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Abstract: We consider three models of evolving interfaces intimately related to the
weakly asymmetric simple exclusion process with N particles on a finite lattice of 2N
sites. Our Model 1 defines an evolving bridge on [0, 1], our Model 1- w an evolving
excursion on [0, 1] while our Model 2 consists of an evolving pair of non-crossing
bridges on [0, 1]. Based on the observation that the invariant measures of the dynamics
depend on the area under (or between) the interface(s), we characterise the scaling
limits of the invariant measures when the asymmetry of the exclusion process scales like

N− 3
2 . Then, we show that the scaling limits of the dynamics themselves are expressed

in terms of variants of the stochastic heat equation. In particular, in Model 1- w we
obtain the well-studied reflected stochastic heat equation introduced by Nualart and
Pardoux (Probab Theory Relat Fields 93(1):77–89, 1992).

1. Introduction

Consider a collection of N particles located on the linear lattice {1, 2, . . . , 2N } and
subject to the exclusion rule that prevents two particles from sharing the same site. A
particle configuration η is therefore an element of {0, 1}2N with N occurrences of 1, each
1 encoding the presence of a particle. We denote by EMod 1

N this state-space, the reason for
the superscript will be made clear below. The simple exclusion process consists of the
following dynamics on EMod 1

N : each particle, independently of the others, jumps to its left
(respectively its right) at rate pN (respectively qN ) if the target site is unoccupied. Notice
that we do not consider periodic boundary conditions on our lattice so that a particle at
site 1 (respectively at site 2N ) cannot jump to its left (respectively to its right). When
pN �= qN but pN/qN → 1 as N → ∞, the process is called the weakly asymmetric
simple exclusion process (WASEP). In the present work, we introduce three models of
interfaces intimately related to this process. Our Model 1 defines an evolving interface
which turns out to be the height function associated with a WASEP. Our Model 1- w is
obtained from Model 1 by adding the condition that the interface remains non-negative.



288 A. M. Etheridge, C. Labbé

Fig. 1. Upper left Model 1, upper right Model 1- w, bottom Model 2. We have drawn the un-scaled
interfaces; to obtain h one needs to rescale the interval [0, 2N ] into [0, 1] and to divide the height of the
interfaces by

√
2N

Our Model 2 consists of a pair of interfaces, each being associated to a WASEP, but
with the condition that these interfaces cannot cross. We refer to Fig. 1 for an illustration.
In any of the three models, the area under the interface—or between the two interfaces—
will play a central rôle. The main results of this paper consist of the characterisation of
the scaling limits of these three dynamics via variants of the stochastic heat equation.

Our Model 1 is related to evolutional (or dynamical) Young diagrams; we refer
in particular to the works of Funaki and Sasada [17] and Funaki, Sasada, Sauer and
Xie [18], where the authors study the scaling limits of Young diagrams conditioned on
their area. We also refer to Dunlop, Ferrari and Fontes [13] for the study of the long-time
behaviour of a setting similar to our Model 1- w but on the infinite lattice Z.

These interfaces can also be interpreted as polymers. In particular our Model 1-
w, in the symmetric case pN = qN , coincides with the case λ = 1 of the polymer
model considered by Lacoin [28] and Caputo, Martinelli and Toninelli [4]. Indeed, in
these references the authors consider the measure λ#{x :h(x)=0} on the set of non-negative
lattice paths h (or polymers) starting at 0 and ending at 0 after 2N steps; therefore the
case λ = 1 yields the uniform measure. The dynamics considered by the authors is the
corner flip dynamics with rates that can depend on λwhen the interface touches the wall:
in the particular case λ = 1 this is exactly our dynamics. In his paper, Lacoin studies the
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dynamical interface scaled by a factor 1
2N and shows that the scaling limit is given by the

heat equation with Dirichlet boundary conditions: therefore, the hydrodynamical limit
does not feel the effect of the wall. Notice that the invariant measure of this dynamics
scales like

√
2N . In the present work, we look at this precise scaling, that is, we divide

the interface by a factor 1√
2N

and investigate the existence of a scaling limit. It turns out
that under this scaling, the interface feels the effect of the wall so that we need to deal
with some random reflecting measure at height 0. We obtain the Nualart-Pardoux [31]
reflected stochastic heat equation in the limit, see the precise statement below. We also
refer to Caravenna and Deuschel [5,6] for various results on the static behaviour of
related models of polymers.

Our models are discrete counterparts of the so-called ∇ϕ interface models. Let us
recall that a ∇ϕ interface model is a finite system of coupled oscillators: each oscil-
lator solves an SDE with a Brownian noise and a drift that depends on its position
relative to its neighbours. In our models, one can interpret the collection of values
h(0), h( 1

N ), . . . , h( N−1
N ), h(1) as discrete oscillators which solve an SDE driven by a

Poisson noise and a drift equal to the discrete Laplacian. We refer to Giacomin, Olla and
Spohn [20] for a setting similar to our Model 1 but in higher dimension, to Funaki and
Olla [16] for a study of a ∇ϕ interface model constrained by a wall, and to Funaki [15]
for a general review of ∇ϕ interface models.

Our motivation for Model 2 came from the study of hybrid zones in population
genetics. We suppose that each individual in a population undergoing biparental mating
carries one of two forms (alleles) of a gene. Two parents of the same type have greater
reproductive success than parents of different types. To caricature this situation we
impose pN < qN so that the two interfaces tend to move towards one another. The
‘hybrid zone’ corresponds to the region between the two interfaces.

Before we state our results, we need to describe our models more precisely. The
underlying idea in any of the models is to consider lattice paths on [0, 2N ] that start at 0,
make +1/− 1 steps and come back to 0 after 2N steps. In order to investigate potential
scaling limits, we actually need to rescale these lattice paths suitably. Let us now provide
the rigorous definitions.

Model 1. Fix an integer N ≥ 1 and set kN := k
2N for any k ∈ �0, 2N� :=

{0, 1, . . . , 2N }. Our state-space is the set

CMod 1
N :=

⎧
⎨

⎩
h : [0, 1] → R s.t.

h(0) = h(1) = 0,
h(kN ) = h((k − 1)N )± 1√

2N
, ∀k ∈ �1, 2N�,

h is affine on every interval [(k − 1)N , kN ]

⎫
⎬

⎭
.

