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Abstract: We show the existence of infinitely many admissible weak solutions for
the incompressible porous media equations for all Muskat-type initial data with C3,α-
regularity of the interface in the unstable regime and for all non-horizontal data with
C3,α-regularity in the stable regime. Our approach involves constructing admissible
subsolutions with piecewise constant densities. This allows us to give a rather short
proof where it suffices to calculate the velocity and acceleration at time zero - thus
emphasizing the instantaneous nature of non-uniqueness due to discontinuities in the
initial data.

1. Introduction

We consider the evolution of two incompressible fluids with the same viscosity and dif-
ferent densities,moving in a porous two-dimensionalmediumwith constant permeability
under the action of gravity according to Darcy’s law. After non-dimensionalizing, the
equations describing the evolution of density ρ and velocity u are given by (see [11,16]
and references therein)

∂tρ + div (ρu) = 0, (1)

div u = 0, (2)

u + ∇ p = −(0, ρ), (3)

ρ(x, 0) = ρ0(x). (4)

We refer to [1,4] for results of the general case. In this note, we assume that at the initial
time the two fluids, with densities ρ+ and ρ−, are separated by an interface which can
be written as the graph of a function over the horizontal axis. That is,

ρ0(x) =
{

ρ+ x2 > z0(x1),
ρ− x2 < z0(x1).

(5)
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Thus, the interface separating the two fluids at the initial time is given by Γ :=
{(s, z0(s))|s ∈ R}. We distinguish the following cases: If ρ+ > ρ−, which means
that the heavier fluid is on top, we speak of the unstable regime. The case ρ+ < ρ− is
called the stable regime.

The Muskat problem. Since for given ρ(x, t) at a fixed time t , u is the solution of
an elliptic problem by the Biot–Savart law, the Eqs. (1)–(3) describe the evolution of
the density in time. Assuming that ρ(x, t) remains in the form (5) for positive times,
the system reduces to a non-local evolution problem for the interface Γ , known as the
Muskat problem (see [20]). If the sheet can be presented as a graph as above, one can
show (see for example [11]) that the equation for z(s, t) is given by

∂t z(s, t) = ρ− − ρ+

2π

∫ ∞

−∞
(∂s z(s, t) − ∂s z(ξ, t))(s − ξ)

(s − ξ)2 + (z(s, t) − z(ξ, t))2
dξ. (6)

The behavior of solutions of (6) depends strongly on the sign of ρ− − ρ+. In the stable
case, this equation is locally well-posed in H3(R), we refer to [2,11] or [7,9] for an
improved regularity. However, in the unstable regime, we have an ill-posed problem, see
[6,8,11,21,24]. In particular, in the unstable case, there are no general existence results
for (6) known.

Thus, the description of (1)–(4) as a free boundary problem seems not suitable for the
unstable regime. In [16–18] F. Otto used a Lagrangian relaxational approach in the spirit
of optimal transportation and he proved the existence of a unique relaxation limit ρ̄ in the
case of the flat initial datum z0 ≡ 0. Whilst Otto’s relaxation limit does not satisfy the
original system (1)–(4) any more, the relaxed density can be thought of as a macroscopic
average of an infinitely fine mixture of the two phases ρ±. More precisely, there is a
growing mixing zone around the initial unstable sheet Γ , where the two densities are
mixed with average density ρ̄(x, t) which satisfies an evolution equation (a variant of
the 1D Burgers equation). Such a behaviour is reminiscent of the physically expected
behaviour in the unstable regime [16,29].

Weak solutions. Taking the curl of (3), we can eliminate the pressure and obtain curl u =
−∂x1ρ. This motivates the definition of weak solutions in the following form.

Definition 1. Let ρ0 ∈ L∞(R2) and T > 0. We call (ρ, u) ∈ L∞(R2 × [0, T )) a weak
solution of (1)–(4) with initial data ρ0 if∫ T

0

∫
R2

ρ(∂tφ + u · ∇φ)dxdt =
∫
R2

φ(x, 0)ρ0(x)dx ∀φ ∈ C∞
c ([0, T ) × R

2)∫
R2

u · ∇φdx = 0 ∀φ ∈ C∞
c (R2)∫

R2
(u + (0, ρ)) · ∇⊥φdx = 0 ∀φ ∈ C∞

c (R2).

In [10] infinitely many weak solutions of (1)–(4) were constructed to any initial
datum ρ0. The construction is a variant of convex integration, as used in [12,14,25], and
in particular the result in [10] is in a sense the IPM-analogue of the Scheffer-Shnirelman
construction for the Euler equations [22,23,28]. However, these weak solutions do not
retain the geometric structure of initial data of the type (5), and in particular the density
ρ may exceed the initial densities ρ±.
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Admissibility and mixing solutions. Motivated by the analogous development of admis-
sible weak solutions for the Euler equations [13] as well as the result of Otto in [16], in
[27] admissible weak solutions were introduced by the second author as weak solutions
(ρ, u) such that

ρ(x, t) ∈ [ρ−, ρ+] for a.e. (x, t), (7)

(or ρ ∈ [ρ+, ρ−] in the stable case, where ρ+ < ρ−).
In [27] the second author showed that there exist infinitely many admissible weak

solutions for theMuskat problem in the unstable regimewithflat initial data by the convex
integration method. Moreover, an interesting connection between such admissible weak
solutions and the relaxation limit of Otto is provided by the concept of subsolution (see
below in Definition 2). In a nutshell, weak solutions constructed by convex integration
arise by adding high-frequency spatially localized perturbations to an initial ρ̄(x, t),
which can be thought of as an averaged density: by increasing the frequency of the
perturbations, one can easily construct a sequence of admissible weak solutions (ρk, uk),

such that ρk
∗
⇀ ρ in L∞, see [27]. Whereas the construction of weak solutions from

strict subsolutions is by now very well understood in the general setting (see for example
[25]), constructing strict subsolutions to the initial value problem still requires ad-hoc
methods [3,15,26,27] and no general technique seems to exist.

Recently, the result from [27] was generalized to arbitrary initial curves z0 by Castro,
Cordoba, and Faraco in [5]. The main theorem in [5] states that for each z0 ∈ H5(R) and
for ρ+ > ρ−, there exist infinitely many admissible weak solutions to (1)–(4) with initial
data (5). The key point in the proof is to show the existence of certain strict subsolutions,
which are in a sense the geometrically nonlinear analogues of the subsolution constructed
in [27]: the two ingredients defining the subsolution are a density and an evolving sheet
(as in the original Muskat problem), whose translates are then level-sets of the density
(see also Sect. 2 below). The density is chosen exactly as in [27], but the evolving sheet
needs to solve a nonlinear and nonlocal evolution equation ∂t z = F(u) (see (1.11)–(1.12)
in [5]) – the analysis of this equation is the central part of the proof in [5].

The main result. The aim of this paper is to give an alternative and considerably simpler
proof of the main result from [5] for the unstable case. The key difference is that we
allow the density to be piecewise constant – in turn, rather than having to prove local
well-posedness for a non-linear and non-local evolution equation, it suffices to obtain
expressions for the velocity and acceleration of a double-sheet at time t = 0. Our
construction is similar in spirit to fan-subsolutions, introduced for flat shock-waves for
the compressible Euler equations in [15]. The advantage is not only the considerably
shorter proof, but also the lower regularity requirement on the initial curve: we require
C3,α with decay at infinity, in contrast to H5 in [5]. Finally, we extend our result also
to the stable case, provided the initial interface is not horizontal flat (thus, extending the
observation made in [5] Section 7 concerning flat non-horizontal interfaces in the stable
case).

Our assumption on the initial datum is that the initial interface is asymptotically flat
with some given slope β ∈ R, i.e. ρ0 is given by (5) with

z0(s) = βs + z0(s) (8)

for some z0 with sufficiently fast decay at infinity. More precisely, for any α > 0 define
the seminorm

[ f ]∗α := sup
|ξ |�1,s∈R

(1 + |s|1+α)
| f (s − ξ) − f (s)|

|ξ |α ,
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and for any k ∈ N the norm

‖ f ‖∗
k,α := sup

s∈R, j�k
(1 + |s|1+α)|∂ j

s f (s)| + [∂ks f ]∗α.

We denote by Ck,α∗ (R) := { f ∈ Ck,α(R) : ‖ f ‖∗
k,α < ∞}.

Theorem 1. Let z0(s) = βs + z0(s) with z0 ∈ C3,α∗ (R) for some 0 < α < 1 and β ∈ R.

(i) In the unstable case ρ+ > ρ−, for each β ∈ R, there exists T∗ > 0 such that there
exist infinitely many admissible weak solutions to (1)–(4) in [0, T∗).

(ii) In the stable case ρ+ < ρ−, whenever β 
= 0 and ‖∂s z̄0‖L∞ < |β| there exists
T∗ > 0 such that there exist infinitely many admissible weak solutions to (1)–(4) in
[0, T∗).

As pointed out above, the advantage of our method is the simplicity of the proof and
the lower regularity requirement for the initial curve. However, this comes at a small
price: as will be explained below in Sect. 2, the admissible weak solutions obtained in
our Theorem (as well as those obtained in [5,27]) have the common feature, that there
is an expanding mixing zone Ωmix (t) concentrating on the initial interface Γ0 at time
t = 0, where the two fluids are “infinitely mixed”. The rate of expansion of the mixing
zone in the unstable case is given by

ρ+ − ρ−

2
c

for some c > 0.The constructions in [5,27] admit any c < 2, and indeed, cmax = 2 seems
the maximal expansion rate possible (see [27] and the discussion following Theorem 2
below). In contrast, our construction admits only c < 1. However, this is only a problem
for the simplest possible choice of piecewise constant density in (14) - we will show in
Sect. 5 that with a more general piecewise constant density any expansion rate c < 2 is
reachable.

