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Abstract: In this paper, we derive several results related to the long-time behavior of a
class of stochastic semilinear evolution equations in a separable Hilbert space H:

du(t) + [Au(t) + B(u(t), u(t))]dt = d L(t), u(0) = x ∈ H.

Here A is a positive self-adjoint operator andB is a bilinear map, and the driving noise L
is basically a D(A−1/2)-valued Lévy process satisfying several technical assumptions.
By using a density transformation theorem type for Lévy measure, we first prove a
support theorem and an irreducibility property of the Ornstein–Uhlenbeck processes
associated to the nonlinear stochastic problem. Second, by exploiting the previous results
we establish the irreducibility of the nonlinear problem provided that for a certain γ ∈
[0, 1/4]B is continuous on D(Aγ )× D(Aγ )with values in D(A−1/2). Using a coupling
argument, the exponential ergodicity is also proved under the stronger assumption thatB
is continuous on H×H. While the latter condition is only satisfied by the nonlinearities
of GOY and Sabra shell models, the assumption under which the irreducibility property
holds is verified by several hydrodynamical systems such as the 2D Navier–Stokes,
Magnetohydrodynamics equations, the 3D Leray-α model, the GOY and Sabra shell
models.

1. Introduction

Motivated by the need of rigorousmathematical results to understand the turbulence phe-
nomenon in fluid dynamics, several prominent mathematicians have intensively studied
the ergodicity of stochastic hydrodynamical systems driven by Wiener noise. Their
studies have generated many important results. We refer, for instance, to [5,20,22–
24,27,28,38–40] and references therein for the results obtained and the advances that
have been made so far.

In contrast to the case of SPDEs with Wiener noise, there are not so many results
related to the long-time behavior of the stochastic version of hydrodynamical systems
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withLévynoise. Themain reason is that, in general, all the available results for theSPDEs
withWiener noise do not apply to the treatment of SPDEs driven byLévy noise. In fact, as
shown in [31] and [32], the dynamics of Lévy noise driven SPDEs differ essentially from
dynamics of systems driven by Brownian noise, and thus require different techniques.
However, several results about the qualitative or long-time behavior of solution of SPDEs
driven by Lévy noise have been obtained during the last decade. We refer, among others,
to [18,19,33,38,43,45,46,48,49] for results related to the ergodicity, irreducibility and
mixing property of several classes of stochastic evolution equations driven by Lévy
processes.

In this paperwe study the long-time behavior of some hydrodynamical systems driven
by Lévy noise, which are written in the form of an abstract stochastic evolution equation
on a separable Hilbert space H:

du(t) + [κAu(t) + B(u(t), u(t))]dt

=
∞∑

k=1

(∫

|z|<1
βk zek dη̃k(z, t) +

∫

|z|≥1
βk zek dηk(z, t)

)

u(0) = x ∈ H, (1)

where κ > 0 is a constant, A is a positive and self-adjoint operator with dense domain
in H, and B is a bilinear map defined on dense subset of H. The sequence {e j ; j ∈ N}
represents an orthonormal basis of H consisting of the eigenfunctions of A, {β j ; j ∈ N}
a sequence of positive numbers. Additional notations and assumptions on the linear map
A, the bilinear map B and {β j ; j ∈ N} will be given later on. Throughout, the noise
entering the system is represented by

L(t) =
∞∑

k=1

(∫ t

0

∫

|z|<1
βk zek dη̃k(z, s) +

∫ t

0

∫

|z|≥1
βk zek dηk(z, s)

)
, (2)

where the η j -s are mutually independent and identically distributed (i.i.d.) Poisson ran-
dommeasures onR0 := R\{0}which basically represent the random countingmeasures
associated to a sequence of mutually i.i.d. tempered stable processes with intensity mea-
sure ν. This class of Lévy noises is very important in Mathematics of Finance, see, for
instance, [35] and [50]. They were also introduced in statistical physics, see for e.g.
[37], to study the phenomenon of self-similar intermittency of turbulent flows. For fur-
ther applications to other fields in physics we refer, for instance, to [34] and [36]. We
should note, however, that the family of truncated Lévy flights studied in the latter paper
is not a suitable example for our purpose, because the tempering function therein does
not satisfy Assumption 2.5(ii) of our article.

The main results in the present paper can be summarized in the following three items.

(i) By using a change of measure method we first prove in Theorem 4.1 that the real-
valued Ornstein–Uhlenbeck (O-U) process y := {∫ t

0 e−κ(t−s)d�(s); t ∈ [0, T ]},
where {�(t); t ∈ [0, T ]} is a tempered stable process, has full support onLp(0, T ; R)

for any p > 0 and that it is irreducible on R. We exploit these results to establish
a support theorem and irreducibility property (see Theorem 4.3) for the H-valued
O-U process S := {∫ t

0 e−κ(t−s)Ad L(s); t ∈ [0, T ]}.
(ii) Under fairly general assumptions on the nonlinear term B, irreducibility property

of the solution of (1) is proved using the above results and the exact controllability



Irreducibility and Exponential Mixing of Hydrodynamical Systems with Lévy Noise 537

of the deterministic version of (1). This result, which can be applied to 2D Navier–
Stokes, Magnetohydrodynamics equations, the 3D Leray-α (all with the periodic
boundary condition), and the GOY and Sabra shell models, is stated in Theorem
3.5.

(iii) With much stronger conditions on B, which are satisfied by GOY and Sabra shell
models, we show in Theorem 3.7 by using the coupling method as in [38] the
exponential ergodicity of (1).

To our knowledge these results are new and extend existing results related to the
long-time behavior of stochastic hydrodynamical systems driven by Lévy noise. In fact,
the polynomial mixing of the 2D Navier–Stokes equations driven by compound Poisson
processes was treated in [38], but their approach does not apply to our situation as
we consider stochastic evolution equation driven by Lévy noise of infinite activity. By
adapting the tools for the ergodicity of SPDEs driven by Wiener noise developed in
[15,22] and [24], the authors of [19] proved the ergodicity of the 2D Navier–Stokes
equations driven byLévynoisewith a non-degenerateWiener noise.Recently,H.Bessaih
and the last two authors proved in [7] the ergodicity of stochastic shell models with
tempered stable process. Due to the lack of irreducibility they could not prove any
convergence rate to the invariant measure.

To prove our results we were inspired by [46,48] and [49], which treated stable
processes driven SPDEs with bounded nonlinearity which does not include the exam-
ples we treat in this paper. It is clear from the sketch of our results and the assumptions
on our driving noise that irreducibility and ergodicity for 2D Navier–Stokes, Magne-
tohydrodynamics equations and the 3-dimensional Leray-α driven by stable processes
do not follow from our results and are still an open problem. Finally, while the support
theorem and irreducibility for Ornstein–Uhlenbeck processes is true for any tempered
stable measure ν(dz) = |z|−1−θe−|z| with θ ∈ (0, 2), the exponential ergodicity and
the irreducibility property of the nonlinear problem is only true for θ ∈ (0, 1) (see Re-
mark 2.8, Theorem 4.1 and Corollary 4.4). The main reason is that, in order to ensure
the existence of solution (see Proposition 3.3) and the strong Feller property (see [7,
Proposition 3.6]), we require the finiteness of the moment of order p ≥ 1 of the measure
ν (see Assumption 2.5(iii)).

Let us now close this introduction with the layout of the paper. In Sect. 2 we introduce
several notations and all the assumptions that we need in this paper. We also give several
motivating examples in the same section. In Sect. 3 we state two of our main results,
which are the irreducibility and exponential mixing of (1). From these results and the
preparatory steps in Sect. 2.2 we derive the irreducibility of all our motivating examples.
We also derive from the first two main results the exponential mixing of the GOY and
Sabra shell models driven by tempered stable noise. The proofs of the main theorems of
our work are given in Sects. 4 and 5. The statement and proofs of our third and fourth
results, which are the support theorems and irreducibility of the O-U processes, are given
in Sect. 4. The proof of the irreducibility of the general model (1) is also given in Sect. 4.
By using the coupling approach and following closely [38] the exponential mixing of
(1) is proved in Sect. 5.

2. Notation, Assumptions and Motivating Examples

2.1. Notations and assumptions. Let H be a separable Hilbert space with norm and
scalar product denoted by |·| and (u, v), respectively. Let A be a (possibly unbounded)
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linear map with domain D(A), which is endowed with the graph norm, with values on
H. We impose the following set of conditions on A.

Assumption 2.1. We assume that A is a positive self-adjoint operator and its domain
D(A) is densely and compactly embedded in H.

Observe that in view of the above assumption, we can and will assume that the
eigenfunctions {e1, e2, . . .} of A form an orthonormal basis of H. Throughout this paper
the eigenvalues associated with the eigenfunctions of A are denoted by λ1 < λ2 < · · · .

The fractional power operators Aγ , γ ≥ 0 are well-defined; they are also self-adjoint,
positive and invertible with inverse A−γ . We denote by Vγ := D(A

γ
2 ), γ ≥ 0 the

domain of Aγ . It is a Hilbert space endowed with the graph norm. The dual space V∗
γ

of Vγ , γ ≥ 0, wrt to the inner product of H can be identified with D(A− γ
2 ). For γ = 1

we set V := V1 and we denote its norm by ‖ · ‖ := |·| + |A1
2 · |. Since Assumption 2.1

also implies the following Poincaré type inequality

|·| ≤ λ
−1/2
1 |A1/2·| ≤ λ

−1/2
1 ‖·‖, (3)

the norm ‖ · ‖ is equivalent to |A1
2 · | on V.

When identifying H with its dual H∗ we have the Gelfand triple V ⊂ H ⊂ V∗. We
denote by 〈u, v〉 the duality between V∗ and V such that 〈u, v〉 = (u, v) for u ∈ H and
v ∈ V.

Now, letB : V×V → V∗ be a bilinear map satisfying the following set of conditions.