We write � for the discrete Laplacian on CMod 1
N :

∀k ∈ �1, 2N − 1�, �h(kN ) := h
(
(k + 1)N

)− 2 h
(
kN

)
+ h
(
(k − 1)N

)
.

Note that � implicitly depends on N but this will never cause any confusion. The
definition of CMod 1

N implies that �h(kN ) can only take the values − 2√
2N

, 0 and 2√
2N

.

Consequently, we will write {�h(kN ) < 0} and {�h(kN ) > 0} to denote the first and
third cases respectively.

For every k ∈ �1, 2N − 1�, let pN (kN ) and qN (kN ) be two positive real numbers such
that pN (kN )+qN (kN ) = (2N )2. We consider a probability space (�N ,F N , P N ) on which
are defined two collections of independent Poisson processes LN (kN ), k ∈ �1, 2N − 1�
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and RN (kN ), k ∈ �1, 2N − 1� with jump rates pN (kN ) and qN (kN ) respectively. For a
given initial condition h0 ∈ CMod 1

N , we define the CMod 1
N -valued process t 
→ ht as the

unique solution of the following finite system of stochastic differential equations:

∀k ∈ �1, 2N−1�, dht (kN ) = 2√
2N

(
dLN

t (kN )1{�ht (kN )>0}−dRN
t (kN )1{�ht (kN )<0}

)
.

(1)
The process h can be informally described as follows. If at position kN we have a
local maximum, i.e., �ht (kN ) < 0, then at rate qN (kN ) the process ht (kN ) jumps to
ht (kN ) − 2√

2N
so that it becomes a local minimum, i.e., �ht (kN ) > 0. The converse

occurs at rate pN (·). Recall the state-space EMod 1
N introduced at the beginning of the

article. Our process can be viewed as the evolving height function associated with a
simple exclusion process. Indeed, there is a well-known correspondence between EMod 1

N

andCMod 1
N : a positive/negative slope on [(k−1)N , kN ] corresponds to the presence/absence

of a particle at the k-th site. The dynamics on CMod 1
N , once translated in terms of EMod 1

N ,
defines the so-called simple exclusion process: flipping a local maximum downward
corresponds to a jump of a particle to its right and vice-versa.

Let CMod 1 ⊃ CMod 1
N be the space of continuous functions on [0, 1] that vanish at the

boundaries. We denote by Q
N the distribution of (ht , t ≥ 0) on D([0,∞), CMod 1) taken

to be the Skorohod space of càdlàg CMod 1-valued functions. To emphasise the initial
condition, we will write Q

N
νN

when h0 is a random variable independent of the Poisson
processes and distributed according to a given probability measure νN on CMod 1

N .

Model 1- w. We define a modification of the first model by adding a reflecting wall
for the interface at 0. The state-space CMod 1- w

N is the restriction of that of Model 1 to
the non-negative functions:

CMod 1- w
N := {h ∈ CMod 1

N s.t. h(x) ≥ 0, ∀x ∈ [0, 1]} .
All the previous definitions still hold except that the system of stochastic differential
equations is now:

∀k ∈ �1, 2N−1�,

dht (kN ) = 2√
2N

(
dLN

t (kN )1{�ht (kN )>0} − dRN
t (kN )1{�ht (kN )<0;ht (kN )>

1√
2N

}
)
. (2)

The additional condition on the second term prevents the interface from becoming neg-
ative: if �ht (kN ) < 0 and ht (kN ) = 1√

2N
then ht ((k − 1)N ) = ht ((k + 1)N ) = 0 and a

downward jump would make ht (kN ) negative. We also set

∀t ≥ 0,∀x ∈ (0, 1), ζ(dt, dx) :=
2N−1∑

k=1

2qN (kN )

(2N )
3
2

1{�ht (kN )<0;ht (kN )= 1√
2N

}δ{kN }(dx)dt

(3)
which is a random element of the space M of Borel measures on [0,∞)×(0, 1) satisfying∫

[0,t]×(0,1) x(1−x)ζ(ds, dx) <∞ for every t ≥ 0. We refer to Sect. 3.3 for the definition
of the topology on this set of measures. The study of this random measure is necessary in
order to characterise the scaling limit of h. Indeed, the derivative in time of h in Model
1- w is the same as that in Model 1 plus a reflection term involving the measure ζ . At
the limit N → ∞, this random measure cannot be explicitly expressed in terms of h so
that it needs to be obtained as a limit from the discrete setting.
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The set CMod 1- w ⊃ CMod 1- w
N is taken to be the set of non-negative continuous functions

on [0, 1] that vanish at the boundaries. Then we define Q
N
νN

as the distribution of the
pair (h, ζ ) on the product space D([0,∞), CMod 1- w)× M when h0 is a random variable
independent of the Poisson processes and is distributed according to a given probability
measure νN on CMod 1- w

N .

Model 2. The state-space CMod 2
N is the following set of pairs of interfaces:

CMod 2
N := {h = (h(1), h(2)) s.t. h(1), h(2) ∈ CMod 1

N and h(1)(x) ≥ h(2)(x), ∀x ∈ [0, 1]} .
We call h(1) the upper interface and h(2) the lower interface. Let us describe the dynamics
informally. The upper interface follows the same dynamics as in Model 1 while the
lower interface follows the opposite dynamics, that is, it jumps upward at rate qN (·)
and downward at rate pN (·). Additionally, any jump that would break the ordering of
the interfaces is erased. Formally, we define four collections of independent Poisson
processes L1, N (kN ),R2, N (kN ), k ∈ �1, 2N − 1� and R1, N (kN ),L2, N (kN ), k ∈ �1, 2N −
1� with jump rates pN (kN ) for the first two and qN (kN ) for the last two. Then t 
→
ht := (h(1)t , h(2)t ) is the unique solution of the following system of stochastic differential
equations:

dh(1)t (kN ) = 2√
2N

(
dL1, N

t (kN )1{�h(1)t (kN )>0} − dR1, N
t (kN )1{�h(1)t (kN )<0;h(1)t (kN )>h(2)t (kN )}

)
,

dh(2)t (kN ) = 2√
2N

(
dL2, N

t (kN )1{�h(2)t (kN )>0;h(1)t (kN )>h(2)t (kN )} − dR2, N
t (kN )1{�h(1)t (kN )<0}

)
.