We also point out that, just like in [5], our result is local in time: there is a short time
of existence [0, T∗]; moreover T∗ → 0 as we reach the maximal speed c → cmax . This
is at variance with the result in [27], which is global in time.

The paper is organized as follows. In Sect. 2 we recall the notion of a subsolution
for (1)–(4) and show in Theorem 3 that under appropriate estimates for the interface
z(s, t) as time t → 0, we are able to construct a subsolution and thus prove our main
result Theorem 1. In Sect. 3 we recall the expression for the normal component of the
velocity obtained by the Biot–Savart law for piecewise continuous densities, and provide
Schauder-type estimates for the associated integral operators. Section 4 is devoted to the
construction of the interface curve z(s, t) by evaluating the velocity and symmetrized
acceleration at time t = 0. Finally, we generalize these results to more general piecewise
constant densities in Sect. 5.

2. Subsolutions for the IPM Equations

We start by recalling the general strategy for the construction of weak solutions, as
followed in [5,27]. The basic idea is to construct a suitable admissible subsolution, and
then apply the general machinery of convex integration.
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Observe that if (ρ, u) is a solution of (1)–(4), then so is (ρ̃, ũ) given by

ρ̃(x, t) = aρ(x, at) + b, ũ(x, t) = au(x, at). (9)

Then, by choosing

a = ρ+ − ρ−

2
, b = ρ+ + ρ−

2

we may assume that the Muskat-type initial datum (5) is given by ρ± = ±1 (in the
stable case the signs are obviously swapped). Under this normalization, admissibility
amounts to the requirement

|ρ| � 1 for a.e. (x, t).

Definition 2. Let T > 0. We call a triple (ρ, u,m) ∈ L∞(R2 × [0, T )) an admissible
subsolution of (1)–(4) if there exist open domains Ω±,Ωmix with Ω+ ∪ Ω− ∪ Ωmix =
R
2 × [0, T ) such that

(i) The system
∂tρ + div m = 0

div u = 0

curl u = −∂x1ρ

ρ|t=0 = ρ0

(10)

holds in the sense of distributions in R
2 × [0, T );

(ii) The pointwise inequality∣∣∣∣m − ρu +
1

2
(0, 1 − ρ2)

∣∣∣∣ � 1

2

(
1 − ρ2

)
, (11)

holds almost everywhere;
(iii) |ρ(x, t)| = 1 in Ω+ ∪ Ω−;
(iv) In Ωmix the triple (ρ, u,m) is continuous and (11) holds with a strict inequality.

Admissible subsolutions lead to the existence of infinitely many admissible weak
solutions by the Baire category method for convex integration, see for instance the
Appendix in [27]. As pointed out in [5], a slight modification of the general technique
leads to the following statement:

Theorem 2. Suppose there exists an admissible subsolution (ρ̄, ū, m̄) to (1)–(4). Then
there exist infinitely many admissible weak solutions (ρ, u)with the following additional
mixing property: For any r > 0, 0 < t0 < T and x0 ∈ R

2 such that B := Br (x0, t0) ⊂
Ωmix , both sets {(x, t) ∈ B : ρ(x, t) = ±1} have strictly positive Lebesgue measure.

Furthermore, there exists a sequence of such admissible weak solutions (ρk, uk) such

that ρk
∗
⇀ ρ̄ as k → ∞.

Thus, the crux of the matter is the construction of an admissible subsolution. In [27]
the x1-invariance of the initial curve z0 ≡ 0 simplifies the construction of a subsolution.
Indeed, assuming that (ρ, u,m) is a function of (x2, t) only, the equation ∂tρ+div m = 0
together withmaximizing the constraint (11) leads to Burger’s equation ∂tρ+c∂x2

1
2ρ

2 =
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0 with 0 � c < 2. This equation admits a continuous rarefaction wave solution for the
density

ρ(x, t) =

⎧⎪⎨
⎪⎩
1 x2 > ct,
x2
ct |x2| < ct,
−1 x2 < −ct

(12)

in the unstable case, whereas in the stable case we merely obtain the stationary shock-
wave

ρ(x, t) =
{

−1 x2 > 0,
1 x2 < 0.

Therefore c can be thought of as a weak notion of mixing speed, in the following
sense: the general structure of weak solutions corresponding to this subsolution will be
that there are three time-dependent regions: Ω+(t), Ω−(t) and Ωmix (t), given by

Ω+(t) = {x ∈ R
2|x2 > z(x1, t) + ct},

Ωmix (t) = {x ∈ R
2|z(x1, t) − ct < x2 < z(x1, t) + ct},

Ω−(t) = {x ∈ R
2|x2 < z(x1, t) − ct}

(13)

for some curve z(·, t), with Ωmix (t) expanding with speed c. The three open sets in
Definition 2 are then

Ω± =
⋃
t>0

Ω±(t), Ωmix =
⋃
t>0

Ωmix (t).

In Ω± the density is given by the constant value ρ± = ±1, and in the mixing zone
Ωmix the two fluids are completely mixed - see Section 4 in [27] and Sections 2–3
in [5]. In the above x1-invariant setting from [27] the curve z is simply stationary, i.e.
z(s, t) = z0(s) ≡ 0. Furthermore, it was shown in [27] that for x1-invariant subsolutions
c = 2 is the maximal possible speed, and it was conjectured, based on similarities with
the Lagrangian relaxation framework of Otto in [16,17] that the maximal mixing speed
could be used as a selection criterion.

In [5] the construction from [27] was generalized to non-flat initial curves z0 whilst
retaining the structure (12) in the mixing zone Ωmix . More precisely, the density is
chosen as a linear interpolation between ρ+ = 1 and ρ− = −1. In this case, however,
z = z(s, t) has to solve a rather complicated evolution equation in time, which arises
as a spatial average of the original Muskat evolution kernel. We wish to emphasize that
the evolution equation obtained in [5] is not necessarily a canonical choice, but rather
arises from the specific ansatz used for ρ - indeed, we show below that simpler choices
for the profile ρ reduce the existence of a subsolution to differential inequalities which
can be solved by prescribing velocity and acceleration of the interfaces at time t = 0.
Indeed, given z : R × [0, T ] → R define Ω±(t) and Ωmix (t) as in (13) and set

ρ(x, t) =

⎧⎪⎨
⎪⎩

ρ+ x ∈ Ω+(t),
0 x ∈ Ωmix (t)
ρ− x ∈ Ω−(t),

(14)
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where ρ+ = 1, ρ− = −1 in the unstable case, and ρ+ = −1, ρ− = 1 in the stable case.
This definition of ρ already determines the velocity u by kinematic part of (10), namely
the Biot–Savart rule (see Sect. 3 below)

div u = 0,

curl u = −∂x1ρ.
(15)

Note that ρ is piecewise constant, with jump discontinuities across two interfaces

Γ ±(t) = {(s, z(s, t) ± ct) : s ∈ R} . (16)

It is well known [11] that, provided the interfaces are sufficiently regular, the solution u
to (15) is globally bounded, smooth in R

2 \ (Γ + ∪Γ −) with well-defined traces on Γ ±,
and the normal component is continuous across the interfaces. In particular, it follows
that the normal velocity component

uν(x, t) := u(x, t) ·
(−∂x1 z(x1, t)

1

)
(17)

is a globally defined bounded and continuous function. In particular we set u±
ν = uν |Γ ± ,

i.e.
u±

ν (s, t) := uν(s, z(s, t) ± ct, t).

Our main result in this section is as follows:

Theorem 3. Suppose that z(s, t) = βs + z̄(s, t) with z̄ ∈ C1([0, T ];C1,α∗ (R)) satisfies

lim
t→0

∥∥∂t z(·, t) − u±
ν (·, t)∥∥L∞ = 0, (18)

lim
t→0

1

t

∥∥2∂t z(·, t) − u+ν (·, t) − u−
ν (·, t)∥∥L1 = 0. (19)

In the stable case assume in addition that ‖z̄(·, 0)‖L∞ < |β|. Then, there exists T∗ ∈
(0, T ] such that there exists an admissible subsolution for (1)–(4) on [0, T∗) with initial
datum ρ0 given by (5) with z0 = z|t=0. Furthermore, the density of the subsolution can
be chosen to satisfy (13)–(14) with any 0 < c < cmax , where

cmax =
{
1 in the unstable case;
1
2

|β|(|β|−‖∂s z̄0‖L∞ )
1+|β|‖∂s z̄0‖L∞ in the stable case.

Remark 1. We note that the time of existence T∗ > 0 depends on c and in particular
T∗ → 0 as c → cmax .