Assumption 2.2. (a) We assume that B : V × V → V∗ is a continuous bilinear map
satisfying

〈B(u, v), v〉 = 0, for any u ∈ V, v ∈ V.

(b) The map B(·, ·) admits an extension, still denoted by the same symbol, onH ×H ,
where H = D(Aγ ) for some γ ∈ [0, 1

4 ]. Furthermore, there exists a constant
C1 > 0 such that

‖B(u, v)‖V∗ ≤ C1‖u‖H ‖v‖H , for any u, v ∈ H . (4)

Remark 2.3. Observe that the embeddingH � H is dense, and there existsC0 ∈ (0,∞)

such that
‖u‖H ≤ C0|u| 12 ‖u‖ 1

2 , for any u ∈ V. (5)

Furthermore, there exists a sequence of positive numbers (γk)k∈N such that {ϕk :=
γkek; k ∈ N} is an orthonormal basis ofH .

LetP = (�,F , P, F) be a complete probability space with a filtration F = (Ft )t≥0
satisfying the usual conditions. Before we proceed to the assumptions on the noise L ,
let us recall the following definition.

Definition 2.4. Let Z be a metric space and Z be its Borel σ -algebra, ν be a positive
σ -finite measure on (Z ,Z). Let N̄ = N ∪ {∞}, R+ = [0,∞) and MI (Z) be the family
of all N̄-valued measures on (Z ,Z).

A Poisson random measure, with intensity measure ν, η defined on (Z ,Z) overP is
a measurable map η : (�,F) → (MI (Z ×R+),MI (Z ×R+)) satisfying the following
conditions:
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(i) for all B ∈ B(Z ×R+), η(B) : � → N is a Poisson randommeasure with parameter
E[η(B)];

(ii) η is independently scattered, i.e. if the sets B j ∈ B(Z ⊗ R+), j = 1, ..., n, are
disjoint then the random variables η(B j ), j = 1, ..., n, are independent;

(iii) for all U ∈ Z and I ∈ B(R+)

E[η(U × I )] = Leb(I )ν(U ),

where Leb is the Lebesgue measure;
(iv) for all U ∈ Z the N̄-valued process (N (U, t))t≥0 defined by N (U, t) := η(U ×

(0, t]), t ≥ 0, is F-adapted and its increments are independent of the past, i.e.,
if t > s ≥ 0, then the random variable N (U, t) − N (U, s) = η(U × (s, t]) is
independent of Fs .

Wewill denote by η̃ the compensated Poisson random measure defined by η̃ := η−γ ,
where the compensator γ : B(Z × R+) → R+ defined by

γ (A × I ) = Leb(I )ν(A), I ∈ B(R+), A ∈ Z.

While items (i) and (ii) are the classical definition, see for e.g. [45, Definition 6.1],
of a Poisson Random measure η, the remaining items implicitly indicate that our η is
associated to a certain a Lévy process L̃ , see, for instance [45, Proposition 4.16].

Throughout this paper an intensity measure is always positive and σ -finite.
Now, let η := {η1, η2, . . .} be a family ofmutually independent Poisson randommea-

sures defined on (R0,B(R0)) over P with intensity measures {ν1, ν2, . . .}. Throughout
this paper, we denote by {ν1(dz)dt, ν2(dz)dt, . . .} the family of compensators of the
elements of η and {η̃1, η̃2, . . .} the family of compensated Poisson random measures
associated to the elements of η. To shorten notation, we will use the following notations
dη j (z, t) := η j (dz, dt) and dη̃ j (z, t) := η̃ j (dz, dt) for any j ∈ {1, 2, . . .}. We will
also use the notation

dη̄ j (z, t) = 1|z|≤1dη̃ j (z, t) + 1|z j |>1dη j (z, t), j ∈ {1, 2, . . .}.
Now, we introduce all the assumptions on noise L . The first of these are given in the
following set of conditions which basically implies the strong Feller property of (1) (see
Proposition 5.1).

Assumption 2.5. (i) The Poisson random measures η j , j ∈ N are independent and
identically distributed. This means in particular that there exists a positive σ -finite
measure ν such that

ν j (dz) = ν(dz) for any j = 1, 2, . . . .

(ii) There exists a strictly monotone and C1 function q : (0,∞) → (0,∞) such that

lim
r↗∞ q(r) = 0, lim

r↘0
q(r) = 1, and ν(dz) = q(|z|)|z|−1−θdz, θ ∈ [0, 2).

Moreover, for any p ≥ 1 there exist two constants K0 > 0, K1 ≥ 0 such that
∣∣∣∣
q ′(z)
q(z)

∣∣∣∣
p

≤ K0 + K1z−p, z ∈ (0,∞).
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(iii) We have |z|1−θq(|z|) → 0 as |z| → ∞. We also impose that
∫

R0

|z|pν(dz) < ∞, for any p ≥ 1. (6)

Remark 2.6. Setting g(x) = q(|x |)|x |−1−θ , θ ∈ [0, 2), it is easy to see that Assumption
2.5 implies the following items:

(I) There exists a C1 function g : R0 → (0,∞) such that ν(dz) = g(z)dz and for any
p ≥ 1 there exists a constant C > 0 so that

∣∣∣∣
g′(z)
g(z)

∣∣∣∣
p

≤ C(1 + |z|−p), z ∈ R0.

(II) As |z| → ∞ we have z2g(z) → 0 and the Lévy measure ν satisfies (6).
(III) Furthermore, there exists a constant θ1 ∈ (0, 2] such that for any y ∈ R0

lim inf
ε↘0

εθ1

∫

R0

(|z · y/ε|2 ∧ 1)ν(dz) > 0.

The items (II)–(III) are very similar to [7, Assumption 2.3(ii)–2.3(iv)] (see also [54,
Assumption 1]) and ensure the validity of a Bismut–Elworthy–Li (BEL) formula (see
[7, Lemma A.3]) which is used in [7, Proposition 3.6] to prove the strong Feller property
of GOY and Sabra shell models. The item (III) is called in some literature the order and
non-degeneracy condition (see [54, Remark 2.2]).

The following assumptions, independently of several itemsofAssumptions 2.5, imply
the irreducibility property in H of the mild solution (also known as stochastic convolu-
tion) S of the problem

d Z(t) + κ AZ(t) = d L(t), Z(0) = 0. (7)

Assumption 2.7. Let ν be the intensity measure in the first part of Assumption 2.5(ii).
We suppose that θ ∈ (0, 2) and

∫

R

(1 − q
1
2 (|z|))2ν(dz) < ∞. (8)

Before we state the final assumption for the paper we give some basic examples that
satisfy Assumptions 2.5 and 2.7.

Remark 2.8. (a) The function q(z) = e−βz , for any z > 0 and β > 0 is an example
of function satisfying items (ii) and (iii) of Assumption 2.5. Moreover, any measure
ν(dz) = |z|−1−θe−β|z| satisfies Assumptions 2.5 and 2.7 with θ ∈ (0, 1).

(b) The components of the noise in (1) can be replaced with the following ones

�k(t) = σ Wk(Gk(t)), σ > 0, t ∈ [0,∞), k ∈ N, (9)

where {Wk; k ∈ N} is a family of i.i.d standard Brownian motions and {Gk; k ∈ N}
is a family of i.i.d Gamma processes with Lévy measure νG(dz) = z−1e−z1z>0dz.
In fact, it was shown in [30, Chapter 10] that each �k is a pure jump Lévy noise
which is identical in law to a variance gamma process �̃k having a Lévy measure

ν(dz) = |z|−1e−β|z|dz,

withβ = √
2/σ.That is, we are in the situation of symmetric tempered stable process

with θ = 0 which satisfies only Assumption 2.5.
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The final assumption on our model is the following.

Assumption 2.9. On the family of positive numbers {β j ; j = 1, 2, . . .} we assume that

∞∑

j=1

(
β j + β2

j λ
−2ϑ
j

)
+
(
β2

j λ
ε−1
j + β4

j λ
ε
j

)
< ∞,

for a certain ε ∈ (0, 2) and ϑ ∈ [0, 1
2 ).

To close this subsection we also introduce the following additional notations. For
a Banach space B we denote respectively by Bb(B), Cb(B), and C2

b (B) the space of
bounded and measurable functions, the space of continuous and bounded functions,
and the space of bounded and twice Fréchet differentiable functions on B and taking
values in R. The supremum norm of a map ϕ ∈ Bb(B) is denoted by ‖ϕ‖∞. For two
Banach spaces B1 and B2 we denote by C2

b (B1,B2) the space of bounded and twice
Fréchet differentiable functions on B1 and taking values in B2. For any measurable
space (M,M) we denote by Lq(M,B), q ∈ [1,∞), the space of Bochner integrable
functions defined on M and taking values in B. The space D([0, T ];B) denotes the space
of all right continuous functions � : [0, T ] → Bwith left limits. The space D([0, T ];B)

equipped with the Skorokhod topology J1, which is the finest of Skorokhod topologies,
is both separable and complete. For more information about the Skorokhod space and
the J1-topology we refer to Ethier and Kurtz [21, Chapter 3, Section 5].

Let P(B) be the set of Borel probability measures on (B,B(B)), where B(B) is
the Borel σ -algebra on B. The total variation distance of two probability measures
μ1, μ2 ∈ P(B) is defined by

‖μ1 − μ2‖TV = 1

2
sup

ϕ∈Bb(B)
‖ϕ‖∞=1

∣∣∣∣
∫

B
ϕ(x)μ1(dx) −

∫

B
ϕ(x)μ2(dx)

∣∣∣∣

= sup
�∈B(B)

|μ1(�) − μ2(�)|.

2.2. Motivating examples. In this subsection we give few examples of evolution equa-
tions which can be treated with our results. We will mainly treat the Sabra shell models,
the GOY shell models, the 2D Navier–Stokes, Magnetohydrodynamics equations and
the 3D Leray-α model of turbulence. To keep the presentation short we will impose the
periodic boundary condition on the last three examples.

