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Abstract: A state on a tripartite quantum system A ⊗ B ⊗ C forms a Markov chain if
it can be reconstructed from its marginal on A ⊗ B by a quantum operation from B to
B ⊗ C . We show that the quantum conditional mutual information I (A : C |B) of an
arbitrary state is an upper bound on its distance to the closest reconstructed state. It thus
quantifies how well the Markov chain property is approximated.

1. Introduction

The conditional mutual information I (A : C |B)ρ = H(ρAB) + H(ρBC ) − H(ρB) −
H(ρABC ) of a state ρABC on a tripartite system A ⊗ B ⊗ C is meant to quantify the
correlations between A and C from the point of view of B. Here H(ρ) = −tr(ρ log2 ρ)

is the von Neumann entropy. Apart from its central role in traditional information the-
ory, the conditional mutual information has recently found applications in new areas
of computer science and physics. Examples include communication and information
complexity (see [10] and references therein), de Finetti type theorems [8,9] and also
the study of quantum many-body systems [36]. The importance of the conditional
mutual information for such applications is due to its various useful properties. In
particular, it has an additivity property called the chain rule: I (A1 . . . An : C |B) =
I (A1 : C |B) + I (A2 : C |BA1) + · · · + I (An : C |BA1 . . . An−1).

When the B system is classical, the conditional mutual information I (A : C |B) has
a simple interpretation: it is the average over the values b taken by B of the (uncondi-
tional) mutual information evaluated for the conditional state on the system A⊗C . This
is crucial for applications because the (unconditional) mutual information can be related
to operational quantities, such as the distance to product states using Pinsker’s inequal-
ity for instance. However, when B is quantum, the conditional mutual information is
significantly more complicated and much less is known about it. In fact, even the fact
that I (A : C |B) ≥ 0, also known as strong subadditivity of the von Neumann entropy,
is a highly non-trivial theorem [39]. The structure of states that satisfy I (A : C |B)ρ = 0

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-015-2466-x&domain=pdf


576 O. Fawzi, R. Renner

was also studied [28,43]. It has been found that a zero conditional mutual information
characterises states ρABC whose C system can be reconstructed just by acting on B, i.e.,
there exists a quantum operation TB→BC from the B to the B ⊗ C system such that

ρABC = TB→BC (ρAB). (1)

States ρABC that satisfy this condition are called (quantum) Markov chains. When
B is classical the condition (1) simply means that, for all values b taken by B, the
conditional state on A⊗C is a product state. We say that A and C are independent given
B.

A natural question that is very relevant for applications is to characterise states for
which the conditional mutual information is approximately zero, i.e., for which it is
guaranteed that I (A : C |B) ≤ ε for some ε > 0. In applications involving n systems
A1, . . . , An , such a guarantee is often obtained from an upper bound on the total condi-
tional mutual information I (A1 . . . An : C |B) ≤ c (which can even be the trivial bound
2 log2 dimC). The chain rule mentioned above then implies that, on average over i , we
have I (Ai : C |BA1 . . . Ai−1) ≤ c/n. The authors of [30] gave evidence for the diffi-
culty of characterising such states in the quantum setting by finding states for which
the conditional mutual information is small whereas their distance to any Markov chain
is large (see also [16] for more extreme examples). In unpublished works, Winter and
Li1 and Kim made the important observation that instead of considering the distance
to a (perfect) Markov chain, another possibly more appropriate measure would be the
accuracy with which Eq. 1 is satisfied (see also [56]). In fact, Kim2 conjectured that the
conditional mutual information is lower bounded by the trace distance between the two
sides of Eq. 1 for a specific form for the map TB→BC , known sometimes as the Petz
map (cf. Eq. 15 below). Later, in the context of studying Rényi generalisations of the
conditional mutual information, the authors of [4] refined this conjecture by replacing
the trace distance with the negative logarithm of the fidelity (see also [48]). Here, we
prove a variant of this last conjecture where the map TB→BC does not necessarily have
the form of a Petz map.

Main result. We prove that for any state ρABC on A ⊗ B ⊗ C there exists a quantum
operation TB→BC from the B system to the B ⊗ C system such that the fidelity of the
reconstructed state

σABC = TB→BC (ρAB) (2)

is at least3

F(ρABC , σABC ) ≥ 2− 1
2 I (A:C|B)ρ . (3)

We refer to Theorem 5.1 for a more precise statement.

Reformulations and implications.Afirst immediate implication of our inequality is the
strong subadditivity of the von Neumann entropy, I (A : C |B)ρ ≥ 0 [39]. The latter may
be rewritten in terms of the conditional von Neumann entropy, H(A|B)ρ = H(ρAB) −
H(ρB), as

H(A|B)ρ ≥ H(A|BC)ρ (4)

1 This manuscript was recently updated and published online [38].
2 See http://www.physics.usyd.edu.au/quantum/Coogee2013/Presentations/Kim.
3 The fidelity of ρ and σ is defined as F(ρ, σ ) = ‖√ρ

√
σ‖1.

http://www.physics.usyd.edu.au/quantum/Coogee2013/Presentations/Kim
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and is also known as the data processing inequality. Furthermore, (3) implies that if (4)
holds with equality for some state ρABC then it satisfies the Markov chain condition (1),
reproducing the result from [28,43]. The work presented here may thus be viewed as a
robust extension of this result—if (4) holds with approximate equality then the Markov
chain condition is fulfilled approximately.

Our result may also be rewritten as

inf
σABC

D 1
2
(ρABC , σABC ) ≤ I (A : C |B)ρ, (5)

where the infimum ranges over all recovered states, i.e., states of the form (2), and where
D1/2(ρ‖σ) = −2 log2 F(ρ, σ ) is the Rényi divergence of order α = 1/2 [40,55]. We
remark that the quantity on the left hand side is equal to the surprisal of the fidelity of
recovery, which has been introduced and studied in detail in [48].

Finally, we note that (3) also implies an upper bound on the trace distance, which we
denote by �(·, ·), between ρABC and the recovered state σABC ,

1

ln 2
�(ρABC , σABC )2 ≤ I (A : C |B)ρ. (6)

The bound is readily verified using�(·, ·)2 ≤ 1−F(·, ·)2 (cf. LemmaB.1) and 1−2−x ≤
ln(2)x .

Tightness. One may ask whether, conversely to our main result, the conditional mutual
information of a state ρABC also gives a lower bound on its distance to any reconstructed
state σABC of the form (2). To answer this question, we note that, as a consequence of
the data processing inequality, we have

I (A : C |B)ρ = H(A|B)ρ − H(A|BC)ρ ≤ H(A|BC)σ − H(A|BC)ρ. (7)

The entropy difference on the right hand side can be bounded by the Alicki–Fannes
inequality [1] in terms of the trace distance between the two states, yielding4

I (A : C |B)ρ ≤ 8� log2(dim A) − 4� log2(2�) − 2(1 − 2�) log2(1 − 2�)

for � ≤ 1

2
. (8)

This can be seen as a converse to (6). To simplify the comparison, we may use

8� − 4� log2(2�) − 2(1 − 2�) log2(1 − 2�) ≤ 7
√

� for � ≤ 1

11
, (9)

which gives

I (A : C |B)ρ ≤ 7 log2(dim A)
√

�(ρABC , σABC ). (10)

Note that a term proportional to the logarithm of the dimension of A is necessary
in general as the trace distance is always upper bounded by 1, whereas the conditional
mutual information may be as large as 2 log2 dim A.

4 We refer to [4] for a more detailed discussion, including a proof that the same bound holds also when the
conditional mutual information is evaluated for σ instead of ρ.
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The classical case. Inequality (3) is easily obtained in the case where B is classical, i.e.,
when ρABC is a qcq-state,

ρABC =
∑

b

PB(b) |b〉〈b|B ⊗ ρAC,b, (11)

for some probability distribution PB , an orthonormal basis {|b〉}b of B, and a family of
states {ρAC,b}b on A ⊗ C . Let TB→BC be any map such that

TB→BC (|b〉〈b|) = |b〉〈b| ⊗ ρC,b (∀b), (12)

where ρC,b = trA(ρAC,b). Then the reconstructed state σABC = TB→BC (ρAB) is the
qcq-state

σABC =
∑

b

PB(b)ρA,b ⊗ |b〉〈b| ⊗ ρC,b, (13)

where ρA,b = trC (ρAC,b). We remark that σABC is a Markov chain. Furthermore, a
straightforward calculation shows that the relative entropy5 D(ρABC‖σABC ) between
ρABC and σABC is given by

D(ρABC‖σABC ) = I (A : C |B)ρ. (14)

Inequality (3) then follows from Lemma B.2.

Related results. While the conditional mutual information is well understood in the
classical case and has various interesting properties (see, e.g., [47]), these properties do
not necessarily hold for quantum states. For example, identity (14) cannot be generalised
directly to the case where B is non-classical (see [38] for a discussion). Furthermore, it
has been discovered that there exist states ρABC that have a large distance to the closest
Markov chain, while the conditional mutual information is small [16,23,30]. We remark
that this is not in contradiction to (3) as the reconstructed state σABC , defined by (2), is
not necessarily a Markov chain. (Note that this is a major difference to the classical case
sketched above.)

As mentioned above, the special case of (3) where I (A : C |B) = 0 has been studied
in earlier work [28,43]. There, it has also been shown that the relevant reconstruction
map TB→BC is of the form

XB �→ ρ
1
2
BC (ρ

− 1
2

B XBρ
− 1

2
B ⊗ idC )ρ

1
2
BC . (15)

However, it remained unclear whether this particular map also works in the case
where I (A : C |B) is strictly larger than zero, even though several conjectures in this
direction were proposed and studied [4,56]. We refer to [38] for a detailed account of
the evolution of these conjectures. We note that our result provides some information
about the structure of the map for which (3) holds (cf. Theorem 5.1), but leaves open
the question of whether it is of this particular form.

There is a large body of literature underlying the fundamental role that the conditional
mutual information plays in quantum information theory. Notably, it has been shown to
characterise the communication rate for the task of quantum state redistribution in the
asymptotic limit of many independent copies of a resource state [20]. Furthermore, the

5 See Sect. 2 for a definition.
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quantum conditional mutual information is the basis for an important measure of en-
tanglement, known as squashed entanglement [17]. The properties of this entanglement
measure thus hinge on the properties of I (A : C |B). In this context, lower bounds on
I (A : C |B) in terms of the distance between the marginal ρAC from the set of separable
states have been proved in [7] and later improved in [37]. We also note that another
lower bound on the conditional mutual information in terms of a distance between cer-
tain operators derived from ρABC has recently been stated in [57]. This bound is based
on a novel monotonicity bound for the relative entropy [11]. Our work may be used to
obtain strengthened versions of some of these results. We are going to illustrate this for
the case of squashed entanglement.

Applications. For us, one motivation to study how well the conditional mutual informa-
tion characterises approximate Markov chains is in the context of device-independent
quantum key distribution [22]. Another implication, proposed in [38], is a novel lower
bound on the squashed entanglement of any bipartite state. The bound depends only
on the trace distance to the closest k-extendible6 state, and also implies a strong lower
bound in terms of the trace distance to the closest separable state (cf. Appendix D for
details).

It would be interesting to investigate whether inequality (3) can lead to better quan-
tum de Finetti theorems. In fact, the authors of [8,9] recently gave beautiful proofs of
various de Finetti theorems using the conditional mutual information. For the quantum
version, they apply an informationally complete measurement to reduce the problem to
the classical case, but this comes at the cost of a factor that is exponential in the number
of systems. We also believe that inequality (3) will be helpful in proving communication
complexity lower bounds via the quantum information complexity [31,32,35,51].

Structure of the proof. The proof of inequality (3) is based on two main ideas, which
we discuss in separate sections. The first is the use of one-shot entropy measures [44]
to bound the von Neumann relative entropy (Sect. 2). The second is an extension of
the method of de Finetti reductions [14,15,45,46] (Sect. 3). We use the latter to derive
a general tool for evaluating the fidelity of permutation-invariant states (Sect. 4). The
proof of (3) then proceeds in two main steps in which these techniques are applied
successively (Sect. 5).

2. Typicality Bounds on the Relative Entropy

In this section we are going to derive bounds on the relative entropy that will be used
in the proof of Theorem 5.1. The method we use to obtain these bounds is inspired by a
recent approach [2] to prove strong subadditivity of the vonNeumann entropy (seeEq. 4).
The idea there was to first prove strong subadditivity for one-shot entropies [44] and then
use typicality or, more precisely, the Asymptotic Equipartition Property [50] to obtain
the desired statement for the von Neumann entropy. Here we proceed analogously: we
use one-shot versions of the relative entropy (defined in Appendix A) to obtain bounds
on the von Neumann relative entropy.