Proof. Given z = z(s, t), c > 0 and ρ(x, t) (defined by (13)–(14)), the velocity u is
determined by (15). Therefore it remains to define m so that (10)–(11) are satisfied in
(0, T∗) × R

2, with (11) a strict inequality in Ωmix . Set

m = ρu − (1 − ρ2)(γ + 1
2e2)

for some γ = γ (x, t), with γ ≡ 0 in Ω±. Then (11) amounts to the condition

|γ | <
1

2
in Ωmix ,
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whereas (10) is equivalent to div γ = 0 in Ωmix together with two jump conditions

[ρ]Γ ±(∂t z ± c) + [m]Γ ± ·
(

∂x1 z(x1, t)−1

)
= 0, (20)

where [·]Γ ± denotes the jump on Γ ±. Noting that uν in (17) is globally well-defined
and continuous, the jump conditions become

[ρ]Γ ±(∂t z − u±
ν ± c) ∓ 1

2 ∓ γ ±
ν = 0,

where

γν = γ ·
(−∂x1 z

1

)
,

and γ ±
ν denotes the one-sided limit limΩmix�x ′→x γν(x) for x ∈ Γ ±. Choosing γ =

∇⊥g =
(−∂x2g

∂x1g

)
for some function g ∈ C1(Ωmix ) and noting that

[ρ]Γ ± =
{
1 unstable case,
−1 stable case,

the conditions (10)–(11) reduce to

|∇g| <
1

2
in Ωmix (21)

∂τ g = (c − 1
2 ) ± (∂t z − u±

ν ) on Γ ± (unstable case) (22)

∂τ g = −(c + 1
2 ) ∓ (∂t z − u±

ν ) on Γ ± (stable case) (23)

where

∂τ g(x, t) = γν(x, t) = ∂x1g(x, t) + ∂x2g(x, t)∂x1 z(x1, t)

is the tangential derivative of g along curves defined by z. We treat the unstable and
stable cases separately.
Unstable case. For s ∈ R, t ∈ (0, T ) and λ ∈ [−ct, ct] define

ĝ(s, λ, t) := g(s, z(s, t) + λ, t)

and observe that

(∂τ g)(s, z(s, t) + λ, t) = ∂

∂s

(
ĝ(s, λ, t)

)
.

In order to satisfy (22) we then set

ĝ(s,±ct, t) :=
∫ s

0
c − 1

2 ± (∂t z − u±
ν ) ds′,

and, more generally, for λ ∈ [−ct, ct]

ĝ(s, λ, t) := ct + λ

2ct
ĝ(s, ct, t) +

ct − λ

2ct
ĝ(s,−ct, t)

= s(c − 1
2 ) +

λ + ct

2ct

(∫ s

0
∂t z − u+νds

′
)
+

λ − ct

2ct

(∫ s

0
∂t z − u−

ν ds
′
)

.
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Then

∂λĝ(s, λ, t) = 1

2ct

∫ s

0

(
2∂t z − u+ν − u−

ν

)
ds′,

∂s ĝ(s, λ, t) = (c − 1
2 ) +

λ + ct

2ct

(
∂t z − u+ν

)
+

λ − ct

2ct

(
∂t z − u−

ν

)
.

Noting that ∂λĝ(s, λ, t) = ∂x2g(s, z(s, t) + λ, t) and ∂s ĝ(s, λ, t) = ∂x1g(s, z(s, t) +
λ, t) + ∂x2g(s, z(s, t) + λ, t)∂x1 z(s, t), from the assumptions (18)–(19) we deduce

‖∂x2g(·, t)‖L∞ → 0 and ‖∂x1g(·, t) − (c − 1
2 )‖L∞ → 0

as t → 0. Therefore, for any 0 < c < 1 we deduce that

|∇g| <
1

2
for sufficiently small t > 0.

This concludes the proof in the unstable case.
Stable case. Define the one-parameter family of diffeomorphisms

Φt (s, λ) =
⎛
⎝ s − β

1+β2 λ

z
(
s − β

1+β2 λ, t
)
+ λ

⎞
⎠

with inverse map

Ψt (x1, x2) =
(
x1 +

β

1+β2 (x2 − z(x1, t))

x2 − z(x1, t)

)
.

Since det DΦt = 1, it follows that Φt is a global C1-diffeomorphism of R
2. Moreover,

since Φt (s, λ) ∈ {x2 = z(x1) + λ} for any s ∈ R, it follows that Φt maps R × [−ct, ct]
onto Ωmix . Set

ĝ(s, λ, t) = g(Φt (x), t)

and observe that

(∂τ g)
(
s − β

1+β2 λ, z
(
s − β

1+β2 λ, t
)
+ λ, t

)
= ∂

∂s

(
ĝ(s, λ, t)

)
.

In order to satisfy (23) we set

ĝ(s,±ct, t) :=
∫ s∓ β

1+β2 ct

0
−(c + 1

2 ) ∓ (∂t z − u±
ν )(s′) ds′

and, more generally, for λ ∈ [−ct, ct]

ĝ(s, λ, t) := ct + λ

2ct
ĝ(s, ct, t) +

ct − λ

2ct
ĝ(s,−ct, t).
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Then

∂λĝ(s, λ, t) = 1

2ct
(ĝ(s, ct, t) − ĝ(s, ct, t)) = − 1

2ct

∫ s

0

(
2∂t z − u+ν − u−

ν

)
ds′

+
1

2ct

∫ s

s− β

1+β2 ct
(∂t z − u+ν )(s

′) ds′ + 1

2ct

∫ s+
β

1+β2 ct

s
(∂t z − u−

ν )(s′) ds′,

∂s ĝ(s, λ, t) = − (c + 1
2 )

− λ + ct

2ct

(
∂t z − u+ν

)
(s − β

1+β2 ct) − λ − ct

2ct

(
∂t z − u−

ν

)
(s + β

1+β2 ct).

From the assumptions (18)–(19) it follows that

‖∂λĝ(·, t)‖L∞ → 0 and ‖∂s ĝ(·, t) + (c + 1
2 )‖L∞ → 0

as t → 0. Furthermore, using that ∇g(x) = DΨ T (x)∇ ĝ(Ψ (x)), we can estimate

|∇g| � 1 + β|∂s z̄|
1 + β2 |∂s ĝ| + (

√
1 + β2 + |∂s z̄|)|∂λĝ|.

Therefore we obtain

|∇g| � 1 + |β|‖∂s z̄‖L∞

1 + β2 (c + 1
2 ) + o(1)

as t → 0. Hence, provided
‖∂s z̄0‖L∞ < |β|, (24)

for any c < 1
2

|β|(|β|−‖∂s z̄0‖L∞ )
1+|β|‖∂s z̄0‖L∞ we have |∇g| < 1/2 for sufficiently small t > 0. This

concludes the proof in the stable case.

3. The Velocity u

In this section we derive a concrete representation formula for the velocity u and for
the normal velocity component uν defined in (17), where u is the solution of the system
(15). It is well-known [19] that for sufficiently smooth ρ the solution v of{

div v = 0
curl v = −∂x1ρ

in R
2

can be written using the Biot–Savart kernel as

v(x) := BS(−∂x1ρ) := 1

2π

∫
R2

(x − y)⊥

|x − y|2 (−∂x1ρ)(y)dy. (25)

If the density ρ is piecewise constant, with a jump across a sufficiently smooth interface
Γ , the expression for v(x) for x /∈ Γ can be derived by formally writing ∂x1ρ as a
delta distribution supported on Γ [11]. More precisely, in [11] (see Section 2 therein)
the following expression was derived for the normal velocity component vν under the
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assumption that the interface is given by a graph Γ = {(s, z(s)) : s ∈ R} with z ∈
C1,α(R) and

ρ(x) =
{

ρ+ x2 > z(x1),
ρ− x2 < z(x1).

For any x = (x1, x2) ∈ R
2 we have

vν(x) := v(x) ·
(−∂1z(x1)

1

)

= ρ+ − ρ−

2π
PV

∫
R

(∂1z(x1 − ξ) − ∂1z(x1)) ξ

ξ2 + (z(x1 − ξ) − x2)2
dξ,

(26)

where the principal value refers to the limit limR→∞
∫ R
−R .

For the convenience of the reader we recall the argument leading up to formula (26).
First of all, by writing ∂x1ρ as a delta distribution supported on Γ , from (25) one obtains

v(x) = ρ+ − ρ−

2π
PV

∫
R

(
z(ξ) − x2
x1 − ξ

)
1

(x1 − ξ)2 + (z(ξ) − x2)2
∂s z(ξ) dξ

for all x /∈ Γ . Then, by using that

PV
∫
R

∂ξ log
(
(x1 − ξ)2 + (x2 − z(ξ))2

)
dξ = 0,

we deduce

v(x) = ρ+ − ρ−

2π
PV

∫
R

(
1

∂s z(ξ)

)
x1 − ξ

(x1 − ξ)2 + (z(ξ) − x2)2
dξ

from which (26) follows.
Then, for the density ρ = ρ(x, t) defined in (14) with interfaces Γ ± in (16), the

normal velocity component (17) on Γ ± is given by the expression

u±
ν (s, t) = ρ+ − ρ−

4π
PV

∫
R

∂s z(s − ξ, t) − ∂s z(s, t)

ξ
Φ±(ξ, s, t) dξ, (27)

where

Φ±(ξ, s, t) = ξ2

ξ2 + (z(s − ξ, t) − z(s, t))2
+

ξ2

ξ2 + (z(s − ξ, t) − z(s, t) ∓ 2ct)2
.

Motivated by this expression, consider the following Φ-weighted variant of the Hilbert
transform:

TΦ( f )(s) := 1

2π
PV

∫
R

∂s f (s − ξ) − ∂s f (s)

ξ
Φ(ξ, s) dξ, (28)

for some bounded weight-function Φ = Φ(ξ, s). For the weight we use the following
norms: first of all we assume that Φ∞(s) := lim|ξ |→∞ Φ(ξ, s) exists, Φ(·, s) ∈ C1(R \
{0}), and set

Φ̄ = ξ
(
Φ − Φ∞) , Φ∞ = lim|ξ |→∞ Φ(ξ, s),

Φ̃ = ξ2∂ξ

(
1

ξ
Φ

)
= ξ∂ξΦ − Φ.