2.2.1. The 2D Navier–Stokes equations with periodic boundary condition. We consider
the Navier–Stokes equations (NSEs) subjected to the periodic boundary condition on
the torus O = [0, 2π ]2:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du − κ�u + u · ∇u + ∇p = F,

∇ · u = 0,∫
O u(t, z)dz = 0,
u(0) = x,

(10)

whereu andp are unknownvector field and scalar periodic functions in the space variable,
representing, respectively, the fluid velocity and the pressure. The term F represents an
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external forcing. Finally, x is a given initial velocity. We will briefly outline in this
subsection how we put the NSEs in an abstract evolution equation of the form (1); for
the detail we refer, among others, to [55] and [25].

Let V be the set of periodic, divergence free and infinitely differentiable function
with zero mean. In what follows, we denote by H and V the closures of V in L2(O) and
H1(O), respectively. We also set

D(A) = [H2(O)]2 ∩ V, Av = −�v, v ∈ D(A).

It is well-known that the Stokes operator A is positive self-adjoint with compact resol-
vent and its eigenfunctions {e1, e2, . . .}, with eigenvalues 0 < λ1 ≤ λ2 ≤ . . ., form

an orthonormal basis of H. It is also well-known that V = D(A
1
2 ), see [25, Appen-

dix A.1 of Chapter II]. Furthermore, we see from [55, Chapter II, Section 1.2] and [25,
Appendix A.3 of Chapter II] that one can define a continuous bilinear mapB fromV×V
with values in V∗ such that

〈B(u, v),w〉 =
∫

O
[u(z) · ∇v(z)] · w(z)dz for any u, v,w ∈ V, (11)

〈B(u, v), v〉 = 0, for any u, v ∈ V, (12)

|〈B(u, v),w〉| ≤ C0‖u‖L4‖v‖L4‖w‖, for u, v ∈ L4(O), w ∈ V. (13)

From the last line along with the embedding D(A1/4) ⊂ L4(O) we infer that As-
sumption 2.2(b) is satisfied withH = D(A1/4).

With all these notations theNavier–Stokes equations (10) can bewritten in the abstract
form

du

dt
+ κAu(t) + B(u, u) = �F, (14a)

u(0) = x ∈ H. (14b)

Thanks to the above preliminary results we see that A, B(· , ·) andH satisfy Assump-
tions 2.1 and 2.2.

2.2.2. The 2D magnetohydrodynamics equations. In the torus O = [0, 2π ]2, the dy-
namic of an incompressible conducting fluid in presence of a magnetic field is described
by the 2D Magnetohydrodynamics (MHD) system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t − κ1�u + (u · ∇)u + ∇p + 1

2∇|m|2 − (m · ∇)m = F1
∂m
∂t − κ2�m + (u · ∇)m − (m · ∇)u = F2,

∇ · u = ∇ · m = 0,∫
O u(x, t)dx = ∫

O m(x, t)dx = 0,
u(x, 0) = u0, m(x, 0) = m0,

(15)

where u = (u1, u2),m = (m1,m2) and p are unknown functions defined on [0, T ]×O ,
representing, respectively, the fluid velocity, the magnetic field and the pressure, at each
point of [0, T ] × O . Throughout we assume that u, m and p are periodic functions in
the space variable. The terms F1 and F2 represent external perturbations acting on the
system. Finally, u0 and m0 are given initial velocity and magnetic field, respectively.
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Since we are assuming that all functions are periodic in the space variable, we can use
the same function spaces and notations defined in the subsection for theNSEs.Moreover,
following the argument in [52] we can rewrite (15) into the abstract form

du
dt

+ Au +B(u,u) = F, (16)

where u = (u,m) is the unknown and F = (�F1,�F2). Setting H = H × H, V =
V × V, the operator A with domain D(A) = D(A) × D(A) and the bilinear map
B : V × V → V∗ are respectively defined by

Av =
(

κ1A 0
0 κ2A

)(
u
m

)
,

for any u = (u,m) ∈ D(A), and

〈B(u1,u2),u3〉 = 〈B(u1, u2), u3〉 − 〈B(m1,m2), u3〉 + 〈B(u1,m2),m3〉
−〈B(m2, u2),m3〉,

for any ui = (ui ,mi ) ∈ V, i = 1, 2, 3.
Since A is positive self-adjoint with compact inverse, so is A. Using the properties

we mentioned in the case for the NSEs, it is not difficult to check that B(·, ·) satisfies
Assumption 2.2 where H = D(A1/4) × D(A1/4). Therefore, the MHD model (15) is
also one example we can study in this paper. For more information on the mathematical
theory of MHD equations we refer, for instance to, [4,52] and references therein.

2.2.3. The 3D Leray-α model with periodic boundary condition. We can also analyse
a 3D model, in particular we can treat the 3D Leray-α model with periodic boundary
condition. On the 3D torus O = [0, 2π ]3 this model is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t − κ�u + v · ∇u + ∇p = F,

(I − α�)v = u,

∇ · u = ∇ · v = 0,∫
O u(t, x)dx = ∫

O v(t, x)dx = 0,
u(0) = x .

(17)

where u = (u1, u2, u3) and v = (v1, v2, v3) are unknown vector fields, p is the unknown
pressure.

Here we can also use the spaces of functions and notations used in the mathematical
theory of NSEs. Moreover, we set Lα = (I + αA)−1 and define a bilinear map B(·, ·)
on V × V by setting

B(u, v) = B(Lαu, v),

for any u ∈ V and v ∈ V. With these notations we can rewrite the system (17) in the
following form

du

dt
+ κAu +B(u, u) = F, u(0) = x ∈ H. (18)

It is proved in [13] that B(·, ·) satisfies the following property

〈B(u, v), v〉 = 〈B(Lαu, v), v〉 = 0 for any u, v ∈ V,

|〈B(u, v),w〉| ≤ C |Lαu|L6 |v|L3‖w‖ for any u ∈ H,w ∈ V, v ∈ L6.
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Using the Sobolev embedding H1 ⊂ L6 and the continuity of the map A
1
2 Lα : H → H1

we obtain that
|〈B(u, v),w〉| ≤ C |u|‖v‖L3‖w‖, (19)

which shows the continuity of the bilinear map B on V × V. We also derive from (19)
that B(· , ·) admits an extension, still denoted by the same symbol, on H × L3. Since

D(A
1
4 ) ⊂ L3, B(· , ·) admits also a continuous extension, denoted again by B(· , ·),

onH ×H , whereH = D(A
1
4 ). Thus, A andB respectively satisfy Assumptions 2.1

and 2.2.
For more information on the 3DLeray-α model we refer to [10,13,16] and references

therein.

2.2.4. GOY and Sabra shell models of turbulence. In this sectionwedenote byC the field
of complex numbers and C

N be the set of all C-valued sequences (un)n∈N. Furthermore,
we denoted by H the set of all u := (un)n∈N ∈ C

N such that
∑∞

n=1|un|2 < ∞. Let k0
be a positive number and λn = k02n be a sequence of positive numbers. We set

D(A) = {u ∈ H;
∞∑

n=1

λ4n|un|2 < ∞}, Au = (λ2nun)n∈N, for u ∈ D(A).

It is not hard to check that A is a positive self-adjoint operator. It is well-known, see,
for instance, [14], that D(Ar ), r ∈ R, can be identified with the set of all sequences
u = (un)n∈N ∈ C

N such that
∑∞

n=1 λ4r
n |un|2 < ∞; the embedding D(Ar ) ⊂ D(Ar+ε)

is compact for any r ∈ R and ε > 0. In what follows we set V = D(A
1
2 ).

The evolution equation describing the GOY and Sabra shell models is given by

du

dt
+ κAu + B(u, u) = F,

u(0) = u0,

(20)

where F = (Fn)n∈N ∈ C
N is an external perturbation. The map B(· , ·) is a bilinear

map defined on V × V taking values in the dual space V∗ and is defined by

bn(u, v) := (B(u, v))n

:= iλn

(
1

4
vn−1un+1 − 1

2
(un+1vn+2 + vn+1un+2) +

1

8
un−1vn−2

)
,

for the GOY shell model, see for e.g. [26], and by

bn(u, v) := (B(u, v))n := i

3
λn+1 [vn+1un+2 + 2un+1vn+2]

+
i

3
λn
[
un−1vn+1 − vn−1un+1

]

+
i

3
λn−1

[
2un−1vn−2 + un−2vn−1

]
,

for the Sabra shell model, see for e.g. [42] and [17].
It was shown in [14, Proposition 1] that the nonlinear term B(· , ·) for the GOY

and Sabra shell models satisfies Assumption 2.2 with H = H. For more mathematical
results related to shell models we refer to [3,5,6,14] and references therein.
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3. The Main Results and Their Applications

In this section we give the main results of the paper. Their proofs are postponed to the
two forthcoming sections. We start with the introduction of the notion of solution.

Definition 3.1. An F-adapted process u is called a weak solution of Eq. (1) if the fol-
lowing conditions are satisfied

(i) u ∈ L2(0, T ;V) P-almost surely,
(ii) the following equality holds for every t ∈ [0, T ] and P-a.s,

(u(t), φ) = (x, φ) −
∫ t

0
(〈κAu(s) + B(u(s), u(s)), φ〉) ds + 〈φ, L(t)〉, (21)

for any φ ∈ V.

Remark 3.2. (a) Owing to Assumption 2.2 the nonlinear term
∫ t
0 〈B(u(s), u(s)), φ〉ds

makes sense whenever φ ∈ V and u ∈ L2(0, T ;V).
(b) For any t ≥ 0 let

�k(t) :=
∫ t

0

∫

R0

z dη̄k(z, s), k ∈ N.

