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Abstract: Recently, 23 cases of umbral moonshine, relating mock modular forms and
finite groups, have been discovered in the context of the 23 even unimodular Niemeier
lattices. One of the 23 cases in fact coincides with the so-called Mathieu moonshine,
discovered in the context of K3 non-linear sigma models. In this paper we establish
a uniform relation between all 23 cases of umbral moonshine and K3 sigma models,
and thereby take a first step in placing umbral moonshine into a geometric and physical
context. This is achieved by relating the ADE root systems of the Niemeier lattices to
the ADE du Val singularities that a K3 surface can develop, and the configuration of
smooth rational curves in their resolutions. A geometric interpretation of our results is
given in terms of the marking of K3 surfaces by Niemeier lattices.
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1. Introduction and Summary

Mock modular forms are interesting functions playing an increasingly important role
in various areas of mathematics and theoretical physics. The “Mathieu moonshine”
phenomenon relating certain mock modular forms and the sporadic group M24 was
surprising, and its apparent relation to non-linear sigmamodels of K3 surfaces evenmore
so. The fundamental role played by two-dimensional supersymmetric conformal field
theories and K3 compactifications makes this moonshine relation interesting, not just
for mathematicians but also for string theorists. In 2013 it was realised that this Mathieu
moonshine is but just one case out of 23 such relations, called “umbral moonshine”. The
23 cases admit a uniform construction from the 23 even unimodular positive-definite
lattices of rank 24 labeled by their non-trivial root systems. While the discovery of these
23 cases of moonshine perhaps adds to the beauty of the Mathieu moonshine relation,
it also adds more mystery. In particular, it was previously entirely unclear what the
physical or geometrical context for these other 22 instances of umbral moonshine could
be. In this paper we establish a relation between K3 sigma models and all 23 cases of
umbral moonshine, and thereby take a first step in incorporating umbral moonshine into
the realm of geometry and theoretical physics.

Background. Inmathematics, the term “moonshine” is used to refer to a particular type of
relation betweenmodular objects and finite groups. It was first introduced to describe the
remarkable “monstrous moonshine” phenomenon [1] relatingmodular functions such as
the J -function discussed below and the “Fischer–Griess monster group” M, the largest
of the 26 sporadic groups in the classification of finite simple groups. The study of this
mysterious phenomenon was initiated by the observation by J. McKay that the second
coefficient in the Fourier expansion of the modular function

J (τ ) = J (τ + 1) = J (−1/τ)

=
∑

m≥−1

a(m) qm = q−1 + 196884 q + 21493760 q2 + 864299970 q3 + · · ·

(1.1)

with q = e2π iτ satisfies 196884 = 196883+1, and 196883 is precisely the dimension of
the smallest non-trivial representation of M. Note that the J -function has mathematical
significance as the unique holomorphic function on the upper-half plane H invariant
under the natural action of PSL2(Z) generated by τ → τ + 1 and τ → −1/τ , which
moreover has the behaviour J (τ ) = q−1 + O(q) near the cusp τ → i∞. Why and how
the specific modular functions and the monster group, usually thought of as belonging to
two very different branches of mathematics, are related to each other, remained a puzzle
until about a decade after its discovery.

The key structure that unifies the two turns out to be that of a (chiral) 2d conformal
field theory (CFT), or vertex operator algebra inmoremathematical terms [2,3]. The two
sides of moonshine—the modularity and the finite group symmetry—can naturally be
viewed as the manifestation of two kinds of symmetries—the world-sheet and the space-
time symmetries—the CFT possesses. The mathematical proof of monstrous moonshine
is achieved by constructing a generalised Kac–Moody algebra based on the above chiral
CFT and utilising the no-ghost theorem of string theory, which roughly corresponds to
considering the full 26 dimensions, including the 2 light-cone directions of the bosonic
string theory [4].We refer to, for instance, [5] for an introduction on the theory ofmodular
forms and to [6] or the introduction of [7] for a summary of monstrous moonshine.
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In 2010, an entirely unexpected new observation, pointing towards a new type of
moonshine relating “mock modular forms” and finite groups, was made in the context of
the elliptic genus of K3 surfaces. Mock modular forms embody a novel variation of the
concept of modular forms and are interesting due to their significance in number theory
aswell as awide range of applications (cf. (3.3)). See, for instance, [8,9] for an expository
account on mock modular forms. From a physical point of view, as demonstrated in a
series of recent works, the “mockness” of mock modular forms is often related to the
non-compactness of relevant spaces in the theory. See, for instance, [10–13].

Aswewill discuss inmore detail in Sect. 4, the elliptic genusEG(K3) of K3 surfaces
enumerates the BPS states of a K3 non-linear sigma model, and by taking the N = 4
superconformal symmetry of this theory into account, one arrives at a weight 1/2 mock
modular form with Fourier expansion [14–16]

H
X=A24

1
1 (τ ) = 2q−1/8(−1 + 45 q + 231 q2 + 770 q3 + O(q4)). (1.2)

The observation by Eguchi–Ooguri–Tachikawa then states that the numbers 45, 231,
and 770 are all dimensions of certain irreducible representations of the sporadicMathieu
group M24 [17]. This connection has since been studied, refined, extended, and finally
established in [18–28]. From a mathematical point of view, the prospect of a novel type
of moonshine for mock modular forms is extremely exciting. From a physical point
of view, the ubiquity of K3 surfaces and the importance of BPS spectra in the study
of string theory makes this “Mathieu moonshine” potentially much more relevant than
the previous monstrous moonshine. See [29] for a review and [30–40] for some of the
explorations in string theory and K3 conformal field theories inspired by this connection.

In 2013, the above relation was realised to be just the tip of the iceberg, or less
metaphorically just one case out of a series of such relations, called “umbral moonshine”
[7,41]. As will be reviewed in more detail in Sect. 3, to each one of the 23 Niemeier
lattices LX—the 23 even unimodular positive-definite lattices of rank 24 labeled by their
non-trivial root systems X—one can attach, on the one hand, a finite group GX , and, on
the other hand, a vector-valuedmockmodular form HX , such that the Fourier coefficients
of HX are again suggestive of a relation to certain representations of GX , analogous to

the observation on the functions J (τ ) and H
X=A24

1
1 (τ ) in (1.1) and (1.2). Further evidence

for this relation was provided by relating characters of the same GX -representations to
the Fourier coefficients of other mock modular forms HX

g , for each conjugacy class [g]
of GX . More precisely, it was conjectured that an infinite-dimensional GX -module K X

reproduces the mock modular forms HX
g as its graded g-characters. The finite groupGX

is defined by considering the symmetries of the Niemeier lattice LX , while the mock
modular form is determined by its root system X . The important role played by the
rank 24 root systems X suggests the importance of the corresponding 24-dimensional
representation ofGX . For instance, for the Niemeier lattice with the simplest root system
X = A24

1 , the mock modular form H A24
1 is simply given by the function (1.2) above,

and the finite group is GX ∼= M24. In this case, the umbral moonshine is the Mathieu
moonshine first observed in the context of the K3 elliptic genus that we described
above. Given the uniform construction of the 23 instances of umbral moonshine from
the Niemeier lattices LX , one is naturally led to the following questions:What about the
other 22 cases of umbral moonshine with X �= A24

1 ? What, if any, is the physical and
geometrical relevance of umbralmoonshine? Are they also related to string or conformal
field theories on K3? What is the relation between K3 and the Niemeier lattices LX?
And the group GX? The mock modular form H X and the underlying GX–module K X?
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Summary. In the present paper we propose a first step in answering the above questions.
To discuss the relation between the mock modular form HX and the K3 elliptic genus,
we first take a closer look at the construction of HX from the root system X . For any of
the 23 Niemeier lattices, the root system is a union of simply-laced root systems with an
ADE classificationwith the sameCoxeter numberm. As is well-known, awide variety of
elegant structures in mathematics and physics admit an ADE classification. Apart from
the simply-laced root systems, another such structure that will be important for us is
that of modular invariant combinations of characters of the A(1)

1 Kac–Moody algebra at
levelm−2 [42]. As will be reviewed in more detail in Sect. 2, this classification leads to
the introduction of the so-called Cappelli–Itzykson–Zuber matrices for every ADE root
system, and thesematrices in turn determine the relevantmockmodular properties,which
uniquely determine HX when combined with a certain analyticity condition. Hence, the
Cappelli–Itzykson–Zuber matrices �� constitute a key element in the construction of
the 23 instances of umbral moonshine.

By itself, the question of the classification of certainmodular invariants seems remote
from any physics or geometry. However, the parafermionic description of the N = 2
minimal models relates this classification to that of theN = 2 minimal superconformal
field theories [43–46]. Moreover, their seemingly mysterious ADE classification can be
related to the ADE classification of du Val (or Kleinian, or rational) surface singularities
[45,46], whose minimal resolution gives rise to smooth rational (genus 0) curves with
intersection given by the corresponding ADE Dynkin diagram. A third way to think
about the ADE classification is the fact that these du Val singularities are isomorphic
to the quotient singularity C

2/G, with G being the finite subgroup of SU2(C) with the
corresponding ADE classification [47]. Therefore, a perhaps simple-minded but logical
step towards understanding the physical and geometrical context of umbral moonshine
would be to take the ADE origin of the mock modular form HX seriously. In particular,
we would like to explore if the ADE-ology in umbral moonshine can be related to that
of the du Val singularities.

Recall that the du Val singularities are precisely the singularities a K3 surface can
develop. After computing the elliptic genus of du Val singularities (see Sect. 2), one
realises that the K3 elliptic genus can naturally be split into two parts: one is the
contribution from the configuration of the singularities given by X and the other is
the contribution from the mock modular form HX . Equipped with the mock modu-
lar form HX for the other 22 Niemeier root systems X constructed in umbral moon-
shine, one finds that the same splitting holds uniformly for all 23 instances of umbral
moonshine (cf. (4.9)). Note that this splitting makes no reference to the N = 4 char-
acters, although for the special case X = A24

1 the two considerations render the same
result.

While the above fact might be surprising and suggestive, one should be careful not to
claim a strong connection between umbral moonshine and K3 string theory too quickly:
it’s logically possible that the above relation is just a consequence of the fact that the
space of the relevant modular objects, the Jacobi forms of weight 0 and index 1 to be
more precise, is very constrained and in fact only one-dimensional. See Appendix B for
more details.

To gather more evidence on the umbral moonshine—a conjecture on the existence
of a GX–module K X , which (re)produces the mock modular forms HX

g , [g] ⊂ GX

as its graded characters—and the K3 sigma model, one should compare the way GX

acts on K X with the way the BPS spectrum of the K3 CFT transforms under its finite
group symmetry G, when such a non-trivial G exists. Let us first focus on the geometric
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symmetries of K3 surfaces (as opposed to “stringy” CFT symmetries without direct geo-
metric origins). As we will review in more detail in Sect. 5, thanks to the global Torelli
theorem for K3, we know that a finite group G is the group of hyper-Kähler-preserving
symmetries of a certain K3 surface M if and only if it acts on the 24-dimensional K3
cohomology lattice H∗(M, Z) in a certain way. Relating this 24-dimensional represen-
tation of G to the natural 24-dimensional representation of GX induced from its action
on the root system X , this translates into a criterion for a conjugacy class [g] ⊂ GX to
arise as K3 symmetries for each of the 23 GX .

On the one hand, umbral moonshine suggests a “twined” function Z X
g for each [g] ⊂

GX , where Z X
g = EG(K3) for the special case that [g] is the identity class (cf. (4.12)).

In particular, from this consideration we arrive at a conjecture for the elliptic genus
of the du Val singularity twined by its symmetries given by the automorphism of the
corresponding Dynkin diagram. On the other hand, whenever the CFT admits a non-
trivial finite automorphism groupG, one can compute the elliptic genus “twined” by any
g ∈ G. These twined elliptic genera EGg(K3) provide information about the Hilbert
space as a representation of G. As a result, for a conjugacy class [g] ⊂ GX arising from
K3 symmetries, we have two ways to attach a twined function—Z X

g and EGg(K3)—to
such a “geometric” conjugacy class of [g] ⊂ GX . It turns out that they coincide for
all the geometric conjugacy classes [g] of any one of the 23 GX . This identity clearly
provides non-trivial evidence that all 23 instances of umbral moonshine are related to
K3 non-linear sigma models.

