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Abstract: We consider the construction of twisted tensor products in the category of
C*-algebras equipped with orthogonal filtrations and under certain assumptions on the
form of the twist compute the corresponding quantum symmetry group, which turns out
to be the generalized Drinfeld double of the quantum symmetry groups of the original
filtrations. We show how these results apply to a wide class of crossed products of C*-
algebras by actions of discrete groups. We also discuss an example where the hypothesis
of our main theorem is not satisfied and the quantum symmetry group is not a generalized
Drinfeld double.

1. Introduction

The study of quantum symmetry groups (in the framework of compact quantum groups of
Woronowicz [48]) has started from the seminal paper of Wang [46], who studied quantum
permutation groups and quantum symmetry groups of finite-dimensional C*-algebras
equipped with reference states. Soon after this, the theory of quantum symmetries was
extended to finite metric spaces and finite graphs by Banica, Bichon and their collab-
orators (see [3,4,13], and more recently [23,41]), who uncovered several interesting
connections to combinatorics, representation theory and free probability ([5,37,43] and
the references therein). The next breakthrough came through the work of Goswami and
his coauthors [9,20], who introduced the concept of quantum isometry groups asso-
ciated to a given spectral triple 4 la Connes, viewed as a noncommutative differential
manifold (for a general description of Goswami’s theory we refer to a recent book [21],
another introduction to the subject of quantum symmetry groups may be found in the
lecture notes [1]). Among examples fitting in the Goswami’s framework were the spec-
tral triples associated with the group C*-algebras of discrete groups, whose quantum
isometry groups were first studied in [12], and later analyzed for example in [6,7,31].
Historically, the main source of examples of quantum groups was the deformation
theory related to the quantum method of the inverse problem and the desire to study
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a quantum version of the Yang—Baxter equation [45]; and in fact already this early
work gave rise to the construction of what is now called the Drinfeld double, which
plays an important role in this paper. Later, when the theory became to be viewed as
one of the instances of the noncommutative mathematics a la Connes [16], there was
a hope that by analogy with the classical situation the quantum groups might arise as
quantum symmetries of physical objects appearing in the quantum field theory. It is worth
mentioning that Goswami’s theory was in particular applied to compute the quantum
isometry group of the finite spectral triple corresponding to the standard model in particle
physics [15,16], for which we refer to Chapter 9 of [21].

In fact the examples related to group C*-algebras of discrete groups motivated Banica
and Skalski to introduce in [8] a new framework of quantum symmetry groups based on
orthogonal filtrations of unital C*-algebras, which will be the main focus of our paper.
Before we pass to a more specific description, we should mention that Thibault de
Chanvalon generalized in [18] this approach further to orthogonal filtrations of Hilbert
C*-modules. The concept of an orthogonal filtration of a given unital C*-algebra A
with a reference state 74 is essentially a family of mutually orthogonal (with respect
to the scalar product coming from t4) finite-dimensional subspaces spanning a dense
subspace of A. The corresponding quantum symmetry group is the universal compact
quantum group acting on A in such a way that the individual subspaces are preserved.
The article [8] proves that such a universal action always exists and discusses several
examples. The problems related to the study of quantum symmetry groups in this setup
are two-fold: first we need to construct a natural filtration on a C*-algebra, and then we
want to compute the corresponding quantum symmetry group.

The starting point for this work was an observation that if a C*-algebra A is equipped
with an orthogonal filtration and we have an action of a discrete group I" on A, preserving
the state T4, then the corresponding crossed product admits a natural orthogonal filtration
(Proposition 6.13), which we will denote A xg B. Note here that the crossed product
construction, generalizing that of a group C*-algebra, on one hand yields a very rich
and intensely studied source of examples of operator algebras, and on the other was
originally motivated by the desire to model inside the same C*-algebra both the initial
system, and the group acting on it in a way compatible with the action—in other words,
making the action implemented by a unitary representation. The attempts to compute
and analyze the resulting quantum symmetry groups have led, perhaps unexpectedly,
to discovering deep connections between the quantum symmetry group construction
and the notion of a generalized Drinfeld double of a pair of (locally) compact quantum
groups linked through a bicharacter, as studied for example in [2,39]. This motivated us
to extend the original question to the context of twisted tensor products of [35].

Let A and B be C*-algebras equipped with reduced actions y4 and yp of locally
compact quantum groups G and H, respectively. Then the twisted tensor product of A
and B, denoted A Xy, B, is a C*-algebra defined in terms of the maps y4, yp and a
bicharacter V| belonging to the unitary multiplier algebra of Co(é) ® Co(ﬁ ). For the
trivial bicharacter V| = 1, the C*-algebra A Xy, B is the minimal tensor product A ® B.
When A, B are unital C*-algebras, A Xy, B is a unital C*-algebra.

Our main result is the following: suppose that A and B are two unital C*-algebras
equipped with orthogonal filtrations A and B, respectively, that y4, yp are filtration
preserving reduced actions of compact quantum groups G and H on A and B, and that
V) € L{(Co(é) ® CO(FI)) is a bicharacter. Universality of QISO(Z) and QISO(E) gives

a unique bicharacter V € U(Co(QISO(A)) ® Co(QISO(B))) lifting V. Then one can
always construct a natural orthogonal filtration A Xy, B on A Xy, B, and moreover, the



Quantum Symmetries of the Twisted Tensor Products of C*-Algebras 1053

resulting quantum symmetry group QISO(Z XMy, B)isa generalized Drinfeld double of
QISO(Z) and QISO(B) with respect to V (Theorems 5.1 and 5.4).

Next, we try to apply Theorem 5.4 to compute the guantum symmetry group of
A xg; I' in terms of the quantum symmetry groups of A and B, where the latter is a
natural filtration of C}(T"). It turns out (Theorem 6.2) that if the action S of I' on A
factors through the action of the quantum symmetry group of A then indeed, we can
apply Theorem 5.1 to prove that the quantum symmetry group of A xg ,I" is a generalized
Drinfeld double of the quantum symmetry groups of Aand B.Ourresult can be applied
to a wide class of crossed products, including noncommutative torus, the Bunce-Deddens
algebra, crossed products of Cuntz algebras studied by Katsura as well as certain crossed
products related to compact quantum groups and their homogeneous spaces. We also
exhibit an example where the hypothesis of Theorem 6.2 does not hold and the quantum
symmetry group of the crossed product is not of the generalized Drinfeld double form.

In order to establish Theorem 5.4, we need a certain universal property of the univer-
sal C*-algebra associated with a Drinfeld double. Although in the context of quantum
symmetry groups it suffices to work with compact/discrete quantum groups, the prop-
erty we mention remains true in the general locally compact setting, being a natural
framework for studying twisted tensor products and Drinfeld doubles; thus we choose to
consider this level of generality in the first few sections of the paper. For locally compact
quantum groups, we refer to [27,28,47]; we will in fact only use the C*-algebraic aspects
of the theory.

The plan of the article is as follows: in Sect. 2, after fixing the notations and con-
ventions for locally compact quantum groups, we discuss the theories of twisted tensor
product of C*-algebras and generalized Drinfeld doubles developed in [35,39], respec-
tively. In Sect. 3 we study the ‘universal C*-algebra’ associated to the generalized Drin-
feld double, and prove two results about its action on twisted tensor products, namely
Lemma 3.4 and Theorem 3.5. Section 4 is devoted to showing that if A and B are unital
C*-algebras equipped with orthogonal filtrations and V is a bicharacter in the unitary

multiplier algebra of Co(QISO(A)) ® Co(QISO(B)), then the twisted tensor product
A Ky B also admits a natural orthogonal filtration A Xy B with respect to the twisted
tensor product state. In Sect. 5 we prove the main result of this article which says that
QISO(AXy B) is canonically isomorphic to the generalized Drinfeld double of QISO(A)
and QISO( B) with respect to the bicharacter V. Finally in Sect. 6 we show that the above
theorem applies to reduced crossed products A x g, I' for group actions of a specific
form (Theorem 6.2). We also discuss several natural examples in which the assumptions
of Theorem 6.2 are satisfied. In Sect. 6.4, we show that the conclusion of Theorem 6.2
fails to hold for more general actions. Finally we discuss further possible extensions
of such a framework to twisted crossed products and to crossed products by actions of
discrete quantum groups.

2. Preliminaries

Let us fix some notations and conventions. For a normed linear space A, A’ will denote
the set of all bounded linear functionals on A. All Hilbert spaces and C*-algebras (which
are not explicitly multiplier algebras) are assumed to be separable. For a C*-algebra A,
let M (A) be its multiplier algebra and let U/ (A) be the group of unitary multipliers of A.
For two norm closed subsets X and Y of a C*-algebra A and T € M(A), let

XTY :={xTy|xeX,yeT}S
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where CLS stands for the closed linear span.

Let C*alg be the category of C*-algebras with nondegenerate *-homomorphisms
m: A — M(B) as morphisms from A to B (with the composition understood via strict
extensions). Moreover, Mor(A, B) will denote this set of morphisms.

Let H be a Hilbert space. A representation of a C*-algebra A on H is a nondegenerate
*-homomorphism 7 : A — B(H). Since B(H) = M(K(H)) (where K(H) denotes the
algebra of compact operators on ) and the nondegeneracy conditions AK(H) = K(H)
and AH = 'H are equivalent, we have m € Mor(A, K(H)).

We write X for the tensor flip HQ KX —> K Q H, x ® y — y ® x, for two Hilbert
spaces H and K. We write o for the tensor flip isomorphism A ® B — B ® A for two
C*-algebras A and B. Further we use the standard ‘leg’ notation for maps acting on
tensor products.

2.1. Quantum groups.

Definition 2.1. A Hopf C*-algebra is a pair (C, A¢) consisting of a C*-algebra C and
an element A € Mor(C, C ® C) such that

(1) Ac is coassociative: (Ac ® id¢c) o A¢c = (ide ® A¢) o Ac;
(2) Ac satisfies the cancellation conditions: Ac(C)(1c ® C) = CQR®C = (CQ
Le)Ac(C).

Let (D, Ap) be a Hopf C*-algebra. A Hopf *-homomorphism from C to D is an ele-
ment f € Mor(C, D) such that (f ® f)(Ac(c)) = Ap(f(c)) forallc € C.

A compact quantum group or CQG, in short, is described by a Hopf C*-algebra
(C, A¢) such that C is unital (in which case C is often called a Woronowicz algebra).
Hopf *-homomorphisms between CQGs are called CQG morphisms.

Example 2.2. Every compact group G can be viewed as a compact quantum group by
setting C = C(G) and (Ac f)(g1, &2) := f(g1g2) forall f € C(G), g1, g2 € G. Also,
every discrete group I gives rise to a compact quantum group by fixing C = C}(I") and
Ac(rg) ‘= Ag ® Ag, where A is the regular representation of I' on L?*(I") and geTl
is arbitrary; we could as well choose here the full group C*-algebra C*(I"), as will be
discussed below.

Nonunital Hopf C*-algebras are noncommutative analogue of locally compact semi-
groups satisfying the cancellation property. The question of how one should define
locally compact quantum groups was studied for many years, with the approach by mul-
tiplicative unitaries initiated by Baaj and Skandalis [2] and later developed in [47] by
Woronowicz, and a generally accepted notion based on von Neumann algebraic tech-
niques proposed by Kustermans and Vaes [29] (see also a later paper [33]). One should
note here also an earlier von Neumann algebraic approach presented in [32], and also
the fact that both articles [33] and [29] drew on the algebraic duality techniques of [44].

Thus a locally compact quantum group G 1is a virtual object studied via its associ-
ated operator algebras, in particular the von Neumann algebra L*°(G) equipped with a
comultiplication A : L®(G) — L®(G)®L*(G) and the left and right Haar weights.
We assume that L°°(G) is represented on LZ(G), the GNS-Hilbert space of the right
Haar weight. The key fact connecting the approach of Kustermans and Vaes with these
of [2,47] is the existence of a distinguished unitary W e U(L*(G) ® L*(G)), whose
properties we will now describe.
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Let H be a Hilbert space. Recall that a multiplicative unitary is an element W €
U(H ® H) that satisfies the pentagon equation

Define C = {(w @ idy)(W) | o € B(H)*}CLS. When W is manageable (see [47,
Theorem 1.5]), C is a separable nondegenerate C*-subalgebra of B(H). Moreover, the
formula Ac(c) := W(c ® 1)W* for ¢ € C defines an element of Mor(C, C ® C) such
that (C, A¢) is a Hopf C*-algebra (see [42,47]), which is said to be generated by W.