We can rewrite the definition of L as follows

L(t) =
∞∑

j=1

�̃ j (t)λ
ϑ
j e j ,

where each �̃ j = σ j� j is aLévy processwithLévymeasureμ j defined byμ j (dz j ) =
ν(σ−1

j dz) with σ j = β jλ
−ϑ
j . Now, thanks to Assumption 2.9 and the fact that

{λϑ
j e j ; j ∈ N} is an orthonormal basis of D(A−ϑ), we derive from [45, Theo-

rem 4.40] that the Lévy process L lives in D(A−ϑ) with ϑ ∈ (0, 1
2 ). Thus 〈φ, L(t)〉

makes sense for any φ ∈ V.

We recall the following result which can be proved using similar ideas as in [7,
Proofs of Proposition 3.3 and Lemma 3.9].

Proposition 3.3. If, in addition to Assumptions 2.1, 2.2, 2.9 and Assumption 2.5(i), the
estimate (6) is verified, then the problem (1) has a unique solution u ∈ D([0, T ];H) and
there exists two constants c0, c1 > 0 such that

E sup
t∈[0,T ]

|u(t, x)|2 + E

∫ t

0
|A1

2 u(s, x)|2ds ≤ c0ec1t (1 + |x |2). (22)

In particular, there exists a constant C̃ > 0 such that for any t > 0 and x ∈ H we have

E|u(t, x)|2 ≤ (|x |2 + C̃t)e− κ
λ 1t , (23)

E

∫ t

0
|A 1

2 u(s, x)|2ds ≤ (|x |2 + C̃t) + C̃ λ1
κ

. (24)

Moreover, u is a Markov process having the Feller property in H.
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The result in Proposition 3.3 enables us to define a Markov semigroup as in the
following definition.

Definition 3.4. Let Pt , t ≥ 0, be the Markov semigroup defined by

[Pt�](x) = E[�(u(t, x))], � ∈ Bb(H), x ∈ H, t ≥ 0,

where u(·, x) is the unique solution to (1) with initial condition x ∈ H. Throughout this
paper, for simplicity we will write

Pt�(x) := [Pt�](x), � ∈ Bb(H), x ∈ H, t ≥ 0.

We also denote by P∗
t , t ≥ 0, the dual semigroup acting on P(H) of the Markov

semigroup Pt , t ≥ 0.

The first of our main results is stated in the following theorem. The proof of this
result, which needs some new tools that are interesting in themselves, will be carried out
in Sect. 4.

Theorem 3.5. For any positive number R and a ∈ H we set

�a,R = {v ∈ H; |v − a| < R}

Suppose that Assumptions 2.1, 2.2, 2.7 and 2.9 are verified. Then, for any x ∈ H , a ∈ H
and any positive number ε > 0 we have

Pt1�a,ε (x) = P (|u(t, x) − a| < ε) > 0,

for any t > 0.

We apply the above theorem to infer the irreducibility of the 2D Navier–Stokes
(NSEs), Magnetohydrodynamics (MHD) equations and the 3D Leray-α model driven
by a pure jump Lévy process L . These models were introduced in Sects. 2.2.1, 2.2.2,
and 2.2.3, respectively.

Corollary 3.6. 1. Let us consider the NSEs and MHD equations driven by a Lévy
process L defined by (2). Assume that Assumption 2.7 is satisfied and suppose
that βk = λ

−(1+γ )

k where γ > 0 is a small number and (λk)k∈N is the fam-
ily of eigenvalues of the 2D Stokes operator with periodic boundary condition.
If u(·, x) and (u(·, x),m(·, y)) are the solution of the stochastic NSEs and MHD

equations starting at x and (x, y), respectively, then for any x ∈ D(A
1
4 ) (resp.

(x, y) ∈ D(A
1
4 ) × D(A

1
4 )) and a ∈ H (resp. (a, c) ∈ D(A

1
4 ) × D(A

1
4 )) and ε > 0

we have

P (|u(t, x) − a| < ε) > 0,

P (|u(t, x) − a| + |m(t, y) − c| < ε) > 0,

for any t > 0.
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2. Now, we consider the case of the 3D Leray-α model (17). We suppose that the

noise entering the system is as above but with βk = λ
−( 32 +γ )

k , where γ > 0 is a
small number and (λk)k∈N is the family of eigenvalues of the 3D Stokes operator
with periodic boundary condition. If Assumption 2.7 is satisfied and if u(·, x) is the

solution of the 3D stochastic Leray-α model (17), then for any ε > 0, x ∈ D(A
1
4 ),

and a ∈ H we have

P (|u(t, x) − a| < ε) > 0,

for any t > 0.

Proof. We have seen in Sect. 2.2 that both the 2D NSEs, MHD equations and the
3D Leray-α model can be written as an abstract evolution equation of the form (1).
Moreover, we have also seen in Sect. 2.2 that the linear and nonlinear terms involved in
these systems satisfy Assumptions 2.1 and 2.2 withH = D(A

1
4 ) for the NSEs and 3D

Leray-α model, and H = D(A
1
4 ) × D(A

1
4 ) for the MHD equations. Now, notice that

λk ∼ k
2
d , d = 2, 3, thus, owing to our assumption we have

∞∑

k=1

(βk + β2
k λε−1

k + β4
k λε

k) < ∞,

for any ε ∈ (0, 2) if d = 2 and ε ∈ (0, 1) if d = 3. It is clear that if the sequence
{βk; k ∈ N} is defined as above then∑∞

k=1 β2
k λ−2ϑ

k < ∞ for any ϑ ∈ [0, 1
2 ). Therefore,

the 2D NSEs, MHD equations and the 3D Leray-α model satisfy Assumption 2.9. Now,
the corollary follows from the application of Theorem 3.5. ��

We will show in the next theorem, which is our second main result and whose proof
will be carried out in Sect. 5, that one can say more about the Markov semigroup
associated when much stronger conditions than in Theorem 3.5 are imposed on the
nonlinear term B(· , ·).
Theorem 3.7. In addition to Assumptions 2.1, 2.5, 2.7 and 2.9, we also suppose that
Assumption 2.2 is satisfied with H = H and the sequence {β j ; j ∈ N} satisfies

∞∑

j=1

β−2
j λ−1

j < ∞. (25)

Then, the system (1) is ergodic and exponential mixing. That means, there exists a unique
μ ∈ P(H) and two constants C, C̃ > 0 such that for any measure m ∈ P(H), we have

‖P∗
Tm − μ‖TV ≤ C̃e−CT

(
1 +

∫

H
|x |2m(dx)

)
,

for any T > 0.

The nonlinear terms of the 2D Navier–Stokes, MHD and 3D Leray-α models do not
satisfy the assumption of the above theorem. However, we can apply Theorem 3.7 to the
GOY and Sabra shell models, because their nonlinear terms verify Assumption 2.2 with
H = H.
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Corollary 3.8. Let us consider the GOY and Sabra shell models driven by a Lévy process
L defined by (2). Assume that Assumptions 2.5 and 2.7 are satisfied and suppose that
βk = λ

−γ

k where γ ∈ (0, 1
2 ) is a real number and (λk)k∈N = (k02k)k∈N is the family

of eigenvalues of the operator A defined in Sect. 2.2.4. Then, the semigroup Pt , t ≥ 0,
associated to the unique solution of the shell models admits a unique invariant measure
μ whose support is included in V. Moreover, there exist two constants C, C̃ > 0 such
that for any measure m ∈ P(H), we have

‖P∗
Tm − μ‖TV ≤ C̃e−CT

(
1 +

∫

H
|x |2m(dx)

)
,

for any T > 0.

Proof. Owing to the compact embedding V ⊂ H and the estimates (23) and (24) the
existence of an invariant measure μ follows from the Krylov–Bogolyubov theorem, see,
for instance, the proofs in [12, Theorem 2.2] or [29, Theorem 5.3]. One can also argue
as in [29, Theorem 5.3] to show that the support of μ is included in V.

We have seen in Sect. 2.2.4 that the GOY and Sabra shell models satisfy Assumptions
2.1 and 2.2 with H = H. It is not difficult to check that Assumption 2.9 is satisfied
when (λk)k∈N = (k02k)k∈N and βk = λ

−γ

k for any real number γ > 0, in particular
for γ ∈ (0, 1

2 ) it is easy to see that (25) is verified. Hence, the uniqueness and the
exponential convergence follows from Theorem 3.7. ��

Remark 3.9. It was proved in [7, Theorem 3.10] that (1), with nonlinearity B satisfying
Assumption 2.2(b) with H = H, admits a unique invariant measure provided that for
each k ∈ N the Lévy process �k(t) satisfies the small deviation property, that is, for any
T > 0 and ε > 0,

P( sup
t∈[0,T ]

|�k(t)| < ε) > 0, k ∈ N.

Thanks to [53, Théorème 1, pp. 157], [2, Proposition 1.1], any Lévy process having
intensity measure ρ satisfying

∫
|z|≤1 zρ(dz) = 0, which is verified by the intensity

measure ν in Remark 2.8(b), has the small deviation property. Thus, the assumptions of
[7, Theorem 3.10] are much weaker than those of Corollary 3.8 and allow us to take a
large class of tempered stable processes. However, we saw in the previous theorem that
we get stronger result (exponential mixing) under the much restrictive assumptions of
Corollary 3.8.

4. Support Theorem and Irreducibility for Some Stochastic Evolution Equations

This section is devoted to the proof of Theorem 3.5.Wewill start with the statements and
proofs of some support and irreducibility theorems for finite and infinite dimensional
Ornstein–Uhlenbeck processes with tempered stable Lévy noise. These results, which
are part of our main results, are new and interesting in themselves.
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4.1. Support theorem and irreducibility for O-U process with tempered stable Lévy noise.
Let (�,F , P) be a complete probability space. It is well-known (see, for instance,
[51, Corollary 8.3]) that the characteristic function of any R

d -valued Lévy process
{�(t); t ≥ 0} on (�,F , P) has the Lévy -Khintchine representation

E[ei〈x,�(t)〉] = etψ(x), x ∈ R
d , t ≥ 0, (26)

ψ(x) = −1

2
〈Mx, x〉 + i〈κ, x〉 +

∫

Rd
(ei〈z,x〉 − 1 − i〈x, z1|z|≤1〉)ν(dz), (27)

where κ ∈ R
d , M is a symmetric nonnegative-definite d × d-matrix, ν is a positive

σ -finite measure on R
d satisfying

ν({0}) = 0 and
∫

Rd
[|x |2 ∧ 1]ν(dx) < ∞.