(29)
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We introduce the norms

|||Φ|||0 := sup
s∈R,|ξ |�1

|Φ(ξ, s)| + sup
s∈R,|ξ |>1

(|Φ̄(ξ, s)| + |Φ̃(ξ, s)|),

|||Φ|||k,α := max
j�k

|||∂ j
s Φ|||0 + [∂ks Φ]α + sup

|ξ |>1
([∂ks Φ̄(ξ, ·)]α + [∂ks Φ̃(ξ, ·)]α),

where we use the convention that ‖Φ(ξ, ·)‖ denotes a norm in the second argument only
and ‖Φ‖ denotes a norm joint in both variables. In particular the Hölder-continuity of
∂ks Φ in both variables ξ, s is required in the norm |||Φ|||k,α . Accordingly, we define the
spaces

W0 = {Φ ∈ L∞(R2) : Φ∞ and ∂ξΦ exist, with |||Φ|||0 < ∞},
Wk,α = {Φ ∈ W0 : |||Φ|||k,α < ∞}.

Wehave the followingversion of the classical estimate on theHilbert transform T1 = H∇
on Hölder-spaces:

Theorem 4. For any α > 0, f ∈ C1,α∗ (R) and Φ ∈ W0 we have

sup
s

(1 + |s|1+α)|TΦ( f )(s)| � C |||Φ|||0‖ f ‖∗
1,α. (30)

Moreover, for any k ∈ N, f ∈ Ck+1,α∗ (R) and Φ ∈ Wk,α

‖TΦ( f )‖∗
k,α � C |||Φ|||k,α‖ f ‖∗

k+1,α (31)

where the constant depends only on k and α.

Proof. We start the proof by rewriting the principal value integral in (28) as a sum of
absolutely convergent terms. To this end we split the integral

∫
R
dξ = ∫

|ξ |<1 dξ +∫
|ξ |>1 dξ and integrate by parts in the second term. We obtain

TΦ( f )(s) = 1

2π

∫
|ξ |<1

∂s f (s − ξ) − ∂s f (s)

ξ
Φ(ξ, s) dξ

− 1

2π
∂s f (s)PV

∫
|ξ |>1

1

ξ
Φ(ξ, s) dξ

+
1

2π
( f (s − 1)Φ(1, s) + f (s + 1)Φ(−1, s))

+
1

2π

∫
|ξ |>1

f (s − ξ)∂ξ

(
1

ξ
Φ(ξ, s)

)
dξ

= 1

2π

∫
|ξ |<1

∂s f (s − ξ) − ∂s f (s)

ξ
Φ(ξ, s) dξ (I1)

− 1

2π
∂s f (s)

∫
|ξ |>1

1

ξ2
Φ̄(ξ, s) dξ (I2)

+
1

2π
( f (s − 1)Φ(1, s) + f (s + 1)Φ(−1, s)) (I3)

+
1

2π

∫
|ξ |>1

f (s − ξ)

ξ2
Φ̃(ξ, s) dξ, (I4)
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where Φ̄ and Φ̃ are related to Φ as in (29).
It is easy to see that

sup
s

(1 + |s|1+α)|Ii (s)| � C |||Φ|||0‖ f ‖∗
1,α

for i = 1, 2, 3. For the term I4 observe that if |ξ | < 1
2 |s| or |ξ | > 3

2 |s|, then |s−ξ | > 1
2 |s|.

Therefore we have for any |s| > 2

|I4| �
∫
1<|ξ |< 1

2 |s| or |ξ |> 3
2 |s|

| f (s − ξ)|
ξ2

|Φ̃(ξ, s)| dξ

+
∫
1
2 |s|<|ξ |< 3

2 |s|
| f (s − ξ)|

ξ2
|Φ̃(ξ, s)| dξ

�C |s|−(1+α)‖ f ‖∗
1,α

∫
|ξ |>1

|Φ̃(ξ, s)|
ξ2

dξ +
4‖ f ‖∗

1,α

s2

∫
1
2 |s|<|τ |< 5

2 |s|
|Φ̃(s − τ, s)|
1 + |τ |1+α

dτ

�C |s|−(1+α) sup
s∈R,|ξ |>1

|Φ̃(ξ, s)|‖ f ‖∗
1,α.

This concludes the proof of (30).
The Hölder continuity of I2, I3 and I4 is easily handled analogously and leads to the

estimates

[I2]∗α � C‖∂s f ‖∗
α sup

|ξ |>1
‖Φ̄(ξ, ·)‖α,

[I3]∗α � C‖ f ‖∗
α sup

ξ

‖Φ(ξ, ·)‖α,

[I4]∗α � C‖ f ‖∗
α sup

|ξ |>1
‖Φ̃(ξ, ·)‖α.

Next, we consider I1 = I1(s) and write for simplicity g(s) = ∂s f (s). For |η| < 1/2 let
s̃ = s − η and write

I1(s̃) =
∫

|s−η−ξ |<1

g(ξ) − g(s̃)

s̃ − ξ
Φ(s̃ − ξ, s̃) dξ

=
∫

|s−ξ |<1

g(ξ) − g(s̃)

s̃ − ξ
Φ(s̃ − ξ, s̃) dξ + I11,

where I11 is an integral over intervals of total length ∼ |η| on which |s̃ − ξ | > 1/2.
Therefore

|I11| � C |η|(1 + |s|1+α)−1‖ f ‖∗
1,α|||Φ|||0.
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Next, we write, with r = 2|η|

I1(s̃) − I1(s) − I11 =
∫

|s−ξ |<1

g(ξ) − g(s̃)

s̃ − ξ
Φ(s̃ − ξ, s̃) − g(ξ) − g(s)

s − ξ
Φ(s − ξ, s) dξ

=
∫

|s−ξ |<r

g(ξ) − g(s̃)

s̃ − ξ
Φ(s̃ − ξ, s̃) − g(ξ) − g(s)

s − ξ
Φ(s − ξ, s) dξ

(I12)

+
∫
r<|s−ξ |<1

g(s) − g(s̃)

s̃ − ξ
(Φ(s̃ − ξ, s̃) − Φ(0, s̃)) dξ (I13)

+
∫
r<|s−ξ |<1

(g(ξ) − g(s))(
1

s̃ − ξ
− 1

s − ξ
)Φ(s̃ − ξ, s̃), dξ

(I14)

+
∫
r<|s−ξ |<1

g(ξ) − g(s)

s − ξ
(Φ(s̃ − ξ, s̃) − Φ(s − ξ, s)) dξ

(I15)

+
∫
r<|s−ξ |<1

g(s) − g(s̃)

s̃ − ξ
Φ(0, s̃), dξ. (I16)

We can estimate each term as follows:

(1 + |s|1+α)|I12| � C[g]∗α‖Φ‖0
∫

|s−ξ |<r
|s̃ − ξ |α−1 + |s − ξ |α−1 dξ

� C[g]∗α‖Φ‖0|η|α

(1 + |s|1+α)|I13| � C[g]∗α[Φ]α|η|α
∫

|s−ξ |<1
|s̃ − ξ |α−1 dξ

� C[g]∗α[Φ]α|η|α

(1 + |s|1+α)|I14| � C[g]∗α‖Φ‖0|η|
∫
r<|s−ξ |<1

|s − ξ |α−1|s̃ − ξ |−1 dξ

� C[g]∗α‖Φ‖0|η|α
(1 + |s|1+α)|I15| � C[g]∗α[Φ]α|η|α

whereas, using that
∫
r<|s−ξ |<1

1
s−ξ

dξ = 0

(1 + |s|1+α)|I16(s)| = |g(s) − g(s̃)||Φ(0, s̃)|
∣∣∣∣
∫
r<|s−ξ |<1

1

s̃ − ξ
− 1

s − ξ
dξ

∣∣∣∣
� C[g]∗α‖Φ‖0|η|α.

We conclude that

‖I1‖∗
α � C‖Φ‖α‖∂s f ‖∗

α,

and this finally proves (31) for k = 0. For k � 1 the estimate follows from differentiating
the terms I1(s), . . . , I4(s) with respect to s and applying the Leibniz rule.

We close this section by showing that, under quite general conditions, Φ± belongs
to the weight-space W0:
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Lemma 1. Suppose that z = z(s, t) = βs + z̄(s, t) with z̄ ∈ C([0, T ];C1,α(R)) for
some 0 < α < 1, β ∈ R and T < ∞. Then Φ± ∈ W0 with supt∈[0,T ] |||Φ±|||0 < ∞.

Proof. First of all we easily see that

sup
s,ξ,t

|Φ±(ξ, s, t)| � 2.

For simplifying the notation, set

Zt (ξ, s) = z(s, t) − z(s − ξ, t)

ξ
=
∫ 1

0
∂s z(s − τξ, t) dτ, (32)

so that we may write for any ξ 
= 0

Φ± = 1

1 + Z2
t
+

1

1 + (Zt ± 2ct
ξ

)2
.

Moreover, observe that supξ,s |Zt (ξ, s)| � ‖∂s z‖L∞ and, because of Zt =
β + z̄(s,t)−z̄(s−ξ,t)

ξ
, lim|ξ |→∞ Zt (ξ, s) = β uniformly in s ∈ R. Therefore, with the

notation from (29),

Φ∞± = 2

1 + β2 ,

and

Φ± = ξ
β2 − Z2

t

(1 + Z2
t )(1 + β2)

+ ξ
β2 − (Zt ± 2ct

ξ
)2

(1 + (Zt ± 2ct
ξ

)2)(1 + β2)
.