(4)

The condition h(1)t (kN ) > h(2)t (kN ) prevents the upper interface from passing below the
lower interface, and vice-versa. We also introduce two random measures as follows:

ζ (1)(dt, dx) :=
2N−1∑

k=1

2qN (kN )

(2N )
3
2

1{�h(1)t (kN )<0;h(1)t (kN )=h(2)t (kN )}δ{kN }(dx)dt,

ζ (2)(dt, dx) :=
2N−1∑

k=1

2qN (kN )

(2N )
3
2

1{�h(2)t (kN )>0;h(1)t (kN )=h(2)t (kN )}δ{kN }(dx)dt.

(5)

They are both random elements of the space M introduced above. Then we define Q
N
νN

as the law of (h, ζ (1), ζ (2)) on D([0,∞), CMod 2)×M×M, under which h0 = (h(1)0 , h(2)0 ) is
a random variable with law νN and independent of the Poisson processes. Here CMod 2 ⊃
CMod 2

N denotes the space of continuous R
2-valued functions h = (h(1), h(2)) on [0, 1] such

that h(1)(x) ≥ h(2)(x) for every x ∈ [0, 1] and both h(1), h(2) vanish at the boundaries of
[0, 1].

Let us emphasise our deliberate use of the same symbol Q
N in any of the three models

in order to alleviate the notation. Moreover, we will sometimes drop the superscript
associated to the model and use the generic notation CN and C whenever a result applies
indifferently to any of the three models. For any probability measure ν on C, we adopt
the usual notation ν[F] := ∫C F(h)ν(dh) to denote the ν-expectation of a measurable
map F : C → R. Let us also introduce the notation

‖h‖C =
{

supx∈[0,1] |h(x)| in Model 1 and Model 1- w,
supx∈[0,1] |h(1)(x)| + |h(2)(x)| in Model 2.
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1.1. Main results. We start with a result whose statement - in the case of Model 1 -
already appears in various forms in the literature, see for instance Janowsky and
Lebowitz [22] or Funaki and Sasada [17].

Proposition 1. For every N ≥ 1, the continuous-time Markov chain defined by any of
the three models admits a unique invariant, reversible probability measure μN defined
as follows:

∀h ∈ CN , μN (h) = 1

Z N

exp
(
(2N )

3
2 AN (h)

)
,

where Z N is a normalising constant and where AN (h) refers to the discrete weighted
area under the interface

AN (h) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

4N

2N−1∑

k=1

log

(
pN (kN )

qN (kN )

)

h(kN ) in Model 1 and Model 1- w,

1

4N

2N−1∑

k=1

log

(
pN (kN )

qN (kN )

)
(
h(1)(kN )− h(2)(kN )

)
in Model 2.

The area under the interface is a key quantity in the study of our models. Based on this
observation, we investigate the scaling limits of this invariant measure when N goes to
infinity. We denote by PMod 1 the distribution on CMod 1 of the Brownian bridge and by
PMod 1- w the distribution on CMod 1- w of the normalised Brownian excursion. Furthermore,
PMod 2 is taken to be the distribution on CMod 2 of the 2-dimensional Dyson Brownian
bridge, which is also called the 2-watermelon; this process is the unique solution of the
following system of stochastic differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

dh(1)(x) = − h(1)(x)
1−x dx + 1

h(1)(x)−h(2)(x)
dx + d B(1)(x), x ∈ (0, 1),

dh(2)(x) = − h(2)(x)
1−x dx + 1

h(2)(x)−h(1)(x)
dx + d B(2)(x), x ∈ (0, 1),

h(1)(0) = h(1)(1) = h(2)(0) = h(2)(1) = 0, h(1)(x) ≥ h(2)(x),

where B(1), B(2) are two independent standard Brownian motions. We refer to Dyson [14]
and to Theorem 2.6 in Gillet [21] for details. The form taken by the invariant measure

motivates an asymmetry that vanishes at rate (2N )− 3
2 . In the following statement, P and

Q will appear without superscript in order to alleviate notation.

Theorem 1. Let σ be a Riemann-integrable function from [0, 1] into R and set

pN (·) + qN (·) := (2N )2 , log
pN (·)
qN (·) := 4σ(·)(2N )−

3
2 . (6)

Then μN ⇒ Q as N → ∞, in the sense of weak convergence of probability measures
on C, where Q is defined via its Radon-Nikodym derivative with respect to P

dQ(h) := exp
(
Aσ (h)

)

Z
dP(h).

Here Z is a normalising constant and Aσ (h) is the weighted area defined as follows:

Aσ (h) =
{

2
∫ 1

0 σ(x)h(x)dx in Model 1 and Model 1- w,

2
∫ 1

0 σ(x)
(
h(1)(x)− h(2)(x)

)
dx in Model 2.

Moreover for every λ > 0, supN≥1 μN

[
eλ‖h‖C

]
<∞.
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Although many results have been established on the WASEP when the asymmetry
is of order N−1—see for instance Gärtner [19], De Masi, Presutti and Scacciatelli [10],
Kipnis, Olla and Varadhan [27]—the investigation of an asymmetry that scales like
N−3/2 seems to be new. We now turn our attention to the scaling limits of the dynamics
itself.

Assumption 1. The asymmetry is given by (6) with σ a 1
2 -Hölder function on [0, 1].

The Hölder condition on the map σ is only needed in the proof of the large devia-
tion result of Sect. 2.3. In the following statements, C([0,∞), C) denotes the space of
C-valued continuous maps endowed with the topology of uniform convergence on com-
pact intervals of time.