The (von Neumann) relative entropy D(ρ‖σ) for two non-negative operators ρ and
σ is defined as

D(ρ‖σ) = 1

tr(ρ)
tr
(
ρ(log2 ρ − log2 σ)

)
, (16)

6 A non-negative operator ωAC is called k-extendible if there exists a non-negative operator ω̄AC1...Cn
such that ω̄ACi = ωAC for all i = 1, . . . , k.
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where we set D(ρ‖σ) = ∞ if the support of ρ is not contained in the support of σ .
Our statements also refer to the trace distance. While this distance is often defined for
density operators only, we define it here more generally for any non-negative operators
ρ and σ by

�(ρ, σ ) = 1

2
‖ρ − σ‖1 + 1

2

∣
∣tr(ρ − σ)

∣
∣ (17)

(see Sect. 3.2 of [49]). Note that the second term is zero if ρ and σ are both density
operators. We also remark that the trace distance may be rewritten as

�(ρ, σ ) = max
[
tr(Y +), tr(Y−)

]
, (18)

where Y+ and Y− are the positive and negative parts of ρ − σ , i.e., ρ − σ = Y + − Y−
with Y + ≥ 0, Y− ≥ 0, and tr(Y +Y−) = 0. It follows that we can write � as

�(ρ, σ ) = sup
0≤Q≤id

|tr(Q(ρ − σ))|. (19)

One can easily see from this expression that for any trace non-increasing completely
positive map W we have

�(W(ρ),W(σ )) ≤ �(ρ, σ ). (20)

Our first lemma provides an upper bound on the relative entropy in terms of sequences
of operators that satisfy an operator inequality.

Lemma 2.1. Let ρ be a density operator, let σ be a non-negative operator, and let
{ρ̄n}n∈N be a sequence of non-negative operators such that for some s ∈ R

ρ̄n ≤ 2snσ⊗n (∀n ∈ N) and lim
n→∞ �(ρ̄n, ρ

⊗n) < 1. (21)

Then D(ρ‖σ) ≤ s.

Proof. By assumption, there exist c < 1 and n0 ∈ N such that

�(ρ̄n, ρ
⊗n) ≤ c (22)

holds for all n ≥ n0. Let ε ∈ (c, 1). By Lemma A.5 we have

Dε
H (ρ⊗n‖σ⊗n) ≤ sn − log2(1 − c/ε), (23)

where Dε
H (·‖·) is the generalised relative entropy defined in Appendix A. Setting C =

1 − c/ε > 0 we conclude that

lim
n→∞

1

n
Dε

H (ρ⊗n‖σ⊗n) ≤ lim
n→∞

(
s +

1

n
log2

1

C

) = s. (24)

The claim then follows from the Asymptotic Equipartition Property of Dε
H (·‖·)

(Lemma A.8). ��
The following lemma is in some sense a converse of Lemma 2.1.
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Lemma 2.2. Let ρ be a density operator, let σ be non-negative operator, and let s >

D(ρ‖σ). Then there exists κ > 0 and a sequence of non-negative operators {ρ̄n}n∈N
with tr(ρ̄n) ≤ 1 such that

ρ̄n ≤ 2snσ⊗n (∀n ∈ N) and lim
n→∞ 2nκ�(ρ̄n, ρ

⊗n) = 0. (25)

Proof. The proof uses the smooth relative max-entropy Dε
max(·‖·) defined in Appen-

dix A. The Asymptotic Equipartition Property for this entropy measure (Lemma A.7)
asserts that there exists n0 ∈ N such that for any n ≥ n0

Dεn
max(ρ

⊗n‖σ⊗n) < ns (26)

for εn > 0 chosen such that

D(ρ‖σ) + c

√
log2(2/ε2n)

n
= s, (27)

where c is independent of n. Inserting this into the definition of Dε
max(·‖·) we find that

there exists a non-negative operator ρ̄n with tr(ρ̄n) ≤ 1 such that

ρ̄n ≤ 2snσ⊗n (28)

and
√
1 − F(ρ̄n, ρ⊗n)2 ≤ εn . (29)

Equation (27) may be rewritten as

εn = √
2 2−κ ′n/2 with κ ′ =

(
s − D(ρ‖σ)

c

)2

. (30)

Inserting this in (29) and using Lemma B.1, we conclude that

�(ρ̄n, ρ
⊗n) ≤ √

2 2−κ ′n/2. (31)

This proves (25) for any κ < κ ′/2. (Note that for n < n0 we may simply set ρ̄n = 0
so that the left hand side of (25) holds for all n ∈ N.) ��

The next lemma asserts that the relative entropy, evaluated for n-fold product states,
has the following stability property: if one actswith the same trace non-increasingmapon
the two arguments then the relative entropy cannot substantially increase. This property
is used in the proof of Theorem 5.1 (but see also Remark 2.4).

Lemma 2.3. Let ρ be a density operator, let σ be a non-negative operator on the same
space, and let {Wn}n∈N be a sequence of trace non-increasing completely positive maps
on the n-fold tensor product of this space. If tr(Wn(ρ

⊗n)) decreases less than exponen-
tially in n, i.e.,

lim inf
n→∞ eξn tr

(
Wn(ρ

⊗n)
)

> 0 (32)

for any ξ > 0, then

lim sup
n→∞

1

n
D

(
Wn(ρ

⊗n)‖Wn(σ
⊗n)

) ≤ D(ρ‖σ). (33)
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Proof. Let δ > 0. Lemma 2.2 tells us that there exists κ > 0 and a sequence of non-
negative operators {ρ̄m}m∈N such that

ρ̄m ≤ 2m(D(ρ‖σ)+δ)σ⊗m (34)

and

lim
m→∞ eκm�(ρ̄m, ρ⊗m) = 0. (35)

To abbreviate notation, we define rn = 1/tr(Wn(ρ
⊗n)). Note that, by assumption,

rn grows less than exponentially in n, so that

rn < eκn (36)

holds for n sufficiently large.
Let now k, n ∈ N and set m = kn. Applying Wn and multiplying with the factor rn

on the two sides of (34) yields

rknW⊗k
n (ρ̄nk) ≤ 2kn(D(ρ‖σ)+δ)

(
rnWn(σ

⊗n)
)⊗k

. (37)

As Wn is trace non-increasing,

lim
k→∞ �

(
rknW⊗k

n (ρ̄nk),
(
rnWn(ρ

⊗n)
)⊗k) = lim

k→∞ rkn�
(
W⊗k

n (ρ̄nk),W⊗k
n (ρ⊗nk)

)

≤ lim
k→∞ rkn�(ρ̄nk, ρ

⊗nk)

≤ lim
k→∞ eκnk�(ρ̄nk, ρ

⊗nk) = 0, (38)

where the first inequality follows from the monotonicity property of the trace dis-
tance (20), the second inequality follows from (36), and where the final equality follows
from (35). We can now apply Lemma 2.1 to the density operator rnWn(ρ

⊗n) and the
non-negative operator rnWn(σ

⊗n), which gives

D
(
rnWn(ρ

⊗n)‖rnWn(σ
⊗n)

) ≤ n
(
D(ρ‖σ) + δ

)
. (39)

Noting that multiplying both arguments of the relative entropy with the same factor
leaves it unchanged we conclude

1

n
D

(
Wn(ρ

⊗n)‖Wn(σ
⊗n)

) ≤ D(ρ‖σ) + δ. (40)

Taking the limit n → ∞ and noting that δ > 0 was arbitrary, the claim of the lemma
follows. ��
Remark 2.4. Lemma 2.3 will be used in one of the steps of the proof of Theorem 5.1.
We note that, alternatively, this step may also be based on the inequality (cf. Lemma 25
of [3])

(1 − ε)D
(
W(ρ)‖W(σ )

) ≤ D(ρ‖σ) + ε log2(tr(σ )/ε), (41)

which holds for any density operator ρ, any non-negative operator σ , any trace non-
increasing completely positive map W , and ε = 1 − tr

(
W(ρ)

)
(see also Footnote 10).

However, Lemma 2.3 provides a stronger stability condition for the relative entropy of
product states (notably when ε � 0) and may therefore be useful for generalisations of
our results.
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As a corollary of Lemma 2.3 we also obtain the well knownAsymptotic Equipartition
Property (see, e.g., Chapter 3 of [18]). We state it here explicitly as Lemma 2.5 because
we are going to use it within the proof of Theorem 5.1 and because it illustrates the use
of Lemma 2.3.

Lemma 2.5. Let ρ be a density operator. For any n ∈ N let ρ⊗n = ∑
s∈Sn s �s where

Sn is the set of eigenvalues of ρ⊗n and where �s , for s ∈ Sn, is the projector onto the
corresponding eigenspace. Furthermore, for any δ > 0, let Sδ

n be the subset of Sn defined
by

Sδ
n = {

s ∈ Sn : s ∈ [2−n(H(ρ)+δ), 2−n(H(ρ)−δ)]}. (42)

Then limn→∞
∑

s∈Sδ
n
tr(�sρ

⊗n) = 1 and the convergence is exponentially fast in n,

i.e., there exists ξ > 0 such that
∑

s∈Sδ
n
tr(�sρ

⊗n) ≥ 1 − e−ξn.

Proof. Let n ∈ N and consider the projector �̄+
n = ∑

s∈S+n �s , where S+n = {s ∈ Sn :
s > 2−n(H(ρ)−δ)}. An explicit evaluation of the relative entropy shows that

D(�̄+
nρ

⊗n�̄+
n‖�̄+

n) = tr
(
ρ⊗n�̄+

n log2(ρ
⊗n�̄+

n)
)

tr(ρ⊗n�̄+
n)

≥ tr
(
ρ⊗n�̄+

n log2(2
−n(H(ρ)−δ)�̄+

n)
)

tr(ρ⊗n�̄+
n)

= −n
(
H(ρ) − δ

)
. (43)

Using

−H(ρ) = D(ρ‖id) (44)

and defining the map W+
n : X �→ �̄+

n X�̄+
n we can rewrite this bound as

1

n
D(W+

n (ρ⊗n)‖W+
n (id⊗n)) ≥ D(ρ‖id) + δ. (45)

If we now assume, by contradiction, that tr(ρ⊗n�̄+
n) = tr(W+

n (ρ⊗n)) decreases less
than exponentially fast in n, Lemma 2.3 tells us that

lim sup
n→∞

1

n
D(W+

n (ρ⊗n)‖W+
n (id⊗n)) ≤ D(ρ‖id). (46)

This is obviously in contradiction to (45) and thus proves that tr(ρ⊗n�̄+
n) decreases

exponentially fast in n.
Similarly, we may consider the projector �̄−

n = ∑
s∈S−

n
�s where S−

n = {s ∈ Sn :
s < 2−n(H(ρ)+δ)}. Here, instead of (44), we use that for any purification ρDR of ρD = ρ

H(ρ) = −H(D|R)ρ = D(ρDR‖idD ⊗ ρR). (47)
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We may choose the purification such that (�̄−
n ⊗ idRn )ρ⊗n

DR(�̄−
n ⊗ idRn ) = (�̄−

n ⊗
�̄−

n )ρ⊗n
DR(�̄−

n ⊗ �̄−
n ). Then

D
(
(�̄−

n ⊗ idRn )ρ⊗n
DR(�̄−

n ⊗ idRn )
∥
∥�̄−

n ⊗ ρ⊗n
R

)

= log2 tr(ρ
⊗n
D �̄−

n ) − tr
(
ρ⊗n
R �̄−

n log2(ρ
⊗n
R �̄−

n )
)

tr(ρ⊗n
D �̄−

n )

≥ log2 tr(ρ
⊗n
D �̄−

n ) − tr
(
ρ⊗n
R �̄−

n log2(2
−n(H(ρ)+δ)�̄−

n )
)

tr(ρ⊗n
D �̄−

n )

= log2 tr(ρ
⊗n
D �̄−

n ) + n
(
H(ρ) + δ

)
. (48)

DefiningW−
n : XDR �→ (�̄−

n ⊗ idR)XDR(�̄−
n ⊗ idR) and inserting (47) we obtain

the bound

1

n
D

(
W−

n (ρ⊗n
DR)

∥
∥W−

n (id⊗n
D ⊗ ρ⊗n

R )
) ≥ D(ρDR‖idD ⊗ ρR) + δ +

log2 tr
(
W−

n (ρ⊗n
DR)

)

n
.