In particular, when we return to the Kustermans—Vaes setup, we denote the C*-algebra
C associated to WY (with H = L2(G)) as Co(G). Note that Co(G) C L*(G) and the
respective coproducts are compatible and will both be denoted by A (or A if the context
is clear).

The dual of a multiplicative unitary W € U (H ® H) is given by the formula W=
YW*E € U(H ® H). Moreover, W is manageable whenever W is. It turns out that if
we start from a locally compact quantum group G we can associate to it another locally

compact quantum group which we denote G and call the dual locally compact quantum
group of G, so that WO = W. We naturally have Co(é) = {(w® idH)(W) | w €
B(H)+ )5S and A (¢) := W(é ® 1)W™ for all ¢ € Co(G). Since the dual of W is equal

to W, we obtain a canonical isomorphism G ~ G.

Example 2.3. Let G be alocally compact group and u be its right Haar measure. Then the
operator W9 € U(L*(G, p) ® L*(G, p)) defined by (WY f)(g1. 82) = f(8182. 82),
f € L*(G, ), g1, g2 € G, is a (manageable) multiplicative unitary. The resulting
locally compact quantum group is given simply by the algebra Co(G) with the comul-
tiplication determined by the formula (Ag f)(g1, 82) = f(g1g2) for all f € Co(G),
g1, &2 € G. Further we have Co(f}) = CJ(G), and the dual comultiplication is deter-

mined by the formula Ag(kg) =A; @A forall g € G.

Let then G be a locally compact quantum group in the sense described above. We
then write 1 for the identity element of M (Cy(G)). By virtue of [48, Theorem 1.3]
and [28, Theorem 3.16 and Proposition 3.18], every compact quantum group can be
also viewed as a locally compact quantum group; for a compact quantum group G we
naturally write C(G) for the (unital) C*-algebra Cy(G). Discrete quantum groups are
duals of CQGs.

Definition 2.4. Let (C, Ac) be a Hopf C*-algebra and D be a C*-algebra.

(1) Anelement U € U(D ® C) is said to be a right corepresentation of C in D if and
only if (idp ® Ac)(U) =UpUpin (D C ® C).

(2) Similarly, a left corepresentation of C in D is an element U € U(C ® D) satisfying
(Ac ®idp)(U) = UpsU3inUU(C ® C ® D).

(3) In particular, if D = K(L£) for some Hilbert space L, then U is said to be (right or
left) corepresentation of C on L.

An element U € U (D ® C) is a right corepresentation of C in D if and only if U=
o (U*) € U(C ® D) is a left corepresentation of C in D. From now on we reserve the
word “corepresentation” for right corepresentations. Moreover if G is a locally compact
quantum group then we call right corepresentations of Co(G) simply (unitary, strongly
continuous) representations of G.
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Consider a locally compact quantum group G and the manageable multiplicative
unitary WC. Then WS e U(Co(G) ® Co(G)) C UL2(G) ® L2(G)). Thus we can also
view WY asa unitary element of the abstract C*-algebra M(Co(é) ® Co(G)), called
the reduced bicharacter of G. Indeed, it satisfies the following bicharacter conditions
(see Definition 2.8):

(idey6) ® A)(WE) = WHWE inU(Co(G) ® Co(G) ® Co(G));  (2.2)
(Ag ®idcyG) (W) = WHEWE in%(Co(G) ® Co(G) ® Co(G)).  (2.3)

Therefore, WY is a representation of G in CO(G) and also a (left) representation of G
in Co(G).

Finally, note that in fact the Haar weights will not play any significant role in this
paper and we will concentrate on the C*-algebraic setup.

2.2. Universal algebras of locally compact quantum groups. Suppose G is a locally
compact group. If G is not amenable (for example, G = F»), the convolution alge-
bra of compactly supported continuous functions on G can have more than one C*-
algebraic completion. By completing the convolution algebra of G in the norm topology
of B(L%(G)), we get the reduced group C*—algebra C;(G). On the other hand, the
quantity

I flly :=sup {llw(f)Il : misa % — representation of C.(G)}

defines a pre-C*-algebraic norm on the convolution algebra C.(G). The completion of
C.(G) with respect to |||, defines a C* algebra known as the full group C* algebra of G
and denoted by C*(G). There always exists a canonical surjective C*-homomorphism
from C*(G) to C}(G). When G is not amenable, this homomorphism is not one-to-one.
For more details, we refer to [36]. This explains the need to associate with any locally
compact quantum group, apart from the ‘reduced algebra of functions’, discussed in the
last subsection, also its ‘universal’ counterpart, which we describe in what follows.
Let G be a locally compact quantum group. By [27] (see also [42, Proposi-
tion 22 and Theorem 25]), the algebra Co(G) admits also a universal version, denoted
Ci(G), characterized by the fact that there exists a canonical 1-1 correspondence be-

tween representations of G and C* -algebraic representations of Cjj(G), implemented by

the ‘semi-universal’ version of the multiplicative unitary W¢, denoted V7 ¢. We have
G ¢ M(CO(G) ® Cj(G)), and VTG is in fact a representation of G in C¥ 0(G). The
correspondence mentloned above is of the following form: given any (left) representa-
tionU e U(Co(é) ® D) of Gina C*-algebra D there is a unique ¢ € Mor(Cj(G), D)
with
(id ® p)(W°) = U. (2.4)
The algebra Cj(G) is equipped with the comultiplication A" € Mor(Cj(G), Cj(G) ®
CH(G)) (as well as a ‘bi-universal multiplicative unitary’, see below) makmg C 0(G) a
Hopf C*-algebra (see [42, Proposition 31]). By certain abuse of notation we Wlll write
idg for both idc () and idcg(G), with the specific meaning clear from the context. For

clarity, we will also sometimes write A‘(‘; for AY.

Further, note that the universality of WG gives aunique Ag € Mor(Cj(G), Co(G)),
known as the reducing morphism, satisfying the equations

({d® Ag) (WO =WC,  (Ag®Ag)o A" = Ao Ag. (2.5)
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Another application of the universal property yields the existence of the character
e: CS(G) — C, called the counit, associated to the trivial representation of G:

(4 ® () = ley Gy (2.6)
with the following property:
(e®id) o A" = (id®e) o A" = idcg((;). 2.7)

Naturally the construction described above can be applied also to the dual locally
compact quantum group G, yielding the (Hopf)-C*-algebra Cjj(G), the unitary W6 e
M(Cg(@) ® Co(G)), reducing morphism A 4, etc. In fact Kustermans showed the ex-

istence of the ‘fully universal’ multiplicative unitary VW ¢ e M(Cg(é) ® Cy(G)) such
that

WO = (Ag ® Ag)(WO).

We call G coamenable if the reducing morphism A is an isomorphism. This is the
case for G classical or discrete. On the other hand the dual of a classical locally compact
group G is coamenable if and only if G is amenable. Indeed, we have Cg(é) = C*(G),
with the comultiplication A”é(u ¢) = Ug @ ug for all g € G, where u, denotes the
image of g under the universal representation. By analogy with the notation introduced
before, for a compact quantum group G we will write simply C*(G) for Cj(G). Each
of the algebras C(G) and C*(G) contain then a canonical dense Hopf *-subalgebra,
Pol(G), and in fact Pol(G) may admit also other, so-called exotic completions to Hopf
C*-algebras (see [30]).

2.3. Coactions, bicharacters and quantum group morphisms. In this short subsection
we discuss quantum group actions and the notion of morphisms between locally compact
quantum groups.

Definition 2.5. Let (C, A¢) be aHopf C*-algebra. A (right) coaction of C ona C*-algebra
A is an element y € Mor(A, A ® C) such that

(1) y is a comodule structure (in other words, it satisfies the action equation), that is,
(ida ® Ac)oy = (y Qidc) oy (2.8)
(2) y satisfies the Podles condition:
y(A)(1a®C)=A®C. (2.9)

In the case where (C, Ac) = (Co(G), Ag) for alocally compact quantum group G, we
call y simply the (reduced) action of G on A, and the pair (A, y) is called a G-C*-algebra.
Sometimes one needs also to consider universal actions of G (i.e. the coactions of the
Hopf C*-algebra Cj(G)).

Let us record a consequence of the Podle$ condition for *-homomorphisms.

Lemma 2.6. Let A, B, C be C*-algebras with A € M(D) andlety: A - M(DQC)
be a *-homomorphism such that y (A)(1p @ C) = AQ C. Then y € Mor(A, A ® C).
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Proof. The Podles$ condition implies that Yy (A)(AQ C) = y(A)(Ip R C)(A® 1¢) =
(A®C)(A®1c) = A® C. Applying the adjoint to the last equality we also get
(A®C)y(A) =AQ®C.Thus,y € Mor(A,A® C). O

A covariant representation of the coaction (A, y) on a Hilbert space H is a pair (U, ¢)
consisting of a corepresentation U € U (K(H) ® C) of C on ‘H and a representation
¢ € Mor(A, K(H)) that satisfy the covariance condition

(p ®idc)(y(a)) = U(p(a) ® 1¢0)U*, acA. (2.10)

A covariant representation is called faithful if ¢ is faithful. Faithful covariant represen-
tations always exist whenever y is injective (see [35, Example 4.5]).

In this article we are mainly going to work with compact quantum groups G and
unital G-C*-algebras (A, y) with a faithful state T on A such that y preserves T, i.e.

(t®idg)(y(a)) = 1t(a)lg foralla € A,
Let us note that such actions are always injective.

Lemma 2.7. Let (A, y) be a unital G-C*-algebra with a faithful state T such that y
preserves t. Then y is injective.

We will now define bicharacters associated to two given Hopf C*-algebras. This no-
tion plays a fundamental role in describing morphisms between locally compact quantum
groups.

Definition 2.8. Let (C, A¢) and (D, Ap) be Hopf C*-algebras. Anelement V € U(C ®
D) is said to be a bicharacter if it satisfies the following properties

(Ac ®idp)(V) = V3V 3 nUCR®CQD), 2.11)
(ide ® Ap)(V) =V Vy3 inU(C® D ® D). (2.12)

The notion of bicharacter for quantum groups is a generalization of that of bicharacters
for groups. Indeed, let G and be H be locally compact abelian groups. An element V €
U(Coy (G) ®Co (H)) is simply a continuous map V : G x H — T and the conditions (2.11)
and (2.12) say that this map is a bicharacter in the classical sense.

Let G and H be locally compact quantum groups.

Example 2.9. A Hopf *-homomorphism f € Mor(Co(G), Co(H)) induces a bicharac-
ter Vy € U(Co(G) ® Co(H)) defined by V= (idG ® f)(WG) The ‘semi-universal’
multiplicative unitaries W e U/(Cj (G) ® Co(G)) and W € U(CO(G) ® Cy(G)) are
both bicharacters.

Bicharacters in U (Co(é) ® Cp(H)) are interpreted as quantum group morphisms
from G to H. The article [34] contains a detailed study of such morphisms and provides
several equivalent pictures. Since the notion of bicharacters is going to be crucially used
in the article, let us recall some of the related definitions and results from that paper. For
simplicity we will describe below quantum group morphisms from G to H.

A right quantum group homomorphism from G to H is an element A R € Mor(Cy(G),
Co(G) ® CO(I:I )) with the following properties:

(Ag ®ideI)OAR = (idg ® Agr) o Ag and (idg ®Aﬁ)OAR = (AR ®id1_})0AR-
(2.13)
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Theorem 2.10 [34]. Let G and H be locally compact quantum groups. There are natural
bijections between the following sets:

(1) bicharacters V € U(CO(G) ® Co(H))

(2) bicharacters Ve Z/I(Co(H) ® Co(G))

(3) right quantum group homomorphisms Ar € Mor(Co(G), Co(G) ® Co(ﬁ));
(4) Hopf *-homomorphisms f € Mor(Cj(G), CB(I:I)).