Theorem 2. Consider Model 1 under Assumption 1. Let (νN )N≥1 be a sequence of
probability measures on CMod 1

N that converges weakly toward a given probability measure
ν on CMod 1 and such that there exists cinit > 0 and βinit > 0 such that

sup
N≥1

νN

[

sup
x �=y∈[0,1]

|h(x)− h(y)|
|x − y|βinit

]

≤ cinit.

Then Q
N
νN

⇒ Qν as N → ∞, in the sense of weak convergence of probability measures
on the space D([0,∞), CMod 1). Here Qν is the distribution on C([0,∞), CMod 1) under
which h0 has law ν and h is the solution of the stochastic heat equation:

SHE

⎧
⎨

⎩

∂t ht (x) = 1

2
∂2

x ht (x) + σ(x) + Ẇ (t, x),

ht (0) = ht (1) = 0.
(7)

Here Ẇ is a space-time white noise.

Recall the definition of the space M from above. Recall also that μN stands for the
invariant probability measure.

Theorem 3. Consider Model 1- w under Assumption 1. Then Q
N
μN

⇒ Q as N →
∞, in the sense of weak convergence of probability measures on the product space
D([0,∞), CMod 1- w)× M endowed with the product topology. Here Q is the distribution
on C([0,∞), CMod 1- w) × M under which h0 has law QMod 1- w and (h, ζ ) is the solution
of the Nualart-Pardoux reflected stochastic heat equation [31]:

RSHE

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t ht (x) = 1

2
∂2

x ht (x) + σ(x) + ζ(dt, dx) + Ẇ (t, x),

ht (x) ≥ 0, ht (0) = ht (1) = 0,
∫

[0,∞)×(0,1)
ht (x)ζ(dt, dx) = 0.

(8)

Here Ẇ is a space-time white noise.

Finally, we consider the most elaborate model.
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Theorem 4. Consider Model 2 under Assumption 1. Then the sequence Q
N
μN

is tight
for the topology of weak convergence of probability measures on D([0,∞), CMod 1- w)×
M × M. Furthermore, if we let Q be the limit of a converging subsequence, then Q

is supported by C([0,∞), CMod 1- w) × M × M and under Q, h0 has law QMod 2 and
(h, ζ (1), ζ (2)) satisfies:

Pair of RSHEs

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t h
(1)
t (x) =

1

2
∂2

x h(1)t (x) + σ(x) + ζ (1)(dt, dx) + Ẇ (1)(t, x),

∂t h
(2)
t (x) =

1

2
∂2

x h(2)t (x)− σ(x)− ζ (2)(dt, dx) + Ẇ (2)(t, x),

h(1)t (x) ≥ h(2)t (x), h(1)t (0) = h(1)t (1) = h(2)t (0) = h(2)t (1) = 0,
∫

[0,∞)×(0,1)
(
h(1)t (x)− h(2)t (x)

)(
ζ (1)(dt, dx) + ζ (2)(dt, dx)

) = 0.

(9)
Here Ẇ (1) and Ẇ (2) are two independent space-time white noises.

Before proceeding to the proofs, we relate our results to the existing literature. The proof
of Theorem 2 is inspired by the convergence techniques used by Bertini and Giacomin [2]
in their celebrated paper on the KPZ equation. It seems that these techniques no longer
work in the settings with reflection. Indeed the tightness of the random measure(s) that
encodes the time spent at 0 by the interface(s) needs specific work. Consequently the
proofs of Theorems 3 and 4 use different tools and depend strongly on the process being
in the stationary regime. Funaki and Olla [16] proved that the RSHE is the scaling limit
of a system of oscillators which is similar to our Model 1- w. However, in their case the
oscillators take continuous values in R while our model is discrete; they mentioned in
their paper that a discrete setting is probably more difficult to tackle. Also, the discrete-
ness of the setting prevents us from applying the general method developed by Ambrosio,
Savaré and Zambotti [1]: indeed, our stationary measure fails to be log-concave. Let us
also comment on the reason why we start from the invariant measure in the two more
elaborate models. Actually, we first show tightness in a space of distributions and then,
using estimates on the space regularity of the interface under the invariant measure, we
obtain tightness in a space of continuous functions by interpolation arguments. There-
fore, the initial condition being invariant appears as a technical assumption.

Both Nualart and Pardoux [31] and Funaki and Olla [16] used the penalisation method
to deal with the reflecting measure. In the present paper, we instead show the convergence
of ζ—or ζ (1), ζ (2)—by martingale techniques; this approach seems to be new.

Let us also mention that the RSHE has been studied quite extensively in the recent
years. In particular, Zambotti [38] showed that the measure QMod 1- w is invariant for this
stochastic PDE while Dalang, Mueller and Zambotti [7] obtained the following beautiful
result: almost surely at any time t > 0 the number of points x ∈ (0, 1) at which the
interface vanishes is at most 4. We also refer to Xu and Zhang [37] for related equations.

Finally, let us mention that it would be interesting to investigate similar discrete
models whose invariant measure converges to some distribution related to the Brownian
motion (for instance, the reflected Brownian motion). The forms taken by the corre-
sponding stochastic PDEs do not seem to be easy to guess.

Remark 2. We have not been able to decide whether ζ (1) = ζ (2) in the limit for Model
2, even though we believe that this equality holds. Let us point out that Theorem 5 does
not provide such an equality since the functional � involved in the expression of the
potential V needs to depend on a finite number of sites of the lattice while the quantity
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ζ (1) − ζ (2) really depends on the whole interface. The equality ζ (1) = ζ (2) would ensure
uniqueness of the limit in Theorem 4 since, then, Pair of RSHEs would just be a linear
combination of SHE and RSHE.

Organisation of the paper. In Sect. 2, we prove the results related to the invariant
measure and we state a large deviation result on the local behaviour of the interfaces
which will be necessary to identify the limits. The proof of this result is postponed to
Appendix A. In Sect. 3, we present our general approach to proving tightness in any
of the three settings. Then we provide the arguments when the processes start from the
stationary measure, while the proof for Model 1 starting from a more general initial
condition, is postponed to Appendix B. In Sect. 4, we identify the limit of the sequence
Q

N and, therefore, complete the proof of Theorems 2, 3 and 4.