The triplet (M, ν, κ) is called the generating triplet of the Lévy process {�(t); t ≥ 0}.
In this subsection we will mainly work with real-valued symmetric tempered stable
process (TSP) whose generating triplet is (0, ν, 0) and the intensity measure ν satisfies
Assumption 2.7. We state and prove our third main result in the following theorem.

Theorem 4.1. Let κ > 0 be a real number and T ∈ (0,∞) be fixed. Let {�(t); t ≥ 0} be
a TSP process with generating triplet (0, ν, 0) and {y(t); t ∈ [0, T ]} be the real-valued
stochastic convolution solving

dy(t) = −κy(t)dt + d�(t), y(0) = 0.

If the measure ν satisfies Assumption 2.7, then for any p > 0 the pair (y, y(T )) has
full support in Lp(0, T ; R) × R. The stochastic convolution is irreducible on R, that is,
for any open set O ⊂ R and t > 0 we have P (y(t) ∈ O) > 0.

In particular, the above results hold for any real-valued stochastic convolution y
driven by a Lévy process with intensity measure ν as in Remark 2.8(a) but with θ ∈ (0, 2).

The proof of this theorem relies on the following transformation theorem for Lévy
density which is a corollary of [51, Theorem 33.2] or [51, Theorem 33.1].

Lemma 4.2. Let {�(t); t ≥ 0} be a TSP with generating triple (0, ν, 0). If the measure ν

satisfies all the assumptions of Theorem 4.1, then there exists a new probability measure
P under which the symmetric TSP {�(t); t ≥ 0} is a stable process with generating triplet
(0, �, 0) with �(dx) = |x |−1−θ dx. Moreover, the measures P and P are equivalent.

Now, we proceed to the proof of Theorem 4.1.

Proof of Theorem 4.1. Let ε > 0, φ ∈ Lp(0, T ; R) and x ∈ R. Let Cε be the set

Cε = {ω; ‖y(·, ω) − φ‖Lp(0,T ;R) + |y(·, ω) − x | ≤ ε}.
Owing to Assumption 2.7 we can apply Lemma 4.2 to infer that there exists a probability
measure P under which � is a stable process. Since � is under P a stable process, the
stochastic convolution y is an Ornstein–Uhlenbeck process driven by a stable process
under P. Thus, we derive from [46, Proposition 4.8] that under P the random variable
(y, y(T )) has full support on Lp(0, T ; R) × R, in particular, P(Cε) > 0. Now, let us
assume thatP(Cε) = 0. From this assumption and the equivalence of themeasuresP and
P (see Lemma 4.2), we infer that P(Cε) = 0, which contradicts the fact that P(Cε) > 0.
Therefore, P(Cε) > 0, which completes the proof of the lemma. ��
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Now we will study the irreducibility property of the mild solution S to the problem
7. From Assumption 2.9 and an application of [44, Corollary 3.3] we infer that (7) has
a unique solution S (called stochastic convolution) defined by

S(t) =
∞∑

k=1

Sk(t)ek, (28)

where each Sk is the solution to

dSk(t) = −κλkSk(t)dt + βk

∫

R0

zdη̄k(dz, dt). (29)

Moreover, S ∈ D([0, T ];H) with probability 1 and

E sup
t∈[0,T ]

|S(t)|2 < ∞.

Now we state and prove our fourth main theorem.

Theorem 4.3. Let S(·) be the stochastic convolution defined by (28)-(29).

(i) If Assumptions 2.1, 2.7 and 2.9 are verified, then the random variable (S,S(T ))

has full support in Lp(0, T ;H) × H for any p > 0.
(ii) If, in addition to all hypotheses of item (i), we suppose that condition (6) of As-

sumption 2.5(iii) is satisfied, then the stochastic convolution S has full support in
L4(0, T ;H ).

As a direct consequence of Theorem 4.3(i), we have the following corollary.

Corollary 4.4. (i) If the assumptions of Theorem 4.3(i) are satisfied, then the stochastic
convolution S is irreducible on H, i.e., for any open set O ⊂ H and t > 0 we have
P (S(t) ∈ O) > 0. In particular, the current result and those in Theorem 4.3(i) hold
for the stochastic convolution S whenever each �k , k ∈ N, has an intensity measure
ν as in Remark 2.8(a) but with θ ∈ (0, 2).

(ii) The result of Theorem 4.3(ii) holds whenever the intensity measure ν of each �k ,
k ∈ N is as in Remark 2.8(a).

Remark 4.5. One should note that, since the support of our symmetric Lévy measures
contains 0 and the Assumptions 2.1 and (i) are satisfied, the item (ii) of the above
corollary can be also proved by using a simple yet powerful result which is established
in [47, Theorem 3.3].

Before we proceed to the proof of Theorem 4.3 let us state the following lemma
whose proof is postponed to the end of the current subsection.

Lemma 4.6. If, in addition to Assumptions 2.1 and 2.9, the estimate (6) in Assumption
2.5(iii) is verified, then the stochastic convolution S belongs to L4(0, T ;H ) almost
surely.

Now, we are ready to give the promised proof of Theorem 4.3.
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Proof of Theorem 4.3. Proof of item (i). We have already seen that if Assumptions 2.1
and 2.9 hold, thenS(·) = ∑∞

k=1Sk(·)ek belongs to D([0, T ];H), hence to Lp(0, T ;H)

for any p > 0.Wewill only prove the result for p > 2 which implies the case p ∈ (0, 2].
For this purpose let N > 0be an integer, (φk)

N
k=1 (resp. (ak)

N
k=1) be a family of continuous

functions (resp. real numbers). We set

φ(·) =
N∑

k=1

φk(·)ek and a =
N∑

k=1

akek .

For any ε > 0 we also put

Cε =
{
ω;
∫ T

0

( N∑

k=1

|φk(t) − Sk(t, ω)|2
) p

2

dt < ε,

N∑

k=1

|ak − Sk(T, ω)|2 < ε

}
,

D̃ε =
{
ω;

N∑

k=1

∫ T

0
|φk(t) − Sk(t, ω)|pdt <

ε

N
p
2 −1

,

N∑

k=1

|ak − Sk(T, ω)|2 < ε

}
,

Dε,k =
{
ω;
∫ T

0
|φk(t) − Sk(t, ω)|pdt <

ε

N
p
2
, |ak − Sk(T, ω)|2 <

ε

N

}
.

Thanks to the inequality

(
N∑

k=1

b2k

) p
2

≤ N
p
2 −1

N∑

k=1

bp
k , bk > 0 ∀k ∈ N,

we obtain

P(Cε) ≥ P(D̃ε) ≥ P(∩N
k=1Dε,k).

Since (�k)
N
k=1 is a family of i.i.d Lévy processes, the members of the sequence (Sk)

N
k=1

(resp. (S(T ))N
k=1) are also mutually independent. Therefore,

P(Cε) ≥
N∏

k=1

P(Dε,k),

from which along with Theorem 4.1 we infer that P(Cε) > 0. Now, by using a standard
density argument we obtain

P

(
‖φ − S‖p

Lp(0,T ;H)
< ε, |a − S(T )|2 < ε

)
> 0,

for any φ ∈ Lp(0, T ;H), a ∈ H and ε > 0. From the last estimate we easily conclude
the proof of part (i).
Proof of item (ii). Since, in addition to Assumptions 2.1 and 2.9, the estimate (6) in
Assumption 2.5(iii) is verified, we infer from Lemma 4.6 that the stochastic convolution
S belongs to L4(0, T ;H ) almost surely. Moreover, from Remark 2.3 we can rewrite
S in the following way

S(·) =
∞∑

k=1

γ −1
k Sk(·)ϕk =

∞∑

k=1

S̃k(·)ϕk,
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where each real-valued process S̃k is a stochastic convolution solving

dS̃k(t) + κλkS̃k = γ −1
k βk

∫

R0

zdη̄k(dz, dt).

Now we can argue as above to show that for any ε > 0, � ∈ L4(0, T ;H ) we have

P
(‖S − �‖L4(0,T ;H ) < ε

)
> 0,

from which we conclude the proof of (ii) and Theorem 4.3. ��
The proof of Lemma 4.6 is given below.

Proof of Lemma 4.6. A weak solution to (7) is a stochastic process Z ∈ L2(0, T ;V)

almost surely such that for all t and almost surely

(Z(t),�) + κ

∫ t

0
〈AZ(s),�〉ds = 〈L(t),�〉,

for any � ∈ V. If Assumptions 2.1 and the estimate (6) in Assumption 2.5(iii) are
verified, then, by using the Galerkin approximation, one can prove as in Proposition 3.3,
see also [9], that (7) has a unique weak solution Z satisfying

E sup
t∈[0,T ]

|Z(t)|2 + κE

∫ T

0
|A1

2 Z(t)|2dt ≤ C,

for some positive constant C > 0. From the above estimate and the inequality (5) in
Remark 2.3 we infer that

E

(∫ T

0
‖Z(t)‖4H dt

) 1
2 ≤

(
E sup

t∈[0,T ]
|Z(t)|2

) 1
2 (

E

∫ T

0
|A1

2 Z(t)|2dt

) 1
2 ≤ C. (30)

Thanks to [45, Theorem 9.15], any weak solution to (7) is also a mild solution (7).
Hence Z is also a mild solution of (7), and by uniqueness of the mild solution we have
Z = S almost surely. FromAssumption (2.9) and (30) we infer thatS ∈ D([0, T ];H)∩
L4(0, T ;H ) and

E

(∫ T

0
‖S(t)‖4H dt

) 1
2 ≤ C,

from which we conclude the proof of the lemma. ��

4.2. Irreducibility of the problem (1): Proof of Theorem 3.5. In this subsection we will
prove that the stochastic model (1) is irreducible provided that Assumptions 2.1 to 2.9
are satisfied. For this purpose, let us fix x ∈ H and Z ∈ L4(0, T ;H ), and consider the
problem

dv(t)

dt
+ κAv(t) + B(v(t) + Z(t), v(t) + Z(t)) = 0, v(0) = x ∈ H. (31)

We have the following existence and uniqueness result.
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Lemma 4.7. For any x ∈ H and Z ∈ L4(0, T ;H ), there exists a unique solution
v(·, x) ∈ C([0, T ];H) ∩ L2(0, T ;V) to (31). Moreover, there exists a constant C > 0,
independent of x and Z, such that

sup
s∈[0,T ]

|v(s, x)|2 +κ

∫ T

0
|A1

2 v(s, x)|2ds ≤ C

(
|x |2 +

∫ T

0
‖Z(s)‖4H ds

)
eC

∫ T
0 ‖Z(s)‖4H .