The first bijection maps a bicharacter V to its dual Veu (CO(I-AI )® Co(é)) defined by
V= o (VH). (2.14)

A bicharacter V and a right quantum group homomorphism A g determine each other
uniquely via

(idg ® AR)(WY) = WHV 3. (2.15)

A bicharacterV € U(Cy (G)(X)Co (I-AI)) and a Hopf™*-homomorphism f € Mor(Cj(G),
CS(I:I )) determine each other uniquely by

(idG ® Ao /W) =V. (2.16)

The dual bicharacter V € U (CO(I-AI ) ® Co(é)) should be thought of as the dual
quantum group morphlsm from H to G. It corresponds to the dual rlght quantum group
homomorphism Ag € Mor(Co(H ), CO(H )®Co(G)). Thus Ag and Ag arein bijection
as V and V are. Finally, the dual bicharacter describes a unique Hopf *-homomorphism
fe Mor(Cj(H), Cg(é)). Thus f and f determine each other uniquely by

(id ® Ay o f)(WC) =V =0((idy ® Ag o /)(TTH)").

Let y" be a coaction of Cj(G) on a C*-algebra A. It is said to be normal if the
associated reduced action of G on A, y := (idg ® Ag) o yY, is injective. By virtue
of [40, Theorem A.2] or [19], an injective coaction of Co(G) on a C*-algebra A lifts
uniquely to a normal coaction of Cjj(G) on A.

Yet another equivalent description of quantum group homomorphisms [34, Section
6] shows that for an injective coaction y € Mor(A, A ® Cyp(G)) and a right quantum
group homomorphism Ag € Mor(Co(G), Co(G) ® Co(ﬁ )) there is a unique injective
coaction § € Mor(A, A ® CO(I:I )) such that the following diagram commutes:

A 4 A®Co(G)
al lidA ® Ag (2.17)

A® Co(H) —— A® Co(G) ® Co(H)
Yy ® ldI:I

Let y" denote the associated normal coaction of Cj(G) on A andlet f € Mor(Cy(G), Cj (H))
be the Hopf *-homomorphism corresponding to A g. Then we say that § is induced from y
by Ag or f. The following lemma describes & explicitly.

Lemma 2.11. The coaction § in (2.17) is given by § := (ida ® Ay o f) o y".
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Proof. By the uniqueness of §, it is enough to show that § satisfies the equation
(ida ® Ag) oy = (y ®idy) 0 5.

Let us recall [40, Equation 2.23]: Ago Ag = (A ® Ay o f) o Ag;. Using this equation
and properties of y and y" we obtain

(ida ® AR)oy = (ida ® AgRoAg)oy" = (i[da ® (Ac ® Ay o floAg)oy"
=(([[da®Ag)oy"®Apyo f)oy"
=(y ®idy) oé.

2.4. Twisted tensor product C*-algebras and the action of the Drinfeld double. In this
subsection we recall the notion of quantum group twisted tensor product of C*-algebras
as developed in [35] and the action of the generalized Drinfeld double on the twisted
tensor product constructed in [39].

We start with the following data: let G and H be locally compact quantum groups,
let (A, ya), (B, yp), be a G-C*-algebra, respectively a H-C*-algebra, such that y4
and yp are injective maps and let V € U (Co(é) ® Co(I:I )) be a bicharacter (viewed as
a morphism from G to H).

By [35, Lemma 3.8], there exists a V-Heisenberg pair, i.e. a Hilbert space H and
a pair of representations @ € Mor(Co(G), K(H)) and 8 € Mor((Co(H), K(H)) that
satisfy the following condition:

W Wi = WHWE Vi, inld(Co(G) ® Co(H) ® K(H)). (2.18)

Here, W{ := ((idg ® a)(W)) , and ng = ((dy ® BY(WH)),;. We recall [35,
Example 3.2] to motivate the notion of V-Heisenberg pairs. Indeed, let G = H = R and
consider a standard bicharacter V € U(Cy(R) ® Co(R)), i.e. the map (s, 1) — exp(ist).
Then the maps « and f satisfying the condition (2.18) can be equivalently described
as a pair of continuous one-parameter unitary groups (U; (s), U2(t))s scRr satisfying the
canonical commutation relation in the Weyl form: Uy (s)U>(¢) = exp(ist)Ua(t)U1(s)
foralls,t € R.

Define j4 € Mor(A, A ® B ® K(H)) and jp € Mor(B, A ® B ® K(H)) by
ja@ = ((da ® ) (a@)) 5 ja®) = ((dg @ ) (yp®)),; (219

forall a € A,b € B.
Then we have the following theorem.

Theorem 2.12 ([35, Theorem 4.6]). The space ARy B := ja(A)jp(B) isa C*-algebra,
which does not depend (up to an isomorphism) on the choice of the V-Heisenberg pair

(@, B).

LetV=1elU (Co(é) ® CO(I:I )) be the trivial bicharacter. The associated twisted
tensor product of A and B is isomorphic to the minimal tensor product A ® B. Further,
if I" is a discrete group acting on a unital C*-algebra A via an action 8, then the reduced
crossed product A g I' is another particular example of the above construction. We
formalize this observation in the theorem below.
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Proposition 2.13 ([35, Theorem 6.3]). Let I be a discrete group, and assume that y,: =
B € Mor(A, A ® Co(I")) is a coaction of Co(T") on a C*-algebra A, that (B, yp) =
(CH(D), Ar)(ie. yp Is a canonical action off‘ on itself) and thatV = W' e UCI
Co(IM)) is the reduced bicharacter for I'. Then there exists an isomorphismV : Ay B —
A xpg ;' suchthat foralla € A, b € B,

V(ja(a) = Bla), W(jp®)=1®b. (2.20)

Here we have used the canonical faithful representations of Co(I") and C} (") in B(¢2(IN))
in the second legs.

The generalized Drinfeld double ®v of G and H with respect to the bicharacter V
is a locally compact quantum group described (see [39, Theorem 5.1(ii)]) as follows:

Co(@v) = p(Co(G)O(Co(H)), (2.21)
Apy(p(x)0 () = (p ® pP)(Ac(x)(O ® 0)(AH(y)) (2.22)

for all x € Co(G) and y € Co(H). Here p and 0 form a pair of faithful representations
of Co(G) and Co(H) on a Hilbert space Hp that satisfies V-Drinfeld commutation
relation:

VW WS = WEWE Vi, inUd(Co(G) ® Co(H) @ K(Hp)),  (2.23)

where Wi := ((idg ® p)(W9))13 and W5} := ((idw ® 6)(WH))a3.
Infact, p € Mor(Co(G), Co (@V)) andf € Mor(Co(H), Co (@V)) are Hopf *-homo-
morphisms.

Now, [39, Lemma 6.3] shows that there is a canonical coaction y4 >y yp €
Mor(A Ky B, A Xy B ® Co(Dv)) of Co(Dv) on A Ky B defined by

va >y ¥(ja(a)) = (ja ® p)(va(@)),  varav ye(jp) = (jp ® 0)(y5(b))
(2.24)
foralla € A, b € B.

Lemma 2.14. Suppose y4 and yp are injective maps. Then the map y4 >y yp defined
by (2.24) is also injective.

Proof. Without loss of generality we may assume that (U4, ¢4) and (UB, @p) are faith-
ful covariant representations of (A, y4) and (B, yp) on the Hilbert spaces H 4 and Hp,
respectively.

There is a faithful representation I[T: AXy B — B(H4 ® Hp) such that [1(j4(a)) =
pala) ® 134, and I1(jp (D)) = Z(114, ® ¢p(b))Z*, where Z € U(Ha ® Hp) is the
unique unitary that satisfies

U, U5 Z12 =U5UL,  inU(Ha @ Hp ® H) (2.25)
for any V-Heisenberg pair (o, 8) on H (seg: [35, Theorem 4.1 and 4.2]). Define a pair

of representations @ := (¢ ® p) o Ag and B(y) := (B®6) o Ay of Co(G) and Co(H)
on H ® Hp. By Definition 2.4.(1) for U and U® and (2.25) we have

A (1B A (1A 1B 11B A (1B y1A 11B B (1A A (1B
UigU, 5212 = U Ui, UzpUz Z12 = Uy U Uy, Uz 212 = UppU1, Z1, U7, Us Z12
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inUHs @ Hp ® H ® Hp). Here @ and B are acting on the third leg and p and 0 are
acting on the fourth leg. Similarly, we have

B 1A B 11B 17A 174 B 11A 11B 174

Now (&, ,5) is a V-Heisenberg pair on H ® Hp (see the proof of [39, Lemma 6.3]).
Therefore, we have the same commutation relation (2.25) if we replace « by & and 8
by B. This gives the equality

U, USZ1n = ZiUsUf,  in U(HA ® Hp @ Hp). (2.27)
Using (2.26) and (2.24) we compute (fora € A, b € B)

Ut US (T1(ja(a) jp (b)) ® 19,)(US)*(UL,)*
= U1, U ((0a(@) ® 13, ® 19,) Z12(131, ® 95(b) ® 10y)) Z,(US)*(UT,)*
= U?p(wA(a) ® 131, ® 1oy)US Z12(13¢, ® pp(b) ® lgv)(Uf‘p)*(Ugg)* 5
= U{\P(‘DA(CI) ® 1y, ® IQV)U§€ZIZ(U114/))*(1HA ® ¢p(b) ® lz)v)(Ug@)*Z’l"2
= U (0a(@) ® 131, ® 1oy ) (Ui ) Z1aU%, (131, ® ¢5(b) ® 19,)(U5)* 27,
= (91 ® P)(¥a(@))) ;3 Z12((92 ® 0) (vB())) 13 Z12
= (M ®idoy)((ja ® p)(ya(@)(j @ 0)(ys(b)))
= (M ®idpy)(va > va(ja(@)jz(b))).

Since IT is injective we conclude that y4 o< yp is also injective. 0O

Finally, note the special (trivial) case of the above construction. The generalized
Drinfeld double of locally compact groups G and H associated to the trivial bicharacter
V=1elU (CO(G)®C0(I-AI )) is just the cartesian product of the initial groups: Co(Dvy) =
Co(G x H). Moreover, Co(G x H) canonically coacts (component-wise) on A ® B
which is a particular case of (2.24). Furthermore, for any locally compact quantum group

G the generalized Drinfeld double of G and G with respect to the reduced bicharacter
WC el (Co(G) ® Co(G)) coincides with the usual Drinfeld double of G.

3. Universal C*-Algebras of Drinfeld Doubles and their Universal Property

Let G and H be locally compact quantum groups and let V € U (Co(é) ® Co(fl ))bea
bicharacter. Recall that the dual of the generalized Drinfeld double Dy is the quantum
codouble ®v defined by

Co@v) = Co(H) ® Co(G),
As, (G ® 1) = Va3023(A5(5) ® Ag (X)) V33 forall £ € Co(G), § € Co(H).

The goal of this section is to prove the existence of a coaction of Cj(Dv) on A XKy B
(Lemma 3.4) satisfying a universal property formalized in Theorem 3.5. Let us start by
proving the existence of a V-Drinfeld pair at the universal level.
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Proposition 3.1. There exists a unique pair of morphisms p" € Mor(Cj(G), Cy(Dv))
and 6" € Mor(Cg(H ), Cg(’DV)) satisfying the following commutation relation:

Vi W W = WGV intd(Co(G) ® Co(H) ® CHDV)).  (3.1)

Proof. Recall the universal representation WO e U (Co(ﬁ ) ® Co(é) ® CH(Dv))
of Dy in Cj(Dy). By [39, Proposition 7.9], there exist representations Ul e U(Co(é) ®
Cy(®v)) and UZe Z/{(CO(H) ®CH(Dv)), respectlvely of G and H in C¥ 0 (Dv) such that

Universality of W ¢ and W gives unique C*-algebra morphisms p" € Mor(Cj(G),
Cj(Dv)) and 6" € Mor(Cy(H), C§(Dy)) such that (id; ® p*)(W) = U' and (id; ®
oH(WH)=1U% O

Therefore, we have

Ca@V) ={(0] ® wp ®idp,)(WPV) | w1 € Co(H), wy €Cy(G)' )5

~ ~ CLS
= {6" (@2 @ idm) (W) p* (@1 @ 1) (WD) | @1 €Co(HY, wr e Co(G)'}

= p"(C((G)E* (CH(H)).
Since W, VW H W™V are bicharacters (see Example 2.9), we also obtain
(idg ®@idg ® A% )(HT®V)
= WYy
(Wlpu)23(W19u)13(W u)24(W19u)14
= (V)23 (AT )24 (VT {50) 13 (W fu) 14
= ((idg ® (0" ® p") 0 AG)(W9)23a((idy ® (6" ® 6%) 0 Ay (W) 134.