Recall that in arriving at the above relation we have interpreted the ADE root sys-
tems X as the configuration of rational curves given by the ADE singularities. The
above result hence suggests that it might be fruitful to study the symmetries of dif-
ferent K3 surfaces with distinct configurations of rational curves in a different frame-
work corresponding to the 23 cases of umbral moonshine. In fact, this has been imple-
mented in a recent analysis of the relation between the K3 Picard lattice, K3 sym-
plectic automorphisms, and the Niemeier lattices, through a “marking” of a K3 sur-
face M by one of the LX , such that the Dynkin diagram obtained from the smooth
rational curves of M is a sub-diagram of X [48,49]. As will be discussed in more
detail in Sect. 5, through this marking by the Niemeier lattice LX , the root sys-
tem X obtains the interpretation as the “enveloping configuration of smooth rational
curves” while the finite group GX is naturally interpreted as the “enveloping symme-
try group” of the K3 surfaces that can be marked by the given LX . On the one hand,
this provides a geometric interpretation of our results. On the other hand, one can view
our results as a moonshine manifestation and extension of the geometric analysis in
[48].

The organisation of the paper is as follows. In Sect. 2 we compute the elliptic genus
of the ADE du Val singularities that K3 surfaces can develop. In Sect. 3 we review the
umbral moonshine construction from 23 Niemeier lattices and introduce the necessary
ingredients for later calculations. Utilising the results of Sect. 2, in Sect. 4 we establish
the relation between the (twined) elliptic genus and the mock modular forms of umbral
moonshine. In Sect. 5 we provide a geometric interpretation of this result. In Sect. 6 we
close this paper by discussing some open questions and point to some possible future
directions. In Appendix A we collect useful definitions. In Appendix B we present
the calculations and proofs, and present our conjectures for the twined (or equivariant)
elliptic genus for the du Val singularities. The explicit results for the twining functions
are recorded in the Appendix C.
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2. The Elliptic Genus of Du Val Singularities

The rational singularities in two (complex) dimensions famously admit an ADE classi-
fication. See, for instance, [50]. They are also called the du Val or Kleinian singularities
and are isomorphic to the quotient singularity C

2/G, with G being the finite subgroup
of SU2(C) with the corresponding ADE classification [47]. Any such singularity has a
unique minimal resolution. The so-called resolution graph, the graph of the intersections
of the smooth rational (genus 0) curves of theminimal resolution, gives precisely the cor-
responding ADE Dynkin diagram. We will denote by� the corresponding simply-laced
irreducible root system. In terms of hypersurfaces, it is given by W 0

� = 0 with

W 0
Am−1

= x21 + x22 + xm3 (2.1)

W 0
Dm/2+1

= x21 + x22 x3 + xm/2
3 (2.2)

W 0
E6

= x21 + x32 + x43 (2.3)

W 0
E7

= x21 + x32 + x2x
3
3 (2.4)

W 0
E8

= x21 + x32 + x53 . (2.5)

These singularities show up naturally as singularities of K3 surfaces and play an impor-
tant role in various physical setups, such as in heterotic–type II dualities and in geometric
engineering, in string theory compactifications. See, for instance, [51,52] and [53].

The 2d conformal field theory description of these (isolated) singularities was pro-
posed in [54] to be the product of a non-compact super-cosetmodel SL(2,R)

U (1) (theKazama–
Suzuki model [55]) and anN = 2 minimal model, followed by an orbifoldisation by the
discrete groupZ/mZ, wherem is the Coxeter number of the corresponding simply-laced
root system (cf. Table 1). In other words, we consider the super-string background that
is schematically given by

Minkowski space-time R
5,1⊗

(
N =2 minimal ⊗N = 2

SL(2, R)

U (1)
coset

)
/(Z/mZ).

(2.6)

Recall that, when the minimal model is chosen to be the “diagonal” Am−1 theory, the
above theory also describes the near-horizon geometry of m NS five-branes [56]. Note
that this point of view plays an important role in the work of [37,57], also in the context
of discussing the possible physical context of umbral moonshine.

To resolve the singularity let us consider W 0
� = μ. In [54] it was proposed that the

sigma model with the non-compact target space W 0
� = μ has an alternative description

as the Landau–Ginsburg model with superpotential

W̃� = −μx−m
0 +W 0

�,

Table 1. Simply-laced root systems, Coxeter numbers and Coxeter exponents

Am−1 D1+m/2 E6 E7 E8

Coxeter number m m 12 18 30

Coxeter exponents 1, 2, 3,
. . . ,m − 1

1, 3, 5, . . . ,
m − 1,m/2

1, 4, 5, 7, 8, 11 1, 5, 7, 9,
11, 13, 17

1, 7, 11, 13,
17, 19, 23, 29
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where x0 is an additional chiral superfield and m is again given by the Coxeter number
of �.

The purpose of the rest of the section is to compute the elliptic genus of (the super-
symmetric sigma model with the target space being) the du Val singularities. First let
us focus on the minimal model part. The N = 2 minimal models are known to have
an ADE classification [43–46],1 based on an ADE classification of the modular invari-
ant combinations of chiral (holomorphic) and anti-chiral (anti-holomorphic) characters
of the A(1)

1 Kac–Moody algebra [42]. In this language, the ADE classification can be
thought of as a classification of the possible ways to consistently combine left- and
right-movers. To be more precise, in [42] it was found that a physically acceptable and
modular invariant combination of characters of the A(1)

1 Kac–Moody algebra at level
m − 2 is necessarily given by a 2m × 2m matrix �� corresponding to an ADE root
system �, where we say that a modular invariant is physically acceptable if it satisfies
certain integrality, positivity and normalisation conditions. See [42] for more details.
The list of these matrices is given in Table 3. The relation between �� and the ADE
root system � lies in the following two facts. First, �� is a 2m × 2m matrix where
m is the Coxeter number of �. Moreover, ��

r,r − ��
r,−r = α�

r for r = 1, . . . ,m − 1
coincides with the multiplicity of r as a Coxeter exponent of � (cf. Table 1). Recall that
a Coxeter element

∏r
i=1 ri of the Weyl group of a rank-r root system is the product of

reflections with respect to all simple roots (the order in which the product is taken does
not change the conjugacy class of the element), and the Coxeter number is the order of
such a Coxeter element.

A quantity that played an important role in the CFT/LG correspondence [60] as well
as in the recent developments of mock modular form moonshine is the elliptic genus.
From a physical point of view, the elliptic genus for a 2d N = (2, 2) superconformal
field theory T is defined as [61]

ZT (τ, z) = trHT ,RR

(
(−1)FR+FL y J0qHL q̄HR

)
(2.7)

where FR,L denotes the right- and left-moving fermion number respectively. Moreover,
the left- (right-) movingHamiltonian is given by HL = L0−cL/24 (HR = L̄0−cR/24),
where J0, L0, J̄0, L̄0 are the zero modes of the left- and right-moving copies of theU (1)
R-current andVirasoro parts of theN = 2 superconformal algebra, respectively.HT ,RR
denotes the space of quantum states of theory T in the Ramond–Ramond sector, and cL
and cR denote the left- and right-moving central chargeof theSCFT. In the above formula,
τ takes values in the upper-half planeHwhile z takes values in the complex planeC, and
we have written q = e(τ ) and y = e(z). Throughout the paper we use e(x) := e2π i x .
Because of the insertion (−1)FR , the elliptic genus only receives contributions from left-
moving states that are paired with a right-moving Ramond ground state and is therefore
holomorphic, at least when the spectrum of the theory is discrete. As such, it is rigid in
the sense of being invariant under any continuous deformation of the theory.

The elliptic genus of the N = 2 minimal model can be computed in various ways.
First, from the relation to the parafermion theory, we obtain that the building block of the
elliptic genus is the function χ̃r

s (τ, z), where |s| ≤ r − 1 < m [44,62]. See Appendix B
for the definition of χ̃r

s . From the known spectrum of the minimal model given in terms
of the matrix �� and the identity χ̃r

s (τ, 0) = δr,s − δr,−s it is straightforward to see

1 Strictly speaking, this classification applies when one requires the presence of a spectral flow symmetry.
See for instance [58,59] for a discussion on related subtleties.
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that the elliptic genus of the minimal model corresponding to the ADE root system � is
given by [63,64]

Z�
minimal(τ, z) =

∑

r,r ′∈Z/2mZ

��
r,r ′ χ̃r

r ′(τ, z) = Tr(�� · χ̃ ). (2.8)

We again refer to Appendix B for more details.
On the other hand, the Landau–Ginzburg description facilitates a free-field computa-

tion for the elliptic genus and one obtains an infinite-product expression for Z�
minimal(τ, z)

[61]. In terms of the Jacobi theta function (A.1), the results are [61,64]

Z�
minimal = θ1

(
τ, m−1

m z
)

θ1
(
τ, z

m

) for � = Am−1 (2.9)

for the A-series where m ≥ 2,

Z�
minimal = θ1

(
τ, m−2

m z
)
θ1

(
τ, m+2

2m z
)

θ1
(
τ, 2z

m

)
θ1

(
τ, m−2

2m z
) for � = Dm

2 +1
(2.10)

for the D series where m ≥ 6 and even, and finally

Z E6
minimal = θ1

(
τ, 3

4 z
)
θ1

(
τ, 2

3 z
)

θ1
(
τ, z

4

)
θ1

(
τ, z

3

) (2.11)

Z E7
minimal = θ1

(
τ, 7

9 z
)
θ1

(
τ, 2

3 z
)

θ1
(
τ, 2

9 z
)
θ1

(
τ, z

3

) (2.12)

Z E8
minimal = θ1

(
τ, 4

5 z
)
θ1

(
τ, 2

3 z
)

θ1
(
τ, z

5

)
θ1

(
τ, z

3

) (2.13)

for the E-type cases. The central charge of theseminimalmodels are given by theCoxeter
number m of the corresponding simply-laced root system by

ĉ = c/3 = 1 − 2

m
. (2.14)

In order to obtain the elliptic genus of the isolated ADE singularities, another ingredi-
entweneed is the elliptic genus of the SL(2,R)

U (1) super-cosetmodel. The SL(2,R)
U (1) super-coset

model is known to describe the geometry of a semi-infinite cigar (a 2d Euclidean black
hole) [65] and is mirror to the N = 2 super Liouville theory [56,66]. The level of the
super-coset model is related to the mass of the corresponding 2d black hole, and the cen-
tral charge of the super Liouville theory. Here, we will consider SL(2, R) super-current
algebra of (super) level m. The central charge of the corresponding super-coset theory
is

ĉ = 1 +
2

m
.

Due to the presence of the adjoint fermions, there is a shift between the level of the
super Kac–Moody algebra [ĝ]k and the level of its bosonic sub-algebra ĝk̄ given by the
corresponding quadratic invariant as

k̄ = k − c2(g),

which is given explicitly in terms of structure constants by c2(g)δab = f cd
a fbcd .
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The spectrum of the super-coset model and the corresponding torus conformal blocks
has been discussed in [67,68], following the earlier work [69,70]. Since the model
is non-compact, the spectrum not surprisingly contains both discrete and continuous
states. In the geometric picture, the discrete states are those localised at the tip of the
cigar while the continuous ones are those states whose wave-functions spread into the
infinitely long half-cylinder and are only present above a “mass gap” 1

4m on the conformal
weight [71]. The fact that the torus conformal blocks of the super-coset theory coincide
with the characters of the corresponding highest weight representations of the N = 2
superconformal algebra constitutes non-trivial evidence for its equivalence to theN = 2
super Liouville theory. Moreover, the continuous states correspond to massive (or long)
N = 2 highest weight representations while the discrete states correspond to massless
(or short) ones. As such, it is easy to see from the Hilbert space (Hamiltonian) definition
(2.7) of the elliptic genus that it only receives contribution from the discrete part of the
spectrum. Accepting the above argument, the building block of the elliptic genus is the
Ramond character graded by (−1)F

Ch(R̃)
massless(τ, z; s) = iθ1(τ, z)

η3(τ )

∑

k∈Z
y2kqmk2 (yqmk)

s−1
m

1 − yqmk

where η(τ) = q1/24
∏

n≥1(1 − qn) is the Dedekind eta function and s/2 is the U (1)
charge of the highest weight. The above formula can also be identified as N = 2
characters extended by spectral flow. Putting them together, from the spectrum of the
super-coset model it is straightforward to work out the elliptic genus of the theory

ZLm (τ, z) = 1

2

m∑

s=1

Ch(R̃)
massless(τ, z;m + 2 − s)

+Ch(R̃)
massless(τ, z; s) = 1

2
μm,0

(
τ,

z

m

) iθ1(τ, z)
η(τ )3

, (2.15)

where we have used the (specialised) Appell–Lerch sum

μm,0(τ, z) = −
∑

k∈Z
qmk2 y2km

1 + yqk

1 − yqk
. (2.16)

The above partition function has also been calculated in [11] using an alternative free-
field representation of the theory. See also [72,73].

