Therefore, G\{E| U E> U E3} has at most 1 + |E>| + | E3|/2 connected components,
where 1 represents the component H. For the excess of G\{E| U E> U E3}, since its
subgraph ‘H has excess wy, and each new components, due to removing of edges in E»,
has excess at least 1, G\{E| U E U E3} has excess at least wg + | E>]|.

Claim A.1.
2|E1| + |E2| + | E3| < 2(w — wo) (A7)
Proof. To prove (A.7), for any finite graph X, set
X (X) = #connected components(Gg) — excess(Gp). (A.8)

By the definition of excess, x (X) = #vertices(Gg) — #edges(Gp), we have x (X'\e) =
x(X) + 1 for any graph X and any edge ¢ in X. Since the graph G is connected and
has excess at most w, it follows that x (G) > 1 — w. Thus if we remove E; U E; U Ej3
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from G, the remaining graph has excess at least wg + | E»| and at most 1 + |E>| + |E3|/2
connected components. Therefore

L+ |Ez| +|E3]/2 — |E2| — wo = x(G\(E1 U E2 U E3))
1

—w+|E|+|E2| +|E3],

VoV

and thus |Eq| + |E2| + |E3]/2 < @ — ap. (A7) follows. O

In the following we count the number of length ¢ + k non-backtracking paths from i
to j, containing e = (i1, j1) as the first edge notin H, i.e., {i1, j1} € E1U E> U E3. Let
distg (i, i1) = ¢1 and distg(ji1, j) = €. Since {i1, ji} is not in H, it is necessary that
€1+ ¢y > €. Thus, e must be the €1 + 1, £1 + 2, ..., or ({1 + k)-th step in the path. The
total number of such non-backtracking paths is bounded by

k
Z #{non-backtracking paths from i to i; of length £; + k; — 1, in H}
ki=1
x #{non-backtracking paths from j; to j of length £ + k — ¢; — ky, in G}
k k

< Z 2w0k12w(k—k1+l) < 2a)(k+1) Z 2(w0—w)k1.
ki=1 ki=1

Since by (A.7), 2| E1| + | E2| + |E3| < 2(w — wp), there are at most 2(w — wp) choices
for the oriented edge e, the total number of such non-backtracking paths is bounded by

#{non-backtracking paths from i to j of length £ + k, not completely in H}

k
< 2w — wo)zw(k+l) Z Z(wo—w)kl < 2w(k+l)+l.
ki=1

This completes the proof. O

A.3. Proof of Lemma 13.4. To understand the distances distg~ (x,i) forall i € Ty, we
need some more notations. A simple pruning[42, Definition 4.4] is the operation of
removmg one leaf and its incident edge from a graph. By repeating pruning on the graph

go, we get a graph gz with vertex set (Gz, such that it contains at most two leave vertices:
1 and x.

Claim A.2.

G NTy| <20+1, 0<k <L (A.9)

Proof. Fork = 0,(A.9)holds trivially, |G2NTo| = 1 < 2w+1.Fork > 1,say GoNTy =

{vi, v2, ..., vn}. By our construction of Gy, there are vertices v}, v5, ..., v, € Ti_

such that the edges {v], vi}, {v5, v2}, ..., {v),, v} € G». For any i € [1,m], if we
remove the edge {vlf , v;j} from Qz, the graph Qz will either still be connected; or it will
break into two connected components, one contains vertex 1, and the other contains
vertex x or some cycles. Let m1, m, the number of edges in the first case and second
case respectively. If we remove all edges {v], vi}, {v}, v2}, ..., {v,,, U}, there will be
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at most 1 + m /2 + my connected components, and at least excess ma — 1,,,~0 left.

Notice that the graph G, is connected and has excess at most . Recall the function x
as in (A.8), we have

1+m2+m1/2— (mz — 1m2>0)

X G\ {v], vids o (V) vmdD)
1

—w+m)+mj.

VoV

Therefore m + my < 2w + 1, and the claim follows. O
With the above preparations, we can prove Lemma 13.4 as follows.

Proof of Lemma 13.4. Fix a geodesic P (viewed as a sequence of oriented edges) in
Go from vertex x to vertex i € Ty, there are three possibilities for its step (v/, v): (i)
the edge is downward, i.e. d1st (1 v) = dlSt (1 V') + 1; (ii) the edge is horizontal,

ie. dlst (1 v) = dlst (1 v’) in this case v € Gz, (iii) the edge is upward, i.e.
d1st (1 v) = dlst (1 v) 1, in this case v € G,. We denote (v, v) the last step in

P, Wh1ch is horlzontal or upward. Then v € G and we say the vertex i is associated
with the vertex v (which may not be unique). By our choice of (v’, v), the steps from v
to i in P are all downward, thus v € T. Moreover, we have the estimate: for any vertex
i € Ty associated with v

dist, (x.1) > ‘distgo(l, x) —distg, (1, v)‘ +distg, (v, 1)
- ‘distgo(l, x) —distg, (1, v)‘ + ‘z —distg, (1, v)|.
Especially, if v € Ty,, i.e. v is distance £3 from vertex 1, the above relation simplifies to
distg (x,1) = [€1 — £3] + (£ — £3),
and by noticing ¢ < 1, we have

o ere—203
46,0 {q 17250 if ey < 4y, (A.10)

S ¢l i > .