Taking the slice on the first and second leg by w; @ ws forall w| € Co(H), wr € Co(G)
and using the first equality in (3.2) we obtain

oy (010 () = (p" ® p")(AG () (" ® 8) (A ()
forall x € Cg(G), y € Cy(H).
Definition 3.2. The pair of morphisms (p", 8Y) is called the universal V-Drinfeld pair.

Lemma 3.3. The maps p" and 6" are Hopf*-homomorphisms. Furthermore Ao, op" =
polAgand Ap, 00" =60 Ap.

Proof. The reduced bicharacter of Dy is W2V = W%chp elU (Co(I:I ) ® CO(G) ®
Co(®v)) (see [39, Theorem 5.1(iii)]). Using the first equality in (3.2) we have

WOV = (idg ® Apy)(WTEY)
= ((idg ® O(WM))p3(idg ® p) (W13
= (id; ®idg ® Apy)(WTY)
= ((id;; ® Apy 0 0")(WT))3((dg ® Ay 0 p")(W))13



1064 J. Bhowmick, A. Mandal, S. Roy, A. Skalski

in U(Co(H) ® Co(G) ® Co(Dv)). The last equation implies

((id;; ® Amy 0 8H(ITT))35((de ® )W)
= ((idg ® Apy 0 P (W) 13Gds ® P)(WO)T5.

Clearly, the first leg in the term of the left hand side and the second leg in the term of
the right hand side of the above equation are trivial. Hence, both the terms are equal
tol,®1 &®u for some element u € U(Cy(Dv)). In particular, we have

(idg ® Apy 00" (W) = (15 @u)(ids ®p)(WE)  inU(Co(G) ® Co(Dv)). (3.3)

Since W € is the (universal) left representation of G in Cy(G), the unitary ((idg ®
Apy o pu)(WG) is also a representation of G in Co(®v). Also, (idé ® ,o)(WG) is a
left representation of G in Co(Dv). These facts force u = lo,. Now (idg ® 0)(WY)
is the bicharacter induced by the Hopf *-homomorphism p. Then (3.3) and (2.16) show
that p" is a Hopf *-homomorphism which is the unique universal lift of p. Slicing the

first leg of the both sides of (3.3) with w € Co(é)’ we get Ap, o p" = p o Ag. The
rest of the proof follows in a similar way. O

3.1. Coaction on the twisted tensor products. As a prelude to the results proved in the
next section, we show that there is a unique coaction y} <ty yg € Mor(A Xy B, A Ky
B ® Cj(Dv)) satisfying some natural conditions.

Lemma 3.4. Let (A, y4) and (B, yg) be G- and H-C*-algebras such that y4 and yp
are injective. Let v\ and yy be the respective universal normal coactions. Then there is
a unique coaction y v<y yg € Mor(A Xy B, A Xy B ® Cj(Dv)) such that

va >y Yp(ja(@) = (ja ® p)(vi(@),  yp v vp(jpd) = (jp ® 0")(yg (b))
(3.4)
foralla € A, b € B.

Proof. Since y4 and yp are injective, the canonical coaction y4 o<y yp defined by (2.24)
isinjective by Lemma 2.14. Hence, there is a unique normal coaction of Cj(®Dv), denoted
by y4 by yp, such that

(idamy s ® ADy) 0 Y4 By Y = YA >V ¥B.

Therefore, by (2.24), for a € A we have

(idary s ® Aoy)(ya v vp(ja(@) = ya pav v(ja(@) = (ja ® p)(ya(a))

where the last equality uses Lemma 3.3 and the definition of induced coactions.

Let A%uv € Mor(Co(Dv), Co(Dv) ® Cj(Dv)) denote the universal lift of Ag,
while viewed as coaction of Cy(®vy) on Co(Dy). By virtue of [40, Proposition 4.8],
A%, satisfies the following condition

(Apy ®idpy) 0 Au@V = A;’Duv oApy. (3.5)
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By (2.22) and repeated application of (3.5), (2.24) and Lemma 3.3 gives

(ya pav yg ®@idoy ) (v4 v vp(ja(a)))
= (idpmp ® Aoy ®ido,)((y4 v yp ®idopy) (Y4 v y5(ja(a))))
= (idamp ® (Apy ®idpy) 0 A ) (v >y Y3(ja(@)))
= (idamp ® AR, ) (ya v vp(ja(@))
= (idamp ® A ((ja ® p)(ya(@))
= (idsxp ® A%uv o Apy)((ja ® p")ys(a))
= (idars ® (Apy ®idoy) 0 Ay, 0 p")((ja ® idcyGv)v4(a))
= (ja ® Aoy 0 p" ® p")(([da ® Agu)(v4(a)))
= ((ja®poAg)oyy®p*)(¥i@)
= ((ja ® P)ya ® p)(r4(@)) = (ya >av yp ®idoy)((ja ® PH(ri@)).

Now, injectivity of y4 <y yp gives y} sy yg(ja(a)) = (ja® p")ys(a) foralla € A.
The second part of (3.4) can be shown similarly. O

3.2. Universal property of Cj(Dv). Let (v}, A) be acoaction of Cj(G) on a C*-algebra
A; in other words VX is an action of G on the universal level.

In the spirit of [22, Definition 4.2], we say that the action y} is faithful if the
*-algebra generated by the set {(w) ® idgu)(yi(a)) | w1 € A’,a € A} is strictly
dense in M(C{(G)). If G is compact then we get the usual definition of faithfulness of
the action y3: *-algebra generated by the set {(w] ® idg)(y4(a)) | w1 € A',a € A}is
norm dense in C*(G).

Theorem 3.5. Let G, H be locally compact quantum groups andlet A, B be C*-algebras.

Let (A, y}), (B, yp), beanaction of G on A on the universal level, respectively an action

of H on B on the universal level. Assume that y} and yg are faithful and normal.
Suppose that I is a locally compact quantum group and

(1) there is a coaction y € Mor(A Ky B, ARy B ® Cj(I)) of Cy(I) on ARy B;
(2) there are Hopf *-homomorphisms py € Mor(Cy(G), Ci(I)) and 6; € Mor(Cj(H),
Ch(I)) such that

yoja=(a®p)oys, vyojp=(r®6b1)oyg.

Then there is a unique Hopf *-homomorphism ¥ € Mor(Cyj(Dv), Cy(1)) such that ¥ o
p" = prand Vob" = ). In particular, this implies that (id s, p @ W) oy} <t ypoja =
Yy ojaand (idssyp @ W) oy >xypojp=vyo jp.
Proof. Denote the induced coactions of Cy(G) and Co(H) on A and B by y4 and y3,
respectively. Since y and y are normal, y4 and yp are injective.

Let («, B) be a V-Heisenberg pair on a Hilbert space . Then using the definition of
ja we compute (a € A)

y(a@) = (ja ® p1)(yi(@) = (((i[da @ @)ya ® p)(¥4(@))) 3,
= (((ldA Rao AG))/X ® Pl)()’X(a)))m
= ((ida ® @0 Ag ® p1)(ids ® AL) (V2 (@) sy
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Similarly, we obtain
y(ja() = (([dg ® Bo Ay ®61)((idp ® A‘,;)(Vﬁ(b))))m.

Let (@, B) be a V-anti-Heisenberg pair on a Hilbert space ; (see [35, Lemmas 3.6 and
3.8] for its existence):

WIEWE = ViaWEWSE  inUd(Co(G) ® Co(H) ® K(H1). (3.6)
By [40, Proposition 5.10], j4 and jp satisfy the following commutation relation:

[(a ® @)(ya(@)), (js ® B)(yg(b))] =0 foralla € A, b € B.
This implies that
[(y 0 ja ® @) (ya(@). (v o jp @ B)(yp(b))] =0 foralla € A, b € B.
This is in turn equivalent to
[((idA ®aoAG®p1 ® Agoa)(idg ® (idg ® Agu) o AE)(VX(Q)))MS’
((idp ® BoAn ®61 & A o B)(ids ® (idy ® Agu) o A;‘,)(y;(b)))2345] —0.
Therefore, the following operators

o' (x) ;== (2o Ag ® p1 ® Ag o @)((idg ® AE)(AG (X)),
B'(y):=(BoAy®6 @Ay op)((idy ® AY)(AY ()

commute for all x = (w1 ® idg)(y4(a@)) € M(CH(G)), y = (w2 ® idp)(yp(D)) €
M(C{(H)), where w1 € A’, wy € B',a € A, b € B. Now faithfulness of y} and yj
shows that the above operators commute for all x € M(C{(G)) and y € M(Cj(H));
hence, in particular for all x € Cj(G) and y € Cj(H).

Equivalently,

VI TN =TT, intd(Co(G) ® Co(H) @ K(H) ® Ci(l) @ K(H1)). (3.7)
Using the properties of WG, WH A, Ay and the Egs. (2.18), (3.6) we obtain:

G H G G G H H H
WIS W Sy = WO, WEWSL S Wi

28 Lpi
G wH G H wG wH
= Wlawzﬂwlmwzelwmwzg
H wG G H H wG
= WZﬂwlaV12W1p1W201 Tzwzgww-

In the computation above the morphisms «, B are acting on the third leg, o1, 61 are acting
on the fourth leg and @, B are acting on the fifth leg, respectively.
Similarly, we get

G HwG vrH 117G wH wG
Wop WY, = Wwwmwzp]wlmwzgwl&.
Then (3.7) gives

ViR WG s =W WG Vs inUd(Co(G) ® Co(H) @ CH(I)).



Quantum Symmetries of the Twisted Tensor Products of C*-Algebras 1067

By [39, Proposition 7.9], W ; mwggl is a left representation of ﬁv in Cy(/1). Hence,
there is a unique n € Mor(Cj(Dv), C(1)) such that (ids ® idy; ® n)(WG WHQU) =

WG (%, which implies ((idg ® n)(W §, ") ((dy ® n)(wzeu)) = w?plwg’el
Equlvalently,

(WE,)*((idg ® m (I F,0)) = VI3 ((d g ® n) (W 5hu))*

in L{(CO(G) ®C0(H) ®C{(1)). Hence, there is a unique u € U (C(j(1)) such that ((idgz ®
nop)(WY9) = (idg ® m)(WG)(l ®u) and (idy ® 61)(WH) = (1 @ u)((idy ®no
0Y)(WH). Now (idy ® 61)(WH) € U(Co(G) ® CA(Dy)) is a left representation of G
in Cj(Dv). Repeating the argument used in the proof of Lemma 3.3 we can conclude
that u = 1 and this completes the proof. 0O

4. Orthogonal Filtrations of C*-Algebras and their Quantum Symmetries

The theory of quantum symmetry group of orthogonal filtrations first appeared in [8].
Later, M. Thibault de Chanvalon extended the theory to Hilbert modules in the paper
[18]. In this section we recall the notions of orthogonal filtration of a unital C*-algebra
and their quantum symmetry groups as developed in these two papers. Then, under
suitable conditions, we prove the existence of a canonical filtration of twisted tensor
products.

Definition 4.1 ([ 18], Definition 2.4). Let A be a unital C*-algebra and let T4 be a faithful
state on A. An orthogonal filtration for the pair (A, t4) is a sequence of finite dimensional
subspaces {A;};>o such that Ag = Cl4, Span U;>¢ A; is dense in A and 74 (a*h) =0
ifaec A;j, be Ajandi # j. We will usually write A for the triple (A, 7a, {A;}i>0) as
above.