From this we can derive the elliptic genus of the super coset theory coupled to the
rational theory

(
N = 2 minimal ⊗ N = 2

SL(2, R)

U (1)
coset

)
/(Z/mZ),

describing the corresponding du Val surface singularities of type �, by using the orb-
ifoldisation formula[63]
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Z�,S(τ, z) = 1

m

∑

a,b∈Z/mZ

qa
2
y2a Z�

minimal(τ, z + aτ + b)ZLm (τ, z + aτ + b) (2.17)

= 1

2m

iθ1(τ, z)

η3(τ )

∑

a,b∈Z/mZ

(−1)a+bqa
2/2ya Z�

minimal(τ, z+aτ + b) μm,0(τ,
z + aτ + b

m
).

(2.18)

Note that the above elliptic genus is notmodular, as opposed to the familiar situationwith
elliptic genera of a supersymmetric conformal field theory. In fact, it is mock modular
in the following sense [74]. Let the “completion” of μm,0(τ, z) be

μ̂m,0(τ, z) = μm,0(τ, z) − e(− 1
8 )

1√
2m

∑

r∈Z/2mZ

θm,r (τ, z)

×
∫ i∞

−τ̄

(τ ′+ τ)−1/2Sm,r (−τ̄ ′) dτ ′, (2.19)

then μ̂m,0 transforms like a Jacobi form of weight 1 and indexm under the Jacobi group
SL2(Z) � Z

2 but is not holomorphic. (See Appendix A for the definition of Jacobi
forms.) In the above formula, Sm = (Sm,r ) denotes the vector-valued cusp form for
SL2(Z) whose components are given by the unary theta function (cf. (A.3))

Sm,r (τ ) =
∑

k=r (mod 2m)

k qk
2/4m = 1

2π i

∂

∂z
θm,r (τ, z)|z=0. (2.20)

In Appendix B.2, we will also conjecture the answer for the elliptic genera of these
ADE-singularities twined by automorphisms of the corresponding Dynkin diagram,
which can be thought of as permuting the smooth rational curves in the minimal resolu-
tion.

This absence of the usual modularity can be attributed to the fact that the target space
of the theory is non-compact and hence the spectrum contains a continuous part [11].
This is however seemingly in contradiction with the expectation that a path integral
formulation of the elliptic genus should render a function transforming nicely under
SL2(Z), corresponding to the SL2(Z) mapping class group of the world-sheet torus
underlying the path integral formulation. This issue has been recently addressed in [11],
and further refined in [75,76], for the cigar theory. These authors found that a path inte-
gral computation indeed renders an answer that is modular but non-holomorphic, and the
breakdown of holomorphicity is attributed to the imperfect cancellation between contri-
butions of the bosonic and fermionic states to the elliptic genus (2.7) in the continuous
part of the spectrum. Analogously, we expect the path integral formulation of the elliptic
genus of the ADE singularities will render as the answer the real Jacobi form

Ẑ�,S(τ, z) = 1

2m

iθ1(τ, z)

η3(τ )

×
∑

a,b∈Z/mZ

(−1)a+bqa
2/2ya Z�

minimal(τ, z + aτ + b) μ̂m,0(τ,
z + aτ + b

m
). (2.21)

Finally, we note that there is a different definition of elliptic genus that is purely
geometric. For a compact complex manifold M with dimCM = d0, the elliptic genus is
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defined as the character-valued Euler characteristic of the formal vector bundle [61,77–
80]

Eq,y = yd/2∧−y−1T ∗
M

⊗
n≥1

∧
−y−1qn T

∗
M

⊗
n≥1

∧
−yqn TM

⊗
n≥0 Sqn (TM ⊕ T ∗

M ),

where TM and T ∗
M are the holomorphic tangent bundle and its dual, and we adopt the

notation
∧

qV = 1 + qV + q2
∧2 V + · · · , SqV = 1 + qV + q2S2V + · · · ,

with SkV denoting the k-th symmetric power of V . In other words, we have

EG(τ, z; M) =
∫

M
ch(Eq,y)Td(M) (2.22)

where Td(M) is the Todd class of TM . For M a (compact) Calabi–Yau manifold, the
above geometric definition and the conformal field theory definition, when the CFT is
taken to be the 2d non-linear sigma model of M , are believed to give the same function
[78,81]. The fact that the CFT elliptic genus is rigid corresponds to the geometric fact
that EG(τ, z; M) is a topological invariant. Note that the above definition is manifestly
holomorphic. We expect that a suitable generalisation of the above definition which
handles non-compact geometries will lead to the geometric elliptic genusEG(τ, z;�) =
Z�,S(τ, z) of the du Val singularity. In this paper we will simply refer to Z�,S(τ, z) as
the elliptic genus of the ADE singularity of type �.

3. Umbral Moonshine and Niemeier Lattices

In this section we will briefly review the umbral moonshine conjecture and its construc-
tion from the 23 Niemeier lattices [41]. The readers are referred to [41] for more details.
Let us start by recalling what the Niemeier lattices are. Consider positive-definite lat-
tices of rank 24, we would like to know which of them are even and unimodular. In
string theory, one is often interested in even, unimodular lattices due to the modular
invariance of their theta functions. In the classification of positive-definite even unimod-
ular lattices, a special role will be played by the root system of the lattice L , given by
�(L) = {v ∈ L|〈v, v〉 = 2}.

The even unimodular positive-definite lattices of rank 24 were classified by Niemeier
[82]. There are 24 of them (up to isomorphisms). The Leech lattice is the unique even,
unimodular, positive-definite lattice of rank 24 with no roots [83], discovered shortly
before the classification of Niemeier [84,85]. Apart from the Leech lattice, there are 23
other inequivalent even unimodular lattices of rank 24. They are uniquely determined by
their root systems �(L), that are all unions of the simply-laced root systems. Moreover,
the 23 root systems of the 23 Niemeier lattices are precisely the 23 unions of ADE
root systems satisfying the following two simple conditions: first, all of the irreducible
components have the same Coxeter numbers; second, the total rank is 24. They are listed
in Table 2, where n denotes Z/nZ. Here and in the rest of the paper we will adopt the
shorthand notation AdA

m−1D
dD
m/2+1(E

(m))dE for the direct sum of dA copies of Am−1, dD
copies of Dm/2+1 and dE copies of

E (m) =
{
E6, E7, E8 for m = 12, 18, 30
∅ otherwise

. (3.1)
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Table 2. Umbral groups

X A241 A122 A83 A64 A45D4 A46 A27D
2
5

GX M24 2.M12 2.AGL3(2) GL2(5)/2 GL2(3) SL2(3) Dih4

ḠX M24 M12 AGL3(2) PGL2(5) PGL2(3) PSL2(3) 22

X A38 A29D6 A11D7E6 A212 A15D9 A17E7 A24

GX Dih6 4 2 4 2 2 2

ḠX Sym3 2 1 2 1 1 1

X D6
4 D4

6 D3
8 D10E

2
7 D2

12 D16E8 D24

GX 3.Sym6 Sym4 Sym3 2 2 1 1

ḠX Sym6 Sym4 Sym3 2 2 1 1

X E4
6 E3

8

GX GL2(3) Sym3

ḠX PGL2(3) Sym3

Let X be one of the 23 root systems listed above, and denote by LX the unique (up to
isomorphism) Niemeier lattice with root system X . For each of these 23 LX wewill have
an instance of umbral moonshine as we will explain now. First, we need to define the
finite group relevant for this new type of moonshine. Let us consider the automorphism
group Aut(LX ) of the lattice LX . Clearly, any element of the Weyl group Weyl(X)

generated by reflections with respect to any root vector leaves the lattice invariant. In
fact, Weyl(X) is a normal subgroup of Aut(LX ) and we define the “umbral group” GX

to be the corresponding quotient

GX = Aut(LX )/Weyl(X). (3.2)

The list of the 23 GX is given in Table 2.
After defining the relevant finite group GX , we will now define the relevant (vector-

valued) mockmodular forms HX
g , [g] ⊂ GX , for the umbral moonshine. As explained in

Sect. 2, the ADE classification of the modular invariant combinations of Â(1)
1 characters

is given by a symmetric matrix �� of size 2m, where m denotes the Coxeter number of
�, for every simply-laced root system�. As we have seen, the Cappelli–Itzykson–Zuber
matrix�� also controls the spectrum and hence the elliptic genus (2.9) of the 2dminimal
model of type�. Now consider any one of the 23 Niemeier root systems X listed above.
Since they are unions X = ∪i�i of simply-laced root systems�i with the same Coxeter
number, we can extend the definition of the �-matrix to �X = ∑

i �
�i . Using these

�-matrices we can then define for each Niemeier lattice LX the vector-valued weight
3/2 cusp form

SX = �X Sm = (SX
r ), r ∈ Z/2mZ

with the r -th component given by

SX
r =

∑

r ′∈Z/2mZ

�X
r,r ′ Sm,r ′

in terms of the unary theta function (2.20). From (�X )r,r ′ = (�X )−r,−r ′ and Sm,r =
−Sm,−r it is easy to see that SX

r = −SX−r .
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Given the cusp form SX , we can now specify the mock modular form HX by the
following two conditions. First we specify its mock modular property: we require HX to
be a weight 1/2 vector-valued mock modular form whose shadow is given by SX . More
precisely, let

Ĥ X
r (τ ) = HX

r (τ ) + e(− 1
8 )

1√
2m

∫ i∞

−τ̄

(τ ′ + τ)−
1
2 SX

r (−τ̄ ′) dτ ′,

then
∑

r∈Z/2mZ

Ĥ X
r (τ ) θm,r (τ, z)

transforms as a Jacobi form ofweight 1 and indexm under the Jacobi group SL2(Z)�Z
2.

Recall that the shadow s(τ ) of a mock modular form f (τ ) of weight w is the function,
a modular form of weight 2 − w itself for the same 
 < SL2(R), whose integral gives
the non-holomorphic completion

f̂ (τ ) = f (τ ) + e(
w − 1

4
)

∫ i∞

−τ̄

(τ + τ ′)−w s(−τ̄ ′) dτ ′ (3.3)

of f which transforms as a weightw modular form. This definition has a straightforward
generalisation to the vector-valued case which we have employed above.

After specifying the mock modularity, we impose the following analyticity condition
: we require its growth near the cusp to be

q1/4mH X
r (τ ) = O(1) as τ → i∞ (3.4)

for every element r ∈ Z/2mZ. The above two conditions turn out to be sufficient to
determine HX uniquely (up to a rescaling), as shown in [12,41,86]. We also fix the
scaling by requiring q1/4mH X

1 (τ ) = −2 + O(q).

For instance, when considering the Niemeier lattice with the simplest root system,
X = A24

1 , the unique mock modular form determined by the above condition reads

H
X=A24

1
1 (τ ) = −H

X=A24
1−1 (τ ) = −2E2(τ ) + 48F (2)

2 (τ )

η(τ )3
(3.5)

= 2q−1/8(−1 + 45 q + 231 q2 + 770 q3 + O(q4)). (3.6)

where E2(τ ) stands for the weight 2 Eisenstein series and

F (2)
2 (τ ) =

∑

r>s>0
r−s=1mod 2

(−1)r s qrs/2 = q + q2 − q3 + q4 + · · · .