(32)

Proof. The proof of existence and uniqueness follows the same lines as in [24,Appendix]
or [8, Proof of Theorem 4.5]. The estimate (32) can be proved using the same idea as in
[8, Proof of (5.5)] or as in [24, Proof of (21)]. ��
Remark 4.8. Note that if Z is the stochastic convolutionS defined by (28)-(29) then the
process v +S is the unique solution to (1).

In the next lemmawe establish the continuous dependence of v on Z ∈ L4(0, T ;H ).

Lemma 4.9. Let {Zn; n ∈ N} ⊂ L4(0, T ;H ) and {vn; n ∈ N} ⊂ C([0, T ];H) ∩
L2(0, T ;V) be two sequences such that for each n ∈ N the function vn(·, x) is the
unique solution to (31) with Z replaced by Zn. If the sequence {Zn; n ∈ N} converges
in L4(0, T ;H ) to an element Z ∈ L4(0, T ;H ), then the sequence {vn(·, x); n ∈ N}
converges in C([0, T ];H) ∩ L2(0, T ;V) to the unique solution v(·, x) of (31).

Proof. We omit the proof because it follows the same lines as the proof of [8, Theo-
rem 4.6]. ��

For c ∈ L4(0, T ;H ) and x ∈ H, let yc(·, x) be the mild solution of (31) with Z
replaced by c. As in [24], we also set

uc(t, x) = yc(t, x) + c(t), for t ≥ 0. (33)

We also need the following lemma whose proof is given after the proof of Theorem 3.5.

Lemma 4.10. For any x, x f ∈ H there exists c ∈ L4(0, T ;H ) ∩ C([0, T ];H) such
that uc(T, x) = x f .

After these preparatory lemmata we are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. Let u(·, x) be the solution of (1) and v(·, x) be that of (31) with Z
replaced by the stochastic convolutionS. Since, by Remark 2.3, the embeddingH ⊂ H
is dense, one can find ā ∈ H such that |ā − a| < ε

3 . Next, from Lemma 4.10 we infer
the existence of a control c ∈ L4(0, T ;H ) ∩ C([0, T ];H) such that and uc(T, x) = ā
where uc(·, x) is defined by (33). Thus, using the decomposition u(·, x) = v(·, x) +S
and the definition of uc(·, x) we infer that

|u(T, x) − a| ≤ |v(T, x) − yc(T, x)| + |S(T ) − c(T )| + ε

3
.

Owing toLemma4.9, for any ε > 0 one canfind δ > 0 such that if‖S−c‖L4(0,T ;H ) < δ,
then ‖v − yc‖C(0,T ;H) < ε

3 . Hence, for δ1 < min{ ε
3 , δ} we have

P (|u(T, x) − a| < ε) ≥ P(‖v − yc‖C(0,T ;H) + |S(T ) − c(T )| <
2ε

3
)

≥ P

(
‖S − c‖L4(0,T ;H ) < δ, |S(T ) − c(T )| <

ε

3

)

≥ P
(‖S − c‖L4(0,T ;H ) + |S(T ) − c(T )| < δ1

)
.
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Since c ∈ C([0, T ];H) ∩ L4(0, T ;H ), we have Sc(T ) ∈ H which altogether with
Theorem 4.3 implies

P (|u(T, x) − a| < ε) > P
(‖S − c‖L4(0,T ;H ) + |S(T ) − c(T )| < δ1

)
> 0,

from which we easily conclude the proof of Theorem 3.5. ��
The promised proof of Lemma 4.10 is given below.

Proof of Lemma 4.10. Wewill closely follow [24, Proof of Lemma 5.3-(c)]. Let x, x f ∈
H and T > 0. We take arbitrary t0, t1 ∈ (0, T ) such that t0 < t1. We define a function
X by

X (t) = e−κtAx, t ∈ [0, t0],
X (t) = e−κ(T −t)Ax f , t ∈ [t1, T ],
X (t) = X (t0) +

t − t0
t1 − t0

(X (t1) − X (t0)), t ∈ (t0, t1).

It is clear that X ∈ C([0, T ];H ) which along with Assumption 2.2(b) implies that
−B(X, X) ∈ L2(0, T ;V∗). With this in mind, by using standard Galerkin and compact-
ness methods, we easily prove that the linear problem

dY (t)

dt
+ κAY (t) = −B(X (t), X (t)), Y (0) = x . (34)

has a unique solution Y ∈ C([0, T ];H) ∩ L2(0, T ;V). The inequality (5) implies that
Y ∈ L4(0, T ;H ). Now, the function c := X − Y ∈ L4(0, T ;H ) ∩ C([0, T ];H)

satisfies all the requirements of the lemma. ��

5. Proof of Theorem 3.7: Exponential Mixing by Coupling Method

In this section we will prove the exponential ergodicity stated in Theorem 3.7. For this
purpose we will use the coupling method and closely follow [38]. The section is divided
into two steps. The first one consist of the proof of a crucial preparatory proposition and
the second the actual proof of Theorem 3.7.

Before proceeding further, we shall introduce few notations and concepts that we
need in this section. For each n ∈ N let Hn := Linspan{e1, . . . , en} and �n : V∗ → Hn
be the orthogonal projection defined by

�nv :=
n∑

k=1

〈v, ek〉ek, for any v ∈ V∗.

Throughout this paper, we will identify Hn with R
n .

We will need the following system of SDEs which is nothing but the Galerkin ap-
proximation of (1):

dun(t) + [κAun(t) + �nB(un(t), un(t))]dt =
n∑

k=1

βkd�k(t)ek, un(0) = �n x, (35)
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where the sequence {�k; k ∈ N} is defined by (2). Next, let ρ(·) : [0,∞) → [0, 1] be
a C∞ function satisfying

ρ(r) =
⎧
⎨

⎩

1 if r ∈ [0, 1],
0 if r ∈ [2,∞),

∈ [0, 1] if r ∈ [1, 2],
and |ρ′(r)|≤ 2. For any real number R > 0 and u ∈ H, we set

BR(u, u) := ρ

( |u|2
R

)
B(u, u).

Let us also consider the following modified problem

duR(t) + [κAuR(t) + BR(uR(t), uR(t))]dt =
∞∑

k=1

βkd�k(t)ek,

uR(0) = x ∈ H.

(36)

Finally, let uR
n be the solution of the following

duR
n + [κAuR

n + BR
n (uR

n , uR
n )]dt =

n∑

k=1

∫

R0

zdη̄k(dz, dt)βkek,

uR
n (0) = �n x ∈ Hn .

(37)

The system (35) (resp. (36) and (37)) is a stochastic evolution equation with locally
(resp. globally) Lipschitz coefficients. In particular, (37) and (35) have respectively
unique solutions uR

n and un which are càdlàg Markov processes taking values in Hn ,
see, for instance, [1]. We have also seen in [7, Proposition 4.3] that (36) has a unique
solution which is a càdlàg Markov process taking values in H. We denote by Pt,n , P R

t
and P R

t,n , t ≥ 0, the Markov semigroups associated with un , uR and uR
n , respectively.

Since the coefficients of (37) belong to C2(Hn;Hn) the map xn � Hn �→ uR
n is C1

differentiable and the derivative U R
n (s, x) := ∇xu

R
n (s, x) in the direction of x ∈ R

n at
point xn ∈ Hn is the solution of the linearized equation

dU R
n (t, x) + [κAU R

n (t, x) + ∇BR
n (uR

n (t, x), uR
n (t, x))[U R

n (t, x)]]dt = 0,

U R
n (0) = x .

(38)

Throughout this section BH(ξ, δ) denotes the ball centered at ξ ∈ H with radius δ.

5.1. Preparatory result. In this subsection we will state and prove the following propo-
sition which is one of the crucial results needed for the construction of the coupling and
the proof of the exponential mixing.

Proposition 5.1. If all, but Assumptions 2.7, hypotheses of Theorem 3.7 are satisfied,
then Pt , t ≥ 0, has the strong Feller property. Furthermore, there exists a constant
δ > 0 such that

|P1�(x) − P1�(y)| ≤ 1

2
, (39)

for any x, y ∈ BH(0, δ), and � ∈ Bb(H) with ‖�‖∞ ≤ 1.
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The proof of this proposition is based on the truncation of the nonlinearity of (1)
and the Galerkin approximation of the truncated problem (36). The advantage of this
approach is that since the Galerkin approximation (37) is a system of SDEswith globally
Lipschitz coefficients, we can apply a BEL formula for pure jump noise driven SDEs
recently proved in [7, Lemma A.3] to estimate the gradient of the Markovian semigroup
P R

t,n and show that P R
t,n has the strong Feller property. By carefully passing to the limit

we also prove that the Markovian semigroup P R
t associated with (36) has the strong

Feller property too. Since we have good moment estimates of the solution to the original
equation (1), we show by using stopping time argument that (1) has also the strong Feller
property from which we easily conclude the proof of the Proposition 5.1.