(49)

Assume now, by contradiction, that tr(ρ⊗n
D �̄−

n ) = tr(W−
n (ρ⊗n

DR)) decreases less then
exponentially fast in n. Then the last term of (49) approaches 0 in the limit of large n.
In particular, we have

lim sup
n→∞

1

n
D

(
W−

n (ρ⊗n
DR)

∥
∥W−

n (id⊗n
D ⊗ ρ⊗n

R )
) ≥ D(ρDR‖idD ⊗ ρR) + δ, (50)

which contradicts the statement of Lemma 2.3.We have thus shown that both tr(ρ⊗n�̄−
n )

and tr(ρ⊗n�̄+
n) decrease exponentially fast in n. The claim of the lemma follows because∑

s∈Sδ
n
�s = id − �̄+

n − �̄−
n . ��

We conclude this section with a remark that is going to be useful for our proof of
Theorem 5.1.

Remark 2.6. Considering the decomposition ρ = ∑
r∈R rπr , it is easy to see that all

eigenvalues of ρ⊗n have the form
∏

r∈R r
nr , where (nr )r∈R are partitions of n, i.e.,

elements from the set

Qn = {
(nr )r∈R, nr ∈ N0,

∑

r∈R

nr = n
}
. (51)

Hence, the set Sn of eigenvalues of ρ⊗n used within Lemma 2.5 has size at most
|Sn| ≤ |Qn|. Since |Qn| = (n+|R|−1

n

) ≤ (n + 1)|R|, where |R| ≤ rank(ρ) is the number
of different eigenvalues of ρ, we can upper bound the size of Sn by

|Sn| ≤ (n + 1)rank(ρ). (52)
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3. Generalised de Finetti Reduction

The main result of this section, stated as Lemma 3.1, is motivated by a variant of the
method of de Finetti reductions proposed in [15]. (This variant is also known as post-
selection technique; we refer to [46] for a not too technical presentation.) De Finetti
reductions are generally used to study states on n-fold product systems S⊗n that are
invariant under permutations of the subsystems [14,45]. More precisely, the idea is to
reduce the analysis of any density operator ρSn in the symmetric subspace Symn(S) of
S⊗n to the—generally simpler—analysis of states of the form σ⊗n

S , where σS is pure.
We extend this method to the case where S = D ⊗ E is a bipartite space and where the
marginal of ρSn = ρDnEn on D⊗n is known to have the form

trEn (ρDnEn ) = ρDn = σ⊗n
D (53)

for some given state σD on D. Lemma 3.1 implies that, in this case, the analysis can be
reduced to states of the form σ⊗n

DE , where σDE is a purification of σD . (We note that a
similar extension has been proposed earlier for another variant of the de Finetti reduction
method; see Remark 4.3.3 of [44].) Lemma 3.1 will play a central role for the derivation
of the claims of Sect. 4 below. Its proof uses concepts from representation theory, which
are presented in Appendix C.

Lemma 3.1. Let D and E be Hilbert spaces and let σD be a non-negative operator on
D. Then there exists a probability measure dφ on the set of purifications |φ〉〈φ|DE of σD
such that

ρDnEn ≤ (n + 1)d
2−1

∫
|φ〉〈φ|⊗n

DEdφ (54)

holds for any n ∈ N, any permutation-invariant purification ρDnEn of σ⊗n
D , and d =

max[dim(D), dim(E)].
Proof. For the following argument, we assume without loss of generality that d =
dim(D) = dim(E), and that σD has full rank and is therefore invertible on D. (If this is
not the case one may embed the smaller space in one of dimension d and replace σD by
σD + ε idD for ε > 0. The claim is then obtained in the limit ε → 0.) We define

|θ〉DE =
∑

i

|di 〉D ⊗ |ei 〉E , (55)

where {|di 〉D}i and {|ei 〉E }i are orthonormal bases of D and E , respectively. Let now

TDnEn =
∫

(idDn ⊗U⊗n
E )|θ〉〈θ |⊗n

DE (idDn ⊗U⊗n
E )†dU, (56)

where dU is the Haar probability measure on the group of unitaries on E . Because

(σ
1
2
D ⊗UE )|θ〉〈θ |(σ

1
2
D ⊗U †

E ) is a purification of σD for any UE , the operator

τDnEn = (σ⊗n
D ⊗ idEn )

1
2 TDnEn (σ⊗n

D ⊗ idEn )
1
2

=
∫ (

(σ
1
2
D ⊗UE )|θ〉〈θ |DE (σ

1
2
D ⊗U †

E )
)⊗ndU (57)
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is obviously of the form

τDnEn =
∫

|φ〉〈φ|⊗n
DEdφ, (58)

for some suitably chosen measure dφ on the set of purifications |φ〉〈φ|DE of σD . It
therefore suffices to show that

ρDnEn ≤ (n + 1)d
2−1τDnEn . (59)

We do this by analysing the structure of TDnEn . For this we employ the Schur–Weyl
duality, which equips the product space (D ⊗ E)⊗n with a convenient structure (see
Appendix C). Specifically, according to Lemma C.1, the vector |θ〉⊗n

DE decomposes as

|θ〉⊗n
DE =

∑

λ

|φλ〉UD,λUE,λ
⊗ |�λ〉VD,λVE,λ

. (60)

where, for each Young diagram λ,

|�λ〉VD,λVE,λ
= √

dim(Vλ)|ψλ〉VD,λVE,λ
=

∑

k

|vk〉VD,λ
⊗ |v̄k〉VE,λ

(61)

for orthonormal bases {|vk〉VD,λ
}k and {|v̄k〉VE,λ

}k of VD,λ and VE,λ, respectively, and
|φλ〉UD,λUE,λ

is a vector inUD,λ ⊗UE,λ. The latter may always be written in the Schmidt
decomposition as

|φλ〉UD,λUE,λ
=

∑

j

αλ, j |u j 〉UD,λ
⊗ |ū j 〉UE,λ

, (62)

where {|u j 〉UD,λ
} j and {|ū j 〉UE,λ

} j are orthonormal bases of of UD,λ and UE,λ, respec-
tively, and αλ, j are appropriately chosen coefficients, which we assume without loss of
generality to be real. The marginal of |θ〉〈θ |⊗n

DE on D⊗n ∼= ⊕
D,λ UD,λ ⊗ VD,λ is equal

to the identity and can thus be written as

trEn (|θ〉〈θ |⊗n
DE ) = idDn =

∑

λ

idUD,λ
⊗ idVD,λ

. (63)

Comparing this to (60) shows that all coefficients αλ, j in (62) must be equal to 1, i.e.,

|φλ〉UD,λUE,λ
=

∑

j

|u j 〉UD,λ
⊗ |ū j 〉UE,λ

. (64)

Note also that, according to the Schur–Weyl duality (see, e.g., Theorem 1.10 of [13]),
U⊗n

E acts on E⊗n ∼= ⊕
E,λ UE,λ ⊗ VE,λ as

∑
λ UE,λ(U ) ⊗ idVE,λ

. We thus have

(idDn ⊗U⊗n
E )|θ〉⊗n =

∑

λ, j

|u j 〉UD,λ
⊗UE,λ(U )|ū j 〉UE,λ

⊗ |�λ〉VD,λVE,λ
. (65)

We may therefore write

TDnEn =
∑

λ,λ′, j, j ′
|u j 〉〈u j ′ |UD,λ←UD,λ′ ⊗ (Tλ,λ′, j, j ′)UE,λ←UE,λ′

⊗ |�λ〉〈�λ′ |(VD,λVE,λ)←(VD,λ′VE,λ′ ), (66)
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where Tλ,λ′, j, j ′ is the homomorphism between UE,λ′ and UE,λ defined by

(Tλ,λ′, j, j ′)UE,λ←UE,λ′ =
∫

UE,λ(U )|ū j 〉〈ū j ′ |UE,λ←UE,λ′UE,λ′(U )†dU. (67)

Since this operatormanifestly commuteswith the action of the unitary, Schur’s lemma
(see, e.g., Lemma 0.8 of [13]), together with the fact thatUE,λ andUE,λ′ are inequivalent
for λ �= λ′, implies that it has the form

(Tλ,λ′, j, j ′)UE,λ←UE,λ′ = μλ, j, j ′δλ,λ′ idUE,λ
(68)

for appropriately chosen coefficients μλ, j, j ′ . Inserting this in (66) gives

TDnEn =
∑

λ, j, j ′
μλ, j, j ′ |u j 〉〈u j ′ |UD,λ

⊗ idUE,λ
⊗ |�λ〉〈�λ|VD,λVE,λ

. (69)

Because the marginal of TDnEn on D⊗n ,

TDn =
∑

λ, j, j ′
μλ, j, j ′ dim(Uλ)|u j 〉〈u j ′ |UD,λ

⊗ idVD,λ
, (70)

must be equal to the marginal of |θ〉〈θ |⊗n
DE , we conclude from (63) that μλ, j, j ′ =

1
dim(Uλ)

δ j, j ′ . Hence,

TDnEn =
∑

λ

dim(Vλ)
dim(Uλ)

idUD,λ
⊗ idUE,λ

⊗ |ψλ〉〈ψλ|VD,λVE,λ
, (71)

where |ψλ〉VE,λ
is normalised.

Defining the invertible operator

κDn =
∑

λ

dim(Vλ)
dim(Uλ)

idUD,λ
⊗ idVD,λ

(72)

we have

SDnEn = (κDn ⊗ idEn )−
1
2 TDnEn (κDn ⊗ idEn )−

1
2

=
∑

λ

idUD,λ
⊗ idUE,λ

⊗ |ψλ〉〈ψλ|VD,λVE,λ
. (73)

Note that κDn commuteswith any permutation, because, according to the Schur–Weyl
duality, permutations act like

∑
λ idUλ ⊗ Vλ(π) on the decomposition of D⊗n . Conse-

quently, because the support of TDn En is contained in the symmetric subspace Symn(D⊗
E), the same must hold for SDnEn . Furthermore, for any vector |�〉 ∈ Symn(D ⊗ E),
it follows from its representation according to Lemma C.1 that SDnEn |�〉 = |�〉. This
proves that

SDnEn = idSymn(D⊗E). (74)

Consider now the operator

QDnEn = (κDn ⊗ idEn )−
1
2 (σ⊗n

D ⊗ idEn )−
1
2 ρDnEn (σ⊗n

D ⊗ idEn )−
1
2 (κDn ⊗ idEn )−

1
2 .

(75)
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Since the support of ρDnEn is contained in Symn(D ⊗ E), the same must hold for
QDnEn and we find

QDnEn ≤ ‖QDnEn‖∞idSymn(D⊗E) ≤ tr(QDnEn )idSymn(D⊗E) = tr(QDnEn )SDnEn .

(76)

This, in turn, implies that

ρDnEn ≤ tr(QDnEn )(σ⊗n
D ⊗ idEn )

1
2 TDnEn (σ⊗n

D ⊗ idEn )
1
2 = tr(QDnEn )τDnEn . (77)

To conclude the proof of (59), we note that ρDn = σ⊗n
D = τDn , which implies

tr(QDnEn ) = tr
(
(κDn ⊗ idEn )−1(σ⊗n

D ⊗ idEn )−
1
2 ρDnEn (σ⊗n

D ⊗ idEn )−
1
2
)

= tr
(
κ−1
Dn (σ

⊗n
D )−

1
2 ρDn (σ⊗n

D )−
1
2
)

= tr
(
κ−1
Dn (σ

⊗n
D )−

1
2 τDn (σ⊗n

D )−
1
2
)

= tr
(
(κDn ⊗ idEn )−1(σ⊗n

D ⊗ idEn )−
1
2 τDnEn (σ⊗n

D ⊗ idEn )−
1
2
)

= tr
(
(κDn ⊗ idEn )−1TDnEn

)

= tr(SDnEn ) = tr(idSymn(D⊗E))

= dim(Symn(D ⊗ E)) ≤ (n + 1)d
2−1. (78)

��
Because any permutation-invariant density operator has a permutation-invariant pu-

rification, Lemma 3.1 can be easily extended so that ρDnEn does not need to be pure.

Corollary 3.2. Let D and E be Hilbert spaces and let σD be a non-negative operator on
D. Then there exists a probability measure dσDE on the set of non-negative extensions
σDE of σD such that

ρDnEn ≤ (n + 1)d
2−1

∫
σ⊗n
DEdσDE (79)

holds for any n ∈ N, any permutation-invariant non-negative extension ρDnEn of σ⊗n
D ,

and d = dim(D) dim(E)2.