Remark 4.2. Thibaultde Chanvalon’s definition replaced subspaces A; by suitable Hilbert
modules. However, if we view a unital C*-algebra A as a right Hilbert module over itself
and we take W = Cl4 and J to be the map a +— a*, then the above definition indeed
coincides with the one given in Definition 2.4 of [18]. We should mention that in the
original formulation of [8] it was additionally assumed that Span U;>¢ A; is a *-algebra;
at the same time the indices i were allowed to come from an arbitrary set. We will
occasionally use the latter framework without further comment.

The following example will be crucially used throughout the rest of the article.

Example 4.3. Let T be a finitely generated discrete group endowed with a proper length
function /. Then the collection B,i :=span{A, | [(g) = n}, n > 0, forms a filtration for
the pair (C}(T"), tr) where tr is the canonical trace on C;(I").

4.1. The quantum symmetry group of an orthogonal filtration.

Theorem 4.4 [8,18]. Let {A;}i>0 be an orthogonal filtration for a pair (A, Ta) as above.
Let C(A) be the category with objects as pairs (G, «) where G is a compact quantum
group, o is an action of G on A such that a(A;) € A; Qag C(G) for eachi > 0, and the
morphisms being CQG morphisms intertwining the respective actions. Then there exists
a universal initial object in the category C(A), called the quantum symmetry group of
the filtration A and denoted by QISO(A). Moreover, the action of QISO(A) on A is
faithful (see Sect. 3.2 for the definition of faithfulness).
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Remark 4.5. As mentioned in Remark 4.2, the definition of an orthogonal filtration in [8]
included an additional condition, namely that Span{A; : i > 0} is a x-algebra. However,
Thibault de Chanvalon showed [18] that the existence of the quantum symmetry group
of an orthogonal filtration can be proved without assuming this extra condition.

Note that we assume throughout that the actions in our category are defined on the
reduced level; in fact the construction of the quantum symmetry group in [8] gives
naturally an action on the universal level (which then induces the reduced action). A
certain care needs then to be taken when one interprets the intertwining relation with
respect to the CQG morphisms (acting on the universal level), but this can be always
dealt with, for example by exploiting the purely algebraic picture of the actions (see
Lemma 4.8).

Remark 4.6. Given a pair (G,«) € C (A) we automatically deduce that the coaction
o € Mor(A, A ® C(G)) is injective. This is because o preserves the faithful state 74 as
observed in [8], hence it is injective by Lemma 2.7.

Remark 4.7. For a finitely generated countable group I" and a fixed word-length function
[, consider the orthogonal filtration B : = (C}T), tr, {B }n>0) of Example 4.3. Then
it can be easily seen that (', A) is_an object of the category C(B); in particular we
have a morphism from T to QISO(B) represented by a Hopf *-homomorphism 7 €
Mor(C"(QISO(B)), C*(F)) Moreover, in [12], it was proved that for I' = Z, (n €
N,n #4) C(QISO(C)) = C*(I') @ C*(I).

As an immediate application of Theorem 4.4, one can make the following observa-
tions.

Lemma 4.8. Let A be as above and let (G, a) be an object in the category C (K). Then
we have the following:

M iffaij | j =1,2,...,dim (A;)} is a basis of A;, then there exist elements q,ij €
Pol(G) (i = 0,k, j =1,...,dim(A;)) such that

a(aij)=Zaik®q,ij forall j,k=1,2,...,dim (A;).
k

(2) The action « is faithful if and only if the C*-algebra generated by {q,ij |i>0,j,k=
1,2,...,dim (A;)} is equal to C(G).

3) Ifa is afalthful action, then the canonical morphism (in C(A))from ct (QISO(A))
to C(G) is surjective.

4.2. Orthogonal filtration of a twisted tensor product. Throughout this subsection we
will work with the following notation: A := (A, 14, {A;};>0) and B := (B, tp, {B;};>0)
will denote orthogonal filtrations of unital C*-algebras A and B, y4 and yp will de-
note the canomcal actions of QISO(A) on A and QISO(B) on B, respectively, while

V e U(Cy (QISO(A)) ® Co(QISO(B)) will be a fixed bicharacter.

Let (@, B) be a V-Heisenberg pair on H. We will work with a realization of A Xy B
inside A ® B ® B(H) defined via embeddings j4 and jp described by (2.19).

Since y4 preserves T4 and yp preserves tp, we can apply [35, Lemma 5.5] for
completely positive maps to define a functional 74 Xy 75: A Ky B — C by

1A By 15(ja(a) jg(b)) = ta(@)Tp(h) forall a € A, b € B. .1
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Proposition 4.9. The functional toXy tp is a faithful state on ARy B and the triple ARy
= (AN B, 1o Xy 7B, {ja(A) jB(Bj)}i,j>0) is an orthogonal filtration of A Xy B.

Proof. Definet’: AQ BQB(H) — B(H) byt := 74 ® 3 ®idy. Then t’ is unital and
positive because 74 and tp are states. By [35, Lemma 5.5], 74 Ky t3() 1y := 7’| sxB-
Since 1’ is faithful, so is its restriction 74 Xy t5. Therefore, T4 My 75 is a faithful state
on A Xy B.

Let S := Span{ja(A;)jg(Bj) : i, j = 0}. Since the density of S in AXly B is clear by
the definition of A Xy B, we only need to prove that {j4(A;) jg(B;}i, j>0 is orthogonal
with respect to 74 Xy 7p. Indeed, for all a; € A;, b; € Bj, ap € Ay and b; € B, we
have:

ta By 5 ((ia @) ja (b)) ja @) ja (b))
w4 By w5 (jp(b7) jalafar) js (br))
= (24 ® 15 ® idy)(((ds ® BB B))),3((dr © ) (yalafar),
(s ® B)(va(B1),5)
= (15 ®ids0)((idz ® BY (7B (1)) (74 ® ) (v (@) ((ids & BY (75 (b)) )
= ta(a;ax)(tp ® B)(yp(bib) = tala;ar) T (b;b1)18(w).-

Therefore, if (i, j) # (k,1), then ¢ = 0 since ta(a;ax) = 0if i # k and tB(b’]*.bl) =0
if j # [. This proves that {ja(A;)jg(Bj)}i j=0 yields an orthogonal filtration with
respectto t4 X 7p. O

C:

Let then (G, yA) and (H, yp) be objects in C(K) and C(E) respectively Sup-
pose Vi € U (CO(G) X CO(H )) is a bicharacter. Then universality of QISO(A) and
QISO(B) gives the existence Hopf *-homomorphisms fj: C“(QISO(A)) — C(G)
and f>: C“(QISO(B)) — C(H)suchthat (ids® f1)oy} = v, and (1d3®f2)oy3 = Y-
These admit universal lifts and by Theorem 2.10 induce dual Hopf *-homomorphisms

fi: Co(G) = Co(QISO(A))  and  fa: Co(H) — Co(QISO(B)).

The latter maps allow us to define a bicharacter V € U (CO(QISO(Z)) ® CO(QISO(E))
by the formula V = (f1 ® f2)(V1).

Corollary 4.10. In the situation above, there is a faithful state T Xy, tp on ARy, B such
that the triplet (A Ry, B, 14 Ry, 18, {j} (A}) j5(Bj)}i,j>0) is an orthogonal filtration
of ARy, B, where j, and jg are embeddings of A and B into A Ry, B

Proof. Clearly, y, and yj, are injective coactions because they preserve 74 and 7 respec-
tively. Now Lemma 2.11 shows that y and y, are induced by the Hopf *-homomorphism
Ji1and f>, respectively. Therefore, by [35, Theorem 5.2], AXy B and AXy, B are equiv-
alent: there is an isomorphism ® € Mor(A Xy B, A Xy, B) such that

Qo js = ];‘, Qo jp = ]% 4.2)

Then t4 My, 75 := (14 Ky 78) © ®~! defines a faithful state on A Xy, B and the
double-indexed family {;, (A;) j5(B})}i, j>0 defines an orthogonal filtration of A Xy, B
with respect to 4 Xy, 7. O
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5. Quantum Symmetries of Twisted Tensor Product

Let A := (A, ta, {Ai}i>0) and B = (B, T8, {Bj};>0) be orthogonal filtrations of uni-
tal C*-algebras A and B. Let y4 and yp denote the actions of QISO(EN) and QISQ(E)
on A and B, respectively. Let (G, y}) and (H, yp) be objects in C(A) and C(B) re-
spectively/,ﬂd suppose wve a bicharacter Vi € U (Co(é) ® Co(ﬁ )). Let V €
u (CO(QISO(Z)) ® CO(QISO(§)) be the associated bicharacter as in Corollary 4.10. By
Proposition 4.9, {ja(A;) jg(B;)}i, j>0 is an orthogonal filtration of A &V B with respect

to the state T4 Xy 7p. The resulting triple will be denoted by A Xy B. Finally, let ®v
denote the Drinfeld double of QISO(A) and QISO(B) with respect to the bicharacter V.
The aim of this section is to prove Theorem 5.4 which states that QISO(A XMy, B) is iso-
morphic to Dv. It turns out that this conclusion can be easily derived from the following
theorem:

Theorem 5.1. Let A, B be orthogonal filtrations, and fix a reduced bicharacter V €

U(Co(QISO(A))®Co(QISO(B))). The quantum symmetry group QISO(ARly B), whose
existence is guaranteed by Proposition 4.9, is isomorphic to Dv, the Drinfeld double
of QISO(A) and QISO(B) with respect to the bicharacter V.

For the rest of the section, the symbol V will denote a fixed reduced bicharacter be-

longing to U (Cy (QISO(K ) RCo (QISO(E ))). As apreparation for proving Theorem 5.1,
we will first prove some auxiliary results. Remark 4.6 shows that the coactions y4 and y5
are injective. By the same argument the actions y} and yy defined on the universal level
are normal. Thus, by Lemma 3.4, there is a coaction yj say yp of Cj(Dy) on A Ky B
satisfying (3.4). This allows us to show the following fact.

Lemma 5.2. The pair (Dv, y} <y yj) is an object in the category C(ARy B). More-
over, y3 >y yy is a faithful coaction.

Proof. Leti > 0,andlet{v; y | x =1,2,...,dim(A;)}beabasisof A;. By Lemma4.8,
we have elements {q;, | k,/ = 1,2,...,dim(A;)} € Pol(QISO(A)) C C*(QISO(A))
such that foreach k =1, ..., dim(A;)

dim(A;)
YA = D il ® g
=1
Moreover, by virtue of (3.4),

dim(A;)
yi ey vpGa@i) = Y jain) ® p(gf)-
=1
Similarly, if j > 0 and {w;,, | m = 1,2,...,dim(B;)} is a basis of B, then we
have elements {rj},, | m,n = 1,2, ..., dim(B;)} € C”(QISO(E)) such that for m =
1,2,...,dim(B;)
dim(B;)
u ug, _ . u,..J
vi ey vEGBwim) = Y ja(wja) ® 0" (rilm).

n=1
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Therefore, we can conclude that

yi ooy YEGA) jBWjm) = Y jaWi) i Wi @ 0 (Gi)6 (). (5.1)

l,n

Thus, the map y§ <y yp preserves the subspace ja(A;) jg(B;) foreach i, j > 0. This
proves the first assertion.
Now we prove that the action y} say yp is faithful. By Lemma 4.8 (2) and by the

equality (5.1) it is enough to show that the C*-algebra generated by the set {p“(ql"’ o)
Qu(r,{,m) | i,j = 0,1,k = 1,...,dim(A;),n,m = 1,...,dim(B;)} is equal to
C'(Dv).
Since y} and yy; are faithful coactions, we have:
C*{qlik |i>0,0,k=1,...,dim(A;)} = C"(QISO(A)),
C*{r,{m |j=>=0,n,m=1,...,dim(B;)} = C"(QISO(B)).
As C'(Dy) = p“(C“(QISO(X)))G“(C“(QISO(E))), the proof is completed. O
Next we prove the following auxiliary result.
Lemma 5.3. Ler y" denote the coaction of C* (QISO(Z Ky E)) on A Xy B. Then
(t4 Ry idp ® idgisoim, 5) (7" (ja@)jz (0) = ta(@y  (js b)), (5.2)
(ida By 75 ® idgisoamy 5) (V" (Ja(@) jB () = t5(B)y " (ja(a)) (5.3)
foralla € Aandb € B.