To rigorously implement this approach we need two sets of results one of which is
stated in the following lemma.

Lemma 5.2. Let all assumptions of Proposition 5.1 be satisfied. Then, system (38) has a
unique solution U R

n such that U R
n ∈ C(0, t;H) ∩L2(0, t;V) for any t > 0 and x ∈ Hn.

Moreover, there exists a constant C > 0 such that

sup
x∈Hn ,
|x |≤1

[
E|U R

n (s, x)|2 + κE

∫ t

0
|A1

2 U R
n (s, x)|2ds

]
≤ e

4C R2
κ

t , t > 0. (40)

Proof. The proof is very similar to the proof of [7, Lemma 4.3] and we omit it. ��
The results in Lemma 5.2 will be used below to estimate the Markov semigroups

{P R
t,n; t ≥ 0} and {P R

t ; t ≥ 0}. The proof of the following results will be given after
the proof of Proposition 5.1.

Lemma 5.3. Let all the assumptions of Theorem 3.7 be satisfied. Let

C p(t) = t−2p + t−
4p
α , t > 0.

Then, there exists a constant K > 0 such that

|P R
t,n�(x) − P R

t,n�(y)| < K e
4C R2

κ
t (C

1
2
2 (t)(1 + t)

1
2 + C

1
2
1 (t))‖�‖∞|x − y|, (41)

for any n ∈ N, R > 0, t > 0, x, y ∈ Hn and � ∈ Bb(Hn). Moreover,

|P R
t �(x) − P R

t �(y)| < K e
4C R2

κ
t (C

1
2
2 (t)(1 + t)

1
2 + C

1
2
1 (t))‖�‖∞|x − y|, (42)

After these few preparatory lemmata we are now ready to give the promised proof
of the main result of this subsection.

Proof of Proposition 5.1. Let ε > 0 be an arbitrary positive number, x, y ∈ H and
� ∈ Bb(H). We set

C(t, R) := K e
4C R2

κ
t (C

1
2
2 (t)(1 + t)

1
2 + C

1
2
1 (t)), C(t, x) := c0ec1t (|x |2 + 1).

Let u(x) := u(·, x) and u(y) := u(·, y) be solutions of (1) with the initial conditions
x ∈ H and y ∈ H, respectively. For any x ∈ H, let {ϑR(x); R ∈ N} be the sequence of
stopping times defined by

ϑR(x) := inf{t ≥ 0; |u(t, x)| ≥ R}.
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We have

|Pt�(x) − Pt�(y)|
≤ |Pt�(x) − P R

t �(x)| + |P R
t �(x) − P R

t �(y)| + |P R
t �(y) − Pt�(y)|

≤ 2‖�‖∞P(ϑR(x) < t) + 2‖�‖∞P(ϑR(y) < t) + |P R
t �(x) − P R

t �(y)|.
From the inequality (22) of Proposition 3.3 we infer that for any x ∈ H and t > 0

P(ϑR(x) < t) ≤ 1

R2 C(t, x), (43)

from which altogether with (42) we infer that for any � ∈ Bb(H), x, y ∈ H

|Pt�(x) − Pt�(y)| ≤ ‖�‖∞
[
4C(t, x)

R2 + C(R, t)|x − y|
]
. (44)

Choosing R ≥ (8C(t, x)/ε)1/2 and δ ≤ ε/2C(R, t), we infer that for any ε > 0 and
x ∈ H

|Pt�(x) − Pt�(y)| ≤ ε,

for any y ∈ BH(x, δ) and � ∈ Bb(H) with ‖�‖∞ ≤ 1. This completes the strong Feller
property.

We easily conclude the proof of (39) by choosing R > 0 sufficiently large and δ

sufficiently small in (44). ��
Now, we give the proof of the Lemma 5.3.

Proof of Lemma 5.3. The idea is to use the estimate for the gradient of the Markovian
semigroupP R

t,n . We are allowed to use this gradient estimate because of Assumption 2.5
and Remark 2.6 the assumptions of the Bismut–Elworthy–Li lemma and the gradient
estimate in [7, Lemma A.3 and Lemma B.1] are met. Let � ∈ C2

b (Hn) and ∇xP R
t,n�(x)

be the derivative in the direction of x ∈ Hn at a point x ∈ Hn of P R
t,n�(·). Notice that

when identifying Hn with R
n the linear operator Aδ , δ ∈ [0,∞), can be identified with

the diagonal matrix [Aδ
jk; j, k = 1, . . . , n] defined by

Aδ
jk =

{
λδ

j if j = k
0 otherwise.

Thanks to [7, Lemma A.3 and Lemma B.1] we have

sup
n∈N,x∈Hn|x |≤1

|∇xP R
t,n�(x)| ≤ C0(t)

⎛

⎝
∞∑

j=1

β−2
j λ−1

j

⎞

⎠

1
2

‖�‖∞
[
E

∫ t

0
|A1

2 U R
n (s)|2ds

] 1
2

,

where we have used the shorthand notation U R
n (·) := U R

n (·, x) and

C̃0(t) = C
1
2
2 (t)(1 + t)

1
2 + C

1
2
1 (t).
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Owing to (40) we obtain the following estimate

sup
n∈N, x∈Hn|x |≤1

|∇xP R
t,n�(x)| ≤ C̃0(t)

⎛

⎝
∞∑

j=1

β−2
j λ−1

j

⎞

⎠

1
2

‖�‖∞e
4C R2

κ
t .

Now we derive that for any real number R > 0, t > 0 there exists a constant K such
that

sup
n∈N, x∈Hn|x |≤1

|∇xP R
t,n�(x)| ≤ K e

4C R2
κ

t (C
1
2
2 (t)(1 + t)

1
2 + C

1
2
1 (t))‖�‖∞,

for any � ∈ C2
b (Hn). Now we easily see that the estimate (41) holds for � ∈ C2

b (Hn).
Owing to the equivalence lemma [45, Lemma 2.2] it follows that (41) also holds for
� ∈ Bb(Hn). Now arguing as in [7, Section 4.3] we can let n tend to ∞ and recover
(42). ��

5.2. Construction of coupling and exponential estimates of hitting times. Now we shall
construct a coupling of Markov processes in the extended phase space H = H × H.
For this aim we closely follow [38, Chapter 3] and [48]. Let δ the constant given in
Proposition 5.1.

For any x := (x, y) ∈ Hwe denote by u := (u, ū) a pair of solutions starting at x. Let
unT := (unT , ūnT )n∈N be the underlyingMarkov chain inH. Denote byUx := (Ux , Uy)

be the maximal coupling of (PT )∗δx and (PT )∗δy for any x := (x, y) ∈ H. Now we
can define a transition function P̂T (x, .) on the phase space H = H × H as follows:

P̂T (x,O1 × O2) =
⎧
⎨

⎩

PT (x,O1 ∩ O2) if x = y,

D(Ux , Uy)(O1 × O2) if x, y ∈ BH(0, δ) and x �= y,

PT (x,O1)PT (y,O2) otherwise ,

for anyO = O1 ×O2 ∈ B(H). Here PT (x, ·) is the transition probability of ux (T ), and
D(ϕ) is the distribution of a random variable ϕ. Since our results in this section is valid
for any fixed T , we set T = 1 for the rest of the calculations.

Let δ > 0 be as above and

ρδ = inf{t ≥ 0; |u(t)| ≤ δ},
where |v|2 = |v|2 + |v̄|2 for any v = (v, v̄) ∈ H × H. For any M > 0, let

ρM = inf{t ≥ 0; ‖u(t)‖ ≤ M},
where ‖v‖2 = ‖v‖2 + ‖v̄‖2 for any v = (v, v̄) ∈ V × V. For any p ≥ 1, we also set

mp :=
∫

R0

|z|pν(dz), np :=
∞∑

k=1

β
p
j .

Before proceeding further, we shall recall the following definition which is borrowed
from [38, Section 1.3].
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Definition 5.4. A family of probability measures {Pv : v ∈ H} on (�,F , P, F) associ-
ated with the Markov process {u(t) ∈ H : t ≥ 0} is defined as follows.

(i) The mapping v �−→ Pv(A) is universally measurable [38, see Section A.3] for any
A ∈ F .

(ii) The process {u(t) ∈ H : t ≥ 0} adapted to the filtration F = (Ft )t≥0 and satisfying
the condition below for any v ∈ H, � ∈ B(H) and t, s ≥ 0,
(a) Pv{u(0) = v} = 1,
(b) Pv{u(t + s) ∈ �|Fs} = P̂t (u(s), �),
for Pv-a.s.. Where P̂t (u(s), �) := Pv{u(t) ∈ �} for any v ∈ H.

Ev is the corresponding expectation associated with the probability measure Pv for any
v ∈ H.

The following proposition is very important for our purpose.

Proposition 5.5. For any κ > 0, there exists M > 0 such that if Assumption 2.9 is
satisfied, then there exist two constants γ > 0 and K > 0 such that

ExeγρM ≤ 1 + K |x|2, (45)

for any x ∈ H.

Proof. Toprove this propositionwewill first derive some estimates for theGalerkin solu-
tionun , n ∈ N, defined by (35). Since the argument is very similar to [38, Proof of Lemma
3.3.10] we only sketch our calculation. Applying Itô’s formula to |un(t)|2, then to
eγ1κt |un(t)|2, choosing t = tM := ρM ∧ N , N ≥ 1 and taking the mathematical
expectation in the final equations yield

Ex

[
eγ1κtM |un(tM )|2+2κ

∫ tM

0
eγ1κs‖un(s)‖2ds

]
−γ1κEx

∫ tM

0
eγ1κs |un(s)|2ds − |xn|2

= Ex

n∑

k=1

[∫ tM

0

∫

R0

eγ1κsβk

(
βk |z|2 + 2〈un(s), ek〉z

)
ν(dz)ds

−2
∫ tM

0

∫

|z|<1
eγ1κsβk z〈un(s), ek〉ν(dz)ds

]
. (46)

Observe that for ε > 0 we have
∣∣∣∣
∫

R0

βk(βk |z|2 + 2〈un(s), ek〉z)ν(dz)dt − 2βk

∫

|z|<1
〈un(s), ek〉zν(dz)

∣∣∣∣

≤ β2
km2 + 4βk |un(s)|m1

≤ βkm2 +
16βk

ε
m2

1 + εβk |un(s)|2.