Proof. According toLemmaB.10,ρDn En has apermutation-invariant purificationρDn En Rn

with purifying system R⊗n , where dim R ≤ dim(D ⊗ E). Lemma 3.1 with E replaced
by E ⊗ R, applied to ρDnEn Rn , yields

ρDnEn Rn ≤ (n + 1)d
2−1

∫
|φ〉〈φ|⊗n

DERdφ, (80)

where dφ is a probability measure on the purifications |φ〉〈φ|DER of σD and d =
max[dim D, dim E ⊗ R] ≤ dim D(dim E)2. Taking the partial trace over R⊗n on both
sides gives

ρDnEn ≤ (n + 1)d
2−1

∫
trR(|φ〉〈φ|DER)⊗ndφ. (81)

The claim follows because the probability measure dφ on the pure states |φ〉〈φ|DER
can be replaced by the induced measure dσDE on the marginal states
σDE = trR(|φ〉〈φ|DER). ��
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Even though we do not need it here, it is worth pointing out that, by virtue of the
Choi–Jamiołkowski isomorphism [12,34], the claim above can be rephrased in terms of
completely positive trace-preserving maps. As shown in [6], this is useful to derive an
improved variant of inequality (3).

Corollary 3.3. Let D and E be Hilbert spaces. Then there exists a probability measure
dτ on the set of completely positive trace-preserving maps τD→E such that7

WDn→En ≤ (n + 1)d
2−1

∫
τ⊗n
D→Edτ (82)

holds for any n ∈ N, any completely positive trace-preserving map WDn→En that
is permutation-invariant (i.e., W ◦ π = π ◦ W for all permutations π ), and d =
dim(D) dim(E)2.

Proof. Let ρDnEn = J⊗n(WDn→En ) where J denotes the Choi–Jamiołkowski isomor-
phism on themappings from D to E . That is, ρDnEn = (WD̄n→En ⊗ IDn )(�⊗n

D̄D
), where

�D̄D is a maximally entangled state. The marginal of ρDnEn on Dn equals σ⊗n
D with

σD = idD
dim D . Furthermore, as the map WD̄n→En ⊗ IDn is permutation invariant, so is

the state ρDnEn . Hence (79) holds. Since the corresponding probability measure dσDE
is restricted to the set of density operators σDE with marginal σD , each σDE is the image
of a trace-preserving completely positive map τD→E under the isomorphism J , i.e.,
σDE = J (τD→E ). The claim thus follows by applying the inverse of J⊗n to both sides
of (79). ��

4. Fidelity Between Permutation-Invariant Operators

The purpose of this section is to provide techniques to approximate the fidelity of
permutation-invariant states. They play a key role in the proof of Theorem 5.1. The
derivation of the statements below is based on the generalised deFinetti reductionmethod
introduced in Sect. 3. Furthermore,wewill use several established facts about the fidelity,
which are summarised in Appendix B.

Lemma 4.1. LetρDnEn be a permutation-invariant non-negative operator on (D⊗E)⊗n

and let σD be a non-negative operator on D. Then there exists a non-negative extension
σDE of σD on D ⊗ E such that

F(ρDnEn , σ⊗n
DE ) ≥ (n + 1)−d2/2F(ρDn , σ⊗n

D ), (83)

where d = dim(D) dim(E)2. Furthermore, if ρDnEn is pure then σDE is pure and
d ≤ max[dim(D), dim(E)].
Proof. Let ρDnEn Rn = |�〉〈�|DnEn Rn be a permutation-invariant purification of ρDnEn ,
i.e., |�〉 ∈ Symn(D ⊗ E ⊗ R), where dim(R) ≤ dim(D⊗E). (That such a purification
exists is the statement of Lemma B.10. We also note that, if ρDnEn is already pure, then
R can be chosen to be the trivial spaceC, i.e., dim(R) = 1.) According to Lemma B.11,
there exists a permutation-invariant purification σ̄DnEn Rn of σ⊗n

D such that

F(ρDn , σ⊗n
D ) = F(ρDnEn Rn , σ̄DnEn Rn ) = √〈�|σ̄DnEn Rn |�〉. (84)

7 The inequality means that the difference between the right hand side and the left hand side is a completely
positive map.
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Let � be the set of vectors |φ〉DER on D ⊗ E ⊗ R such that trER(|φ〉〈φ|DER) = σD .
According to Lemma 3.1 there exists a probability measure dφ on � such that

σ̄DnEn Rn ≤ (n + 1)d
2−1

∫
|φ〉〈φ|⊗n

DERdφ, (85)

where d = max[dim(D), dim(E) dim(R)] ≤ dim(D) dim(E)2. Using this we find

(n + 1)−d2〈�|σ̄DnEn Rn |�〉 ≤
∫

〈�|(|φ〉〈φ|⊗n
DER)|�〉dφ ≤ max|φ〉∈�

〈�|(|φ〉〈φ|⊗n
DER)|�〉.

(86)

We now set σDER = |φ〉〈φ|DER , where |φ〉DER ∈ � is a vector that maximises the
above expression. Note that, by the definition of the set �, σDE is then a valid extension
of the given operator σD . (Furthermore, if R is the trivial space C then σDE is pure.)
Combining (84) with (86), and using the monotonicity of the fidelity under the partial
trace (Lemma B.4), we conclude that

(n + 1)−d2/2F(ρDn , σ⊗n
D ) ≤

√
〈�|σ⊗n

DER |�〉 = F(|�〉〈�|DnEn Rn , σ⊗n
DER)

≤ F(ρDnEn , σ⊗n
DE ). (87)

��
Lemma 4.2. Let ρRn Sn be a permutation-invariant non-negative operator on (R⊗ S)⊗n

and letσRS be a non-negative operator on R⊗S. Furthermore, let WRn be a permutation-
invariant operator on R⊗n with ‖WRn‖∞ ≤ 1. Then there exists a unitary UR on R such
that8

F
(
ρRn Sn ,U

⊗n
R σ⊗n

RS (U⊗n
R )†

) ≥ (n + 1)−d2F
(
WRnρRn SnW

†
Rn , σ

⊗n
RS

)
, (88)

where d = dim(R) dim(S)2.

Proof. Let ρRn Sn En be a permutation-invariant purification of ρRn Sn on (R ⊗ S ⊗
E)⊗n , where dim(E) = dim(R ⊗ S) (cf. Lemma B.10). Then WRnρRn Sn EnW †

Rn is

a permutation-invariant purification ofWRnρRn SnW
†
Rn . Hence, according to Lemma 4.1,

there exists a purification σRSE of σRS such that

(n + 1)d
2
1 /2F(WRnρRn Sn EnW †

Rn , σ
⊗n
RSE ) ≥ F(WRnρRn SnW

†
Rn , σ

⊗n
RS ), (89)

where d1 = max[dim(R ⊗ S), dim(E)] = dim(R) dim(S). We then use Lemma B.8
which asserts that

F(ρSn En , σ⊗n
SE ) ≥ F(WRnρRn Sn EnW †

Rn , σ
⊗n
RSE ). (90)

Furthermore, again by Lemma 4.1, there exists a purification σ̃RSE of σSE such that

(n + 1)d
2
2 /2F(ρRn Sn En , σ̃⊗n

RSE ) ≥ F(ρSn En , σ⊗n
SE ), (91)

8 Here and in the following we simplify our notation by omitting identity operators that are clear from the
context, e.g., we write UR instead of UR ⊗ idS .
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where d2 = max[dim(S ⊗ E), dim(R)] = dim(R) dim(S)2. Because all purifications
are unitarily equivalent, there exists a unitary UR on R such that URσRSEU

†
R = σ̃RSE ,

that is,

F
(
ρRn Sn En ,U⊗n

R σ⊗n
RSE (U⊗n

R )†
) = F(ρRn Sn En , σ̃⊗n

RSE ). (92)

Because the fidelity is non-decreasing under the partial trace (cf. Lemma B.4), we
also have

F
(
ρRn Sn ,U

⊗n
R σ⊗n

RS (U⊗n
R )†

) ≥ F
(
ρRn Sn En ,U⊗n

R σ⊗n
RSE (U⊗n

R )†
)
. (93)

Combining all these equations, we obtain the desired claim. ��
Remark 4.3. If for some orthonormal basis {|r〉}r of R the operator WRn is diagonal in
the corresponding product basis {|r1〉 ⊗ · · · ⊗ |rn〉}r1,...rn then inequality (88) also holds
for an operator UR which is diagonal in the basis {|r〉}r and satisfies ‖UR‖∞ ≤ 1, and
for d = dim(R)2 dim(S)2.

To see this, let R̄ be a system that is isomorphic to R and let C be the isometry from
R to R ⊗ R̄ defined by

C =
∑

r

(|r〉R ⊗ |r〉R̄
)〈r |R . (94)

It is straightforward to verify that, forWRn diagonal in the product basis {|r1〉⊗· · ·⊗
|rn〉}r1,...rn , we have

WRn = (C†)⊗n(WRn ⊗ id R̄n )C⊗n . (95)

Let now ρRn Sn En and σRSE be pure operators such that (89) holds. Furthermore,
define ρ̄Rn R̄n Sn En = C⊗nρRn Sn En (C†)⊗n and σ̄RR̄SE = CσRSEC†. Using Lemma B.6
we find

F(WRnρRn Sn EnW †
Rn , σ

⊗n
RSE ) = F

(
(C†)⊗nWRnC⊗nρRn Sn En (C†)⊗nW †

RnC⊗n, σ⊗n
RSE

)

= F(WRn ρ̄Rn R̄n Sn EnW
†
Rn , σ̄

⊗n
R R̄SE

). (96)

Furthermore, we can carry out the proof steps as in (90) and (91), while keeping the
system R̄⊗n , to obtain

(n + 1)d
2/2F(ρ̄Rn R̄n Sn En , σ̃

⊗n
R R̄SE

) ≥ F(ρ̄R̄n Sn En , σ̄
⊗n
R̄SE

)

≥ F(WRn ρ̄Rn R̄n Sn EnW
†
Rn , σ̄

⊗n
R R̄SE

), (97)

for some purification σ̃RR̄SE of σ̄R̄SE . Because σ̄RR̄SE is pure there must exist a unitary
ŪR on R such that ŪR σ̄RR̄SEŪ

†
R = σ̃RR̄SE . Using this and the fact that the fidelity is

non-decreasing under the partial trace we find

F
(
ρ̄Rn R̄n Sn , Ū

⊗n
R σ̄⊗n

R R̄S
(Ū †

R)⊗n) ≥ F
(
ρ̄Rn R̄n Sn En , Ū⊗n

R σ̄⊗n
R R̄SE

(Ū †
R)⊗n)

= F
(
ρ̄Rn R̄n Sn En , σ̃

⊗n
R R̄SE

)
. (98)

Finally, by the definition of ρ̄Rn R̄n Sn En and σ̄RR̄SE , and using Lemma B.6 we have

F
(
ρ̄Rn R̄n Sn , Ū

⊗n
R σ̄⊗n

R R̄S
(Ū †

R)⊗n) = F
(
ρRn Sn ,U

⊗n
R σ⊗n

RS (U †
R)⊗n) (99)

whereUR = C†(ŪR ⊗ id R̄)C . Combining this with (89), (96), (97), and (98) we obtain
again inequality (88). Furthermore, by construction, UR is diagonal in the basis {|r〉}r
and satisfies U †

RUR ≤ idR .
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Remark 4.4. If ρRn Sn has product form ρ⊗n
RS , the statement of Lemma 4.2 can be rewritten

as

F(ρRS,URσRSU
†
R) ≥ n

√
(n + 1)−d2F(WRnρ⊗n

RSW
†
Rn , σ

⊗n
RS ). (100)

Hence, for a family {WRn }n∈N of permutation-invariant non-negative operators such
that ‖WRn‖∞ ≤ 1 we have

sup
UR

F
(
ρRS,URσRSU

†
R

) ≥ lim sup
n→∞

n
√
F(WRnρ⊗n

RSW
†
Rn , σ

⊗n
RS ). (101)

5. Main Result and Proof

Theorem 5.1. For any density operator ρABC on A ⊗ B ⊗ C, where A, B, and C
are separable Hilbert spaces, there exists a trace-preserving completely positive map
TB→BC from the space of operators on B to the space of operators on B ⊗C such that9

2− 1
2 I (A:C|B)ρ ≤ F

(
ρABC , (IA ⊗ TB→BC )(ρAB)

)
. (102)

Furthermore, if A, B, and C are finite-dimensional then TB→BC has the form

XB �→ VBCρ
1
2
BC (ρ

− 1
2

B UB XBU
†
Bρ

− 1
2

B ⊗ idC )ρ
1
2
BCV

†
BC (103)

on the support of ρB, where UB and VBC are unitaries on B and B ⊗ C, respectively.