As mentioned in Sect. 1, the first observation that led to the recent development in the
moonshine phenomenon for mock modular forms is the fact that the above numbers
45, 231, 770 coincide with the dimensions of certain irreducible representations of the
corresponding umbral group GX ∼= M24 for X = A24

1 .
Note that without the non-holomorphic completion, the function

∑

r∈Z/2mZ

HX
r θm,r
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does not transform nicely under themodular group; it is a mock Jacobi form according to
the definition given in [12]. In [41], following [12], this mock Jacobi form is interpreted
as the finite part of a meromorphic (as a function of z ) Jacobi form with simple poles at
m-torsion points. For later convenience, we will define another mock Jacobi form

φX (τ, z) = iθ1(τ,mz)θ1(τ, (m − 1)z)

η3(τ )θ1(τ, z)

∑

r∈Z/2mZ

HX
r (τ ) θm,r (τ, z) (3.7)

which contains exactly the same information as the vector-valued mock modular form
HX .

In order to relate such functions to representations of the finite group GX that we
have constructed, we need as many vector-valued functions similar to HX as the number
of conjugacy classes of GX to encode the characters of the underlying representation.
Hence, for every Niemeier lattice X , and for every conjugacy class [g] ⊂ GX we would
like to define a vector-valuedmockmodular form HX

g . As before, first we need to specify
their mock modular properties. The relevant congruence subgroup 
0(ng) ⊆ SL2(Z)

(see (A.6)), is determined by ng , the order group element g. This is similar to the situation
both in monstrous moonshine [1] and, not unrelatedly, 2-dimensional CFT.

We need two more pieces of data to completely specify the mock modularity of HX
g .

The first one is the shadow. By studying the action of 〈g〉, the cyclic group generated
by g, we can analogously define a 2m × 2m matrix �X

g and the corresponding cusp
form SX

g = �X
g Sm = SX

g,r . See §5.1 of [41] for the list of �X
g . The second piece of

data we need is the multiplier system on 
0(ng), namely a projective representation
νg : 
0(ng) → GL2m(C) of the congruence subgroup 
0(ng). In the case where
the specified shadow SX

g does not vanish, the definition of the shadow stipulates the
multiplier of the mock modular form to be the inverse of the shadow. As a result, this
second piece of data is implied by the first. If however SX

g = 0, namely when the
mock modular form HX

g is in fact modular, one needs to specify the multiplier system
independently. It turns out that νg is identical to the inverse of the multiplier of SX on
a group 
0(nghg) < 
0(ng) for certain integral hg > 1. See [41] for more details. In
particular, let

Ĥ X
g,r (τ ) = HX

g,r (τ ) + e(− 1
8 )

1√
2m

∫ i∞

−τ̄

(τ ′ + τ)−1/2SX
g,r (−τ̄ ′) dτ ′,

then
∑

r∈Z/2mZ

Ĥ X
g,r (τ ) θm,r (τ, z)

transforms like a Jacobi form of weight 1 and index m under the group 
0(nghg) � Z
2.

By the same token, the function
∑

r∈Z/2mZ HX
g,r θm,r is a mock Jacobi form of weight 1

and index m under 
0(nghg) � Z
2.

As before, after specifying themockmodular propertywe also need to fix the analytic-
ity property of HX

g . For
0(ng)with ng > 1, there ismore than one cusp (representative),
namelymore than one
0(ng)-orbit amongQ∪i∞. For the cusp (representative) located
at τ → i∞ we require the same growth condition

q1/4mH X
g,r (τ ) = O(1) as τ → i∞. (3.8)
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for every r ∈ Z/2mZ. Moreover we require the function to be bounded

HX
g,r (τ ) = O(1) as τ → α ∈ Q, α �∈ 
0(ng)∞. (3.9)

at all other cusps.
After specifying the shadow SX

g , the multiplier system νg and the behaviour at the
cusps, a vector-valued mock modular form HX

g of weight 1/2 for 
0(ng) was then given
in [41] for every [g] ⊂ GX and for all 23 Niemeier lattices LX . See [41] for explicit
Fourier coefficients of the q-expansions of HX

g,r . Finally, it was conjectured in [41] that
HX
g is the unique (up to rescaling) vector-valued mock modular form with the above

mock modularity and poles. For later convenience, we will also define

φX
g (τ, z) = iθ1(τ,mz)θ1(τ, (m − 1)z)

η3(τ )θ1(τ, z)

∑

r∈Z/2mZ

HX
g,r (τ ) θm,r (τ, z) (3.10)

Note that we recover HX and φX by putting [g] to be the identity class in the above
discussions on HX

g and φX
g .

After constructing the finite group GX and the set of vector-valued mock mod-
ular forms HX

g = (HX
g,r ) for each Niemeier lattice LX , we can now formulate the

umbral moonshine conjecture [41]. This conjecture states that for every Niemeier lat-
tice X , for every 1 ≤ r ≤ m − 1 we have an infinite-dimensional Z-graded module
K X
r = ⊕DK X

r,D for GX such that HX
g,r is essentially given by the graded charac-

ters
∑

D=−r2 (mod 4m),D>0 q
D/4mTrK X

r,D
g, up to the possible inclusion of a polar term

−2q−1/4m and a constant term (as well as an additional factor of 3 in the case X = A3
8).

See §6.1 of [41] for the precise statement of the conjecture. In summary, umbral moon-
shine conjectures for each of the 23 Niemeier lattices the existence of a special module
K X of the finite group GX , which underlies the special mock Jacobi forms φX

g . This
conjecture has so far been proven for the case X = A24

1 [28], and explicitly verified till
the first hundred terms in the q-expansion for the other 22 cases. In the following sec-
tion we will demonstrate the relation between the mock Jacobi forms φX

g and the elliptic
genus of K3 surfaces. Subsequently we will explore the relation between the Niemeier
lattices LX , the finite group GX , the (conjectural) GX -module K X , and the (stringy)
symmetry of K3 surfaces.

4. Umbral Moonshine and the (Twined) K3 Elliptic Genus

In Sect. 2 we have computed the elliptic genus of Du Val singularities a K3 surface can
develop. In Sect. 3 we have briefly reviewed the umbral moonshine conjecture relating
a finite group GX and a set of mock Jacobi forms φX

g for every Niemeier lattice LX via
an underlying GX -module K X . In this section we will see how these two separate topics
meet in the framework of (twined) elliptic genera for K3 surfaces.

Let’s start by briefly reviewing the relation between the elliptic genus of K3 surfaces
and the Mathieu group M24, which is also the umbral group GX for the Niemeier lattice
with root system X = A24

1 . The 2d non-linear sigma model of a K3 surface is a CFT
with central charge c = 6 and with a (small) N = 4 superconformal symmetry. As
explained in Sect. 2, the elliptic genus (2.7) is the same for different K3 sigma models
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and coincides with the geometric elliptic genus of K3. It is computed to be (cf. (A.1))
[16]

EG(τ, z; K3) = 8
∑

i=2,3,4

(
θi (τ, z)

θi (τ, 0)

)2

. (4.1)

The N = 4 superconformal symmetry of the theory implies that the spectrum is com-
posedof irreducible representations (“multiplets”) of theN = 4 superconformal algebra,
and the elliptic genus permits a decomposition into their characters.

Recall that the N = 4 superconformal algebra contains subalgebras isomorphic to
the affine Lie algebra ŝl2 and the Virasoro algebra, and in a unitary representation the
former of these acts with level m − 1 and the latter with central charge c = 6(m − 1)
for some integer m > 1. The unitary irreducible highest weight representations vm;h, j
are labelled by the two quantum numbers h and j which are the eigenvalues of L0 and
1
2 J

3
0 of the highest weight state, respectively, when acting on the highest weight state

[15,87]. (We adopt a normalisation of the SU(2) current J 3 such that the zero mode J 30
has integer eigenvalues. The shift by−1 in the central charge and the level of the current
algebra is due to the−1 difference between the level and the index of the theta functions
underlying the characters, as we will see below.) The algebra has two types of highest
weight representations: the short (or BPS, supersymmetric) ones and the long (or non-
BPS, non-supersymmetric) ones. In the Ramond sector, the former has h = c

24 = m−1
4

and j ∈ {0, 1
2 , . . . ,

m−1
2 }, while the latter has h > m−1

4 and j ∈ { 12 , 1, . . . , m−1
2 }. Their

(Ramond) graded characters, defined as

chm;h, j (τ, z) = trvm;h, j

(
(−1)J

3
0 y J

3
0 qL0−c/24

)
, (4.2)

are given by

chm;h, j (τ, z) = i θ1(τ, z)2

η3(τ )θ1(τ, 2z)
μm, j (τ, z) (4.3)

and

chm;h, j (τ, z) = i θ1(τ, z)2

η3(τ )θ1(τ, 2z)
qh− c

24− j2

m
(
θm,2 j (τ, z) − θm,−2 j (τ, z)

)
(4.4)

in the short and long cases, respectively [15]. In the above formulas, μm, j is given by
μm,0 (2.16) and the identity

μm, r2
= (−1)r (r + 1)μm,0 + (−1)r−n+1

r∑

n=1

n q− (r−n+1)2
4m (θm,r−n+1 − θm,−(r−n+1)).

Whenapplying the above formula to the K3 sigmamodelswhich have c = 6 (m = 2),
we obtain the following rewriting of the function in (4.1):

EG(τ, z; K3) = 20 ch2; 14 ,0 − 2 ch2; 14 , 12
+

(
90 ch2; 54 , 12

+ 462 ch2; 94 , 12
+ 1540 ch2; 134 , 12

+ · · · ) (4.5)
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= i θ1(τ, z)2

η3(τ )θ1(τ, 2z)

{
24μ2,0(τ, z) + (θ2,−1(τ, z) − θ2,1(τ, z))

× (−2q−1/8 + 90q7/8 + 462q15/8 + 1540q23/8 + · · · )
}

(4.6)

where . . . corresponds to terms in EG(τ, z; K3) of the form i θ1(τ,z)2

η3(τ )θ1(τ,2z)
qα yβ with

α − β2/8 > 3. Note that the q-series in the last line is nothing but the umbral mock
modular form (3.5) corresponding to the Niemeier lattice with root system X = A24

1
that we introduced in the previous section. As mentioned in Sect. 1, it was precisely in
this context of decomposing the K3 elliptic genus into N = 4 characters that the first
case of moonshine for mock modular forms was observed [17].

From the above discussion, we see that the two contributions to EG(τ, z; K3), given
by

24μ2,0(τ, z)

and

−
∑

r∈Z/4Z

H
X=A24

1
r (τ )θ2,r (τ, z),

in the {} bracket, can roughly be thought of as the contributions from the BPS and
non-BPS N = 4 multiplets respectively.2

However, there is a possible alternative interpretation, thanks to the identity between
the short N = 4 characters and the elliptic genus of an � = A1 singularity:

Z A1,S(τ, z) = ch2; 14 ,0(τ, z), (4.7)

which follows from the identity

1

2

1∑

a,b=0

qa
2
y2aθ1(τ, z + aτ + b) μ2,0(τ,

z + aτ + b

2
) = θ1(τ, z)2

iθ1(τ, 2z)
μ2,0(τ, z).

In other words, we can re-express the elliptic genus of K3 as

EG(τ, z; K3) = 24Z A1,S(τ, z) − i θ1(τ, z)2

η3(τ )θ1(τ, 2z)

∑

r∈Z/4Z

H
A24
1

r θ2,r (τ, z). (4.8)

Using the identity

θ2,1(τ, z) − θ2,−1(τ, z) = −iθ1(τ, 2z),

and

−q1/2y θ1(τ, z + τ) = θ1(τ, z)

2 Strictly speaking, the polar term “−2q−1/8” of H
X=A241
1 also corresponds to the contributions from BPS

multiplets, while all the infinitely many other terms are contributions from non-BPS multiplets.
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we can rewrite the above expression as

EG(τ, z; K3) = Z X,S(τ, z) +
1

2m

∑

a,b∈Z/mZ

qa
2
y2a φX (

τ,
z + aτ + b

m

)
(4.9)

for X = A24
1 , where φX is the function defined in (3.7) that encodes the umbral moon-

shine mock modular form HX . In the above, for a root system X that is the union of
simply-laced root systems with the same Coxeter number m (cf. (3.1))

X = AdA
m−1D

dD
m/2+1(E

(m))dE ,

we write

Z X,S = dAZ
Am−1 + dDZ

Dm/2+1 + dE Z
E (m)

, (4.10)

corresponding to a collection of non-interacting ADE theories with the total Hilbert
space given by the direct sum of the Hilbert spaces of the component theories.