Proof. By [35, Lemma 5.5], concerning equivariant completely positive maps, we have

T4 Wy idp(ja(@)jp (b)) = ta(a)jp(b),  ida Ky 15((ja(a)jp(b)) = t8(b)ja(a)
(5.4)
foralla € A, b € B.
By Lemmas 5.2 and 4.8 (3) it follows that there is a unique surjective Hopf *-homom-
orphism g : C* (QISO(A Xy B)) — CY(®v) such that
(idamyp ® @) oy o ja=yy>aygoja=(ja®p") oy, (5.5
(idamy B ®q)oyuoj3=y;‘ll><1y§oj3=(j3 ®9u)oy§. (5.6)
Notice that the morphism y§ <y yp isinjective as it preserves the faithful state 74Xy 7p.
Using (5.4), (5.5) and (5.6) we get
(ta Ry idg ® ¢) (" (ja(a) jp()))
= (14 Ry idg ® idgsocimy, 5) ((a ® P (V4 (@) (s ® 8 (V5 (b))
= (T4 ® p")(r4 (@) (jr ® 0") (b))
= t4(a)(jp ® 6")(yg (b)) = (idsmy s ® 9)(za(@)y" (jB (D))

Note that we have shown above that

(idamy s ® ¢)((ta By idg ® id) (" (ja (@) jp (b))
= (idamy 5 ® 9)(Ta(@)y" (jB(b))).
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The equation (id®q)oy" = y} < yp implies thatid®gq is injective on Ran(y"). Thus
it follows that (5.2) holds, if only we can show that (74 Ky idp ® id) (y"(ja (@) jB(D)))
belongs to the image of y". For that (by density) we may assume that a € A;, b €
B; for some i, j > 0. Since by definition the coaction y" preserves the subspaces
ja(A)jp(Bj) forall i, j > 0, it has to preserve the subspaces ja(A;) and jp(B;) and
hence y"(ja(@)) = 35—y jalar) ®xk, v ' (jp (b)) = 3, j(bx)®yx forsomen € N,
al,...,a,; € A,',bl,...,bn € Bj andxl,...,xn,yl,...,y,, (S Cu(QISO(A IXV B))
Thus

(ta By idg ® id)(y"(ja(a) jB (b))

n
= Z (ta Ry idp ® id)(ja(a;) jp(br) ® x;jyi)
J.k=1

= Y jalza@))jsbo) @ xjye = (Y ja(tala)js() ® x;)y" (jp (b))
J.k=1 j=1
= (ta My 15 ® id)(¥"(ja(@) j (D) y" (B (D))
= (ta By t3(ja(@) jp(1))y" (j () = ta(@)y" (jp (b)),
where in the second equality we used [35, Lemma 5.5]. This shows the desired contain-

ment and completes the proof of (5.2).
Similarly, we can show that (5.3) holds. O

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. From the Podles condition for y" we get
y“ (AR B)(I4=,5 ® C"(QISO(A Ry B))) = AR B ® C"(QISO(A Ry B)).

Applying T4 Myidp Qidgs0 Ay 5) to the both sides of the above equality and using (5.2)
and (5.4) gives

Y (B (B) (1,5 ® C'(QISO(A Ry B))) = jz(B) ® C"(QISO(A Ry B)).

Thus, y"(jg(B)) < jg(B) ®C“(QISO(A Xy B)) Therefore, yp := (jE ®

115041 A%y B)) o y" o jp defines a coaction of C*(QISO(A Ky B)) on B. Moreover,
(QISO(A Xy B) ¥B)isanobjectin C(B) and soby Theorem 4.4, there isa Hopf* homo-

morphism 0 : C“(QISO(B)) — C”(QISO(A Xy B)) such that (idg ® 61) o Y5 = V.
This yields the following equality:
(idp ®6) 0 75 = (' @ idgisoqimys) © 7" © Ja-
Hence,
(js®01)oyp=y"ojp. (5.7

Similarly, we can show that there is a coaction y,4 of C“(QISO&A Xy B)) on A and a
Hopf *-homomorphism p : Cu(QISO(A)) — C"(QISO(A Ky B)) such that

(ja®p)oyy=vy"oja. (5.8)
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By the universal property of C"(®Dy) proved in Theorem 3.5, there is a unique Hopf
*-homomorphism ¥ : C*(Dy) — C"(QISO(A Xy B)) such that W o p" = p;, Vo' =
61 and

(idamys ® W) oy ygoja=y"oja (5.9
(idazyp @ W) oy <aypojp=y"o jp. (5.10)

Using (5.8), (5.10) and (5.5) we have
(idamyp ® Wog)oy o ja=(ja®VopHoys=(a®p)oys=y"oja.

Similarly, we can show that (idyx,p ® W 0 g) o y" o jp = y" o jp. Therefore, for
all w € (A Xy B) we have

(¥ 0 ) (0 ® idosoimy 5) (V' (X)) = (@ ® idgis0amy 5) V" (X))

forall x € ARy B. Faithfulness of y" gives Wogq(c) = cforallc € C*(QISO(ARy B)).
A similar computation gives

(idarys ® ¢ 0 W) (v > yg(ja(@)ja () = ys > yg(jala) ja (b))

for alla € A, b € B. Finally, by talking slices with w € (A Xy B)’ on the first leg of
the the both sides in the above equation and using faithfulness of y} >« y; we obtain
(qoVW)(d) =dforalld e C"(Dy). O

Thus, we are in a position to prove the main result of this article:

Theorem 5.4. Let (G, y,) and (H, yy) be objects in C(A) and C(B) respectively, and
suppose we have a bicharacter V| € U(Co(é) ® Co(I:I)) LetV € U(Cy (QISO(/T)) ®

CO(QISO(B)) be the associated bicharacter as in Corollary 4.10. Then the quantum
symmetry group QISO(A Xy, B)is isomorphic to Dv.

Proof. The result is an immediate consequence of Theorem 5.1 and of Corollary 4.10
and its proof. O

In particular, we can choose V=1 € L{(CO(QISO(Z)) ® CO(QISO(E)) Then A Xy
B = A ® B. Also, by virtue of [39, Example 5.10] the reduced Drinfeld double
of QISO(A) and QISO(B) with respect to V is QISO(A) ® QISO(B) Thus, denot-
ing the filtration of A ® B coming from Proposition 4.9 by A ® B and using the standard
Cartesian product construction for compact quantum groups (so that C*(G x H) =
C"(G) ®max C"(H)) we obtain the following corollary.

Corollary 5.5. The quantum symmetry group QISO(K ® E) is isomorphic to QISO(K) X
QISO(B).

In the next example, we apply Theorem 5.4 to describe the quantum symmetry group
of a class of Rieffel deformations of unital C*-algebras by actions of compact groups
[25,38]. These are examples which are not necessarily of the crossed product type; the
next section is devoted to the examples arising as reduced crossed products.
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Example 5.6. Let A and B be unital C*-algebras equipped with orthogonal filtrations.
Assume that G and H are compact abelian groups acting respectively on A and on
B in the filtration preserving way (so that they are objects of respective categories).
Moreover, let x : G x H — T be a bicharacter. The coactions o A:A—> AR®CG)
and ap : B - B ® C(H) define a canonical coaction y of C(K) := C(G x H) on
E := A ® B. Furthermore x defines a bicharacter i/ on K via the formula

YK xK—T, ¥((g,h), (g2.h2) = x(g,h)~', g1, hi hyek.

Since  is a bicharacter, it defines a 2-cocycle on the group K . The Rieffel deformation
of the data (E, y, ¥) yields a new unital C*-algebra Ey,.

By Theorem 6.2 of [35], Ey is isomorphic to A Xy, B. Therefore, we can apply
Theorem 5.4 to compute the quantum symmetry group of Ey,. Concrete examples can be
obtained in the following way, using the notions appearing in the next section: take A and
B to be any two C* algebras appearing in Examples 6.6, 6.7,6.8,6.9and G = H = T".
Then the homomorphism fj of Proposition 6.5 defines the required bicharacter.

6. The Case of the Reduced Crossed Products

In this section we will apply the general results obtained before for quantum symmetry
groups of twisted tensor products to the case of crossed products by discrete group
actions.

6.1. Quantum symmetries of reduced crossed products. Throughout this subsection, we
will adopt the following notations and conventions. The triple A := (A, ta, {A;}i>0) will
denote an orthogonal filtration of a unital C*-algebra A. Further, I' will denote a discrete
countable group with a neutral element e and a proper length function/ : I' — NO, so that
the C*-algebra B := C*(F) has the orthogonal filtration B := (C;(I"), tr, {B }n>0) as
in Example 4.3. Symbols y} and d ya will denote respectively the universal and reduced
version of the action of QISO(A) on A, and W' will denote the reduced bicharacter
associated to I' (see Theorem 2.13). Given any action 8 of I" on A (classically viewed
as a homomorphism from I" to Aut(A), but here interpreted as a coaction of Co(I"), that
is a morphism € Mor(A, A ® Co(I")) satisfying the Eq. (2.8)), we will denote the
resulting reduced crossed product, contained in M(A ® K(2(T))), as A % gr . As
customary, we will write then al, for (a)(1® Ag), wherea € A, g € I'. Moreover we
will write T :=T407" € S(A % g,r '), where 7’ is the canonical conditional expectation
from A g, I onto A defined by the continuous linear extension of the prescription
r’(Zg aghg) = a.. Finally, given the data as above define for each i, j > 0

Ajj = spanfailg; | ai € Ay, 1(g)) = j}. (6.1)
Note first the following easy lemma, extending Theorem 2.13.

Lemma 6.1. Let A, B be as above and fixan action B of T on A. The isomorphism W : ARy
B — A xp . T, discussed in Theorem 2.13 has the following properties:

T = (1A Myr ) 0,
and for each i, j > 0 we have

W(ja(AD)jB(B)) = A;
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Proof. Easy computation. O

The above lemma shows that we have a natural candidate for an orthogonal filtration
of the reduced crossed product. This raises two natural questions: first, when does the
family {A;; : i, j > 0} indeed form an orthogonal filtration, and second, when can
we determine the respective quantum symmetry group. The next theorem involves a
condition which identifies the family {A;; : i, j > 0} as an orthogonal filtration arising
via the construction described in Sect. 4.2, and further allows us to apply Theorem 5.1 to
compute the quantum symmetry group in question. Later, in Proposition 6.13, we will see
another, more general situation, under which {A;; : i, j > 0} still forms an orthogonal
filtration. Then of course the second question will have to be addressed separately.

Theorem 6.2. Let A, B be as above. Suppose that the map w € Mor(C“(QISO(X)),
Co(T)) _is a Hopf *-homomorphism, describing quantum group morphism from T' to
QISO(A), and define the action B € Mor(A, A ® Co(I")) as

B:=(d®m) oyl 6.2)

Then the triplet (A x g, I, T, (A;})i, j>0) is an orthogonal filtration, denoted by A Xg B.
Recall the Hopf *-homomorphism nir € Mor(C(QISO(B)), C*(I")) mentioned in

Remark 4.7 and define a bicharacter V € U(CO(QISO(X)) ® Co (QISO(E))) as
Vi= @ @ar)(Wh),

where 7T, T denote the respective dual morphisms.
Then QISO(A Xg B) = Dy, where Dv is the Drinfeld double of QISO(A) and

QISO(B) determined by V.