Proof. We first note that, by Remark 5.2 below, it is sufficient to prove the statement for
the case where A, B, and C are finite-dimensional. Let δ > 0, δ′ > 0, and δ′′ > 0. Let
n ∈ N and let {�b}b∈B̄n and {�d}d∈D̄n

be the families of projectors onto the eigenspaces

of ρ⊗n
B and ρ⊗n

BC , labelled by their eigenvalues b ∈ B̄n and d ∈ D̄n , respectively.

Furthermore, let B̄δ′
n and D̄δ′′

n be the subsets of B̄n and D̄n defined by Lemma 2.5 and
define

�Bn =
∑

b∈B̄δ′
n

�b and �BnCn =
∑

d∈D̄δ′′
n

�d . (104)

Note that for any η > 0 we have

tr(�Bnρ⊗n
B ) ≥ 1 − η and tr(�BnCnρ⊗n

BC ) ≥ 1 − η (105)

for n sufficiently large. Define the mapping on (A ⊗ B ⊗ C)⊗n

Wn : XAn BnCn �→ (idAn ⊗ �BnCn )(idAn ⊗ �Bn ⊗ idCn )

× XAn BnCn (idAn ⊗ �Bn ⊗ idCn )(idAn ⊗ �BnCn ). (106)

as well as the abbreviation

�An BnCn = Wn(ρ
⊗n
ABC ) = �BnCn�Bnρ⊗n

ABC�Bn�BnCn . (107)

9 IA denotes the identity map on the space of operators on A. We include it here in our notation to stress
that the map leaves the A system unaffected, but will usually omit it when it is clear from the context.
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It is easily seen that the map Wn is trace non-increasing and completely positive.
Furthermore, because of (105), we always have tr(Wn(ρ

⊗n
ABC )) = tr(�An BnCn ) > 2/3

for η sufficiently small. One way to see this is using the gentle measurement lemma (see
e.g., [54, Lemma 9.4.2]), which implies that

tr(�BnCn�Bnρ⊗n
ABC�Bn ) ≥ tr(�BnCnρ⊗n

ABC ) − 2
√
1 − tr(�Bnρ⊗n

ABC ) ≥ 1 − η − 2
√

η.

(108)

Lemma 2.3 then tells us that, for n sufficiently large,10

D
(
�An BnCn‖�BnCn�Bnρ⊗n

AB�Bn�BnCn
)

= D
(
Wn(ρ

⊗n
ABC )

∥
∥Wn((ρAB ⊗ idC )⊗n)

)

≤ n
(
D(ρABC‖ρAB ⊗ id) +

δ

2

) = n(−H(C |AB) +
δ

2
), (109)

where the last equality is the definition of the conditional entropy, H(C |AB) =
−tr(ρABC log2 ρABC ) + tr(ρAB log2 ρAB) = −D(ρABC‖ρAB ⊗ idC ). The relation be-
tween the fidelity and the relative entropy (Lemma B.2) now allows us to conclude
that

1

tr(�An BnCn )
F(�An BnCn ,�BnCn�Bnρ⊗n

AB�Bn�BnCn ) ≥ 2
1
2 n(H(C|AB)− δ

2 ). (110)

We now use Lemma B.6 to remove the projector �BnCn from the second argument

and note that the factor tr(�An BnCn ) > 2/3 can be absorbed by another factor 2− 1
4 nδ for

n sufficiently large. This shows that

F(�An BnCn ,�Bnρ⊗n
AB�Bn ) ≥ 2

1
2 n(H(C|AB)−δ). (111)

Because
∑

b∈B̄n �b = idBn we can apply Lemma B.7, which gives

F(�An BnCn ,�Bnρ⊗n
AB�Bn ) ≤

∑

b∈B̄n
F(�An BnCn ,�b�Bnρ⊗n

AB�Bn�b)

=
∑

b∈B̄δ′
n

F(�An BnCn ,�bρ
⊗n
AB�b)

≤ |B̄δ′
n | max

b∈B̄δ′
n

F(�An BnCn ,�bρ
⊗n
AB�b), (112)

where the equality follows from

�b�Bn =
{

�b if b ∈ B̄δ′
n

0 otherwise.
(113)

Hence, there exists b ∈ B̄δ′
n such that

F(�An BnCn ,�Bnρ⊗n
AB�Bn ) ≤ |B̄δ′

n |F(�An BnCn ,�bρ
⊗n
AB�b)

≤ poly(n)F(�An BnCn ,�bρ
⊗n
AB�b), (114)

10 We note that a similar conclusion may be obtained from the inequality given in Remark 2.4.
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where the second inequality follows from Remark 2.6. By the definition of �b we also
have

�b = √
b(ρ

− 1
2

B )⊗n�b, (115)

where b is the eigenvalue of ρ⊗n
B corresponding to �b. By the definition of B̄δ′

n we also

have
√
b ≤ 2− 1

2 n(H(B)−δ′) and, hence,

F(�An BnCn ,�bρ
⊗n
AB�b) = √

bF
(
�An BnCn , (ρ

− 1
2

B )⊗n�bρ
⊗n
AB�b(ρ

− 1
2

B )⊗n)

≤ 2− 1
2 n(H(B)−δ′)F

(
�An BnCn , (ρ

− 1
2

B )⊗n�bρ
⊗n
AB�b(ρ

− 1
2

B )⊗n)

= 2− 1
2 n(H(B)−δ′)F

(
�b(ρ

− 1
2

B )⊗n�An BnCn (ρ
− 1

2
B )⊗n�b, ρ

⊗n
AB

)
,

(116)

where the equality follows from Lemma B.6, which we will use repeatedly in the fol-
lowing. Furthermore, by Lemma 4.2, there must exist a unitary UB on B such that

F
(
�b(ρ

− 1
2

B )⊗n�An BnCn (ρ
− 1

2
B )⊗n�b, ρ

⊗n
AB

)

≤ poly(n)F
(
(ρ

− 1
2

B )⊗n�An BnCn (ρ
− 1

2
B )⊗n,U⊗n

B ρ⊗n
AB(U⊗n

B )†
)

= poly(n)F
(
�An BnCn , (ρ

− 1
2

B )⊗nU⊗n
B ρ⊗n

AB(U⊗n
B )†(ρ

− 1
2

B )⊗n). (117)

Combining now (111), (114), (116), and (117) we obtain

2
1
2 n(H(C|AB)+H(B)−δ−δ′) ≤ poly(n)F

(
�An BnCn , (ρ

− 1
2

B )⊗nU⊗n
B ρ⊗n

AB(U⊗n
B )†(ρ

− 1
2

B )⊗n)
)

= poly(n)F(�BnCn�Bnρ⊗n
ABC�Bn�BnCn , γ ⊗n

ABC ), (118)

where γABC = ρ
− 1

2
B UBρABU

†
Bρ

− 1
2

B .
Next we use that

∑
d∈D̄n

�d = idBnCn and apply again Lemma B.7 to obtain

F(�BnCn�Bnρ⊗n
ABC�Bn�BnCn , γ ⊗n

ABC )

≤
∑

d∈D̄n

F(�d�BnCn�Bnρ⊗n
ABC�Bn�BnCn�d , γ

⊗n
ABC )

=
∑

d∈D̄δ′′
n

F(�d�Bnρ⊗n
ABC�Bn�d , γ

⊗n
ABC )

≤ |D̄δ′′
n | max

d∈D̄δ′′
n

F(�d�Bnρ⊗n
ABC�Bn�d , γ

⊗n
ABC ), (119)

where |D̄δ′′
n | ≤ poly(n) by Remark 2.6. Hence, there exists d ∈ D̄δ′′

n such that

F(�BnCn�Bnρ⊗n
ABC�Bn�BnCn , γ ⊗n

ABC ) ≤ poly(n)F(�d�Bnρ⊗n
ABC�Bn�d , γ

⊗n
ABC ).

(120)

By the definition of D̄δ′′
n we have

�d = 1√
d

(ρ
1
2
BC )⊗n�d (121)
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with d ≥ 2−n(H(BC)+δ′′). This implies

F(�d�Bnρ⊗n
ABC�Bn�d , γ

⊗n
ABC )

=
√
1

d
F

(
(ρ

1
2
BC )⊗n�d�Bnρ⊗n

ABC�Bn�d(ρ
1
2
BC )⊗n, γ ⊗n

ABC

)

≤ 2
1
2 n(H(BC)+δ′′)F

(
(ρ

1
2
BC )⊗n�d�Bnρ⊗n

ABC�Bn�d(ρ
1
2
BC )⊗n, γ ⊗n

ABC

)

= 2
1
2 n(H(BC)+δ′′)F

(
�d�Bnρ⊗n

ABC�Bn�d , (ρ
1
2
BC )⊗nγ ⊗n

ABC (ρ
1
2
BC )⊗n). (122)

We use again Lemma 4.2, which asserts that there must exist a unitary VBC on B⊗C
such that

F
(
�d�Bnρ⊗n

ABC�Bn�d , (ρ
1
2
BC )⊗nγ ⊗n

ABC (ρ
1
2
BC )⊗n)

≤ poly(n)F
(
ρ⊗n
ABC , V⊗n

BC (ρ
1
2
BC )⊗nγ ⊗n

ABC (ρ
1
2
BC )⊗n(V⊗n

BC )†
)
. (123)

Combining this with (118), (120) and (122) yields

2
1
2 n(H(C|AB)+H(B)−H(BC)−δ−δ′−δ′′)

≤ poly(n)F
(
ρ⊗n
ABC , V⊗n

BC (ρ
1
2
BC )⊗nγ ⊗n

ABC (ρ
1
2
BC )⊗n(V⊗n

BC )†
)
. (124)

We take the nth root, use H(BC) − H(B) − H(C |AB) = I (A : C |B), and insert
the expression for γABC to rewrite this as

2− 1
2 I (A:C|B)−δ−δ′−δ′′ ≤ n

√
poly(n)F(ρABC , VBCρ

1
2
BCρ

− 1
2

B UBρABU
†
Bρ

− 1
2

B ρ
1
2
BCV

†
BC )

≤ n
√
poly(n) max

UB ,VBC
F(ρABC , VBCρ

1
2
BCρ

− 1
2

B UBρABU
†
Bρ

− 1
2

B

×ρ
1
2
BCV

†
BC ), (125)

where themaximum is take over unitary transformationsUB and VBC . As thismaximised
fidelity is now independent of n and because n

√
poly(n) approaches 1 for n large, we

conclude that

2− 1
2 I (A:C|B)−δ−δ′−δ′′ ≤ max

UB ,VBC
F(ρABC , VBCρ

1
2
BCρ

− 1
2

B UBρABU
†
Bρ

− 1
2

B ρ
1
2
BCV

†
BC ).

(126)

Inequality (102) now follows because δ > 0, δ′ > 0, and δ′′ > 0 were arbitrary.
It remains to verify that the map TB→BC is trace-preserving. But this follows from

the observation that

trC (U †
Bρ

− 1
2

B ρ
1
2
BCV

†
BCVBCρ

1
2
BCρ

− 1
2

B UB) = trC (U †
Bρ

− 1
2

B ρBCρ
− 1

2
B UB)

= U †
Bρ

− 1
2

B ρBρ
− 1

2
B UB = idB . (127)

��
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Remark 5.2. Any proof of the main claim of Theorem 5.1,

2− 1
2 I (A:C|B)ρ ≤ sup

TB→BC

F
(
ρABC , (IA ⊗ TB→BC )(ρAB)

)
, (128)

which uses the assumption that A, B, and C are finite-dimensional Hilbert spaces,
implies that the claim also holds under the less restrictive assumption that these spaces
are separable.