In other words, instead of interpreting the two contributions to the K3 elliptic genus
as that of the BPS and that of the non-BPS N = 4 multiplets, one might interpret them
as the contribution from the 24 copies of A1-type surface singularities and the “umbral
moonshine” contribution given by the umbral moonshine mock modular forms HX with
X = A24

1 .
The first surprise we encounter is that such an interpretation actually holds for all 23

cases of umbral moonshine. In particular, the equality (4.9) is valid not only for the case
X = A24

1 but also for all other 22 cases corresponding to all the 23 Niemeier lattices
LX . The detailed proof will be supplied in Appendix B. Put differently, corresponding
to the 23 Niemeier lattices LX we have 23 different ways of separating EG(K3) into
two parts. On the one hand, by replacing the Niemeier root system X with the corre-
sponding configuration of singularities, we obtain a contribution to the K3 elliptic genus
by the singularities. On the other hand, the umbral moonshine construction attaches a
mock Jacobi form φX to every LX , which gives the rest of EG(K3) after a summation
procedure reminiscent of the “orbifoldisation” formula for the elliptic genus of orbifold
SCFTs [63].

Recall that in umbral moonshine for a given Niemeier lattice LX , the mock Jacobi
form φX is conjectured to encode the graded dimension of an infinite-dimensional mod-
ule K X of the umbral finite groupGX . The existence of such amodule is supported by the
construction of the other mock Jacobi forms φX

g for the other (non-identity) conjugacy
classes [g] of the umbral group GX (cf. (3.2)), that are conjectured to encode the graded
characters of K X . Given the above relation between the K3 elliptic genus and the mock
modular form HX = HX

g for [g] being the identity class, a natural question is whether a
K3 interpretation also exists for other mock modular forms HX

g corresponding to other
conjugacy classes of the group GX .

To discuss the relation between the graded characters in umbral moonshine and the
elliptic genus of K3, let us first discuss how the equality (4.9) might be “twined” in
the presence of a non-trivial group element. On the left-hand side (the K3 side) of the
equation is the elliptic genus, defined in terms of the Ramond-Ramond Hilbert space
HT ,RR of the underlying supersymmetric sigma model T as in (2.7). In the event that
every Hilbert subspace Hh, j;T ,RR ⊂ HT ,RR , consisting of states with the same L0, J0
eigenvalues h and j , is a representation of the cyclic group generated by g, or that g acts
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on the theory and commutes with the superconformal algebra in other words, we can
define the so-called “twisted elliptic genus” as the graded character

EGg(τ, z; K3) = trHT ,RR

(
g (−1)FR+FL y J0qHL q̄HR

)
. (4.11)

Let us now turn to the right-hand side (the umbral moonshine side) of the equation.
Assuming the (linear) relevance of the umbral moonshinemodule K X for the calculation
of EG(K3), the unique way to twine the second term

∑

a,b∈Z/mZ

qa
2
y2a φX (

τ,
z + aτ + b

m

)

is to replace it with

∑

a,b∈Z/mZ

qa
2
y2a φX

g

(
τ,

z + aτ + b

m

)

where φX
g is defined in (3.10). This is equivalent to replacing the graded dimension of the

module K X with its graded character.What remains to be twined is the first term in (4.9),
the contribution from the configuration of singularities stipulated by the root system X
of the Niemeier lattice LX . For an element g of the umbral groupGX , consider its action
on the rank 24 root system X . In the case that g simply permutes the different irreducible
components of its root system, it is easy to write down the twining of the singularity
part Z X,S of EG(K3): Z X,S

g is simply given by the contribution from the irreducible
components of X that are left invariant by the action of g. For instance, for X = A24

1 ,
consider the order 2 element g of the umbral group GX = M24 whose action on LX is to
exchange 8 pairs of A1 root systems and leave the other 8 copies of A1 invariant when
restricted to the root vectors of LX . In this case the twined singularity part of the elliptic
genus is simply Z X,S

g = 8Z A1,S . It can also happen that g also involves a non-trivial
automorphism of the individual irreducible components of the root system, such as the
Z/2Z symmetry of the An , n > 1 Dynkin diagram and the Z/3Z symmetry of the D4

Dynkin diagram. In this case the computation for Z X,S
g is more involved and will be

discussed in Appendix B.2. Combining the two parts, we can now define the twining for
the right-hand side (the umbral moonshine side) (4.9) which we denote by

Z X
g (τ, z) = Z X,S

g (τ, z) +
1

2m

∑

a,b∈Z/mZ

qa
2
y2a φX

g

(
τ,

z + aτ + b

m

)
. (4.12)

The second surprise is that these twining functions given by umbral moonshine pre-
cisely reproduce the elliptic genus twined by a geometric symmetry of the underlying
K3 surfacewhenever the latter interpretation is available, a fact wewill now explain. The
symmetries of a K3 surface M that are of interest for the purpose of studying the elliptic
genus are the so-called finite symplectic automorphisms of M , as we need to require
the symmetry to preserve the hyper-Kähler structure in order for it to commute with the
N = 4 superconformal algebra. As we will discuss in Sect. 5, a necessary condition for
a subgroup G ⊆ GX to admit such an interpretation as the group of finite symplectic
automorphisms of a certain K3 surface is that it has at least 5 orbits and 1 fixed point
on the 24-dimensional representation of GX . See [88] for a proof by S. Kondō utilising
the previous results by Nikulin [89,90], and [48] for a more refined analysis.
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For convenience, above and in the rest of the paper we will simply refer to the 24-
dimensional representation that encodes the action of GX on X as “the 24-dimensional
representation” of GX . As above and in Sect. 5, this representation is also the relevant
one when describing the action of various subgroups of GX on the K3 cohomology
lattice, via the embedding of its sub-lattice into LX . The action of an element g ∈ GX

on the 24-dimensional representation is encoded in the 24 eigenvalues, or equivalently
its “24-dimensional cycle shape”

�X
g =

k∏

i

�
mi
i , where mi ∈ Z>0, 0 < �1 < · · · < �k and

k∑

i

mi�i = 24, (4.13)

where the relation between the cycle shape and the eigenvalues λ1, . . . , λ24 is given by
k∏

i

(x�i − 1)mi = (x − λ1) · · · (x − λ24). (4.14)

We will say that an element g ∈ GX satisfies the “geometric condition” if it satisfies
the criterium of Mukai, namely when it has at least 5 orbits (

∑k
i mi ≥ 5) and one fixed

point (�1 = 1) on the 24-dimensional representation.
Moreover, this implies that G must be (isomorphic to) a subgroup of one of the 11

maximal subgroups of M23 listed in [91] and provides an alternative proof of Mukai’s
theorem [91]. Conversely, given any GX among the 23 umbral groups and for any
element g ∈ GX satisfying the geometric condition, there exists a K3 surface M whose
finite group of symplectic automorphisms has a subgroup isomorphic to 〈g〉. This can be
shown using the global Torelli theorem and in fact holds not just for the Abelian groups
but also for all 11 maximal subgroups of M23. See the Appendix by Mukai in [88].

As a result, for any of the 23 GX for any element g ∈ GX satisfying the geometric
condition, one can computeEGg(K3) geometrically by considering the supersymmetric
sigma model on a K3 surface with 〈g〉 symmetry. Note that the latter is well-defined
because of the uniqueness of the 〈g〉 action. To be more precise, it was shown in [92]
that if Gi ∼= 〈g〉 acts on a K3 surface Mi faithfully and symplectically (i = 1, 2),
then there exists a lattice isomorphism α : H2(M1, Z) → H2(M2, Z) preserving the
intersection forms such thatα·G1 ·α−1 = G2 in H2(M2, Z) (see [93] for a generalisation
of this result to many non-Abelian groups). Together with the global Torelli theorem,
which states that any lattice isomorphism ϕ∗ : H2(M, Z) → H2(M ′, Z) between the
second cohomology groups of two K3 surfaces that preserves theHodge structure and the
effectiveness of the cycles is induced by a unique isomorphism ϕ : M → M ′, this shows
the uniqueness of the symplectic action of 〈g〉 on K3 and thereby that of EGg(K3).

On the other hand, using the prescription of umbral moonshine (4.12) one can com-
pute Z X

g . The first non-trivial fact is that, whenever g1 ∈ GX1 and g2 ∈ GX2 both sat-
isfy the geometric condition and moreover have the same 24-dimensional cycle shape
�

X1
g1 = �

X2
g2 , we obtain

Z X1
g1 = Z X2

g2 (4.15)

despite the fact that they are defined in a very different way and each consists of two
very different contributions (cf. (4.12)). Second, the result also coincides with the geo-
metrically twined elliptic genus for a K3 admitting 〈g〉-symmetry

Z X
g = EGg(K3) (4.16)

whose induced action on 24-dimensional representation is isomorphic to that of g ∈ GX .
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For the conjugacy classes g ∈ GX that do not satisfy the geometric condition, the
interpretation of the function Z X

g is much less clear, similar to the situation in the M24-
moonshine. Just like the more familiar case when X = A24

1 [32], some of them corre-
spond to SCA-preserving symmetries of certain SCFT T in the same moduli space as
that of K3 sigma model, while some of them don’t. We will discuss their interpretation
in Sect. 6. The explicit formulas for the Z X

g for all the conjugacy classes [g] ⊂ GX for
all 23 X can be found in Appendix C.

5. Geometric Interpretation

The result of the previous section suggests that it can be fruitful to study the symmetries
of (the non-linear sigma models on) different K3 surfaces with different configurations
of rational curves in a different framework corresponding to the 23 different cases of
umbral moonshine. In this section we will see how, on the geometric side, this has in
fact been implemented in a recent analysis of the relation between the K3 Picard lattice,
K3 symplectic automorphisms, and the Niemeier lattices [48,49]. On the one hand, this
provides a geometric interpretation of the results in this paper. On the other hand, one can
view our results as a moonshine manifestation and extension of the geometric analysis
in [48].

To discuss this interpretation, let us first briefly review the result in [48], in which
Nikulin advocates a more refined study of the geometric and arithmetic properties of
K3 surfaces by introducing an additional marking using Niemeier lattices. Usually,
to specify a “marking” of a K3 surface M is to specify an isomorphism between the
rank 22 lattice H2(M, Z) and the unique (up to isomorphism) even unimodular lattice

3,19 ∼= 2E8(−1)⊕3U of signature (3,19),whereU is the hyperbolic latticeU = (

0 1
1 0

)
.3

To introduce an additional marking byNiemeier lattices, on top of themarking described
above, an important ingredient is the Picard lattice

Pic(M) = H2(M, Z) ∩ H1,1(M)

of M . The real space H1,1(M, R) has signature (1, 19) and the Picard lattice is
either: (a) negative definite with 0 ≤ rk (Pic(M)) ≤ 19 ; (b) hyperbolic of signature
(1, rk (Pic(M)) − 1) and with 1 ≤ rk (Pic(M)) ≤ 20; (c) semi-negative definite with
a null direction and with 1 ≤ rk (Pic(M)) ≤ 19. The condition (b) holds if and only if
M is algebraic. On the other hand, a generic non-algebraic K3 surface satisfies the first
condition. Unless differently stated, we will focus on these two, the “generic” (a.) and
the “algebraic” (b.), cases.