By choosing ε = κ

2λ21n1
in the last line of the above chain of inequalities, plugging the

resulting estimate in (46) and using (3) we obtain

Ex[eγ1κtM |un(tM )|2] + Ex

∫ tM

0
eγ1κs

(
κ

2
‖un(s)‖2 − m2n2 − 32

κ
n21m

2
1λ

2
1

)
ds ≤ |xn|2.
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Now, letting n → ∞ and using Fatou’s lemma we have

Ex[eγ1κtM |u(tM )|2] + Ex

∫ tM

0
eγ1κs

(
κ

2
‖u(s)‖2 − m2n2 − 32

κ
n21m

2
1λ

2
1

)
ds ≤ |x|2,

which altogether with the choice of M such that M2 > 4
κ

(
m2n2 + 32

κ
n21m

2
1λ

2
1

)
and the

fact that ‖u(s)‖2 ≥ M2 on {s ≤ ρM } implies the following estimate

λ21

κ
Ex[eλ−2

1 κtM − 1] ≤ 4

κ M2 |x|2.

Now, letting N → ∞ and using Fatou’s lemma we have

Exeλ−2
1 κρM ≤ 4

λ−2
1 M2

|x|2 + 1,

from which and the choices γ = λ−2
1 κ and K = 4

λ−2
1 M2 we complete the proof of the

proposition. ��
The following lemma is useful for proving the forthcoming proposition.

Lemma 5.6. For any compact set A ⊂ H × H and any δ > 0 there exists a number
p ∈ (0, 1) such that

inf
x∈A

Px{u1 = (u1, ū1) ∈ BH(0, δ) × BH(0, δ)} > p.

Proof. Thanks to the Propositions 3.5, 5.1 one can use the same argument as in [48,
Proof of Lemma 6.7] to prove the lemma. ��
Proposition 5.7. Suppose that all the assumptions of Proposition 5.5 are verified. Then,
for any κ > 0 there exist γ̂ > 0 and K̂ > 0 such that

Exeγ̂ ρδ ≤ 1 + K̂ |x|2. (47)

Proof. Firstly, let us introduce an increasing sequence of stopping times as follows:

ρ̃M (0) = ρM , ρ̃M ( j + 1) = inf{t ≥ ρ̃M ( j) + 1; ‖u(t)‖ ≤ M} with j ≥ 0.

We also set ρM ( j) = ρ̃M ( j) + 1 and define the integer valued stopping time nδ by

nδ = min{n ≥ 1; |u(ρM (n))| ≤ δ}.
Secondly, we compute the probability of the event {nδ > k}, k ≥ 1 as follows:

Px(nδ > k) = Px

( k⋂

i=1

{|u(ρM (i))| > δ}
)

≤ �k
i=1

(
1 − Px

(|u(ρM (i))| ≤ δ
))

. (48)
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Thirdly, we derive a lower bound for Px
(|u(ρM (i))| ≤ δ

)
:

Px
(|u(ρM (i))| ≤ δ

) = Px

(
|u(ρ̃M (i) + 1)| ≤ δ|Fρ̃M (i)

)

= Px

(
u(ρ̃M (i) + 1) ∈ BH(0, δ) × BH(0, δ)|u(ρ̃M (i)) ∈ BV(0, M) × BV(0, M)

)
≥ p.

(49)

The above estimate holds due to the compactness of the ball BV(0, M) of V inH, Lemma
5.6 and the strong Markov property of {ρ̃M (i); i ∈ N}. Combining (48) and (49) we
obtain

Px(nδ > k) ≤ (1 − p)k for any x ∈ H, k ≥ 1. (50)

Now, we claim that

ExeγρM (n) ≤ eγ T Cn
1 (1 + K |x|2), (51)

where C1 depends only on M . To this end, we set ρ̂M = inf{t ≥ 1; ‖u(t)‖ ≤ M}
and estimate its exponential moment by using the strong Markov property of ρ̂M and
Proposition 5.5. More precisely,

Exeγ ρ̂M = ExE
(
eγ ρ̂M |F1

) = eγ
ExEu(T )e

γ ρ̂M ≤ eγ
Ex(1 + K |x|2) ≤ C1 < ∞. (52)

By means of the argument in [38, Proof of Proposition 3.3.6, Step 2] and the fact that
{ρ̃M (i); i ∈ N} satisfies the strong Markov property together with (52), we obtain

Exeγ ρ̃M (n) = Exeγ
(
ρ̃M (n−1)+ρ̂M

)
= ExE

(
eγ
(
ρ̃M (n−1)+ρ̂M

)
|Fρ̃M (n−1)

)
≤ Cn

1Exeγ ρ̂M .

(53)

The above result (53) and the equality ρ̂M = ρM + 1, immediately imply the estimate
(51). Finally, we estimate Px

(
ρδ > l

)
as follows: By following the argument in [38,

Proof of Proposition 3.3.6, Step 3] and using the estimates (50), (51) together with
Chebyshev’s inequality,

Px
(
ρδ > ρM (n)

) ≤ Px(nδ > n) ≤ (1 − p)n,

and

Px
(
ρM (n) ≥ l

) ≤ e−γ l
ExeγρM (n) ≤ Cn

1 e−γ (l−1)(1 + K |x|2).

For n sufficiently large, we can bound (1 − p)n by e−γ̂ (l−1)(1 + K |x|2) with γ̂ < γ .
Then we have

Px
(
ρδ > l

) ≤ C2e−γ̂ (l−1)(1 + K |x|2). (54)

By applying exponential type estimates in [41, Section 7.1] together with the result (54)
we easily conclude the proof of the proposition. ��
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5.3. Proof of Theorem 3.7. After these few preparatory results, we are now ready to
prove Theorem 3.7. For this aim, it is enough to prove that for any x = (x, y) ∈ H×H,

‖Pl(x, .) − Pl(y, .)‖TV ≤ C̃e−cl(1 + K |x|2) for any l ∈ N. (55)

The constant C̃, c are independent of x, y ∈ H and l ∈ N. Introduce the stopping time

ϑ = min{l > 0; such that ul = ūl with l ∈ N}.
Now, as an intermediate step of the proof we will establish the estimate

Px(ϑ > l) ≤ C̃e−cl(1 + K |x|2). (56)

Thanks to the Proposition 5.1, there exists a constant δ > 0 such that

|P1�(x) − P1�(y)| ≤ 1

2
,

for any x, y ∈ BH(0, δ), � ∈ Bb(H) with ‖�‖∞ ≤ 1. This leads to

‖P∗
1 δx − P∗

1 δy‖TV ≤ 1

2
,

for any x, y ∈ BH(0, δ). Since (u1, ū1) is a maximal coupling for the pair (P1(x, .),P1
(y, .)), we get

Px{u1 �= ū1} ≤ 1

2
, (57)

for any x, y ∈ BH(0, δ). Now we define a sequence of stopping times {ρδ( j); j ∈ N}
associated with stopping time ρδ as follows

ρδ(0) = ρδ, ρδ( j + 1) = inf{t ≥ ρδ( j) + 1; |u(t)| ≤ δ} with j ≥ 0.

By using similar steps as in the proof of (51), we can obtain

Exeγρδ(n) ≤ eγ Cn
3 (1 + K |x|2),

where γ > 0 and C3 > 0 are independent of x, y ∈ H. Apply Chebyshev’s inequality
to get

Px{ρδ(n) > l} ≤ e−γ (l−1)Cn
3 (1 + K |x|2), (58)

for n, l ∈ N. Now, define the event

ϑn = {uρδ(m)+1 �= ūρδ(m)+1; 1 ≤ m ≤ n}.
By means of (57) and the strong Markov property,

Px{uρδ(n)+1 �= ūρδ(n)+1|Fρδ(n)} ≤ Puρδ(n)
{u1 �= ū1} ≤ 1

2
.

Then,

Px
(
ϑn
) = Px

(
ϑ(n−1) ∩ {uρδ(n)+1 �= ūρδ(n)+1}

)

= Ex

(
1ϑ(n−1)Px{uρδ(n)+1 �= ūρδ(n)+1|Fρδ(n)}

)

≤ 1

2
Px(ϑn−1) ≤ 1

4
Px(ϑn−2) ≤ · · · ≤ 2−n, for any n ∈ N.

(59)
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Combining (58) and (59),

Px
(
ϑ > l

) = Px
(
ϑ > l, ρδ(n) < l

)
+ Px

(
ϑ > l, ρδ(n) > l

)

≤ Px
(
ϑn
)
+ Px

(
ρδ(n) > l

)

≤ 2−n + e−γ (l−1)Cn
3 (1 + K |x|2), for any n, l ∈ N.

For large n we can bound 2−n by e−γ̂ (l−1)(1 + K |x|2) with γ̂ < γ which leads to (56).
Finally, we have

|Pl(x, �) − Pl(y, �)| ≤ Ex

(
1{ϑ>l}|1�(ul) − 1�(ūl)|

)

≤ Px{ϑ > l} ≤ C̃e−cl(1 + K |x|2).
By taking the supremum over all � ∈ B(H), we obtain (55) from which we readily
complete the proof of Theorem 3.7.

Remark 5.8. The noise we consider in this paper is non-degenerate, i.e., βk > 0 for all
k ∈ N and it was pointed out by one of the anonymous referees that it might also be
possible to establish Theorem 3.7 by using the Harris approach (see, for instance, [48])
which would considerably simplify and shorten the proof.
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