2. The Invariant Measure

2.1. Proof of Proposition 1. We provide a proof that works for the three models; therefore
CN is any of the three state-spaces. Fix N ≥ 1. Consider two configurations h, h′ ∈ CN .
Denote by λ(h, h′) the rate at which the process (in any of the three models) jumps from
h to h′. We have to prove that

exp
(
(2N )

3
2 AN (h)

)
λ(h, h′) = exp

(
(2N )

3
2 AN (h

′)
)
λ(h′, h). (10)

By definition of the dynamics, λ(h, h′) �= 0 if and only if h′ is obtained from h by
flipping a local extremum into its counterpart without violating the non-crossing rules
if any. By the symmetry of Eq. (10), we can assume that λ(h, h′) = pN (kN ) for a given
k ∈ �1, 2N − 1� so that λ(h′, h) = qN (kN ). The key observation is that any jump that
occurs at rate pN (·) (respectively qN (·)) makes the area increase (respectively decrease).

More precisely, we have (2N )
3
2 A (h′) = (2N )

3
2 A (h) + log

(
pN (kN )
qN (kN )

)
. Consequently

(10) follows. ��

2.2. Weak asymmetry and the area. The expression for the invariant measure exhibits
an interplay between the area and the ratio of the jump rates. This suggests that we
should choose a weak asymmetry that scales consistently with the area. Let us first
study the symmetric case pN (·) = qN (·) = (2N )2/2. We denote by πMod 1

N , πMod 1- w
N and

πMod 2
N the corresponding invariant measures: from Proposition 1, we deduce that they

are the uniform measures on CMod 1
N , CMod 1- w

N and CMod 2
N respectively. Recall the definition

of the probability measures PMod 1, PMod 1- w and PMod 2 introduced before the statement of
Theorem 1. Recall also that we drop the superscript associated with the model whenever
a result can be stated indifferently for the three models.

Lemma 3. As N → ∞, πN converges weakly to the measure P on C. Moreover for any
λ > 0 we have supN≥1 πN

[
eλ‖h‖C

]
<∞.

Proof. The convergence of πMod 1
N (respectively πMod 1- w

N ) towards PMod 1 (respectively
PMod 1- w) is a classical result, see [24,29]. The uniform bounds for the exponential
moments were obtained by Khorunzhiy and Marckert in [26]. Let us consider Model
2. Gillet proved the convergence result in [21]. Let us show the uniform bound for the

exponential moments. The underlying idea of our proof is to study the paths s := h(1)+h(2)
2
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and d := h(1)−h(2)
2 . First, observe that on any interval [(k − 1)N , kN ] the pair (h(1), h(2))

has four possible increments: h(1) and h(2) both increase - we denote this event by (↑↑)k ;
h(1) and h(2) both decrease (↓↓)k ; h(1) increases and h(2) decreases (↑↓)k ; h(1) decreases
and h(2) increases (↓↑)k . Fix a pair (h(1), h(2)) ∈ CMod 2

N . The non-crossing condition
h(1) ≥ h(2) imposes that

k∑

i=1

1(↑↓)i ≥
k∑

i=1

1(↓↑)i , ∀k ∈ �1, 2N�.

Furthermore h(1)(1) = h(2)(1) = 0 yields the existence of an integer n ∈ �0, N� such
that:

2N∑

i=1

1(↑↑)i =
2N∑

i=1

1(↓↓)i = n,
2N∑

i=1

1(↑↓)i =
2N∑

i=1

1(↓↑)i = N − n.

We will denote by CMod 2
N , n the subset of CMod 2

N restricted to the paths that fulfil these
conditions for a given value n. For a given (h(1), h(2)) ∈ CMod 2

N , n , let us denote by ı the
subset of �1, 2N� consisting of the indices of the increments of the form (↑↑) or (↓↓)
in (h(1), h(2)). Plainly ı belongs to the collection I(n) of subsets of �1, 2N� with 2n
elements; we will denote by ı( j), j ∈ �1, 2n� the elements of ı in increasing order.
Then we define the path s̃ as the following element of CMod 1

n :

s̃
( k

2n

)
:= 1√

2n

k∑

j=1

(
1(↑↑)ı( j) − 1(↓↓)ı( j)

)
, ∀k ∈ �1, 2n�.

In words, s̃ makes + 1√
2n

at any step (↑↑), − 1√
2n

at any step (↓↓) and does not evolve at

any other step of (h(1), h(2)). Similarly we define d̃ as the following element of CMod 1- w
N − n :

d̃
( k

2n

)
:= 1√

2(N − n)

k∑

j=1

(
1(↑↓)�1,2N�\ı( j) − 1(↓↑)�1,2N�\ı( j)

)
, ∀k ∈ �1, 2(N − n)�,

where �1, 2N�\ı( j) stands for the j-th element, in the increasing order, in the set
�1, 2N�\ı . The map:

CMod 2
N , n → CMod 1

n × CMod 1- w
N − n × I(n)

(h(1), h(2)) 
→ (s̃, d̃, ı)

is a bijection. Since πMod 2
N is the uniform measure on CMod 2

N , we deduce that
πMod 2

N ( · | CMod 2
N , n ) is the uniform measure on CMod 2

N , n . Consequently, under πMod 2
N ( · | CMod 2

N , n ),

the pair (s̃, d̃) is distributed according to πMod 1
n ⊗ πMod 1- w

N − n . The paths s := h(1)+h(2)
2

and d := h(1)−h(2)
2 are obtained from s̃ and d̃ by inserting constant steps and rescaling

suitably so that

sup
[0,1]

|s| =
√

2n√
2N

sup
[0,1]

|s̃|, sup
[0,1]

|d| =
√

2(N − n)√
2N

sup
[0,1]

|d̃|,
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and, we deduce that

sup
N≥1

πMod 2
N

[
eλ sup |s|] ≤ sup

n≥1
πMod 1

n

[
eλ sup |h|] <∞,

sup
N≥1

πMod 2
N

[
eλ sup |d|] ≤ sup

n≥1
πMod 1- w

n

[
eλ sup |h|] <∞.