Since

sup
s,ξ

|ξ(Zt ± 2ct
ξ

− β)| = sup
s,ξ

|z̄(s, t) − z̄(s − ξ, t) ± 2ct | � 2‖z̄‖L∞ + 2ct,

we deduce that

sup
s,|ξ |>1

|Φ±| � C,

with the constant C depending on ‖z̄‖L∞ , β, c and T .
Next, we calculate:

ξ∂ξΦ± = −2Ztξ∂ξ Zt

(1 + Z2
t )

2
+

−2(Zt ± 2ct
ξ

)(ξ∂ξ Zt ∓ 2ct
ξ

)

(1 + (Zt ± 2ct
ξ

)2)2
.

Since

ξ∂ξ Zt = ∂s z(s − ξ, t) − z(s, t) − z(s − ξ, t)

ξ
= ∂s z̄(s − ξ, t) − z̄(s, t) − z̄(s − ξ, t)

ξ
,

we deduce that sups,|ξ |>1 |ξ∂ξΦ±| and hence sups,|ξ |>1 |Φ̃±| is bounded uniformly in
t ∈ [0, T ]. This concludes the proof.
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4. Construction of the Curve z

In this sectionwe construct a function z = z(s, t) satisfying the conditions of Theorem 3.
In order to motivate the construction, observe that (18)–(19) suggest that it suffices to
specify z up to order t2. Therefore we start by formally calculating the expressions for

the initial velocity u±
ν |t=0 and initial symmetrized acceleration ∂t |t=0

u+ν+u
−
ν

2 .

Let z = z(s, t) = βs + z̄(s, t) with z̄ ∈ C2([0, T );C1,α∗ (R)) for some β ∈ R and
α ∈ (0, 1). Using the expression (27) and the notation introduced in (28) we have

u±
ν = ρ+ − ρ−

2
TΦ± z,

where ρ± = ±1 in the unstable case and ρ± = ∓1 in the stable case. This difference in
sign has no effect on the computations and on Theorem 5 below, therefore we will from
now on treat the unstable case without loss of generality. Hence, in particular

u±
ν

∣∣
t=0 = u0ν := TΦ0 z̄0,

where

Φ0(ξ, s) := 2ξ2

ξ2 + (z0(s − ξ) − z0(s))2
(33)

and z0(s) = z(s, 0). Observe that although Φ±(ξ, s) → Φ0(ξ, s) as t → 0 for any
ξ 
= 0, the limit is not uniform in ξ , therefore in particular Φ± � Φ0 in the norm of
W0. Nevertheless we have

Lemma 2. Assume that z(s, t) = βs + z̄(s, t) with z̄ ∈ C0([0, T );C1,α∗ (R)) for some
β ∈ R and α ∈ (0, 1). Then for any f ∈ C1,α∗ (R)

lim
t→0

sup
s∈R

(1 + |s|1+α)
∣∣TΦ± f (s) − TΦ0 f (s)

∣∣ = 0.

Proof. In analogy with (32) we set

Z0(ξ, s) = z0(s) − z0(s − ξ)

ξ
, (34)

so that Φ0 = 2
1+Z2

0
. In the following we consider without loss of generality Φ+(t) − Φ0.

As pointed out above, the limit limt→0 Φ+(t) is not uniform in ξ because of the
singularity at ξ = 0. Therefore we need to modify the argument in the proof of (30). To
this end recall the decomposition

TΦ+ f − TΦ0 f = T(Φ+(t)−Φ0) f = I1 + I2 + I3 + I4

in the proof of Theorem 4 and focus for the moment on the term

I1(s, t) = 1

2π

∫
|ξ |<1

∂s f (s − ξ) − ∂s f (s)

ξ
(Φ+ − Φ0)(ξ, s, t) dξ.
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Using the definition of Φ+ and Φ0 we write for ξ 
= 0

Φ+ − Φ0 = 1

1 + Z2
t
+

1

1 + (Zt + 2ct
ξ

)2
− 2

1 + Z2
0

= Z0 + Zt

(1 + Z2
0)(1 + Z2

t )
(Z0 − Zt ) +

Z0 + Zt + 2ct
ξ

(1 + Z2
0)(1 + (Zt + 2ct

ξ
)2)

(Z0 − Zt − 2ct
ξ

).

It is easy to see that supξ,s,t |Φ+| � 2. Moreover

sup
ξ,s

|Zt − Z0| � sup
s

|∂s z(s, t) − ∂s z0(s)| t→0−→ 0,

sup
t1/2<|ξ |

| 2ct
ξ

| � 2ct1/2
t→0−→ 0,

hence
lim
t→0

sup
t1/2<|ξ |,s∈R

|Φ+(ξ, s, t) − Φ0(ξ, s)| = 0. (35)

On the other hand, by splitting the integral
∫
|ξ |<1 dξ = ∫

|ξ |<t1/2 dξ +
∫
t1/2<|ξ |<1 dξ we

can estimate

(1 + |s|1+α)|I1(s, t)| �C[∂s f ]∗α(sup
ξ,s

|Φ+| + |Φ0|)
∫

|ξ |<t1/2
|ξ |α−1 dξ+

+ C[∂s f ]∗α
(

sup
t1/2<|ξ |,s

|Φ+ − Φ0|
) ∫

t1/2<|ξ |<1
|ξ |α−1 dξ

�C[∂s f ]∗α
(
tα/2 + sup

t1/2<|ξ |,s
|Φ+ − Φ0|

)
.

Hence

lim
t→0

sup
s

(1 + |s|1+α)|I1(s, t)| = 0.

Next, from (35) we equally deduce

lim
t→0

sup
s

(1 + |s|1+α)|I3(s, t)| = 0.

Concerning I2, note that for |ξ | > 1

|ξ ||Φ+ − Φ0| = |ξ |
∣∣∣∣∣ Z2

0 − Z2
t

(1 + Z2
0)(1 + Z2

t )
+

Z2
0 − (Zt + 2ct

ξ
)2

(1 + Z2
0)(1 + (Zt + 2ct

ξ
)2)

∣∣∣∣∣
� C sup

|ξ |>1,s
(|Z0| + |Zt |)

(
|ξ | |Z0 − Zt | + |ξ |

∣∣∣Z0 − Zt − 2ct
ξ

∣∣∣)
� C‖∂s z‖L∞ (|ξ | |Z0 − Zt | + 2ct) .

Since also

sup
|ξ |>1,s∈R

|ξ | |Z0 − Zt | � 2 sup
s∈R

|z(s, t) − z0(s)| → 0 as t → 0,
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we deduce that limt→0 sup|ξ |>1,s∈R |(Φ+ − Φ0)(ξ, s, t)| = 0 and consequently

lim
t→0

sup
s

(1 + |s|1+α)|I2(s, t)| = 0.

Finally, let us look at I4, which requires bounding ξ∂ξ (Φ+ − Φ0). Observe that

ξ∂ξ Zt = ∂s z(s − ξ, t) − z(s, t) − z(s − ξ, t)

ξ
,

so that

sup
s,ξ

∣∣ξ∂ξ Zt
∣∣ � 2 sup

s
|∂s z(s, t)| and sup

s,ξ

∣∣ξ∂ξ (Zt − Z0)
∣∣ � 2 sup

s
|∂s z(s, t) − ∂s z0(s)|.

By a simple calculation it follows limt→0 sup|ξ |>1,s∈R |ξ∂ξ (Φ+ − Φ0)(ξ, s, t)| = 0 and
hence

lim
t→0

sup
s

(1 + |s|1+α)|I4(s, t)| = 0.

This concludes the proof of the Lemma.

Next, in order to evaluate ∂
∂t

∣∣
t=0

u+ν+u
−
ν

2 , we first calculate

Φ+ + Φ−
2

− Φ0 = Z2
0 − Z2

t

2(1 + Z2
0)

(
2

1 + Z2
t
+

1

1 + (Zt + 2ct
ξ

)2
+

1

1 + (Zt − 2ct
ξ

)2

)
︸ ︷︷ ︸

ΔregΦ

+
1

1 + Z2
0

(−2ct Ztξ − 2c2t2

ξ2 + (Ztξ + 2ct)2
+

2ct Ztξ − 2c2t2

ξ2 + (Ztξ − 2ct)2

)
︸ ︷︷ ︸

ΔsingΦ

.

Moreover, let

Φ1(ξ, s) = ∂

∂t

∣∣∣∣
t=0

Φ+ + Φ−
2

= −4Z0Z ′
0

(1 + Z2
0)

2
(36)

where z′0(s) = ∂t z(s, 0) and Z ′
0(ξ, s) = z′0(s)−z′0(s−ξ)

ξ
. For the regular part ΔregΦ we

have

Lemma 3. Assume z = z(s, t) = βs + z̄(s, t) with z̄ ∈ C1([0, T );C1,α∗ (R)) for some
β ∈ R and α ∈ (0, 1). Then for any f ∈ C1,α∗ (R)

lim
t→0

sup
s∈R

(1 + |s|1+α)
∣∣ 1
t TΔregΦ f (s) − TΦ1 f (s)

∣∣ = 0.

Proof. Observe that

Zt − Z0

t
− Z ′

0 =
∫ 1

0

∂s z(s − τξ, t) − ∂s z0(s − τξ)

t
− ∂t∂s z0(s − τξ) dτ,

and by assumption

sup
s∈R

∣∣∣∣∂s z(s, t) − ∂s z0(s)

t
− ∂t∂s z0(s)

∣∣∣∣ → 0 as t → 0.
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Therefore

sup
s,ξ

∣∣∣∣ Zt − Z0

t
− Z ′

0

∣∣∣∣ → 0 as t → 0.