Proof. The proof proceeds via identifying the sets A;; with those constructed via Propo-
sition 4.9. )

By virtue of Lemma 2.11, the coactions 8 and Ar are induced by & and 71, respec-
tively. Note that 8 and Ar are injective. Thus we can use [35, Theorem 5.2] to deduce
there is an isomorphism ®: A My C}(T") — A My,r Cf(T") such that

©(ja) = ja.  OUp) = Js,

where j, and jj, are embeddings of A and C}(I") into A Xy C;(I"). An argument similar
to that used in the proof of Corollary 4.10 shows that the isomorphism ® maps t4 Xy tr
and {j), (A} jg(Bj)}i j=0 to T4 Rr tr and {ja(A;)jp(B})}i, j>0, respectively. Then,
using Lemma 6.1, we obtain that ¥ o ® maps 74 Xy tr and {j,(A;)jz(B))}i =0
to T and {A;;}; j>0, respectively. The map W o © is an isomorphism and the triplet
(ARy B, taRy tr, {j} (A j5(Bj)}i,j=0) is an orthogonal filtration by Proposition 4.9.
Hence, the triplet (A xg; I', 7, (A;j)i, j>0) is also an orthogonal filtration of A g, I’
Then Theorem 5.1 allows us to conclude the proof. O

We quickly note that the theorem applies of course to the case of the trivial action.

Corollary 6.3. Let A, B be the e filtrations introduced above. Let B denote the trivial
action of T on A. Then QISO(A ® B) is isomorphic to QISO(A) X QISO(B)

Proof. Itsuffices torecall that for atrivial action 8, A g ,I" isisomorphic with AQC; (I")
and apply Corollary 5.5. O
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Remark 6.4. Note that the action defined by the formula (6.2) preserves the state t4. As
we will see below, this preservation alone guarantees that the family {A;; : i, j > 0}
forms an orthogonal filtration. The example presented in the last part of this section will
show however that if we only assume that 8 preserves 74, then in general the quantum
symmetry group need not be of the form discussed above. More specifically we will
prove that the quantum symmetry group QISO(A X g B) need not be a Drinfeld double

of QISO(A) and QISO(B) with respect to any bicharacter.

6.2. Examples. In this subsection we present several examples illustrating the scope of
Theorem 6.2 and also discuss the cases in which it does not apply. We begin with the
following observation, presenting a general situation where one can apply Theorem 6.2.

Proposition 6.5. Suppose that A= (A, T4, (A))i=0) is an orthogonal filtration and de-
note as usual by y} the coaction of C"(QISO(A)) on A. Suppose thatn € N and we have
a quantum group morphism from T" to QISO(Z), described by a Hopf™*-homomorphism
7w € Mor(C*(QISO(A)), C(T™)). Further let A := (A1, A2, ..., Ay) € T" and define a
homomorphism fy: Z" — T" by the formula f(m,ma, ..., my,) = )»1”‘ ce A and
let fi: C(T") — Co(Z") denote the associated Hopf *-homomorphism.

Then the formula B := (id ® fy o ) o y defines an action p of I' := Z" on A and
the C*-algebra A g Z" satisfies the conditions of Theorem 6.2.

Proposition 6.5 can be directly applied to the following class of examples.

Example 6.6. Let M be a compact Riemannian manifold. Assume that T” is a subgroup
of the maximal torus of the isometry group ISO(M) for some n > 1. Consider the or-
thogonal filtration (E, , {V;};, J, W) on C(M) coming from the Hodge-Dirac operator
d+d* (see Example 2.5.(1) of [18]). It is well known that (Remark 2.13 of [18]) ISO(M)
is an object of the category C(E, t, {V;};, J, W) and thus we have a quantum group mor-
phism from T” to QISO(E, 7, {V;};, J, W). Now we can apply Proposition 6.5.

In particular, if we take M = T", the resulting crossed product is the 2n-dimensional
noncommutative torus.

Example 6.7. For g € (0, 1) and G a compact semisimple Lie group, let A := C(Gy)
denote the reduced version of the g-deformation of G. It is well known that G, is
coamenable. Consider the (reduced, ergodic) action of G, on itself, i.e. the coproduct
A : A — AQ® A. Then the faithful Haar state t4 of A is the unique invariant state
for the action A. For an irreducible representation 7w of G, denote by Ay the linear
span of its matrix coefficients. By [8, Theorem 3.6], we have an orthogonal filtration
= (A, T4, {Ax }ﬂeln((;q)) such that (C(Gy), A) is an object of C(A). Therefore, we
have a Hopf *-homomorphism f : C“(QISO(Z)) — C(Gy). Let us recall that the
maximal toral subgroup T" of G is still a quantum subgroup of G, so that we have a
Hopf *-homomorphism g : C(G,) — C(T"). Thus we obtain a Hopf *-homomorphism
from C" (QISO(AV)) to C(T") and we end up in the framework of Proposition 6.5.

Example 6.8. The situation described above can be generalized to quantum homoge-
neous spaces of G, (we continue using the same notations as above). Let H be a quantum
subgroup of G, given by the surjective Hopf *-homomorphism x : C(G,) — C(H).
Let C(G4/H) := {a € C(Gy) | (x ®id)(A(a)) = 1 ® a}. We then have a reduced
ergodic coaction A |c(G,/H): C(G4/H) — C(G4/H) ® C(G,), and an orthogonal fil-
tration of C(G/ H) resulting from an application of Theorem 3.6 of [8]. The analogous
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argument to that in Example 6.7 shows that the conditions of Proposition 6.5 hold also
here.

Example 6.9. This example deals with the orthogonal filtrations of Cuntz algebras con-
structed in Proposition 4.5 in [24]. Let N € N, and let Oy be the associated Cuntz
algebra. We will denote the canonical generators of Oy by the symbols Sy, ..., Sy. For
a multi-index p = (1, 42, ..., i), where k € N and u; € {1,2,..., N}, we write
Sy for Sy, -+ Sy, and |p| for Zle wi. We have the gauge action y of T on Oy defined
by the equation y,(S;) = zS; where z € T,i = 1, ..., N. Then the fixed point algebra
(9% has a natural filtration { Wy }x>0. The authors of [24] construct further an orthogonal
filtration { Vi u }k.m>0 of Oy with respect to the canonical state w. It can be easily seen
that the filtration is given by the following formulas (k > 0):

Vi,o = Wi, Vi = Span {S;,x : x € Wi, |ul =m} form > 0,
Vi.m = Span {xS; :x € Wi, |ul = —m} form < 0.

Suppose we have an action of T" on Oy which acts on each S; merely by scalar
multiplication. We claim that Proposition 6.5 applies to such actions. Indeed, it is easy
to see that T" acts on Oy by quantum symmetries. Therefore, we have a quantum group
morphism from T” to QISO(Oy) and we can apply Proposition 6.5 to obtain an action
of Z" on Oy satisfying the conditions in Theorem 6.2.

The first example of such a group action is of course the gauge action y of T defined
above. More generally, following Katsura’s prescription in Definition 2.1 of [26], we
have actions of T" on Oy defined by

BX(S) =x(@)Si, i=1,...,N,zeT",

x being a fixed character of T (so an element of Z").
Then we can apply Proposition 6.5 as mentioned above.

6.3. The example of the Bunce—Deddens algebra. This subsection deals with the quan-
tum symmetries of the Bunce-Deddens algebra. Let us recall that the Bunce-Deddens
algebra is isomorphic to the crossed product A xg Z, where A is the commutative AF
algebra of continuous functions on the middle-third Cantor set and g is the odome-
ter action on A. More precisely, A is an AF algebra arising as the limit of the unital
embeddings

C? - C?C? - C*C*°RC? — ...

Let us recall a multi-index notation for a basis of A,, (the n-th element of the above
sequence), as introduced in [10]. For each n € N, 7, will denote the set {ijiz---i, :
ij € {1,2}for j = 1,...,n}. Multi-indices in J := |J, ey Jn Will be denoted by
capital letters I, J, ... and we let the canonical basis of the algebra .4,, built of minimal
projections be indexed by elements of 7,,. Hence, the basis vectors of .A,, will be denoted
by ey, where I belongs to J,,.

Then the natural embeddings i, : A, — A+ can be described by the formula

in(er) =er+epn, 1€Jy, (6.3)

where we use the standard concatenation of multi-indices.
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The quantum isometry group (in the sense of [9]) of the C*-algebra A was studied
in [10]. For more details, we refer to Chapter 5 of [21]. Indeed, we can fix a spectral
triple on A coming from the family constructed by Christensen and Ivan [14]. It turns
out (Theorem 3.1 of [10]) that the relevant quantum isometry group of A (with respect
to that triple), which we will denote S, is the projective limit of the quantum isometry
groups S, of the finite dimensional commutative C*-algebras A,,, equipped with suitable
spectral triples (or, equivalently, viewed as algebras of functions on respective finite
Bratteli diagrams, see [10]). More precisely, the algebras C¥(S,,) are inductively defined
by the formulas

C'(S1) =C(Z2), C"(Sps1) = C"(Sp) x C*(Sp) & C'(Sn) *C*(Sp), neN.

Let us introduce some more notation, following [10]. The algebra C"(S,,+1) is generated
by elements {ak; ;; : K,I € Jy,1, j = 1,2}, and the coaction y,' | of C*(S,4+1) on
A1 is given by the following formula:

vealer) =Y exi®akiy, 1 € Ju j € {1,2). 6.4)
KeJn,l=1,2

The sequence (C"(S,)),en defines an inductive system with connecting Hopf *-homo-
morphisms ¢, , : C*(Sy) — C"(Sp) (if n < m) satisfying the equation

¢nk=¢mk0¢nm, n<m<k.

Further, one can check that for all n € N we have

(i, ® ¢n,n+l) © y;;l = )/,;1+1 o iy. (6.5)
Combining (6.3) and (6.5), we see that foralln e N, I, J € 7,

Ounstay) =ayi, 1 +ayi,12 =ay2,11 +aj2 2. (6.6)

Thus, we have a compact quantum group S, arising as a projective limit of this
system, a compact quantum group morphism from S, to S, represented by a Hopf
*-homomorphism ¢, ~, € Mor(C"(S,), C"(S«)) and acanonical coaction y* € Mor(A,
A ® C"(Swo))-

Let we denote the canonical trace on A. As explained in Subsection 3.3 of [8], A
can be equipped with an orthogonal filtration (A, we, {A,\As—1}nen). As a result, by
Theorem 3.2 of [8], the quantum symmetry group of (A, we, {A,\A,—1},) is isomorphic
t0 Seo.

Now, let us recall the odometer action 8 on A. In fact the action § arises as an inductive
limit of actions 8, of ', := Zy» on A,. Let I,, denote the element (111---1) € J,,.

We first define inductively homomorphisms o, : I, — Aut(J,), n € N. We do it as
follows, for simplicity writing o,l; for o, (i): first the map o7 : J1 — J is defined as

o1(1)=2,01(2) = 1.

In the inductive step, foreach j = 1,2and 0 < i < 2" —1, the map 0’;;+1 Tl = Tusl
is defined by

ol (k@) =@ if 0<k+i<2'—1, j=1,2, (6.7)
ol k@) = ANG+ D) i k+i=2", j=1,2, (6.8)
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where j + 1 is defined mod 2 and we have used the concatenation of indices. It is clear
that 7, = {oi(I,) :i =0,1,2,...,2" — 1}.

Let{6; : j=0,1,2..., 2”_1} denote the standard basis of the finite-dimensional
(commutative) algebra C(I",)). Then for each n € N the coaction 8, € Mor(A4,, 4, ®
C(TI"},)) is defined as

2m—1

,Bn(egi(ln)) = € j ® 3j7i~ (6.9)
n oy (In)
j=0

We then easily check that we have an inductive system (C(I',), B,)nen of coactions,
with connecting morphisms ¥, , € Mor(C(I',), C(I';)) (for n < m) such that for
all n,m,k € Nyn <m < k, Yux = ¥mk © ¥u.m, and a Hopf *-homomorphism
Yn.0o € Mor(C(I'y,), Co(Z)). In particular for n € N the map ¥, ,+1 is given by

- (3?’) = 5;"“ + 3;;';}, j=0,...,2"—1. (6.10)
Thus, finally we can define the odometer action using the universal property of the
inductive limit, so that for alln € N

Bo ¢n,oo =0d® 1,[fnoo) o Bu.