Since h(1) = s + d and h(2) = s − d, the Cauchy-Schwarz inequality yields for every
λ > 0 and i ∈ {1, 2}

πMod 2
N

[
eλ sup |h(i)|] ≤

√

πMod 2
N

[
e2λ sup |s|]πMod 2

N

[
e2λ sup |d|].

Since ‖h‖C ≤ sup[0,1] |h(1)| + sup[0,1] |h(2)| another application of the Cauchy-Schwarz
inequality completes the proof. ��
Before we proceed to the proof of Theorem 1, let us state without proof a well-known
result that we will use on several occasions.

Lemma 4. Let Xn, n ≥ 1 be a sequence of random variables that converges in distrib-
ution to a random variable X. Assume that there exists p > 1 such that the expectation
of |Xn|p is uniformly bounded in n ≥ 1, then the first moment of Xn converges to the
first moment of X.

Proof of Theorem 1. Fix a Riemann-integrable function σ and take log( pN (·)
qN (·) ) =

4σ(·)(2N )− 3
2 so that

(2N )
3
2 AN (h) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2

2N

2N−1∑

k=1

σ(kN )h(kN ) in Model 1 and Model 1- w,

2

2N

2N−1∑

k=1

σ(kN )
(
h(1)(kN )− h(2)(kN )

)
in Model 2.

We drop the superscript associated with the models since our proof works verbatim for
the three models. From now on, we work on C and we see πN and μN as measures on
this space. We want to prove that for any bounded continuous map F from C to R we
have

μN [F] −→
N→∞ Q[F]. (11)

We observe that

μN [F] = πN [F(h) exp((2N )
3
2 AN (h))]

πN [exp((2N )
3
2 AN (h))]

, Q[F] = P[F(h) exp(Aσ (h))]
P[exp(Aσ (h))] .

To prove (11), we show that the numerator (resp. denominator) of the expression on
the left converges to the numerator (resp. denominator) of the expression on the right.
By continuity of F and Aσ , the pushforward of πN through h 
→ F(h) exp(Aσ (h))
converges weakly to the pushforward of P through the same map. Using the boundedness
of σ and the uniform exponential bound on ‖h‖C obtained in Lemma 3, we deduce that

sup
N≥1

πN

[
F2(h) exp(2Aσ (h))

]
<∞.
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Consequently, Lemma 4 ensures that πN [F(h) exp(Aσ (h))] converges to P[F(h)
exp(Aσ (h))]. It remains to show that

πN

[
F(h)
(

exp((2N )
3
2 AN (h))− exp(Aσ (h))

)] −→
N→∞ 0.

The same argument as above shows that the second moment of this random variable
is uniformly bounded in N ≥ 1. Furthermore the Riemann-integrability of σ and the
convergence of πN towards P ensure the convergence in probability of this random
variable to 0 so that the result follows from Lemma 4. ��
In the following proposition, we give a description of QMod 1.

Proposition 5. Consider Model 1 and take σ Riemann-integrable. Under QMod 1, the
process x 
→ h(x) − (1 − x)

∫ x
0

2
(1−y)2

∫ 1
y σ(u)(1 − u)du dy is a Brownian bridge on

[0, 1]. In the particular case where σ is constant, we obtain that x 
→ h(x)−σ x(1− x)
is a Brownian bridge.

Proof. We drop the superscript Model 1 since there is no possible confusion here.
We endow C with the filtration Fx , x ∈ [0, 1] of the canonical process x 
→ h(x),
and we introduce the P-martingale D(x) := dQ

dP |Fx , x ∈ [0, 1]. Since Aσ (h) =
2
∫ 1

0 σ(x)h(x)dx we obtain that for all x ∈ [0, 1]

D(x) = exp
(

2
∫ x

0
σ(y)h(y)dy

) P
[
e2
∫ 1

x σ(y)h(y)dy
∣
∣Fx

]

P
[
e2
∫ 1

0 σ(y)h(y)dy
] .

Recall that, under P, h is a Brownian bridge so that conditionally given Fx , the process
(h(y)− h(x) 1−y

1−x , y ∈ [x, 1]) is a Brownian bridge independent of Fx . We obtain:

P
[
e2
∫ 1

x σ(y)h(y)dy
∣
∣Fx

]
= e2h(x)

∫ 1
x σ(y)

1−y
1−x dyP

[
e2
∫ 1

x σ(y)
(

h(y)−h(x) 1−y
1−x

)
dy
]
.

Moreover, there exists a P-Brownian motion W such that for every x ∈ [0, 1], h(x) =
W (x) − ∫ x

0 h(y)(1 − y)−1dy. A simple application of Itô’s formula to the process

x 
→ h(x)
∫ x

0 σ(y)
1−y
1−x dy ensures that

∫ x

0
σ(y)h(y)dy = h(x)

∫ x

0
σ(y)

1 − y

1 − x
dy −

∫ x

0

∫ y

0
σ(u)

1 − u

1 − y
du dWy .

Consequently, we have:

〈〈log D,W 〉〉(x) = 2
∫ x

0

1

1 − y

∫ 1

y
σ(u)(1 − u)du dy.

Girsanov’s theorem (see for instance Revuz and Yor [32] Theorem VIII.1.7) ensures that
under Q the process

x 
→ W̃ (x) := W (x)− 〈〈log D,W 〉〉(x)
is a continuous martingale with the same bracket as W , and so, it is a Q Brownian
motion. Accordingly for every x ∈ [0, 1], h(x) = W̃ (x) − ∫ x

0 h(y)(1 − y)−1dy +

2
∫ x

0
1

1−y

∫ 1
y σ(u)(1 − u)du dy. A simple calculation ends the proof. ��
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To end this subsection, we state a technical result useful for the proof of the tightness.
For any η ≥ 0 and r ≥ 1, we introduce the Sobolev-Slobodeckij space:

Wη,r :=
{

f ∈ Lr ([0, 1]),
∫

[0,1]
| f (x)|r dx

+
∫

[0,1]2
| f (x)− f (y)|r
|x − y|ηr+1 dx dy =: ‖ f ‖r

Wη,r <∞
}
. (12)

Lemma 6. Fix r ≥ 1, η ∈ (0, 1
2 ) and p ≥ 1. In Model 1 and Model 1- w, we have

sup
N≥1

πN

[
‖h‖p

Wη,r

]
<∞.