Now write

1
t ΔregΦ − Φ1 = Z2

0 − Z2
t

2t (1 + Z2
0)

(Φ+ + Φ− − 2Φ0) +
2Φ0

1 + Z2
0

(
Z2
0 − Z2

t

2t
+ Z0Z

′
0

)
.

Since
Z2
0−Z2

t

2t (1+Z2
0)
is uniformly bounded in s, ξ as t → 0, the first summand can be dealt with

exactly as in the proof of Lemma 2. On the other hand the second summand converges
to zero uniformly in s, ξ as t → 0. This concludes the proof.

Next we analyse the singular part ΔsingΦ:

Lemma 4. Assume z = z(s, t) = βs + z̄(s, t) with z̄ ∈ C0([0, T );C1,α∗ (R)) for some
β ∈ R and α ∈ (0, 1). Then, for any f ∈ C2(R)

lim
t→0

1

2π t

∫
|ξ |<1

∂s f (s − ξ) − ∂s f (s)

ξ
ΔsingΦ(ξ, s, t) dξ = c∂2s f (s)σ (s) (37)

for any s ∈ R, where

σ = 1 − (∂s z)2

(1 + (∂s z)2)2

∣∣∣∣
t=0

.

Moreover, if in addition f ∈ C2,α∗ (R), then

lim
t→0

sup
s∈R

(1 + |s|1+α)

∣∣∣ 1t (TΔsingΦ f )(s) − c∂2s f (s)σ (s)
∣∣∣ = 0. (38)

Proof. We begin by performing the change of variables ξ �→ ξ
t in the integral:

1

2π t

∫
|ξ |<1

∂s f (s − ξ) − ∂s f (s)

ξ
ΔsingΦ(ξ, s, t) dξ

= 1

2π

∫
|ξ |< 1

t

∂s f (s − tξ) − ∂s f (s)

tξ
Ψt (ξ, s) dξ,

where

Ψt (ξ, s) = ΔsingΦ(tξ, s, t) = −4c2(4c2 + (1 − 3Z2
t )ξ

2)

(1 + Z2
0)(ξ

2 + (Ztξ + 2c)2)(ξ2 + (Ztξ − 2c)2)
.

Since supξ,s,t |Zt | � ‖∂s z‖L∞ and

ξ2 + (Ztξ ± 2c)2 = 4c2

1 + Z2
t
+ (1 + Z2

t )

(
ξ ± 2Ztc

1 + Z2
t

)2

� 4c2

1 + ‖∂s z‖2L∞
,
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it follows that

|Ψt (ξ, s)| � C

1 + |ξ |2 , (39)

where the constant depends only on ‖∂s z‖L∞ and on c > 0. Furthermore, since

lim
t→0

Z0(tξ, s) = lim
t→0

Zt (tξ, s) → ∂s z0(s) for all ξ, s ∈ R,

we deduce that for any ξ, s ∈ R

Ψ0(ξ, s) = lim
t→0

Ψt (ξ, s)

= 1

1 + (∂s z0)2

( −2cξ∂s z0 − 2c2

ξ2 + (ξ∂s z0 + 2c)2
+

2cξ∂s z0 − 2c2

ξ2 + (ξ∂s z0 − 2c)2

)
,

where we write z0 = z|t=0. Finally, since f ∈ C2(R), we have

sup
|tξ |<1

∣∣∣∣∂s f (s − tξ) − ∂s f (s)

tξ

∣∣∣∣ � sup
|s−s′|<1

|∂2s f (s′)|,

so that, from the Lebesgue dominated convergence theorem we deduce that

lim
t→0

1

2π

∫
|ξ |< 1

t

∂s f (s − tξ) − ∂s f (s)

tξ
Ψt (ξ, s) dξ = −∂2s f (s)

2π

∫
R

Ψ0(ξ, s) dξ.

Noting that the bound (39) applies also to Ψ0 and ∂s z0 is independent of ξ , we may
evaluate the integral

∫
R

Ψ0 dξ using elementary methods. Indeed, we calculate for any
constants a ∈ R and c > 0

Ia,c = 1

2π

∫
R

−2acξ − 2c2

(1 + a2)ξ2 + 4acξ + 4c2
+

2acξ − 2c2

(1 + a2)ξ2 − 4acξ + 4c2
dξ

= 1

2π

∫
R

ac

1 + a2

(
2(1 + a2)ξ − 4ac

(1 + a2)ξ2 − 4acξ + 4c2
− 2(1 + a2)ξ + 4ac

(1 + a2)ξ2 + 4acξ + 4c2

)
dξ

+
1

2π

2c2(a2 − 1)

1 + a2

∫
R

1

(1 + a2)ξ2 + 4acξ + 4c2
+

1

(1 + a2)ξ2 − 4acξ + 4c2
dξ

= 1

2π

ac

1 + a2
lim
R→∞

[
log

(1 + a2)ξ2 − 4acξ + 4c2

(1 + a2)ξ2 + 4acξ + 4c2

]R
−R

+
1

2π

2c2(a2 − 1)

(1 + a2)2

∫
R

2

ξ2 + 4c2
(1+a2)2

dξ

= 1

2π

2c(a2 − 1)

1 + a2

∫
R

1

1 + ξ2
dξ = −c

1 − a2

1 + a2
.

Therefore

1

2π

∫
R

Ψ0(ξ, s) dξ = −c
1 − ∂s z0(s)2

(1 + (∂s z0(s))2)2
,

hence the proof of (37) follows.



Piecewise Constant Subsolutions for the Muskat Problem 1071

In order to show (38) we again start with the decomposition

1
t TΔsingΦ f = I1 + I2 + I3 + I4

as in the proof of Theorem 4. We claim that

sup
s

(1 + |s|1+α)|I1(s) − c∂2s f (s)σ (s)| → 0 as t → 0, (40)

and for k = 2, 3, 4
sup
s

(1 + |s|1+α)|Ik(s)| → 0 as t → 0. (41)

The proof of (41) follows from the observation that 1
t ΔsingΦ and ξ∂ξ

1
t ΔsingΦ are

bounded uniformly in s ∈ R, |ξ | � 1. The claim (40) is equivalent to showing
limt→0 Jt = 0, where

Jt = sup
s

(1 + |s|1+α)

∣∣∣∣∣
∫

|ξ |< 1
t

∂s f (s − tξ) − ∂s f (s)

tξ
Ψt dξ +

∫
R

∂2s f (s)Ψ0 dξ

∣∣∣∣∣ .
Let ε > 0 and fix R > 1 so that

∫
|ξ |>R |Ψt | dξ < ε for all t � 0 (by the bound (39) this

is possible). Moreover, fix 0 < δ < 1 so that

sup
s∈R

(1 + |s|1+α)

∣∣∣∣∂s f (s) − ∂s f (s − η)

η
− ∂2s f (s)

∣∣∣∣ < ε

for all 0 < |η| < δ. This is possible if f ∈ C2,α∗ (R) since we can write

∂s f (s) − ∂s f (s − η)

η
− ∂2s f (s) =

∫ 1

0
[∂2s f (s − τη) − ∂2s f (s)] dτ.

Then, for any t > 0 with t R < δ we have

Jt � sup
s

(1 + |s|1+α)

∣∣∣∣
∫

|ξ |<R

∂s f (s − tξ) − ∂s f (s)

tξ
Ψt + ∂2s f (s)Ψ0 dξ

∣∣∣∣
+ sup

s
(1 + |s|1+α)

∫
|ξ |>R

∣∣∣∣∂s f (s − tξ) − ∂s f (s)

tξ
Ψt

∣∣∣∣ + ∣∣∣∂2s f (s)Ψ0

∣∣∣ dξ

� sup
s

(1 + |s|1+α)

∫
|ξ |<R

∣∣∣∣∂s f (s − tξ) − ∂s f (s)

tξ
+ ∂2s f (s)

∣∣∣∣ |Ψt | dξ

+ ‖ f ‖∗
2,α

∫
|ξ |<R

|Ψt − Ψ0| dξ + ‖ f ‖∗
2,α

∫
|ξ |>R

|Ψt | + |Ψ0| dξ

� C(1 + ‖ f ‖∗
2,α)ε + ‖ f ‖∗

2,α

∫
|ξ |<R

|Ψt − Ψ0| dξ.

Using once more the bound (39) we deduce that lim supt→0 Jt � C(1+‖ f ‖∗
2,α)ε. Since

ε > 0 was arbitrary, it follows that limt→0 Jt = 0, concluding the proof of (40) and
thence the proof of (38).
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Using Lemmas 3 and 4 we can calculate

∂

∂t

∣∣∣∣
t=0

u+ν + u−
ν

2
= lim

t→0

1

t

(
u+ν + u−

ν

2
− u0ν

)

= lim
t→0

1

t
T(Φ++Φ−

2 −Φ0

)z0 + T(Φ++Φ−
2

) z−z0
t

= TΦ1 z̄0 + TΦ0 z
′
0 + c∂2s z0σ(s),

where σ is the function defined in Lemma 4. This motivates our choice of z(s, t):

Theorem 5. Assume that z0(s) = βs + z̄0(s) with z̄0 ∈ C3,α∗ (R) for some 0 < α < 1
and β ∈ R. Let

z(s, t) = z0(s) + t z1(s) + 1
2 t

2z2(s),

where

z1 := TΦ0 z̄0,

z2 := TΦ0 z1 + TΦ1 z̄0 + cσ∂2s z0,

with σ = 1−(∂s z0)2

(1+(∂s z0)2)2
. Then z(s, t) = βs + z̄(s, t) with z̄ ∈ C2([0,∞);C1,α∗ (R)) and

with this choice of z the conditions (18)–(19) of Theorem 3 are satisfied.