In what follows, we will replace the symbols o,l; and I, by o/ and I, respectively,
unless there is any risk of confusion. -

Thus, we have an orthogonal filtration A := (A, wg, {A,\‘Au—1}nen) of a unital
C*-algebra A and an action 8 of Z on A. In order to apply Theorem 6.2, we need a Hopf
s-homomorphism 77 € Mor(C"(QISO(A)), Co(Z)) such that 8 = (id ® ) o y/‘;.

In order to define &, we begin by defining a quantum group homomorphism from
CH(Sy) to C(I'y).

Lemma 6.10. Let n € N. Define r,, € Mor(C*(S,), C(T'y)) by the formula
ﬂn(aa,i(l)qo.j(l)):(sl'_j, l,] = 1,...,2”.
Then w,, is a Hopf *-homomorphism and

(id ® Yn,00 0 Tn) © ¥y = B 0 B0 (6.11)

Proof. To prove that 7, is a Hopf *-homomorphism, we need to recall the universal
property of the quantum group S,,. Let us begin by recalling that both S,,;; and I'j,4;
are quantum subgroups of the quantum permutation group S;,H,. Indeed, this follows
from [46] since both S,+; and I'j,4; are compact quantum groups acting faithfully on
Appl & (Cznﬂ. In particular, the elements {a;; : I, J € J,+1} satisfy the magic unitary
conditions of the canonical generators of C(S;fn+1 ). The only extra conditions on aj; are

dictated by the following equalities (see equation (2.1) of [10]):
y#+1(in (An)) - in (An) & Cu(Sn+l)- (612)

Therefore, if § is an action of a compact quantum group H on A,,; satisfying the
condition

8(in(An)) S in(An) ® C'(H),

then we have a quantum group morphism from H to'S, given by amap ® € Mor(C"(S,),
C"(H)) such that (id ® ®) o ', = 5. We claim that the action f,41 of ;41 on
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Ap+1 satisfies the displayed condition (6.12). Indeed, by (6.3), (6.7) and (6.8), for all
0 <i<2"—1wehave
:3n+1 (in (egi(ln)))
= Bu+1(€qi@y1) + Bnri(eqi(ry2)
-1
= Z [e(f./(l)l ®8j—i + eqim2 @ 8j—iyon + esim2 ® 8j—i+ esim1 @ dj—ivan]
j=0
1
= Z (exim1 *+€xim) ® (Bj—i +8j—i+2n)
Jj=0
m—1

=D inlegiq) ® (8j—i +8_isa),
j=0

which proves our claim.
Finally, since (id ® ) o y' = B, holds, we have

id® Ipn,oo o7y) 0 V;;l =(>{d® 1/fn,oo) oBy=Bo ¢n,oo~
O

We naturally need also some compatibility conditions for the morphisms introduced
in the last lemma.

Lemma 6.11. For each n € N the following equality holds:

1pn,oo oMy = 1pn+l,oo O Tyl O ¢n,n+1-

Proof. Wefixn eN, j, k €{0,...,2" — 1} and compute

(¢n+1,oo O TTp4+1 © ¢n,n+1)(agj(1),gk(1))

= (Vn+1,00 © Tn+1)(@giy1,0k @1 + o @)1,051)2) (by (6.6))

= Yn+l,000(j—k) + d2n+j—k)) (by (6.7), (6.8) and Lemma 6.10)

= (Vn+1,00 © Bun+1)(8j—k) (by (6.10))

= 'a”n,oo(‘sj—k)

= (Yn,00 © nl’l)(ao'j(l)’gk(l)) (by Lemma 6.10).
O

We are ready for the final statement, which implies that the approach of Theorem 6.2
can be used to produce an orthogonal filtration of the Bunce-Deddens algebra.

Proposition 6.12. There exists a Hopf™*-homomorphism n € Mor(C"(So), Co(Z)) such
that

id®mnoy"=48.

Proof. Foreachn € Nputn, 1= ¥, o o7, : Mor(C*(S,), Co(Z)). Then the existence
of the C*-homomorphism 7 follows from standard properties of inductive limits once we
apply Lemma 6.11. Since each 5, is a Hopf *-homomorphism, it can be easily checked
that so is n. Finally, the equation (id ® 1) o y" = B follows from (6.11). O
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6.4. A counterexample. Finally, as announced earlier, we show that the conditions of
Theorem 6.2 can be weakened if we are only interested in the existence of an orthogonal
filtration, but are actually necessary to obtain the form of the quantum symmetry group
appearing in that theorem. Let us start by pointing out that a reduced crossed product
can have an orthogonal filtration under more general conditions than those assumed in
Theorem 6.2.

Proposition 6.13. Let A= (A, T4, (Ai)i>0) be an orthogonal filtration. Suppose T is a
finitely generated discrete group having an action B on A such that ta(Bg(a)) = ta(a)
forall ain A, g € T'. Then the triplet A XB B = (A g I, 1, (Aij)i, j=0), with A;j
given via (6.1) defines an orthogonal filtration of the C*-algebra A xg ;T

Proof. First observe that Aog = C.1 and Span(U; j>0A4;;) is a dense *-subspace of the
C*-algebra A x g,rI'. Moreover, it can be easily checked that 7 is faithful on A x g ,I" using
the faithfulness of t4 and the canonical faithful conditional expectation 7/ : A x g —
A.

Now leti, j, p,q = 0,(i, j) # (p, q) and considera € A;j andb € A,,. Weneed to
prove that 7(a*b) = 0. By linearity it suffices to assume that a = a;1,, and b = b,A,,
witha; € A;, by, € Ap, I(y1) = j and I(y2) = q. We then obtain

T(@*b) = t(k,1afbyhy,) = (B, 1 (afbp)h, 1)

= ‘Syl,szA(:By;' (@7bp)) = 8y, 7a(a]bp) = 8j¢8ipdyy 1y Ta(abp) = 0.

—1
Y1 "2

Thus the triplet (A g I, 7, (A;});, j>0) defines an orthogonal filtration of the C*-algebra
A X B.r . o

Remark 6.14. A sufficient condition for the condition 74 (8, (a)) = T4 (a) to hold is that
Bg(A;) € A; forall g € I',i > 0. However, this is not a necessary condition as the next
example shows.

For the rest of the section we will consider an example where A = C*(Zg), and
I' = 7Z3. The elements of each of these cyclic groups will be denoted by 0, 1, 2, and so
on. We fix the (symmetric) generating sets on Z3 and Zo, respectively {1, 2} and {1, 8},
so that each of the C*-algebras in question is equipped with the orthogonal filtration
given by the word-length function associated with the corresponding generating set,
as in Example 4.3. Let ¢ be an automorphism of Zg of order 3, given by the formula
¢(n) = 4n for n € Zg. It induces an action of Z3 on A = C*(Zy), described by the

morphism 8 € Mor(A, A ® C(Z3)) via the usual formula (n € Zo):
B(An) = An ®86+ )\d)(n) ®8T+)"¢2(n) ®8§ (6.13)

It is easy to verify that B preserves the trace T (so that Proposition 6.13 applies), and
at the same time considering say n = 1 we see that 8 does not preserve the individual
subspaces in the filtration we defined on C*(Zo).

Proposition 6.15. Consider the orthogonal filtration A B B on the algebra C*(Zo) X1
Z3 defined by the family {A;; : i, j > 0} (as in Proposition 6.13). Then QISO(K X8
E) is not isomorphic to the generalized Drinfeld’s double of QISO(Z) and QISO(E)
with respect to any bicharacter. In particular there is no Hopf *-homomorphism m €
Mor(C(QISO(A), C(Z3)) such that (id ® 7) o vy} = B.
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Proof. As discussed before, the action 8 comes from an action of Z3 on Zg by automor-
phisms, which we denote by the same letter. We will use the identification C*(Zo) x g
Z3 = C*(Z9 »g Z3), under which the state v can be identified with the canoni-
cal tracial state on C*(Zg xg Z3). We can use the standard (symmetric) generating
set to define the word-length function [ : Zg¢ xg Z3 — Ng and for n > 0 put
U, = Span{A; : t € Zo x Z3,1(t) = n}. Then (C*(Zg xg Z3), Ta, {Un}n>0) is yet
another orthogonal filtration of C*(Zo) xg Z3. Moreover, {A;;}; j>0 is a sub-filtration
of {Uy,}»>0 in the sense of [8] so that by Corollary 2.11 of that paper, QISO(X XB E)
is a quantum subgroup of QISO(C*(Zg xg Z3), T, {Un}n=0). Now by the first com-
putation in Section 5 of [31], C(QISO(C*(Z9 xg Z3), T, {Un}n=0)) is isomorphic to
C*(Zo xpZ3) ®C*(Zo x g Z3), so it has the vector space dimension equal 27 +27 = 54.
Therefore, the vector space dimension of C(QISO(Z Xg E)) is no greater than 54.

On the other hand the Hopf C*-algebra of each generalized Drinfeld’s double of

QISO(Z)) and QISO(C/*(\Z/3 )) as a vector space is isomorphic to the tensor product of
C(QISO(C*(Zy))) and C(QISO(C*(Z3))). Since by Remark 4.7, C(QISO(C*(Z,,))) =
C*(Z,) ® C*(Z,) for n # 4, the vector space dimension of C(QISO(C*(Zo))) ®

C(QISO(C*(Z3))) equals (9 +9)(3 + 3) = 108. This completes the proof of the main
part of the proposition.

The last statement follows now from Theorem 6.2 (but can be also shown
directly). O

6.5. Further perspectives. Finally we outline two possible extensions of the results of
previous subsections, namely, the cases of twisted crossed products and (twisted) crossed
products by discrete quantum groups.

Let us recall the notion of twisted crossed products (see [11] and references therein).
Let I be a discrete group and Q@ : I' x I' — S! be a 2-cocycle on T, i.e, a map that
satisfies the equation:

Q(g, MQ(gh, k) = (g, hk)S2(h, k), g, h,k eT.

Let us then write Q(h, k) = Q(k~', A1), h,k € T. For each g € I define A and
,o;z to be the ‘twisted” left and right shift operators on £2(I"), given by

hg =Qg7 g, p§ = Q. g
where A, and p, are the usual shift unitaries acting on £2(I). Tt follows that A?kf’z =
Q(g, h)k?h, pgzp,? = fz(g, h),o?h forany g, h e T'.

The twisted group C*-algebra C} (I, €2) is defined as the closed linear span of { ,oé? |

g € T'}in B(¢2(I")). The C*-algebra C} (T, Q) is equipped with a canonical coaction of
C}(T), i.e. the morphism § € Mor(C} (T, ), C}(T", Q) ® C*(TI")) given by the formula

8(pg) =0 (W (1@ p )W) = p ® pg. g €T, (6.14)

where the operator W € UL x I)) is defined by Wé&(g, h) = &(gh, h) (withg, h €
') and o is the usual flip. Now if A is a unital C*-algebra and 8 € Mor(A, A ® Cy(T"))
is a coaction, then the twisted crossed product A xg; o I is defined as the closed linear

span of Span{8(A)(1 ® C*(T", 2))} in M(A ® K(£2(T"))).
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Following the same line of argument as that in the proof of Proposition 2.13, we
obtain a C*-algebra isomorphism

V. A Xy C:(F, w) —> Axgrql
such that for alla € A and g € I" we have
W (ja(@) = B@), Y(jcxr.m(pg) =18 pg.

Let A = (A, T4, {Ai}i>0) denote an orthogonal filtration of a un1ta1 C*- algebra A.
Let I" be a discrete group with a proper length function /. Define B = Span{pg

l(g) = n}. Then B = (CHT, ), tr, {B y }neN) is an orthogonal filtration. Sup-
pose B satisfies (6.2). Then by the arguments analogous to those of Sect. 5 we can prove
that QISO(A X g B) = Dy, where Dy is the Drinfeld double of QISO(A) and QISO(B)
determined by V.

Let us finish the article by mentioning that all the results of Sect. 6, and in particular
Theorem 6.2, remain true if we consider actions of finitely generated discrete quantum
groups (and length functions on such quantum groups) instead of classical discrete
groups. Moreover, the results on twisted crossed products also go through for discrete
quantum group actions.
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