In this way, each vertex i € Ty is associated with some vertex v € @2. Ifv e @2 N Ty,
the total number of vertices in Ty associated with v is at most (d — 1)¢~%, since they are
all distance £ — €3 away from v. The total number of verticesi € T, associated with some
veGon {Te, UTp,41---UTy}is bounded by Qo+ 1)(1+(d—1)+---+(d — D <
2w+ D(d — DY, provided that d > 2w + 3. Notice that we have the decomposition

dlst (x 1)

{g i € Ty¢}
= U {qdmgo(x A :i € Ty, i is associated with some v € G, N Te,)
03€[0,£1—17
U {q distg, (x.0) :i € Ty, i is associated with some v € @2 N ATy, UTe 41 - UTe}}.

Lemma 13.4 follows by combining with (A.10) and (A.9). O
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B. Properties of the Green’s Functions

Throughout this paper, we repeatedly use some (well-known) identities for Green’s
functions, which we collect in this appendix.

B.1. Resolvent identity. The following well-known identity is referred as resolvent iden-
tity: for two invertible matrices A and B of the same size, we have

A'—B l'=A"'"B-—A)B '=B7'B-A)A"". (B.1)

B.2. Schur complement formula. Given an N x N matrix M and anindex set T C [N]],
recall that we denote by M| the T x T-matrix obtained by restricting M to T, and that
by M = M l[pvm T We denote the matrix obtained by removing the rows and columns
with indices in T. Thus, for any T C [N]], any symmetric matrix H can be written (up
to rearrangement of indices) in the block form

A B’
H:[BD] (B2)

with A = H|t and D = HD. The Schur complement formula asserts that, for any
zeCy,

=(H-2"
_ (A—B'GDp)! —(A-=PB GO 1D B3
~GDBA-BGDB)1GD+6DBA-BcDB)'BGD | (B-3)

where G™ = (D — z)~!. Throughout the paper, we often use the following special
cases of (B.3):

Glr=(A—-BGDB)!,
Glre — GV = Glrer(Gl1) ' Glrpe,

Glrre = —G|rB'GD, (B.4)
as well as the special case
GikGyj
G =Gy — L (B.5)
Gk

B.3. Ward identity. For any symmetric N x N matrix H, its Green’s function G(z) =
(H — z)~! satisfies the Ward identity

ImG
ZIG,,()I =z ’(Z) (B.6)

where = Im[z]. This identity follows from (B. 1) withA = H—zand B = (H—2z)*.In

particular, (B.6) provides a bound for the sum Z i—11Gij (z)l in terms of the diagonal of
the Green’s function. For an explanation why thls algebraic identity has the interpretation
of a Ward, see e.g. [73, p.147].
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B.4. Covering map. For any vertex i, the vector (G;1, Giz, Gi3,...) € L2(INTD is
uniquely determined by the following relations:

1+zG G
ii 11 k;k ik
1
2Gij = G; B.7
L mk;k ik ( )

where [ ~ k denotes that [ and k are adjacent in G, i.e., that Ay = 1.

Lemma B.1. Given a covering 7 : G—>¢G of graphs, denote the Green’s function of G
by G and that of G by G. Then for all vertices i, j in G, the Green’s functions obey

Gij= Y. Gy (B.8)

yr(y)=j

Proof of (B.8). We give the proof for simple graphs G, G. (The statement also holds for
graphs with self-loops and multiple edges if ) ., is interpreted as the sum of all the

oriented edges (i, k); especially, a self-loop should be counted twice.) Clearly, G satisfies

the relations (B.7) with G replaced by G. For any fixed x € G such that 7 (x) = i, we
can define:

Gij = Z ny’ (B9)

yir(y)=j

if the right-hand side is summable. Assuming that for any j the right-hand side of (B.9)
is well defined, we verify that (G;;); satisfies the relation (B.7), and thus that it gives
the Green’s function of H. Indeed,

1+zGji=1+z¢ Z ny
yir(y)=i
=1+2G +2 Z Gy
i (y)=i,y#x

1 ~ 1 ~
L Yee Y Y
d - 1 WIW~X d - 1 y;j'[(y):i’y;éx wiw~y

1

=T 2 2 G

y;n(y):i wiw~y

i

Since there are no self-loops or multi-edges in our graph G, for any y; # y, with
m(y1) = (y2) =i and wy ~ yj and wy ~ y7, itis necessary that w; 7# w,. Therefore:

1 ~ 1 ~ 1
Vd—1 Z ZGXWZWZ Z wa:mZGik'

yr(y)=i ww~y kii~k w:m(w)=k kii~k
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Similarly, for the second relation (B.7),

ZGijZZ Z éxy:\/_ Z Z éxw

yr(y)=j yir(y)=j ww~y

=X ¥ Gum= Y Gu

kj'vkwn(w) k k:j~k

asneeded. 0O
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