Proof. Step 1: Estimating z1and z2. We begin by showing that z1 ∈ C2,α∗ (R) and z2 ∈
C1,α∗ (R). First of all, since ∂s z0 ∈ C2(R)with ∂2s z0 ∈ C1,α∗ (R), it follows thatσ ∈ C2(R)

with σ, ∂sσ, ∂2s σ ∈ L∞(R) and consequently cσ∂2s z0 ∈ C1,α∗ (R). Therefore, according
to estimate (31) in Theorem 4 it suffices to show thatΦ0 ∈ W2,α andΦ1 ∈ W1,α , where
Φ0 and Φ1 are defined in (33) and (36) above.

The proof that Φ0 ∈ W0 follows entirely along the lines of the proof of Lemma 1:
Since lim|ξ |→∞ Z0 = β we see that Φ∞

0 = 2
1+β2 . Note also that

sup
ξ,s

|ξ(Z0 − β)| = sup
ξ,s

|z̄0(s) − z̄0(s − ξ)| � 2‖z̄0‖0.

Therefore

Φ̄0 = 2ξ
β2 − Z2

0

(1 + Z2
0)(1 + β2)

= 2
β + Z0

(1 + Z2
0)(1 + β2)

(ξ(Z0 − β))

is bounded uniformly in ξ, s. Similarly, we calculate

ξ∂ξΦ0 = −4Z0

(1 + Z2
0)

2
ξ∂ξ Z0

and

ξ∂ξ Z0 = ∂s z0(s − ξ) − z0(s) − z0(s − ξ)

ξ
= ∂s z̄0(s − ξ) − z̄0(s) − z̄0(s − ξ)

ξ
.

We deduce that also Φ̃0 is uniformly bounded. This shows that Φ0 ∈ W0.
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Next, we calculate:

∂sΦ0 = −4Z0∂s Z0

(1 + Z2
0)

2
, ∂2s Φ0 = 16Z2

0(∂s Z0)
2

(1 + Z2
0)

3
− 4(∂s Z0)

2 + 4Z0∂
2
s Z0

(1 + Z2
0)

2
.

Note that, since ∂s z0 ∈ C2,α(R), the function Z0(ξ, s) satisfies Z0 ∈ C2,α(R2) and this
implies Φ0 ∈ C2,α(R2). Furthermore, proceeding as above, it follows easily that ξ∂ks Z0
is bounded uniformly for s ∈ R, |ξ | > 1 for k = 1, 2, and hence the same is true for
ξ∂ks Φ0. Analogously, ξ∂ξ ∂

k
s Z0 is bounded uniformly for s ∈ R, |ξ | > 1 for k = 0, 1, 2,

hence the same is true for ξ∂ξ ∂
k
s Φ0. This implies that ∂sΦ0, ∂

2
s Φ0 ∈ W0.

In the same manner we deduce that for k = 1, 2

|ξ ||∂ks Z0(ξ, s1) − ∂ks Z0(ξ, s2)| � |∂ks z0(s1) − ∂ks z0(s2)|
+ |∂ks z0(s1 − ξ) − ∂ks z0(s2 − ξ)|

� 2[∂ks z0]α|s1 − s2|α
and similarly, for |ξ | > 1 and k = 1, 2

|ξ ||∂ξ ∂
k
s Z0(ξ, s1) − ∂ξ ∂

k
s Z0(ξ, s2)| � ([∂k+1s z0]α + 2[∂ks z0]α)|s1 − s2|α.

This shows that Φ0 ∈ W2,α .
We next proceed with Φ1. First of all, from Theorem 4 and the above we deduce that

z1 ∈ C2,α∗ . Comparing the expressions for Φ1 and ∂sΦ0 we see that the estimates for Φ1
may be obtained exactly as above, by replacing ∂s z0 by z1 where appropriate and noting
that both functions are in C2,α . In this way we deduce that Φ1 ∈ W1,α .
Step 2: The estimate (18). Using (27)–(28) we have

u±
ν − ∂t z =

(
TΦ± z̄0 + tTΦ±z1 +

1
2 t

2TΦ± z2
)

− (z1 + t z2),

whereas, by our choice of z1

TΦ± z̄0 − z1 = TΦ± z̄0 − TΦ0 z̄0.

Since z̄0, z1, z2 ∈ C1,α∗ (R) by Step 1, Lemmas 1 and 2 imply that

lim
t→0

sup
s

(1 + |s|1+α)|u±
ν (s, t) − ∂t z(s, t)| = 0.

In particular (18) follows.
Step 3: The estimate (19). As in Step 2, using (27)–(28), our choice of z1, z2 and the
linearity of Φ �→ TΦ , we have

1

t

(
u+ν + u−

ν

2
− ∂t z

)
= 1

t

(
TΦ++Φ−

2
z̄0 − z1

)
+ TΦ++Φ−

2
z1 − z2 + t

2TΦ++Φ−
2

z2

= ( 1
t TΔregΦ z̄0 − TΦ1 z̄0

)
+
(
1
t TΔsingΦ z̄0 − c∂2s z̄0σ(s)

)
+

(
TΦ++Φ−

2
z1 − TΦ0 z1

)
+

(
t
2TΦ++Φ−

2
z2

)
.

Since z̄0 ∈ C2,α∗ (R) and z1, z2 ∈ C1,α∗ (R), Lemmas 1, 2, 3 and 4 are applicable, and we
conclude that

lim
t→0

sup
s

(1 + |s|1+α)

∣∣∣∣1t
(
u+ν (s, t) + u−

ν (s, t)

2
− ∂t z(s, t)

)∣∣∣∣ = 0.

In particular (19) follows.
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5. Symmetric Piecewise Constant Densities

The subsolution (and corresponding admissible weak solutions) constructed in the pre-
vious sections have a mixing zone with a maximal expansion rate of cmax = 1 in the
unstable case, whereas the maximal expansion rate reachable with the construction in
[5] is cmax = 2. In this section we show that with a more general piecewise constant
density the method of this paper is applicable to reach the expansion rate cmax = 2 as
well – indeed, this is easily achieved by approximating the linear density function from
[5] by a piecewise constant density. From now on we restrict attention to the unstable
case, with ρ+ = 1 and ρ− = −1.

Let N ∈ N and define 2N interfaces

Γ ±i = {x ∈ R
2|x2 = z(x1, t) ± ci t}, i = 1, . . . , N , (42)

where 0 < c1 < c2 < . . . < cN are arbitrary velocities and z(s, t) is the parametrization
of a curve for t ∈ [0, T ]. The open regions between neighbouring interfaces are defined
as

Ω0(t) = {x ∈ R
2 : −c1t < x2 − z(x1, t) < c1t},

ΩN (t) = {x ∈ R
2 : x2 > z(x1, t) + cN t},

Ω−N (t) = {x ∈ R
2 : x2 < z(x1, t) − cN t},

(43)

and for i = 1, . . . , N − 1

Ω i (t) = {x ∈ R
2 : z(x1, t) + ci t < x2 < z(x1, t) + ci+1t},

Ω−i (t) = {x ∈ R
2 : z(x1, t) − ci+1t < x2 < z(x1, t) − ci t}.

(44)

Analogously to (14) we set

ρ(x, t) = i

N
for x ∈ Ω i (t), i = −N , . . . , N , (45)

so that we have a constant density jump of 1
N across each boundary Γ ±i . The mixing

zone is then

Ωmix =
N−1⋃

i=−(N−1)

Ω i = {x ∈ R
2| − cN t < x2 − z(x1, t) < cN t}.

With the density defined in this way, the velocity u can be obtained as in Sect. 3, in
particular we have the expression for the normal velocity component:

u(i)
ν (s, t) := u (s, z(s, t) + ci t, t) ·

(−∂s z(s, t)
1

)

=
N∑
j=1

1

2πN
PV

∫
R

∂s z(s − ξ, t) − ∂s z(s, t)

ξ
Φi j (ξ, s, t) dξ

for i = −N . . . N , i 
= 0, where

Φi, j (ξ, s, t) = ξ2

ξ2 + (z(s − ξ, t) − z(s, t) − (ci − c j )t)2

+
ξ2

ξ2 + (z(s − ξ, t) − z(s, t) − (ci + c j )t)2

and we have set c−i = −ci for i = 1, . . . , N .
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Theorem 6. Suppose that z(s, t) = βs + z̄(s, t) with z̄ ∈ C1([0, T );C1,α∗ (R)) satisfies

lim
t→0

1

t

∥∥∥∥∥∂t z(·, t) −
N∑
i=1

u(i)
ν (·, t) + u(−i)

ν (·, t)
2N

∥∥∥∥∥
L1

= 0, (46)

lim
t→0

∥∥∥∂t z(·, t) − u(±i)
ν (·, t)

∥∥∥
L∞ = 0 for all i = 1 . . . N. (47)

Moreover, let

0 < ci <
2i − 1

N
i = 1, . . . , N . (48)

Then there exists T∗ ∈ (0, T ) such that there exists an admissible subsolution for (1)–
(4) on [0, T∗] with initial datum ρ0 given by (5) in the unstable case with z0 = z|t=0.
Furthermore, the density of the subsolution satisfies (43)–(45).