To obtain an additional marking of M by a Niemeier lattice, consider the maximal
negative definite sublattice of the Picard lattice, denoted by SM (−1) ⊆ Pic(M). To be
more explicit, in the generic case we have simply SM (−1) = Pic(M), while in the
algebraic case SM (−1) = h⊥

Pic(M) is the orthogonal complement in the Picard lattice

of the one-dimensional sublattice generated by the primitive h ∈ Pic(M) with h2 > 0
corresponding to a nef divisor on M . Using the properties of the Torelli period map,
one can show that a lattice SM may arise in the above way from a K3 surface M if and

3 The “(−1)” means that we multiply the lattice bilinear form by a factor of −1. This (−1) comes from
the fact that the signature of the K3 cohomology lattice is mostly negative while the usual convention for the
signature of the simply-laced root system and hence the Niemeier lattices is positive definite. The same goes
for the (−1) factor in the definition of SM below.
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only if SM (−1) admits a primitive embedding into 
3,19, a condition that can be further
translated into more concrete terms using the lattice embedding results in [89].

We say ιM,X is a marking of the K3 surface M by the Niemeier lattice LX if ιM,X :
SM → LX is a primitive embedding of SM into LX . The first result of [48] states that
every K3 surface admits a marking by (at least) one of the 23 Niemeier lattices. This
can be shown using the fact that SM (−1) admits a primitive embedding into 
3,19 and
the embedding theorem in [89].4 We will denote by S̃M the image of SM , and (S̃M )⊥

LX

by its orthonormal complement in LX .
The second result, demonstrating the importance of all 23 Niemeier lattices for the

study K3 surfaces, proves that for every LX with the exception of X = A24 and X = A2
12,

there exists a K3 surface that can only bemarked using LX and not by any otherNiemeier
lattice. It was also conjectured in [48] that the same statement also holds for X = A24
and X = A2

12. In particular, from this point of view the case X = A24
1 is not more special

than any other of the 22 cases. The third result on the additional Niemeier marking states
that, for any LX , any primitive sublattice of LX which can be primitively embedded into

3,19(−1) arises from the Picard lattice Pic(M) in the way described above for a certain
K3 surface M .

The above three results show that the additional marking of K3 lattices is general
and universally applicable. Now we will see that such an extra marking is also useful.
In [48], two applications of the Niemeier marking are discussed. As we will see, both
are crucial for the geometric interpretation of our results. The first application is to
use the Niemeier marking to constrain the configuration of smooth rational curves in a
K3 surface: for the generic cases, a K3 surface M that can be marked by LX has the
configuration of all smooth rational curves given by X ∩ SM ; for the algebraic cases, this
holds modulo multiples of the primitive nef element. In particular, if one thinks of the
rational curves as arising from the minimal resolutions of the du Val singularities, then
the singularities have to be given by a sub-diagram of the Dynkin diagram corresponding
to X . The second application involves studying the symmetries of K3. If M is a K3
surface of the generic or the algebraic type and M admits a marking by LX , then the
finite symplectic automorphism group GM of M is a subgroup of GX . More precisely,
we have

GM = {g ∈ GX |gv = v for all v ∈ (S̃M )⊥LX }.
In the other direction, G ⊂ GX is the finite symplectic automorphism group of some
K3 surface if the orthonormal complement (LX )G ⊂ LX of the fixed point lattice
{v ∈ LX |gv = v for all g ∈ G} can be primitively embedded into 
3,19(−1). Such
G ⊂ GX that arise from K3 symmetries have been computed in [48] for all 23 LX . In
particular, it is easy to see that they indeed satisfy the geometric condition mentioned
in Sect. 4: they must have at least 5 orbits on the 24-dimensional representation and at
least 1 fixed point.

From the above two applications, we see that the marking by Niemeier lattices facil-
itates a more refined study of K3 geometry by labelling a K3 surface by one of the
Niemeier lattices LX via marking. This labelling is, as explained above, sometimes
unique and sometimes not. It tends to be unique when the K3 surface has very large
symmetry—the type of K3 surfaces especially of interest to us. In the above two appli-
cations, the two most important pieces of data associated to the Niemeier lattice LX for

4 The trick of considering SM ⊕ A1, also used in [88] to prove Mukai’s theorem, is employed here to
exclude the Leech lattice.
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the construction of umbral moonshine—the root system X and the umbral group GX—
acquire the meaning of the “enveloping smooth rational curve configuration” and the
“enveloping symmetry group” respectively, for all the K3 surfaces that can be labelled
by LX . Employing this obvious interpretation for X and GX , the contribution from the
ADE singularities to the (twined) K3 elliptic genus (cf. (4.9) and (4.12)) acquires the
interpretation of the contribution from the “enveloping smooth rational curve configura-
tion” of the (class of) K3 surface, while the twining given by umbral moonshine is to be
interpreted as encoding the action of the “enveloping symmetry group” on the non-linear
sigma model.

Before closing the section, let us give a few examples to illustrate the above discus-
sion. Consider a K3 surface M with 16 smooth rational curves giving the root system
A16
1 , generating a primitive sublattice �K of Pic(M). It is known that such a K3 sur-

face is a Kummer surface, i.e. a resolution of T 4/Z2 by replacing the 16 A1 du Val
singularities with 16 rational curves [94]. Note that the K3 is not necessarily alge-
braic since the T 4 can be non-algebraic. From the above discussion we see that M can
only be marked by the Niemeier lattice LX with X = A24

1 and hence its finite sym-
plectic automorphism group is a subgroup of M24. More precisely, it is a subgroup
of {g ∈ M24|g(�K ) = �K }. Similarly, let’s consider as the second example a K3
surface M with 18 smooth rational curves giving the root system A9

2. It can arise in
the Kummer-type construction, where we consider the minimal resolution of the nine
A2 type singularities of T 4/Z3 (for a certain type of T 4 and a certain Z3). Similarly,
M can only marked by the Niemeier lattice LX with X = A12

2 and hence its finite
symplectic automorphism group is a subgroup of GX ∼= 2.M12. For a certain T 4/Z6
model, by resolving the singularities of type A5 ⊕ A4

2 ⊕ A5
1 we obtain a K3 surface

that can be marked by LX with X = A2
7D

2
5. See [95,96] for the detailed description of

these K3 at the orbifold limit. From the above analysis the symmetry of this K3 lies in
GX ∼= Dih4.

6. Discussion

In this paper we established a relation between umbral moonshine and the K3 elliptic
genus, thereby taking a first step in placing umbral moonshine into a geometric and
physical context. However, many questions remain unanswered and much work still
needs to be done before one can solve the mystery of umbral moonshine. In this section
we discuss some of the open questions and future directions.

• In Sect. 5we have provided an interpretation of the umbral groupGX as the “envelop-
ing symmetry group” of the (sigma model of) K3 surfaces that can be marked by the
given Niemeier lattice LX . It would be interesting to investigate to what extent this
general idea of “enveloping symmetry group” can be made precise and can be con-
firmed by combining geometric symmetries at different points in the moduli space,
similar to the idea explored in [35]. Abstractly, it seems rather clear that varying the
moduli induces a varying primitive embedding of SM into LX and can generate a
subgroup of GX that doesn’t necessarily admit an interpretation as a group of geo-
metric symmetries of any specific K3 surface. As a concrete example, one family
of K3 surfaces that might be amenable to an explicit analysis is the torus orbifold
T 4/Z3, where one can easily vary the moduli of the T 4. As discussed in Sect. 5, the
umbral group relevant for this family is GX ∼= 2.M12 with X = A12

2 , analogous to
the M24 case for the torus orbifold T 4/Z2 studied in [35].
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• Another obvious possible interpretation for the conjugacy classes [g] that do not
admit a geometric interpretation in the present context is as stringy symmetries of
certain K3 sigmamodels preserving theN = (4, 4) superconformal symmetries that
have no counterpart in classical geometry. Note that they must have at least 4 orbits
in the 24-dimensional representation in order for this interpretation to be possible
[32,97]. As a result, it is clear that not all conjugacy classes of all of the 23 GX

admit such a possible interpretation. When a conjugacy class [g] does have at least
4 orbits, often the resulting umbral moonshine twining Z X

g is observed to coincide
with a known elliptic genus EGg′(K3) twined by a certain symmetry g′ of the non-
linear sigma model whose induced action on the 24-dimensional representation is
isomorphic to that of g, i.e., they have the same cycle shape. However, we have not
been able to match all Z X

g with some known CFT twining results for all [g] ⊂ GX

with at least 4 orbits. Moreover, for non-geometric classes g the twining Z X
g is not

uniquely determined by the cycle shape �X
g and it can occur that Z X

g �= Z X ′
g′ even

when �X
g = �X ′

g′ . See the following point for a closely-related discussion.

Curiously, various twining functions Z X
g coincide with those obtained in the work

of x[40]. It will be interesting to better understand the relation of the two analyses.
• It seems possible and natural to generalise the analysis in Sect. 5 beyond the realm of

geometric symmetries to include the CFT symmetries. To do so, one should consider
the “quantum Picard lattice” Pic(M)⊕U instead of Pic(M) and consider its embed-
ding into
4,20 = 
3,19⊕U instead of
3,19. The relevant symmetry groups are again
subgroups of GX , now with at least 4 orbits on the 24-dimensional representation.
The analysis should amount to a combination of that in [48] and in [32]. However, a
lack of a Torelli type theorem means some of the very strong results in [48] will not
necessarily hold for the CFT generalisation. Finally, given a fixed Niemeier marking,
one may also generalise the “symmetry surfing” analysis (see above) into the realm
of CFT symmetries.

• It would be illuminating to provide the CFT underpinning of the separation of
EG(K3) into the contribution from the singularities and the rest (4.9), by, for instance,
analysing the twisted and untwisted fields in the orbifold K3 models.

• It would be interesting to extend the geometrical definition of elliptic genus (2.22)
to non-compact spaces and obtain a geometric derivation of the CFT result (2.17).
Similarly, one should compute the geometrical twined (or equivariant) elliptic genera
and compare them with the conjecture in Appendix B.2.

• The map (4.12) from the umbral moonshine function HX
g (or equivalently φX

g ) to the
weak Jacobi form Z X

g is a projection: the summing over the torsion points projects
out terms that would have corresponded to states with fractional U (1) charges. In
particular, determining aGX -module for the set ofweak Jacobi forms Z X

g is in general
not sufficient to construct the GX -module K X underlying HX

g . It is hence important
to gain a better understanding about the physical origin of this projection. Its form
is very reminiscent of the Landau–Ginzburg description of the non-linear sigma
model and we are currently investigating the relation between umbral moonshine
and Landau–Ginzburg type theories.

• The above fact suggests that the full content of umbral moonshine might go well
beyond the realm of K3 sigmamodels, and to explain the origin of umbralmoonshine
we might need to go beyond CFT. It has been suggested that Mathieu moonshine has
imprints in a variety of string theory setups (see for instance [18,26,34,36,37,57]).
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Analogously, for all 23 cases of umbral moonshine, it would be interesting to explore
the possible string theoretic extension of the current result.
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A. Special Functions

First, we define the Jacboi theta functions θi (τ, z) as follows.

θ1(τ, z) = −iq1/8y1/2
∞∏

n=1

(1 − qn)(1 − yqn)(1 − y−1qn−1)

θ2(τ, z) = q1/8y1/2
∞∏

n=1

(1 − qn)(1 + yqn)(1 + y−1qn−1)

θ3(τ, z) =
∞∏

n=1

(1 − qn)(1 + y qn−1/2)(1 + y−1qn−1/2)

θ4(τ, z) =
∞∏

n=1

(1 − qn)(1 − y qn−1/2)(1 − y−1qn−1/2) (A.1)

In particular we will use the transformation of θ1 under the Jacobi group

θ1(τ, z) = −θ1(τ,−z)

= e(− 1
2
z2
τ

)(iτ)−1/2θ1(− 1
τ
, z

τ
)

= e(−1/8) θ1(τ + 1, z)

= (−1)λ+μe( 12 (λ
2τ + 2λz))θ1(τ, z + λτ + μ). (A.2)

Second, we introduce the theta functions

θm,r (τ, z) =
∑

k=r (mod 2m)

qk
2/4m yk . (A.3)

for m ∈ Z>0 which satisfy

θm,r (τ, z) = θm,r+2m(τ, z) = θm,−r (τ,−z).