To see this, let {Pk
A}k∈N, {Pk

B}k∈N, and {Pk
C }k∈N be sequences of finite-rank projectors

on A, B, and C which converge to idA, idB , and idC , respectively, with respect to the
weak (and, hence, also the strong) operator topology (see, e.g., Definition 2 of [25]).
Define furthermore the density operators

ρ
k,k′
ABC = (Pk

A ⊗ Pk′
B ⊗ Pk

C )ρABC (Pk
A ⊗ Pk′

B ⊗ Pk
C )

tr
(
(Pk

A ⊗ Pk′
B ⊗ Pk

C )ρABC
) (129)

and

ρk
ABC = (Pk

A ⊗ idB ⊗ Pk
C )ρABC (Pk

A ⊗ idB ⊗ Pk
C )

tr
(
(Pk

A ⊗ idB ⊗ Pk
C )ρABC

) . (130)

We note that, for any k ∈ N, the sequence {ρk,k′
ABC }k′∈N converges to ρk

ABC in the trace
norm (see, e.g., Corollary 2 of [25]). Also, {ρk

ABC }k∈N converges to ρABC in the trace
norm.

Let us first consider the left hand side of (128). Because, for any fixed finite dimension
of system A, the conditionalmutual information I (A : C |B)ρ = H(A|B)ρ−H(A|BC)ρ
is continuous in ρ with respect to the trace norm [1], we have

lim
k′→∞

I (A : C |B)
ρk,k′ = I (A : C |B)ρk (131)

for any k ∈ N. In addition, using the fact that local projectors applied to the subsystems
A and C can only decrease I (A : C |B)ρ , provided we scale by the probability of such
a projector,

tr
(
(Pk

A ⊗ idB ⊗ Pk
C )ρABC

)
I (A : C |B)ρk ≤ I (A : C |B)ρ (132)

holds for any k ∈ N.
Because limk→∞ tr

(
(Pk

A ⊗ idB ⊗ Pk
C )ρABC

) = tr(ρ) = 1, we find

lim sup
k→∞

I (A : C |B)ρk ≤ I (A : C |B)ρ. (133)

The combination of this statement with (131) yields

2− 1
2 I (A:C|B)ρ ≤ lim inf

k→∞ lim
k′→∞

2
− 1

2 I (A:C|B)
ρk,k

′
. (134)

We now consider the right hand side of (128). Let δ > 0 and note that, for sufficiently
large k and k′, we have

∥
∥ρ

k,k′
ABC − ρABC

∥
∥
1 < (δ/2)2. (135)
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Because the trace norm ismonotonically non-increasing under trace-preserving com-
pletely positive maps, we also have

∥
∥TB→BC (ρ

k,k′
AB ) − TB→BC (ρAB)

∥
∥
1 < (δ/2)2 (136)

for any TB→BC . Lemma B.9 then implies that

F
(
ρ
k,k′
ABC , TB→BC (ρ

k,k′
AB )

)
< F

(
ρABC , TB→BC (ρAB)

)
+ δ. (137)

But because this holds for any TB→BC , we have

sup
TB→BC

F
(
ρ
k,k′
ABC , TB→BC (ρ

k,k′
AB )

) ≤ sup
TB→BC

F
(
ρABC , TB→BC (ρAB)

)
+ δ. (138)

Because this holds for all δ > 0 and sufficiently large k and k′, we find that

lim sup
k→∞

lim sup
k′→∞

sup
TB→BC

F
(
ρ
k,k′
ABC , TB→BC (ρ

k,k′
AB )

) ≤ sup
TB→BC

F
(
ρABC , TB→BC (ρAB)

)
.

(139)

To conclude the argument, we observe that if the inequality (128) is valid for finite-
dimensional spaces A, B, and C we have in particular

lim inf
k→∞ lim

k′→∞
2
− 1

2 I (A:C|B)
ρk,k

′ ≤ lim sup
k→∞

lim sup
k′→∞

sup
TB→BC

F
(
ρ
k,k′
ABC , TB→BC (ρ

k,k′
AB )

)
.

(140)

Combining this with (134) and (139) then proves the claim that the inequality holds
for arbitrary separable spaces A, B, and C .

Remark 5.3. By Remark 4.3, the unitary UB chosen in (117) may be replaced by an
operator which commutes with ρB and satisfies ‖UB‖∞ ≤ 1. Analogously, the unitary
VBC chosen in (123) may be replaced by an operator of the form VBC = V ′

BV
′′
BC where

V ′
B commutes with ρB and V ′′

BC commutes with ρBC , and where ‖V ′
B‖∞ ≤ 1 and

‖V ′′
BC‖∞ ≤ 1. Similarly to (127) one can see that the resulting recovery map TB→BC is

trace non-increasing. Furthermore, we have

TB→BC (ρB) = VBCρ
1
2
BC (ρ

− 1
2

B UBρBU
†
Bρ

− 1
2

B ⊗ idC )ρ
1
2
BCV

†
BC

= VBCρ
1
2
BC (UBU

†
B ⊗ idC )ρ

1
2
BCV

†
BC

≤ VBCρ
1
2
BCρ

1
2
BCV

†
BC = V ′

Bρ
1
2
BCV

′′
BC (V ′′

BC )†ρ
1
2
BC (V ′

B)† ≤ V ′
BρBC (V ′

B)†.

(141)

In particular, we have

trC
(
TB→BC (ρB)

) ≤ ρB and trB
(
TB→BC (ρB)

) ≤ ρC . (142)

This implies that one can always choose a recovery map that exactly reproduces the
marginal on B and the marginal on C .
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Appendices

A. One-Shot Relative Entropies

In this appendix, we briefly review the generalised relative entropy introduced in [21,53]
and the smooth max-relative entropy introduced in [19] (we will use a slightly modified
variant defined in [49,50]).

Definition A.1. For any two non-negative operators ρ and σ and for any ε ∈ [0, tr(ρ)],
the generalised relative entropy is defined by11

2−Dε
H (ρ‖σ) = inf

0≤Q≤1
tr(Qρ)≥ε

tr(Qσ)/ε , (143)

where the optimisation is over operators Q. For ρ a density operator,12 the ε-smooth
max-relative entropy is defined by

2−Dε
max(ρ‖σ) = sup

μρ̄≤σ

1−F(ρ̄,ρ)2≤ε2

μ, (144)

where the optimisation is over non-negative operators ρ̄ with tr(ρ̄) ≤ 1.13

Remark A.2. The second argument, σ , of the two one-shot entropy measures of Defini-
tion A.1 may be rescaled easily because

Dε
H (ρ‖λσ) = Dε

H (ρ‖σ) − log2(λ) (145)

Dε
max(ρ‖λσ) = Dε

max(ρ‖σ) − log2(λ) (146)

holds for any λ > 0.

The generalised relative entropy may be expressed equivalently as follows.

Lemma A.3. For any two non-negative operators ρ and σ ,

2−Dε
H (ρ‖σ) = sup

μ(ρ−Y )≤σ
Y≥0
μ≥0

μ(1 − tr(Y )/ε). (147)

where the optimisation is over operators Y and reals μ.

Proof. As shown in [21], the expression on the right hand side of (143) is a semidefinite
program whose dual has the form

2−Dε
H (ρ‖σ) = sup

μρ≤σ+X
X≥0
μ≥0

μ − tr(X)/ε, (148)

11 For ε = 0 the quantity is defined via continuous extension, i.e., D0
H (ρ‖σ) = limε↓0 Dε

H (ρ‖σ).
12 We note that the definition proposed in [49,50] applies more generally to any ρ with tr(ρ) ≤ 1.
13 The expressions on the right hand side of (143) and (144) may be equal to 0, in which case the corre-

sponding relative entropy is defined to be equal to ∞.
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where the optimisation is over operators X and reals μ. Replacing X by μY we can
rewrite this as

2−Dε
H (ρ‖σ) = sup

μ(ρ−Y )≤σ
μY≥0
μ≥0

μ(1 − tr(Y )/ε). (149)

To conclude the proof, we note that the condition μY ≥ 0 can be replaced by Y ≥ 0
because μ ≥ 0 and because for μ = 0 the value of Y is irrelevant. ��
Remark A.4. It is obvious from this representation that Dε

H (ρ‖σ) is a monotonically
non-increasing function in ε.

The following lemma provides an upper bound on Dε
H (ρ‖σ), expressed in terms of

the trace distance of ρ to an operator ρ̄ that satisfies a simple operator inequality.

Lemma A.5. Let ρ, ρ̄, and σ be non-negative operators and suppose that ρ̄ ≤ λσ for
some λ > 0. Then

Dε
H (ρ‖σ) ≤ log2(λ) − log2

(
1 − �(ρ, ρ̄)/ε

)
. (150)

Proof. Let Y + ≥ 0 and Y− ≥ 0 be the positive and negative parts of ρ − ρ̄, respectively,
so that ρ− ρ̄ = Y +−Y− and tr(Y +) ≤ �(ρ, ρ̄) (see Eq. 18).We then have, in particular,
ρ − Y + ≤ ρ̄ and, using the assumption that ρ̄ ≤ λσ ,

ρ − Y + ≤ λσ. (151)

This means that μ = 1
λ
and Y = Y + fulfill the constraints of the maximisation

in (147) for Dε
H (ρ‖σ) and, hence,

2−Dε
H (ρ‖σ) ≥ 1

λ

(
1 − tr(Y +)

ε

) ≥ 1

λ

(
1 − �(ρ, ρ̄)

ε

)
. (152)

Taking the negative logarithm on both sides of the inequality yields the claim. ��
Although we are not using this for our argument, we note that Lemma A.5 can be

extended to a relation between the smooth relative max-entropy and the generalised
relative entropy.

Lemma A.6. Let ρ be a density operator, let σ be a non-negative operator, and let
ε > ε′ ≥ 0. Then

Dε
H (ρ‖σ) ≤ Dε′

max(ρ‖σ) + log2
ε

ε − ε′ . (153)

Proof. Let μ = 2−Dε′
max(ρ‖σ) and let ρ̄ be such that the expression on the right hand side

of (144) is satisfied for Dε′
max(ρ‖σ). That is, we have ρ̄ ≤ σ/μ as well as

√
1 − F(ρ̄, ρ)2

≤ ε′, which, by Lemma B.1, implies �(ρ̄, ρ) ≤ ε′. Hence, by Lemma A.5,

Dε
H (ρ‖σ) ≤ − log2(μ) − log2

(
1 − (ε′/ε)

) = Dε′
max(ρ‖σ) + log2

ε

ε − ε′ . (154)

��



600 O. Fawzi, R. Renner

The following claim about the smooth relative max-entropy for product states is
known as the Quantum Asymptotic Equipartition Property [50]. (Note that this is a
strictly more general statement than the “classical” Asymptotic Equipartition Property
stated as Lemma 2.5.) While the proof in [50] applies to the case where σ is a density
operator, the slightly extended claim provided here follows directly from Remark A.2
(see also Footnote 9 of [50] as well as Chapter 6 of [49]).

Lemma A.7. For any density operator ρ, for any non-negative operator σ , for any
ε ∈ (0, 1), and for sufficiently large n ∈ N,

1

n
Dε
max(ρ

⊗n‖σ⊗n) < D(ρ‖σ) + c

√
log2(2/ε2)

n
, (155)

where c = c(ρ, σ ) is independent of n and ε.

Because of Lemma A.6, almost the same upper bound also holds for Dε
H (·‖·). In

fact, as a consequence of the Quantum Stein’s Lemma [29,42], the statement holds
asymptotically with equality [21].

Lemma A.8. Let ρ be a density operator, let σ be a non-negative operator, and let
ε ∈ (0, 1). Then

lim
n→∞

1

n
Dε

H (ρ⊗n‖σ⊗n) = D(ρ‖σ). (156)

B. General Facts About the Fidelity

In the literature, the definition and discussion of the fidelity F(ρ, σ ) is often restricted
to the case where its arguments, ρ and σ , are density operators (see, e.g., Chapter 9
of [41]). In this work, however, we need the fidelity for general non-negative operators.
Recall that we defined F(ρ, σ ) = ‖√ρ

√
σ‖1. Fortunately, most established properties

of the fidelity are still valid in this more general case. For completeness, we state them
in the following.

Lemma B.1. For any two non-negative operators ρ and σ with tr(ρ) ≥ tr(σ ), the trace
distance is upper bounded by

�(ρ, σ ) ≤
√
tr(ρ)2 − F(ρ, σ )2. (157)

The following lemma relates the relative entropy to the fidelity (see also Sect. 5.4
of [27]).