Proof. We proceed as in the proof of Theorem 3 and set

m = ρu − (1 − ρ2)(γ + 1
2e2),

with

γ = ∇⊥g(i) in Ω i , i = −N . . . N ,

where g(N ) = g(−N ) = 0 and g(i) ∈ C1(Ω i ) for i = −(N − 1) . . . (N − 1) are to be
determined. Then, (11) amounts to the conditions

|∇g(i)| <
1

2
in Ω i i = −(N − 1) . . . (N − 1),

and (10) reduces to jump conditions (20) on each interface: for any i = 1, . . . , N

∂τ g
(±(i−1)) = 1

1 − ( i−1
N )2

{
ci
N

− 2i − 1

2N 2 +
(
1 − ( i

N )2
)

∂τ g
(±i) ± ∂t z − u(±i)

ν

N

}

= h(±i) +
1 − ( i

N )2

1 − ( i−1
N )2

∂τ g
(±i) on Γ ±i , (49)

with

h(±i)(s, t) = 1

1 − ( i−1
N )2

{
ci
N

− 2i − 1

2N 2 ± ∂t z − u(±i)
ν

N

}

and

∂τ g(x, t) = ∂x1g(x, t) + ∂x2g(x, t)∂x1 z(x1, t).

Since g(±N ) = 0, wemay use this expression to inductively define g(±(N−1)), g(±(N−2)),

. . . , g(±1) as

g(±i)(x1, t) =
∫ x1

0
h(±(i+1))(s′, t) +

1 − ( i+1N )2

1 − ( i
N )2

∂τ g
(±(i+1))(s′, t) ds′. (50)
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Note that by our choice g(±i) for i 
= 0 is a function of x1, t only, therefore

∂τ g
(±i) = ∂x1g

(±i) = h(±(i+1)) +
1 − ( i+1N )2

1 − ( i
N )2

∂x1g
(±(i+1))

for i = 1, . . . , (N − 1). Now, by (47) we have ‖∂t z − u±i
ν ‖L∞ = o(1) as t → 0 for all

i = 1, . . . , N , so that

h(±(i+1)) = 1

1 − ( i
N )2

{
ci+1
N

− 2i + 1

2N 2

}
+ o(1).

Using inductively (49) we then obtain

∂x1g
(±i) = 1

1 − ( i
N )2

N∑
j=i+1

(
c j
N

− 2 j − 1

2N 2

)
+ o(1).

From (48) we have | c jN − 2 j−1
2N2 | <

2 j−1
2N2 , so that∣∣∣∣∣∣

N∑
j=i+1

(
c j
N

− 2 j − 1

2N 2

)∣∣∣∣∣∣ �
N∑

j=i+1

2 j − 1

2N 2 = N 2 − i2

2N 2 .

We deduce that for i = 1, . . . , N we have ∂x2g
(±i) = 0 and∥∥∥∂x1g(±i)(·, t) − 1

2

∥∥∥
L∞ → 0 as t → 0. (51)

It remains to construct g(0) in Ω0. As in the proof of Theorem 3 we define for s ∈ R,
t ∈ (0, T ) and λ ∈ [−c1t, c1t] the function

ĝ(s, λ, t) := g(0)(s, z(s, t) + λ, t)

and set, in accordance with (49) with i = 1,

ĝ(s, λ, t) = c1t + λ

2c1t

(∫ s

0
(h(+1) + (1 − 1

N2 )∂x1g
(+1))ds′

)

+
c1t − λ

2c1t

(∫ s

0
(h(−1) + (1 − 1

N2 )∂x1g
(−1))ds′

)

= s

(
c1
N

− 1

2N 2

)

+
λ + c1t

2c1t N

(∫ s

0
∂t z − u(+1)

ν ds′
)
+

λ − c1t

2c1t N

(∫ s

0
∂t z − u(−1)

ν ds′
)

+

(
1 − 1

N 2

)(
c1t + λ

2c1t
g(+1)(s, t) +

c1t − λ

2c1t
g(−1)(s, t)

)
.

Using (47), (48) and (51) we deduce that∥∥∥∂x1g(0)(·, t) − 1
2

∥∥∥
L∞ → 0 as t → 0. (52)
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Furthermore, we have

∂λĝ = 1

2c1t N

∫ s

0
2∂t z − u(+1)

ν − u(−1)
ν ds′ + 1

2c1t

(
1 − 1

N 2

)(
g(+1) − g(−1)

)
.

Now, from (49) and the choice g(±N ) = 0 we obtain

∂x1g
(1) − ∂x1g

(−1) = N

N 2 − 1

N∑
j=2

2∂t z − u(+ j)
ν − u(− j)

ν ,

so that

∂λĝ = 1

c1t

∫ s

0

⎛
⎝∂t z −

N∑
j=1

u(+ j)
ν + u(− j)

ν

2N

⎞
⎠ ds′.

In particular, since ∂λĝ = ∂x2g
(0), it follows from (46) that∥∥∥∂x2g(0)(·, t)

∥∥∥
L∞ → 0 as t → 0. (53)

From (51), (52) and (53) we finally deduce that

|∇g(i)| <
1

2
for all i for sufficiently small t > 0.

This concludes the proof.

We now construct a curve z = z(s, t) satisfying (46)–(47) analogously to the con-
struction in Sect. 4. Indeed, assume that z(s, t) = βs + z̄(s, t) with z̄ ∈ C1([0, T ];C1,α∗
(R)) for some 0 < α < 1 and β ∈ R. Recall that

u(±i)
ν = 1

N

N∑
j=1

TΦ±i, j z

for i = 1, . . . , N . Note that for any i, j

Φ±i, j
∣∣
t=0 = 2ξ2

ξ2 + (z0(s − ξ) − z0(s))2
= Φ0,

where Φ0 is defined in (33). Lemma 2 applies to show that

lim
t→0

sup
s∈R

(1 + |s|1+α)
∣∣TΦ±i, j f (s) − TΦ0 f (s)

∣∣ = 0

whenever f ∈ C1,α∗ (R). We deduce

lim
t→0

sup
s∈R

(1 + |s|1+α)

∣∣∣u(±i)
ν (s) − TΦ0 z̄0(s)

∣∣∣ = 0, (54)

where z̄0 = z̄|t=0. Next, we calculate ∂
∂t

∣∣
t=0

u(i)
ν +u(−i)

ν

2 . To this end set, analogously to
Sect. 4,

ΔΦi, j = Φi, j + Φ−i, j

2
− Φ0 = ΔregΦi j + ΔsingΦi j
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where

ΔregΦi j = Z2
0 − Z2

t

2(1 + Z2
0)

(
1

1 + (Zt + (ci − c j )
t
ξ
)2

+
1

1 + (Zt − (ci − c j )
t
ξ
)2

+
1

1 + (Zt + (ci + c j )
t
ξ
)2

+
1

1 + (Zt − (ci + c j )
t
ξ
)2

)

and

ΔsingΦi j = 1

1 + Z2
0

⎛
⎝−(ci − c j )t Ztξ − (ci−c j )2

2 t2

ξ2 + (Ztξ + (ci − c j )t)2
+

(ci − c j )t Ztξ − (ci−c j )2

2 t2

ξ2 + (Ztξ − (ci − c j )t)2

+
−(ci + c j )t Ztξ − (ci+c j )2

2 t2

ξ2 + (Ztξ + (ci + c j )t)2
+

(ci + c j )t Ztξ − (ci+c j )2

2 t2

ξ2 + (Ztξ − (ci + c j )t)2

⎞
⎠ .

As in Lemma 3, we have

lim
t→0

sup
s∈R

(1 + |s|1+α)
∣∣ 1
t TΔregΦi j f (s) − TΦ1 f (s)

∣∣ = 0

whenever f ∈ C1,α∗ (R) and, using Lemma 4,

lim
t→0

sup
s∈R

(1 + |s|1+α)

∣∣∣ 1t TΔsingΦi j f (s) − ci j∂
2
s f (s)σ (s)

∣∣∣ = 0

whenever f ∈ C2,α∗ (R), where ci j = 1
2 |ci−c j |+ 1

2 |ci+c j | = max(ci , c j ). Consequently,

∂

∂t

∣∣∣∣
t=0

1

N

N∑
i=1

u(i)
ν +u(−i)

ν

2 = TΦ1 z̄0 + TΦ0 z
′
0 + c̄∂2s z0σ, (55)

where

c̄ = 1

N 2

N∑
i, j=1

max(ci , c j ),

and z′0 and Φ1 are defined in (36) in Sect. 4. From these considerations we deduce

Theorem 7. Assume that z0(s) = βs + z̄0(s) with z̄0 ∈ C3,α∗ (R) for some 0 < α < 1
and β ∈ R. Let

z(s, t) = z0(s) + t z1(s) + 1
2 t

2z2(s),

where

z1 := TΦ0 z̄0,

z2 := TΦ0 z1 + TΦ1 z̄0 + c̄σ∂2s z0,

with σ = 1−(∂s z0)2

(1+(∂s z0)2)2
and c̄ = 1

N2

∑N
i, j=1 max(ci , c j ). Then z(s, t) = βs + z̄(s, t) with

z̄ ∈ C2([0,∞);C1,α∗ (R)) andwith this choice of z the conditions (46)–(47) of Theorem 6
are satisfied.
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The proof is entirely analogous to the proof of Theorem 5, based on the above
calculations and Lemmas 2, 3, and 4.

Finally, observe that for the subsolution obtained in Theorem 6 the rate of expansion
of the mixing zone is given by cn < 2n−1

n = 2 − 1
n , so that any expansion rate c < 2 is

obtainable by choosing n sufficiently large.
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