The theta function θm = (θm,r ), r ∈ Z/2mZ, is a vector-valued Jacobi form of weight
1/2 and index m satisfying

θm(τ, z) =
√

1

2m

√
i

τ
e(−m

τ
z2)Sθ .θm(− 1

τ
, z

τ
)

http://creativecommons.org/licenses/by/4.0/
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= Tθ .θm(τ + 1, z)

= θm(τ, z + 1) = e(m(τ + 2z))θm(τ, z + τ), (A.4)

where the Sθ and Tθ matrices are 2m × 2m matrices with entries

(Sθ )r,r ′ = e( rr
′

2m ) e(−r+r ′
2 ), (Tθ )r,r ′ = e(− r2

4m ) δr,r ′ . (A.5)

For later use we also introduce some weight two modular forms for the Hecke con-
gruence subgroups


0(N ) =
{(

a b
cN d

)
| a, b, c, d ∈ Z, ad − bcN = 1,

}
. (A.6)

including �N ∈ M2(
0(N )) for all N ∈ Z>0

�N (τ ) = N q∂q log

(
η(Nτ)

η(τ )

)

= N (N − 1)

24

(
1 +

24

N − 1

∑

k>0

σ(k)(qk − NqNk)

)
, (A.7)

where σ(k) is the divisor function σ(k) = ∑
d|k d. For N = 44 we will need the unique

weight two newform

f 44new = q + q3 − 3q5 + 2q7 − 2q9 − q11 − 4q13 − 3q15 + 6q17 + · · ·

Finally we discuss Jacobi forms following [98]. For every pair of integers k and m,
we say a holomorphic function φ : H × C → C is an (unrestricted) Jacobi form of
weight k and index m for the Jacobi group SL2(Z) � Z

2 if it satisfies

φ(τ, z) = e(m(λ2τ + 2λz)) φ(τ, z + λτ + μ) (A.8)

= e(−m cz2
cτ+d ) (cτ + d)−kφ( aτ+b

cτ+d , z
cτ+d ). (A.9)

The invariance of φ(τ, z) under τ → τ +1 and z → z+1 implies a Fourier expansion

φ(τ, z) =
∑

n,r∈Z
c(n, r)qn yr (A.10)

forq = e(τ ) and y = e(z), and the elliptic transformation canbeused to show that c(n, r)
depends only on the discriminant D = r2 − 4mn and on r mod 2m. An unrestricted
Jacobi form is called aweak Jacobi formwhen the Fourier coefficients satisfy c(n, r) = 0
whenever n < 0. See, for instance, [41] for an introduction of Jacobi forms following
[98].
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B. Calculations and Proofs

B.1. Proof of (4.9). The aim of this subsection is to provide more details on the elliptic
genus computed in Sect. 2 and to prove the identity (4.9) for all 23 Niemeier lattices LX .

As we mentioned in the main text, the Cappelli–Itzykson–Zuber matrices govern the
spectrum of N = 2 minimal models as well as the mock modularity of mock modular
forms featuring in umbral moonshine. Explicitly, the matrices �� labelled by the root
system � is given in Table 3, where we have introduced for each divisor n of m the
following matrices

�m(n)r,r ′ =
{
1 if r + r ′ = 0 mod 2n and r − r ′ = 0 mod 2m/n,
0 otherwise,

(B.1)

One significance of the Cappelli–Itzykson–Zuber matrices in our context is that it
captures the action of the so-called Eichler–Zagier operator Wm(n), defined for every
divisor n of m acting on a function f : H × C → C as [98]

( f |Wm(n)) (τ, z) = 1

n

n−1∑

a,b=0

e
(
m

(
a2

n2
τ + 2 a

n z +
ab
n2

))
f
(
τ, z + a

n τ + b
n

)
. (B.2)

To be more precise, acting on the theta function (A.3) it satisfies

θm |Wm(n) = �m(n) · θm . (B.3)

In order to exploit this equality in the calculation,we define the operatorW� by replacing
�m(n) with Wm(n) in the definition of �� (cf. Table 3), with the understanding that
f | ∑i Wm(ni ) = ∑

i f |Wm(ni ). Similarly, we define W�′ = ∑
i W�i for a union of

the simply-laced root systems �′ = ∪i�i where all �i have the same Coxeter number.
For later convenience, analogous to (3.7) we will also define

φ�′,P (τ, z) = −iθ1(τ,mz)θ1(τ, (m − 1)z)

η3(τ )θ1(τ, z)
(μm,0|W�′

(τ, z)) (B.4)

where m denotes the Coxeter number of � as usual.
In [41] a meromorphic function

ψ X,P = μm,0|W X

was defined for every Niemeier root system X , whereμm,0 is given by the Appell–Lerch
sum as in (2.16) and W X is defined as above. Note that ψ X as a function of z has in

Table 3. The ADE matrices � of Cappelli–Itzykson–Zuber [42]

� ��

Am−1 �m (1)

Dm/2+1 �m (1) + �m (m/2)

E6 �12(1) + �12(4) + �12(6)

E7 �18(1) + �18(6) + �18(9)

E8 �30(1) + �30(6) + �30(10) + �30(15)
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general poles at z ∈ Z

m + Z

m τ . In [41], following [12] this meromorphic function has the
interpretation as the polar part of the meromorphic Jacobi form

ψ X = μm,0|W X −
∑

r∈Z/2mZ

HX
r θm,r

of weight 1 and index m.
First, we would like to prove

Z�,S(τ, z) = 1

2m

∑

a,b∈Z/mZ

qa
2
y2a φ�,P(

τ,
z + aτ + b

m

)
. (B.5)

We will start by providing more details on the expression (2.8) of the minimal model
elliptic genus, which is a building block of the elliptic genus of the ADE singularities
(2.17).

Fix m and let m̄ = m − 2. The Â1 string functions (chiral parafermion partition
function times η(τ), see [44]) are given by crs = 0 if r = s (mod 2) and otherwise

crs (τ ) = 1

η3(τ )

∑

−|α|<β≤|α|
(α,β) or (

1
2−α,

1
2 +β)=(

r
2m ,

s
2m̄ )modZ2

sgn(α) qmα2−m̄β2

Note that we have shifted r by one compared to the convention in, for instance, [44,63].
Clearly, r ∈ Z/2mZ and s ∈ Z/2m̄Z, and crs (τ ) = −c−r

s (τ ) = cr−s(τ ). They can also
be defined through the branching relation

∑

s∈Z/2m̄Z

crsθm̄,s = θm,r − θm,−r

θ2,1 − θ2,−1
,

where we have used the theta function defined in (A.3). Define

χr
s,ε(τ, z) =

∑

k∈Z/m̄Z

crs−ε+4k(τ ) θ2mm̄,2s+(4k−ε)m
(
τ,

z

2m

)
.

We have ε ∈ Z/4Z, from which ε = 0, 2 correspond to the NS and ε = 1, 3 to the
Ramond sector. Note that now both r and s in χr

s,ε take value in Z/2mZ.
Now let

χ̃r
s (τ, z) = χr

s,1(τ, z) − χr
s,−1(τ, z).

It is easy to check that it transforms under the elliptic transformation as

χ̃r
s (τ, z + aτ + b) = (−1)a+b e( sbm ) e(− ĉ

2 (a
2τ + 2az))χ̃r

s−2a(τ, z). (B.6)

They are the Ramond sector superconformal blocks relevant for the N = 2 minimal
models with c = 3m−2

m .
Using these building blocks, the elliptic genus of theminimalmodel corresponding

to the simply-laced root system � is then given by

Z�
minimal(τ, z) = 1

2

∑

0<r,r ′<m

(��
r,r ′ − ��

r,−r ′)
∑

s∈Z/2mZ

χ̃r
s (τ, z)χ̃

r ′
s (τ̄ , 0).
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Using ��
r,r ′ = ��

−r,−r ′ , χ̃r
r ′(τ, z) = −χ̃−r

r ′ (τ, z) and χ̃r
s (τ, 0) = δr,s − δr,−s , we arrive

at

Z�
minimal(τ, z) = 1

2

∑

r,r ′∈Z/2mZ

��
r,r ′ χ̃r

r ′(τ, z) = 1

2
Tr(�� · χ̃ ).

Nowwe define for any nñ = m, n, ñ ∈ Z and operator acting on a function f : H×C →
C as

f
∣∣W̃m(n)(τ, z) = 1

n

∑

a,b∈Z/mZ
a,b=0 (ñ)

(−1)a+b+ab e
(m−2

2m (a2τ + 2az + ab)
)
f (τ, z + aτ + b)

Using (B.6) it is easy to check that

χ̃r
s

∣∣W̃m(n) = (�m(n) · χ̃ )rs =
∑

s′∈Z/2mZ

δs−s′,0 (2ñ)δs+s′,0 (2n)χ̃
r
s′

Finally, one can verify that

m−1∑

α,β=0

(−1)α+βqα2/2yα
(
χ̃r
s

∣∣W̃m(n)
)
(τ, z + ατ + β)μ

(
τ,

z + ατ + β

m

)

=
m−1∑

α,β=0

(−1)α+βqα2/2yαχ̃r
s (τ, z + ατ + β)

(
μ

∣∣Wm(n)
)(

τ,
z + ατ + β

m

)
.

Subsequently, the identity (B.5) follows from the above equality and

Z Am−1
minimal(τ, z) = 1

2 Trχ̃ = θ1(t, z/m)

θ1(t, z(m − 1)/m)
.

Finally we are ready to prove (4.9), which can be re-expressed as

EG(τ, z; K3) = 1

2m

∑

a,b∈Z/mZ

qa
2
y2a φX,T (

τ,
z + aτ + b

m

)
(B.7)

when combinedwith the identity (B.5) thatwe just verified andwhenweuse the definition

φX,T (τ, z) = (φX,P + φX )(τ, z) = −iθ1(τ,mz)θ1(τ, (m − 1)z)

η3(τ )θ1(τ, z)
ψ X (τ, z).

From the fact that ψ X transforms as a weight 1, index m Jacobi form and using the
transformation (A.2) of the Jacobi theta function, it is straightforward to show that the
RHS of (B.7) transforms as a weight 0, index 1 Jacobi form. Moreover, the poles of
ψ X at m-torsion points are combined with the zeros of θ1(τ,mz) and as a result φX,T

is a holomorphic function on H × C admitting a double-expansion in powers of q and
y. In order to show that the RHS of (B.7) is a weight 0, index 1 weak Jacobi form, we
need to prove that there is no term in its Fourier expansion with qn, n < 0. This can be
shown by using the explicit formulas involvingμm,0 and θ1, combining with the fact that
HX
r = O(q−r2/4m) and the fact that the sum over b projects out all terms with fractional

powers of y. After showing that both sides of (B.7) are weight 0, index 1 weak Jacobi
forms, using the fact that the space of such functions is one-dimensional, the equality is
proven by comparing both sides at, say, z = 0.
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B.2. Computing Z X
g . In this subsection we compute the twining function Z X

g in (4.12).
The results of the computation are recorded in Appendix C. In particular, wewill give the
details of the computation of Z X,S

g . As a part of the computation, we also make conjec-

tures for the elliptic genus Z�,S
h of du Val singularities twined by certain automorphisms

〈h〉 of the corresponding Dynkin diagram �.
From the action of g ∈ GX on the Niemeier root lattice X , we can divide the

conjugacy classes [g] into the following two types. In the first type, there exists an
element in the conjugacy class that only permutes the irreducible components of X .
More precisely, there exists an element g in the class that descends from an element in
ḠX ⊆ GX , where ḠX is a quotient of GX and is defined by

ḠX = Aut(LX )/Ŵ X ,

where Ŵ X <Aut(LX ) is the subgroup of lattice automorphisms that stabilize the irre-
ducible components of X . See Table 2 for the list of ḠX . In the second type, the action
of an element in [g] necessarily involves certain non-trivial automorphisms of some of
the irreducible components in X . See [41] for a more detailed discussion.

As mentioned in Sect. 4, the twined function Z X,S
g for a conjugacy class [g] of the

first type, point-wise fixing a (not necessarily non-empty) union Xg = ∪i�i ⊂ X of the
irreducible components �i , is simply given by

Z X,S
g =

∑

i

Z�i ,S .