Lemma B.2. For any non-negative operators ρ and σ

D(ρ‖σ) ≥ −2 log2
F(ρ, σ )

tr(ρ)
. (158)
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Proof. Let Dα(·‖·) be the α-QuantumRényi Divergence as defined in [40,55]. As shown
in these papers, for α = 1 it is identical to the relative entropy, i.e.,

D1(ρ‖σ) = D(ρ‖σ). (159)

For α = 1/2, it is related to the fidelity via

D 1
2
(ρ‖σ) = −2 log2

F(ρ, σ )

tr(ρ)
. (160)

Finally, α �→ Dα(ρ‖σ) is a monotonically non-decreasing function in α. Combining
these statements, we find

−2 log2 F(ρ, σ ) = D 1
2
(ρ‖σ) ≤ D1(ρ‖σ) = D(ρ‖σ). (161)

��
Next we recall a statement that is known as Uhlmann’s theorem [52].

Lemma B.3. Let ρDR = |ψ〉〈ψ |DR and σDR = |φ〉〈φ|DR be purifications of non-
negative operators ρ = ρD and σ = σD, respectively. Then

F(ρ, σ ) = sup
UR

∣
∣〈ψ |(idD ⊗UR)|φ〉∣∣, (162)

where the maximisation is over all unitaries UR on R.

The following lemma is a direct consequence of LemmaB.3. It asserts that the fidelity
is monotonically non-decreasing when a partial trace is applied to both arguments.

Lemma B.4. For any two non-negative operators ρDE and σDE we have

F(ρD, σD) ≥ F(ρDE , σDE ). (163)

Using the Stinespring dilation theorem, the statement can be brought into the follow-
ing more general form.

Lemma B.5. For any trace-preserving completely positive map T we have

F(T (ρ), T (σ )) ≥ F(ρ, σ ). (164)

The next few claims allow us to keep track of the change of the fidelity when we
apply operators to its arguments.

Lemma B.6. For any non-negative operators ρ and σ and any operator W on the same
space we have

F(ρ,WσW †) = F(W †ρW, σ ). (165)

Proof. Let WD = W and let |ψ〉〈ψ |DR and |φ〉〈φ|DR be purifications of ρD = ρ and
σD = σ , respectively. Then, by Uhlmann’s theorem (Lemma B.3),

F(ρD,WDσDW
†
D) = sup

UR

∣
∣〈ψ |(WD ⊗UR)|φ〉∣∣ = sup

UR

∣
∣〈φ|(W †

D ⊗U †
R)|ψ〉∣∣

= F(σD,W †
DρDWD), (166)

where the maximisation is taken over the set of unitaries UR on R. ��
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Lemma B.7. Let ρ and σ be non-negative operators and let {Wd}d∈D be a family of
operators such that

∑
d∈D Wd = id. Then

∑

d∈D
F(W †

d ρWd , σ ) ≥ F(ρ, σ ). (167)

Proof. Let |ψ〉〈ψ |DR and |φ〉〈φ|DR be purifications ofρD = ρ andσD = σ , respectively.
By Uhlmann’s theorem (Lemma B.3), there exists a unitary UR on R such that

F(ρ, σ ) = ∣
∣〈ψ |(idD ⊗UR)|φ〉∣∣ =

∣
∣
∣
∑

d∈D
〈ψ |(Wd ⊗UR)|φ〉

∣
∣
∣ ≤

∑

d∈D

∣
∣〈ψ |(Wd ⊗UR)|φ〉∣∣.

(168)

The assertion follows because, again by Uhlmann’s theorem,

∣
∣〈ψ |(Wd ⊗UR)|φ〉∣∣ ≤ F(W †

d ρWd , σ ) (169)

holds for any d ∈ D. ��
Lemma B.8. Let ρDE and σDE be non-negative operators on D ⊗ E and let WE be a
trace non-increasing completely positive map on E. Then

F
(
ρDE , (ID ⊗ WE )(σDE )

) ≤ F(ρD, σD). (170)

Proof. Let XE �→ ∑
e WeXW

†
e be an operator-sum representation of WE . The second

argument of the fidelity on the left hand side of (170), σ ′
DE = (ID ⊗ WE )(σDE ), may

then be written as

σ ′
DE =

∑

e

(idD ⊗ We)σDE (idD ⊗ W †
e ). (171)

Because, by assumption,
∑

e W
†
e We ≤ idE , we have

σ ′
D = trE (σ ′

DE ) = trE
(∑

e

(idD ⊗ W †
e We)σDE

) ≤ trE (σDE ) = σD. (172)

Together with the fact that the square root is operator monotone (cf. Theorem V.1.9
of [5]), this implies

F(ρD, σ ′
D) = tr

(√√
ρDσ ′

D
√

ρD
) ≤ tr

(√√
ρDσD

√
ρD

) = F(ρD, σD). (173)

The claim then follows from Lemma B.4, which asserts that F(ρDE , σ ′
DE ) ≤

F(ρD, σ ′
D). ��

We also recall that the fidelity is continuous in its arguments with respect to the trace
norm.

Lemma B.9. Let ρ, ρ′, and σ be non-negative operators. Then

∣
∣F(ρ, σ ) − F(ρ′, σ )

∣
∣2 ≤ ‖ρ − ρ′‖1tr(σ ). (174)
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Proof. Let |φ〉DR be a purification of σD = σ . Furthermore, let |ψ〉DR , |ψ ′〉DR be
purifications of ρD = ρ, ρ′

D = ρ′ such that F(ρ, ρ′) = ∣
∣〈ψ |ψ ′〉∣∣ (cf. Lemma B.3) and

assume without loss of generality that 〈ψ |ψ ′〉 ≥ 0. We have

F(ρ, σ ) − F(ρ′, σ ) = sup
U

∣
∣〈ψ |(idD ⊗UR)|φ〉∣∣ − sup

U ′

∣
∣〈ψ ′|(idD ⊗U ′

R)|φ〉∣∣ (175)

≤ sup
U

∣
∣〈ψ |(idD ⊗UR)|φ〉∣∣ − ∣

∣〈ψ ′|(idD ⊗UR)|φ〉∣∣ (176)

≤ sup
U

∣
∣(〈ψ | − 〈ψ ′|)(idD ⊗UR)|φ〉∣∣ (177)

≤ sup
U

∥
∥|ψ〉 − |ψ ′〉∥∥2

∥
∥(idD ⊗UR)|φ〉∥∥2 (178)

= ∥
∥|ψ〉 − |ψ ′〉∥∥2

∥
∥|φ〉∥∥2, (179)

where we have used the Cauchy–Schwarz inequality. The claim then follows from
‖|φ〉‖22 = tr(σ ) and

∥
∥|ψ〉 − |ψ ′〉∥∥22 = tr(ρ) + tr(ρ′) − 2〈ψ |ψ ′〉 = tr(ρ) + tr(ρ′) − 2F(ρ, ρ′) ≤ ‖ρ − ρ′‖1,

(180)

where the inequality is known as the Fuchs–van de Graaf inequality [24].14 ��
Finally, we provide a lemma (Lemma B.11) that simplifies the evaluation of the

fidelity between permutation-invariant operators. It may be seen as a generalisation of
a known result on symmetric purifications, which we state as Lemma B.10 (see, e.g.,
Lemma II.5 of [14] for a proof). Specifically, LemmaB.11may be seen as a combination
of this result and Uhlmann’s theorem (Lemma B.3). We also note that the lemma may
be generalised to other symmetry groups (other than the symmetric group).

Lemma B.10. For any permutation-invariant operator ρDn on D⊗n and any space R
with dim(R) ≥ dim(D) there exists a permutation-invariant purification ρDn Rn on
(D ⊗ R)⊗n.

Lemma B.11. Let ρDn and σDn be permutation-invariant non-negative operators on
D⊗n and let ρDn Rn be a permutation-invariant purification of ρDn . Then there exists a
permutation-invariant purification σDn Rn of σDn such that

F(ρDn , σDn ) = F(ρDn Rn , σDn Rn ). (181)

Proof. The proof of this lemma essentially follows the lines of the standard proof of
Uhlmann’s theorem (see, e.g., Chapter 9 of [41]), while keeping track of the permutation
invariance the relevant operators.

For the following, we assume without loss of generality that ρDn and σDn are invert-
ible. (The claim for the cases where this assumption does not hold may be obtained by
considering the operators ρDn + ε idDn and σDn + ε idDn for ε > 0 and then taking the
limit ε → 0.)

14 The Fuchs–van de Graaf inequality is usually formulated for normalised ρ and ρ′ as 2 − 2F(ρ, ρ′) ≤
‖ρ − ρ′‖1. However, it is obvious from the proof in [24] that the more general inequality (180) holds for any
non-negative ρ and ρ′.
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Let |�〉Dn Rn be a vector in (D ⊗ R)⊗n such that ρDn Rn = |�〉〈�|DR and define

|�〉Dn Rn = (ρ
− 1

2
Dn ⊗ idRn )|�〉Dn Rn . (182)

Note that trRn (|�〉〈�|Dn Rn ) = idDn . It thus follows from the Schmidt decomposition
that |�〉Dn Rn has the form

|�〉Dn Rn =
∑

x

|dx 〉Dn ⊗ |rx 〉Rn , (183)

where {|dx 〉Dn }x and {|rx 〉Rn }x are orthonormal bases of D⊗n and R⊗n , respectively.
Let UDn be the unitary operator in the left polar decomposition of

√
ρDn

√
σDn , i.e.,

√
ρDn

√
σDn = QDnUDn , (184)

where

QDn =
√

(
√

ρDn
√

σDn )(
√

ρDn
√

σDn )† =
√√

ρDnσDn
√

ρDn (185)

is non-negative. We now define the purification σDn Rn = |�〉〈�|Dn Rn by

|�〉 = (
√

σDnU †
Dn ⊗ idRn )|�〉. (186)

It is readily verified that this is indeed a purification of σDn .
The fidelity between the purifications is given by

F(ρDn Rn , σDn Rn ) = ∣
∣〈�|�〉∣∣ = ∣

∣〈�|(√ρDn
√

σDnU † ⊗ idRn )|�〉∣∣. (187)

Exploiting now the particular form (183) of |�〉 as well as (184), this can be rewritten
as

F(ρDn Rn , σDn Rn )= ∣
∣
∑

x

〈dx |√ρDn
√

σDnU †
Dn |dx 〉

∣
∣= ∣

∣tr(
√

ρDn
√

σDnU †
Dn )

∣
∣= tr(QDn ).

(188)

The claim (181) then follows by inserting the explicit expression for QDn , i.e.,

tr(QDn ) = ∥
∥√

ρDn
√

σDn
∥
∥
1 = F(ρDn , σDn ). (189)

To verify that σDn Rn is permutation-invariant, we first note that for any permutation-
invariant Hermitian operator X on an n-fold product space and for any real function f the
operator f (X) is also permutation-invariant. (To see this, consider the decomposition
X = ∑

i xi�i , where �i are the projectors onto the eigenspaces of X and xi are
the corresponding eigenvalues. Because [X, π ] = 0 for any permutation π , we also
have [�i , π ] = 0 for any i . Using now that f (X) = ∑

i f (xi )�i , we conclude that
[ f (X), π ] = 0.) We therefore know, in particular, that

[ρ
1
2
Dn , π ] = 0 and [ρ− 1

2
Dn , π ] = 0 and [σ

1
2
Dn , π ] = 0 and [σ− 1

2
Dn , π ] = 0 (190)

for any permutation π . Furthermore, it follows from the explicit expression for QDn that
this operator is also permutation-invariant. Similarly, since U †

Dn can be written as

U †
Dn = σ

− 1
2

Dn ρ
− 1

2
Dn QDn , (191)

it is also permutation-invariant. By assumption, we also haveπ |�〉Dn Rn = |�〉Dn Rn . Be-
cause |�〉Dn Rn is obtained by multiplying permutation-invariant operators to |�〉Dn Rn ,
we conclude that π |�〉Dn Rn = |�〉Dn Rn , i.e., σDn Rn is invariant under permutations. ��
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C. On the Schur–Weyl Duality

The following lemma follows immediately from the considerations in Chapter 6 of [26]
(see, in particular, Eq. 6.25).

Lemma C.1. Let D and E be Hilbert spaces with dim(D) = dim(E) = d and let
n ∈ N. Furthermore, let�n,d be the set of Young diagrams of size n with at most d rows,
and, for any λ ∈ �n,d , let Uλ and Vλ be the corresponding irreducible representations
of the unitary group U (d) and the symmetric group Sn, respectively, so that, according
to the Schur–Weyl duality (see, e.g., Theorem 1.10 of [13])

D⊗n ∼=
⊕

λ∈�n,d

UD,λ ⊗ VD,λ (192)

E⊗n ∼=
⊕

λ∈�n,d

UE,λ ⊗ VE,λ. (193)

Then there exists a family {|ψλ〉VD,λVE,λ
}λ∈�n,d of maximally entangled normalised

vectors on VD,λ ⊗ VE,λ such that any vector |�〉 ∈ Symn(D ⊗ E) in the symmetric
subspace of (D ⊗ E)⊗n can be decomposed as

|�〉 =
∑

λ

|φλ〉UD,λUE,λ
⊗ |ψλ〉VD,λVE,λ

, (194)

where {|φλ〉UD,λUE,λ
}λ∈�n,d is a family of (not necessarily normalised) vectors onUD,λ⊗

UE,λ.