In Model 2, the same holds true for both h(1), h(2).

This result can be seen as a uniform bound on the η-Hölder regularity of h under πN .

Proof. We start with Model 1. Fix ε ∈ (0, 1/3) and set Dε := {0 ≤ x, y ≤ 1 :
|y − x | ≤ ε}. For any h ∈ CMod 1, we have

∫

[0,1]
|h(x)|r dx ≤ ‖h‖r

CMod 1 ,

∫

[0,1]2
|h(x)− h(y)|r
|x − y|ηr+1 dx dy ≤ 2 ‖h‖r

CMod 1

∫

[0,1]2\Dε

dx dy

|x − y|ηr+1 (13)

+
∫

Dε

|h(x)− h(y)|r
|x − y|ηr+1 dx dy.

Since the exponential moments of the supremum norm of h under πMod 1
N are uniformly

bounded in N ≥ 1 thanks to Lemma 3, we only need to bound the moments of the
second term on the r.h.s. of the second line of (13). Fix δ ∈ (0, 1) such that η + δ

r <
1
2 .

Using Jensen’s inequality in the first line and the existence of c > 0 such that for all
x ∈ R, |x |pr ≤ ce|x | in the second line, we obtain

( ∫

Dε

|h(x)− h(y)|r
|x − y|ηr+δ

dx dy

|x − y|1−δ
)p ≤ C p−1

ε,δ

∫

Dε

( |h(x)− h(y)|r
|x − y|ηr+δ

)p dx dy

|x − y|1−δ

≤ c C p−1
ε,δ

∫

Dε
exp
( |h(x)− h(y)|

|x − y|η+ δr

) dx dy

|x − y|1−δ

where Cε,δ :=
∫

Dε
dx dy

|x−y|1−δ . Therefore we have

πMod 1
N

[( ∫

Dε

|h(x)− h(y)|r
|x − y|ηr+1 dx dy

)p
]

≤ c C p−1
ε,δ

∫

Dε
πMod 1

N

[
exp
( |h(x)− h(y)|

|x − y|η+ δr

)] dx dy

|x − y|1−δ .

We need to bound the integrand in the right side. We denote by γN the probability measure
induced on the space of continuous functions on [0, 1] by a simple random walk starting
from 0 and making 2N steps (and rescaled diffusively as usual). Notice that this random
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walk is not conditioned to come back to 0 nor to stay non-negative. By the independence
of the increments of the simple random walk and since η + δ

r <
1
2 , one obtains easily:

sup
N≥1

sup
x �=y

γN

[
exp
( |h(x)− h(y)|

|x − y|η+ δr

)]
<∞. (14)

Now observe that for every N ≥ 1, every k ∈ �1, 2N� and every h ∈ CMod 1
N , we have

dπMod 1
N

dγN
|F k

2N

(h) =
πMod 1

N

({
h′ : ∀i ∈ �1, k�, h′(iN ) = h(iN )

})

γN

({
h′ : ∀i ∈ �1, k�, h′(iN ) = h(iN )

})

= 2k
(

2N − k

N − k+
√

2Nh(kN )
2

)(
2N

N

)−1

,

where Fx is the sigma-algebra generated by (h(y), y ∈ [0, x]). The maximum of this
quantity is reached when |h(kN )| equals 0 or 1 according as k is even or odd. Stirling’s
formula then yields

sup
N≥1

sup
h∈CMod 1

N

dπMod 1
N

dγN
|F 2

3
(h) <∞. (15)

For any (x, y) ∈ Dε , at least one of these two assertions is satisfied: x, y ∈ [0, 2
3 ] or

x, y ∈ [ 1
3 , 1]. Since x 
→ h(1 − x) and x 
→ h(x) have the same distribution under

πMod 1
N , and using (14) and (15) we obtain

sup
N≥1

sup
(x,y)∈Dε

πMod 1
N

[
exp
( |h(x)− h(y)|

|x − y|η+ δr

)]
<∞.

Consequently the lemma is proved under πMod 1
N . Using the Vervaat transform [36] that

maps a bridge onto an excursion, this result can easily be extended to πMod 1- w
N . Finally in

Model 2 the result follows by using the decomposition s := h(1)+h(2)
2 and d := h(1)−h(2)

2
introduced in the proof of Lemma 3. ��

2.3. A large deviation result. For the proof of Theorems 2, 3 and 4, we will need a
uniform estimate on the probability that the interface locally looks like an unconditioned
simple random walk. This estimate is originally due to Kipnis, Olla and Varadhan [27]
(see also [35]) in the case where the lattice is the torus Z/�1, 2N�. In order to state the
estimate, we need to introduce some notation. We set O2N := {0, 1}2N . For every j ∈ Z,
we denote by τ j the shift by j modulo 2N on O2N which is defined as follows. For
all η ∈ O2N and all i ∈ �1, 2N�, τ jη(i) = η(i + j) where i + j is taken modulo 2N .
Consider an integer l ≥ 1 and a map � : {0, 1}l → R. Whenever 2N ≥ l and for every
η ∈ O2N , we extend� into a map from O2N into R by setting�(η) := �(η(1), . . . , η(l)).
Consequently� is a map from O2N into R that only depends on a fixed number of sites.
We also introduce the map �̃ as follows

�̃(a) =
∑

η∈O2N

�(η)a#{i :η(i)=1}(1 − a)#{i :η(i)=0}, a ∈ [0, 1].
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This can be viewed as the expectation of� under the product of 2N Bernoulli measures
with parameter a. Recall from the introduction the definition of the space of particle
configurations EMod 1

N associated to CMod 1
N . Similarly, we define EMod 1- w

N as the subset of
O2N whose elements η have N occurrences of 1 and satisfy the following wall condition:

∀k ∈ �1, 2N�,

k∑

i=1

η(i) ≥ k

2
.