In order to compute the twined function Z X,S
g for [g] for the second type of conjugacy

classes, we need to twine the elliptic genus of the (irreducible) ADE singularities by

Fig. 1. The ADE Dynkin diagrams
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symmetries corresponding to the automorphisms of the Dynkin diagram �. In the rest
of this appendix we will propose a conjectural answer.

For the Am−1 singularity with m > 2 we have the Z2 automorphism exchanging
the simple root fi with fm−i , in the notation shown in Fig. 1. We conjecture that the
corresponding twined elliptic genus is

Z�,S
Z2

= Z�,S|W(−), � = Am−1,

where we have defined the operator acting on a function f : H × C → C as

f |W(−)(τ, z) = − f (τ, z + 1
2 ).

In fact, the above expression for Z�,S
Z2

can be deduced from the action of Z2 on the
eigenvectors of the appropriate Coxeter element, and similarly for the twined elliptic
genus of the D- and E-type singularities discussed below.

For later use we also define the operators

f |W(3)(τ, z) = 1

3

2∑

a=0

f (τ, z + a
3 )

f |W(6)(τ, z) = 1

6

5∑

a=0

f (τ, z + a
6 ).

We remark that the above conjecture, if proven, provides a geometrical explanation of the
following interesting property of the GX -module K X . It was observed and conjectured
in [7,41] that in the cases where X has only A-type components (i.e. when m − 1|24),
the GX -module K X

r underlying the even components of the mock modular form HX
g,r

(r even), are composed of irreducible faithful representations of GX . On the other hand,
the module K X

r underlying the odd components of the mock modular form HX
g,r (r odd),

are composed ofGX -representations that factor through ḠX . Similar considerations also
apply to the cases when X contains also D- and E-type components.

For the D-type singularity different from D4, we have the Z2 automorphism
exchanging the simple root fm/2 with f1+m/2, in the notation shown in Fig. 1. We
conjecture that the corresponding twined elliptic genus is

Z�,S
Z2

(τ, z) = 1

m

∑

a,b∈Z/mZ

qa
2
y2a φ

�,P
Z2

(
τ,

z + aτ + b

m

)

for D1+m/2 for m �= 6, where

φ
�,P
Z2

(τ, z) = −iθ1(τ,mz)θ1(τ, (m − 1)z)

η3(τ )θ1(τ, z)

(− μm,0|Wm(m/2) + μm,0|W(−)
)
(τ, z).

(B.8)

The � = D4 Dynkin diagram permits a S3 symmetry on the roots { f1, f3, f4}. We
conjecture that the corresponding twined elliptic genera are given by

Z�,S
Z2

(τ, z) = 1

6

∑

a,b∈Z/6Z

qa
2
y2a φ

�,P
Z2

(
τ,

z + aτ + b

6

)
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Z�,S
Z3

(τ, z) = 1

6

∑

a,b∈Z/6Z

qa
2
y2a φ

�,P
Z3

(
τ,

z + aτ + b

6

)

where

φ
�,P
Z2

(τ, z) = −iθ1(τ, 6z)θ1(τ, 5z)

η3(τ )θ1(τ, z)
μ6,0|WD4,Z2(τ, z)

φ
�,P
Z3

(τ, z) = −iθ1(τ, 6z)θ1(τ, 5z)

η3(τ )θ1(τ, z)
μ6,0|WD4,Z3(τ, z)

and

WD4,Z2 = −W6(3) +W(−) + 2W(6)

WD4,Z3 = WD4 − 3W(3).

The only E-type diagram with non-trivial automorphism is the Z2 generated by the
action fi �→ f6−i of E6, for 1 ≤ i ≤ 5.We conjecture that corresponding twined elliptic
genus is

Z E6,S
Z2

(τ, z) = 1

12

∑

a,b∈Z/12Z

qa
2
y2a φ

E6,P
Z2

(
τ,

z + aτ + b

12

)

where

φ
E6,P
Z2

(τ, z) = −iθ1(τ, 12z)θ1(τ, 11z)

η3(τ )θ1(τ, z)

(
μ12,0|W12(6) + μ12,0|W(−)

+ μ12,0|W12(4)|W(−)
)
(τ, z). (B.9)

After giving the conjectural answer for the building blocks Z�,S
h of the twining of

Z X,S
g , we need to know how such a g ∈ GX acts on the Niemeier root system X . This is

encoded in the twisted Euler characters χ̄ XA , χ XA , χ̄ XD , χ XD · · · attached to the A-, D-,
and E-components of each X . See §2.4 of [41] for details and see Appendix B.2 of the
same reference for the values of such twisted Euler characters for all 23 X . Combining
these ingredients leads to the answer for Z X,S

g for all conjugacy classes [g] for all the
umbral groups GX . This completes our computation of Z X

g (4.12).

C. The Twining Functions

In this appendix we provide the expression of Z X
g (τ, z) (cf. (4.12)) in terms of the

function hX
g :

Z X
g (τ, z) = iθ1(τ, z)2

θ1(τ, 2z)η3(τ )

{
cXg μ2,0(t, z) + hX

g (τ )(θ2,−1(τ, z) − θ2,1(τ, z))
}

where cXg is the number of fixed point in the 24-dimensional representation of GX . In
other words, for the cycle shape �X

g defined in (4.13), we have cXg = m1 if �1 = 1
and cXg = 0 otherwise. For instance, for X = A24

1 and [g] the identity class, the above
formula gives the N = 4 character decomposition of EG(K3) in (4.6).
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For X = A24
1 , the functions hX

g (τ ) for all [g] ⊂ GX ∼= M24 have been worked out
in [18–21]. We refer to these papers, or the summary in [7,29]. For convenience we will

denote h
A24
1

g simply by Hg for [g] ⊂ M24. Recall that Hg is nothing but the function
discussed in (1.2) when [g] = 1A is the identity class of M24. There are two cases,
corresponding to X = D24 and X = D16E8, with trivial GX . As a result they are not
included in the present appendix.

When hX
g coincides with Hg′ for a certain g′, we will simply use this identity to

define hX
g . When there does not exist such a [g′] ⊂ M24, we write

hX
g (τ ) = cXg

24
H1A(τ ) − T̃ X

g (τ )

η(τ )3
(C.1)

andwewill give the explicit expression for T̃ X
g in the following tables using the functions

given in Appendix A. We also use the short hand notation (n)k := ηk(nτ) (Tables 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23).

Table 4. X = A122

[g] �X
g hXg

1A 124 H1A

2A 212 H2B

4A 46 H4C

2B 1828 H2A

2C 212 H2B

3A 1636 H3A

6A 2363 T̃ X
6A = 3�2 + 2�3 − �4 − 3�6 + �12

3B 38 T̃ X
3B = 2(−4�3 + �9 − (1)6/(3)2)

6B 64 T̃ X
6B = 2 (1)5(3)

(2)(6)

4B 2444 H4A

4C 142244 H4B

5A 1454 H5A

10A 22102 H10A

12A 122 T̃ X
12A = 2 (1)(2)5(3)

(4)2(6)

6C 12223262 H6A

6D 2363 hX6D = hX6A

8AB 4282 T̃ X
8AB = 2(2)4(4)2/(8)2

8CD 12214182 H8A

20AB 41201 T̃ X
20AB = 2 (2)7(5)

(1)(4)2(10)

11AB 12112 T̃ X
11AB = (2�11(τ ) + 33(1)2(11)2)/5

22AB 21221 T̃ X
22AB = (3�2 − �4 + 2�11 − 3�22 + �44)/15 − 22

3 f 44new + 11
5 (1)2(11)2

+ 44
5 (2)2(22)2 + 88

5 (4)2(44)2
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Table 5. X = A83

[g] �X
g hXg

1A 124 H1A

2A 1828 H2A

2B 212 H2B

4A 2444 H4A

4B 46 T̃ X
4B = 2�4 − 3�8 + �16 − 2(1)4(2)2/(4)2

2C 1828 H2A

3A 1636 H3A

6A 12223262 H6A

6BC 2363 hX6BC = hY6A, Y = A122
8A 4282 T̃ X

8A = (2�8 − 3�16 + �32)/8 + 8(4)4(16)4/(8)4 − 8(4)2(8)2

4C 142244 H4B

7AB 1373 H7AB

14AB 112171141 T̃ X
14AB = (−�2 − �7 + �14 + 28(1)(2)(7)(14))/3

Table 6. X = A64

[g] �X
g hXg

1A 124 H1A

2A 212 H2B

2B 212 H2B

2C 1828 H2A

3A 38 H3B

6A 64 H6B

5A 1454 H5A

10A 22102 T̃ X
10A = (3�2 − �4 + 2�5 − 3�10 + �20 + 40(2)2(10)2)/3

4AB 46 hX4AB = hY4B , Y = A83
4CD 142244 H4B

12AB 122 T̃ X
12AB = 2 (2)2(6)4(1)2

(3)2(12)2

Table 7. X = A45D4

[g] �X
g hXg

1A 124 H1A

2A 1828 H2A

2B 1828 H2A

4A 142244 H4B

3A 1636 H3A

6A 12223262 H6A

8AB 12214182 H8A
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Table 8. X = D6
4

[g] �X
g hXg

1A 124 H1A

3A 1636 H3A

2A 1828 H2A

6A 12223262 H6A

3B 1636 H3A

3C 38 hX3C = hY3B , Y = A122
4A 2444 H4A

12A 214161121 T̃ X
12A = (−2�2 + 3�4 + 2�6 − �8 − 3�12 + �24)/4 + 18(2)(4)(6)(12)

5A 1454 H5A

15AB 113151151 T̃ X
15AB = (−�3 − �5 + �15 + 45(1)(3)(5)(15))/4

2B 1828 H2A

2C 212 H2B

4B 142244 H4B

6B 12223262 H6A

6C 64 hX6C = hY6B , Y = A122

Table 9. X = A46

[g] �X
g hXg

1A 124 H1A

2A 212 H2B

4A 46 H4C

3AB 1636 H3A

6AB 2363 hX6AB = hY6A = hZ6BC , Y = A122 , Z = A83

Table 10. X = A27D
2
5

[g] �X
g hXg

1A 124 H1A

2A 1828 H2A

2B 1828 H2A

2C 1828 H2A

4A 2444 H4A
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Table 11. X = A38

[g] �X
g hXg

1A 124 H1A

2A 212 H2B

2B 1828 H2A

2C 212 H2B

3A 38 hX3A = hY3B , Y = A122

6A 64 T̃ X
6A = 2 (1)5(3)

(2)(6) + 24(6)4

Table 12. X = A29D6

[g] �X
g hXg

1A 124 H1A

2A 1828 H2A

4AB 142244 H4B

Table 13. X = D4
6

[g] �X
g hXg

1A 124 H1A

2A 212 H2B

3A 1636 H3A

2B 1828 H2A

4A 46 H4C

Table 14. X = A11D7E6

[g] �X
g hXg

1A 124 H1A

2A 1828 H2A

Table 15. X = E4
6

[g] �X
g hXg

1A 124 H1A

2A 1828 H2A

2B 1828 H2A

4A 2444 H4A

3A 1636 H3A

6A 12223262 H6A

8AB 4282 T̃ X
8AB = (2�8 − 3�16 + �32)/8 + 24(4)2(8)2 + 8(4)4(16)4/(8)4
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Table 16. X = A212

[g] �X
g hXg

1A 124 H1A

2A 212 H2B

4AB 46 hX4AB = hY4B = hZ4AB , Y = A83, Z = A64

Table 17. X = D3
8

[g] �X
g hXg

1A 124 H1A

2A 1828 H2A

3A 38 H3B

Table 18. X = A15D9

[g] �X
g hXg

1A 124 H1A

2A 1828 H2A

Table 19. X = A17E7

[g] �X
g hXg

1A 124 H1A

2A 1828 H2A

Table 20. X = D10E
2
7

[g] �X
g hXg

1A 124 H1A

2A 1828 H2A

Table 21. X = D2
12

[g] �X
g hXg

1A 124 H1A

2A 212 H2B

Table 22. X = A24

[g] �X
g hXg

1A 124 H1A

2A 212 H2B
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Table 23. X = E3
8

[g] �̃g Zg

1A 124 H1A

2A 1828 H2A

3A 38 hX3B = hY3B , Y = A122
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