Proof. According to (192) and (193), the space (D ⊗ E)⊗n decomposes as

(D ⊗ E)⊗n ∼=
( ⊕

λ∈�n,d

UD,λ ⊗ VD,λ

)
⊗

( ⊕

λ′∈�n,d

UE,λ′ ⊗ VE,λ′
)
. (195)

Any vector |�〉 ∈ (D ⊗ E)⊗n can therefore always be written as

|�〉 =
∑

λ,λ′∈�n,d

∑

i

|φλ,λ′,i 〉UD,λUE,λ′ ⊗ |ψλ,λ′,i 〉VD,λVE,λ′ , (196)

where, for any λ, λ′ ∈ �n,d , {|φλ,λ′,i 〉UD,λUE,λ′ }i and {|ψλ,λ′,i 〉VD,λVE,λ′ }i are families of
vectors in UD,λ ⊗UE,λ′ and VD,λ ⊗ VE,λ′ , respectively.

For any λ ∈ �n,d , let {|vk〉VD,λ
}k and {|v̄k〉VE,λ

}k be orthonormal bases of VD,λ and
VE,λ, respectively, with respect to which the representations of the symmetric group Sn
are given by the same real-valued matrices. (Such bases always exist, see, e.g., [33].)
We then define the maximally entangled vector |ψλ〉VD,λVE,λ

on VD,λ ⊗ VE,λ by

|ψλ〉VD,λVE,λ
=

√
1

dim Vλ

∑

k

|vk〉VD,λ
⊗ |v̄k〉VE,λ

. (197)

Now, to prove the claim (194) for any permutation-invariant |�〉, it suffices to show
that the vectors on VD,λ ⊗ VE,λ′ in (196) satisfy

|ψλ,λ′,i 〉VD,λVEλ′ =
{

|ψλ〉VD,λVE,λ
if λ = λ′

0 otherwise
(198)

for all λ, λ′ ∈ �n,d and for all i .
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For any permutation π , let Vλ(π) be its action on the irreducible space Vλ. Using that,
by definition, the matrix elements 〈vk |VD,λ(π)|vk′ 〉 = 〈v̄k |VE,λ(π)|v̄k′ 〉 are real-valued,
it is easily verified that

(VD,λ(π) ⊗ VE,λ(π))|ψλ〉VD,λVE,λ
= |ψλ〉VD,λVE,λ

(∀π). (199)

Furthermore, the Schur–Weyl duality (cf. Theorem 1.10 of [13]) states that π acts on⊕
λ Uλ ⊗ Vλ as

V (π) =
⊕

λ∈�n,d

idUλ ⊗ Vλ(π), (200)

Using this and that the vector |�〉 is by assumption invariant under the action of π , we
find that

(VD,λ(π) ⊗ VE,λ′(π))|ψλ,λ′,i 〉VD,λVE,λ′ = |ψλ,λ′,i 〉VD,λVE,λ′ (∀π) (201)

holds for all λ, λ′ ∈ �n,d and for all i for which the corresponding term in the sum (196)
is nonzero.

For any such triple (λ, λ′, i) let Hλ,λ′,i be the homomorphism between the irreducible
representations VE,λ′ and VE,λ defined by

〈α|Hλ,λ′,i |β〉 = 〈ψλ,λ′,i |(idD,λ ⊗ |β〉〈α|)|ψλ〉, (202)

for any |α〉 ∈ VE,λ, |β〉 ∈ VE,λ′ . Using (201) and (199) we find that, for any permutation
π ,

〈α|Hλ,λ′,i VE,λ′(π)|β〉 = 〈ψλ,λ′,i |
(
idD,λ ⊗ VE,λ′(π)|β〉〈α|)|ψλ〉

= 〈ψλ,λ′,i |
(
VD,λ(π)† ⊗ |β〉〈α|)|ψλ〉

= 〈ψλ,λ′,i |
(
idD,λ ⊗ |β〉〈α|VE,λ(π)

)|ψλ〉
= 〈α|VE,λ(π)Hλ,λ′,i |β〉. (203)

This implies that Hλ,λ′,i VE,λ′(π) = VE,λ(π)Hλ,λ′,i , i.e., Hλ,λ′,i commutes with the
action of the symmetry group. Hence, by Schur’s lemma (see, e.g., Lemma 0.8 of [13])
and the fact that the representations VE,λ and VE,λ′ are inequivalent for λ �= λ′, we find

Hλ,λ′,i = cλ,iδλ,λ′ idVE,λ
, (204)

for some appropriately chosen coefficients cλ,i . Using (202) with |α〉 = |v̄k〉VE,λ
and

|β〉 = |v̄k′ 〉VE,λ′ we obtain

cλ,iδλ,λ′δk,k′ = 〈v̄k |Hλ,λ′,i |v̄k′ 〉 = 〈ψλ,λ′,i |(idD,λ ⊗ |v̄k′ 〉〈v̄k |)|ψλ〉
= 1√

dim(Vλ)
〈ψλ,λ′,i |(|vk〉 ⊗ |v̄k′ 〉). (205)

Since this holds for any k, k′, we conclude that |ψλ,λ′,i 〉VD,λVE,λ′ is proportional to
|ψλ〉VD,λVE,λ

if λ = λ′ and 0 otherwise. Note that, for λ = λ′, the corresponding propor-
tionality constant can without loss of generality be absorbed in |φλ,λ′,i 〉UD,λUE,λ′ in the
sum (196), so that |ψλ,λ,i 〉VD,λVE,λ

is normalised. Hence, noting that |ψλ〉VD,λVE,λ
is also

normalised, we have established (198). ��
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D. Strong Faithfulness of Squashed Entanglement

As an example for how our result can be applied, we present here an argument proposed
by Li and Winter. The argument is described in detail in [38]. We summarise it here for
convenience.

Squashed entanglement is a measure of entanglement defined for any bipartite state
ρAC as

Esq(ρAC ) = 1

2
inf

ρACE
I (A : C |E)ρ, (206)

where the infimum ranges over all non-negative extensions ρACE of ρAC [17]. It is
known that squashed entanglement is faithful, i.e., strictly positive for any entangled
state [7,37]. In other words, Esq(ρAC ) = 0 if and only if the state ρAC is separable.
Theorem 5.1 implies a novel quantitative version of this claim. The main idea is to relate
Esq(ρAC ) to the distance between ρAC and the closest state that is k-extendible (see
Footnote 6 for a definition).

Theorem D.1 ([38]). For any density operator ρAC on A⊗C and any k ∈ N there exists
a k-extendible density operator ωAC such that15

�(ρAC , ωAC ) ≤ (k − 1)

√
ln 2

2
Esq(ρAC ). (207)

Proof. Let ρACE be a non-negative extension of ρAC . Theorem 5.1 implies that there
exists a trace-preserving completely positive reconstruction map TE→CE such that

�
(
ρACE , (IA ⊗ TE→CE )(ρAE )

) ≤ δ = √
ln(2)I (A : C |E)ρ (208)

(see Eq. 6).
For i ∈ N, define ρi

AC1···Ci E
inductively by

ρi+1
AC1···Ci+1E = (IAC1···Ci ⊗ TE→Ci+1E )(ρi

AC1···Ci E ), (209)

and ρ1
AC1E

= ρACE . Because the trace distance cannot increase under the action of
TE→CE (see Eq. 20) we have

�(ρi
ACi E , ρi+1

ACi+1E ) ≤ �(ρi−1
AE , ρi

AE ) ≤ �(ρi−1
ACi−1E

, ρi
ACi E ) (210)

for i > 1. Furthermore, from (208) we have

�(ρ1
AC1E , ρ2

AC2E ) = �
(
ρACE , (IA ⊗ TE→CE )(ρAE )

) ≤ δ. (211)

The combination of these inequalities yields

�(ρi
ACi E , ρi+1

ACi+1E ) ≤ δ (212)

for any i ∈ N. We now apply the triangle inequality to conclude that

�(ρACE , ρ
j
AC j E

) = �(ρ1
AC1E , ρ

j
AC j E

) ≤
j−1∑

i=1

�(ρi
ACi E , ρi+1

ACi+1E ) = ( j − 1)δ (213)

15 We formulate the claim here for the trace distance �(·, ·), but note that it also holds for the purified
distance defined in [50].
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for any j ∈ N. Furthermore, because in the definition of the density operators ρi
AC1···Ci E

(see Eq. 209) the reconstruction map does not act on the systems C1, . . .Ci , we have
ρ
j
AC1...C j

= ρk
AC1...C j

for any j ≤ k, and hence

�(ρAC , ρk
AC j

) = �(ρAC , ρ
j
AC j

) ≤ ( j − 1) · δ. (214)

Define now the density operator

ω̄AC1···Ck = 1

k!
∑

π

ρk
ACπ(1)···Cπ(k)

, (215)

where the sum ranges over all permutations of {1, . . . , k}. The density operator ωAC =
ω̄AC1 is then k-extendible by construction. Using the convexity of the trace distance we
find

�(ρAC , ωAC ) = �(ρAC , ω̄AC1) ≤ 1

k!
∑

π

�(ρAC , ρk
ACπ(1)

) = 1

k

k∑

j=1

�(ρAC , ρk
AC j

).

(216)

Inserting now the bound (214) we conclude that

�(ρAC , ωAC ) ≤ 1

k

k∑

j=1

( j − 1) · δ ≤ k − 1

2
· δ = k − 1

2

√
ln(2)I (A : C |E)ρ. (217)

The claim of the theorem follows because the above holds for any non-negative
extension ρACE of ρAC . ��

Weremark that the boundprovided byTheoremD.1does not dependon the dimension
of the two subsystems A and C . As mentioned above, this yields a quantitative claim on
the faithfulness of squashed entanglement, which we formulate as Corollary D.3 below.
Its proof uses the following statement about the distance of k-extendible states from the
set of separable states, which we denote by SA:C .

Lemma D.2. For any k-extendible density operator ωAC on A ⊗ C

inf
σAC∈SA:C

�(ωAC , σAC ) ≤ 2
(dimC)2

k
. (218)

Proof. By definition, there exists a density operator ω̄AC1···Ck such that ωAC = ω̄ACi for
i = 1, . . . , k. Because this condition still holds if the order of the subsystemsC1, . . . ,Cn
is permuted, one can assume without loss of generality that ω̄AC1...Ck is invariant under
such permutations. The claim then follows immediately from Theorem II.7′ of [14]. ��
Corollary D.3 ([38]). For any density operator ρAC on A ⊗ C

inf
σAC∈SA:C

�(ρAC , σAC ) ≤ 2 dimC 4
√
2 ln(2)Esq(ρAC ). (219)
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Proof. LetωAC be a k-extendible density operator that satisfies (207). Using the triangle
inequality we can combine this with Lemma D.2 to obtain

inf
σAC∈SA:C

�(ρAC , σAC ) ≤ �(ρAC , ωAC ) + inf
σAC∈SA:C

�(ωAC , σAC )

≤ (k − 1)

√
ln 2

2
Esq(ρAC ) + 2

(dimC)2

k
. (220)

Inserting k =
⌈

4
√

8
ln(2)Esq(ρAC )

dimC
⌉
then yields the claim. ��

Corollary D.3 quantifies the faithfulness of squashed entanglement in terms of the trace
norm. Compared to previously known versions of this claim [7], only the dimension of
one the two subsystems enters as a factor in the bound (219). (Because of the symmetry
of the other involved quantities, one can always choose the lower-dimensional one.) We
also note that the example of the totally antisymmetric state on A ⊗ C with dim A =
dimC = d shows that such a factor is necessary. Indeed, the squashed entanglement of
this state is of the order O(1/d) [16] whereas its trace distance to the closest separable
state cannot be smaller than 1

4 . (To see this, note that for any product state σA ⊗ σC

we have tr(σA ⊗ σC�as) ≤ 1
2 where �as denotes the projector onto the antisymmetric

subspace of A ⊗ C .)
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