Finally we set EMod 2
N as the set of pairs η(1), η(2) which both belong to EMod 1

N and satisfy
the following non-crossing condition:

∀k ∈ �1, 2N�,

k∑

i=1

(η(1)(i)− η(2)(i)) ≥ 0.

Then we set for every k ∈ �1, 2N − 1� and every element η of EMod 1
N or EMod 1- w

N ,

∇η(k) := η(k + 1)− η(k) ∈ {−1; 0; 1}.
In Model 2, we define the same notation for η(1) and η(2). Observe that ∇η is the
counterpart of �h. In any of the three models, the correspondence between CN and EN

allows us to define a process η := (ηt , t ≥ 0) ∈ D([0,+∞), EN ) under the measure
Q

N
νN

, where νN is a distribution on CN .

Theorem 5. (Large deviation) For any initial distribution νN and for every δ > 0, t > 0,

lim
ε↓0

lim
N→∞

1

N
log Q

N
νN

( 1

N

∫ t

0
VN , ε(ηs)ds > δ

)
= −∞

where in Model 1 and Model 1- w for all ε > 0

VN , ε(η) =
2N∑

i=1

∣
∣
∣
∣

1

2εN + 1

∑

j :|i− j |≤εN

�(τ jη)− �̃
( 1

2εN + 1

∑

j :|i− j |≤εN

η( j)
)∣∣
∣
∣

and in Model 2, VN , ε(η) is taken to be the sum of the same quantities for η(1) and η(2).

In the statement of the theorem, all the integers are taken modulo 2N .

Remark 7. It may seem surprising that we need such a super-exponential estimate, rather
than just the convergence to 0 of the probability of the event above. Actually the result is
first established under the invariant measure, and then extended to the general case via
the Radon-Nikodym derivative w.r.t. the stationary case. Since this derivative is bounded
by a term of order ecN , a super-exponential decay allows us to compensate the derivative.

The structure of the proof is very similar to that of [27] but some key arguments
need to be significantly modified since our state-space is no longer translation invariant
and since we have added interaction with a wall in Model 1- w (resp. between two
interfaces in Model 2). Below, we describe the method of proof for the three models
simultaneously. We denote the generator of our process by L N . For instance, in Model
1- w this is the operator acting on maps f from EMod 1- w

N into R as follows:
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LMod 1- w
N f (η) :=

2N−1∑

k=1

(
f (ηk,k+1)− f (η)

)(
pN (kN )1{∇η(k)=1}

−qN (kN )1{∇η(k)=−1;ηk,k+1∈EMod 1- w
N }

)
,

where ηk,k+1 is obtained from η by exchanging the values of η(k) and η(k + 1). The
condition ηk,k+1 ∈ EMod 1- w

N in the formula expresses the wall condition.
We can associate to VN , ε a diagonal operator acting on maps f from EN into R as

follows:

∀η ∈ EN , VN , ε f (η) := VN , ε(η) f (η).

Recall that μN is the reversible measure associated with the dynamics. We consider the
Hilbert space L2(EN , μN ) of square-integrable maps on EN w.r.t. the measure μN . Fix
a ∈ R. The operator L N + aVN , ε is self-adjoint in L2(EN , μN ); we denote by λN , ε(a) its
largest eigenvalue. The Feynman-Kac formula (see for instance Appendix 1 - Lemma
7.2 in the book of Kipnis and Landim [25]) ensures that for all t ≥ 0

Q
N
μN

[

exp
(

a
∫ t

0
VN , ε(ηs)ds

)]

≤ exp
(
tλN , ε(a)

)
.

For a > 0, the Markov inequality implies

1

N
log Q

N
μN

( 1

N

∫ t

0
VN , ε(ηs)ds ≥ δ

)
≤ t

λN , ε(a)

N
− δa.

Consequently it suffices to show that for all a > 0, limε↓0 limN→∞ N−1λN , ε(a) = 0
in order to prove the theorem under the stationary measure. Let us denote by DN the
Dirichlet form associated with L N . For instance, in Model 1- w this is the operator
acting on maps f ≥ 0 as follows:

DMod 1- w
N ( f ) :=

∑

η∈EMod 1- w
N

μN (η)

2

2N−1∑

k=1

(√

f (ηk,k+1)−√ f (η)
)2

×
(

pN (kN )1{∇η(k)=1} + qN (kN )1{ ∇η(k)=−1
ηk,k+1∈EMod 1- w

N

}
)
.

The condition ηk,k+1 ∈ EMod 1- w
N is due to the wall condition. Using the reversibility of

μN , we have the identity μN (η)pN (kN ) = μN (η
k,k+1)qN (kN ) whenever ∇η(k) = +1,

thus we can rewrite the Dirichlet form in such a way that this wall condition becomes
implicit:

DMod 1- w
N ( f ) :=

∑

η∈EMod 1- w
N

μN (η)

2N−1∑

k=1

(√

f
(
ηk,k+1

)−√ f (η)
)2

pN (kN )1{∇η(k)=1}.

The same trick can be applied in Model 2, see Formula (24). This is an important remark
for the proof. Let us come back to the general case. A simple calculation together with
the classical formula for the largest eigenvalue of a symmetric matrix yields

λN , ε(a) = sup
f ≥0,μN [ f ]=1

(
a
∑

η

VN , ε(η)μN (η) f (η)− DN ( f )
)
, (16)
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where the supremum is taken over all non-negative maps f on EN such that∑
η μN (η) f (η) = 1. From now on, f will always be of this form. As VN , ε is uni-

formly bounded by c′N for a certain constant c′ > 0, it suffices to show that for all
c > 0

lim
ε↓0

lim
N→∞ sup

f :DN ( f )≤cN

1

N

∑

η∈EN

VN , ε(η)μN (η) f (η) = 0 (17)

in order to prove the theorem under the stationary measure. We have chosen to provide
a complete proof in Appendix A that works both for Model 1 and Model 1- w. It can
be adapted easily to Model 2 by adding extra terms.

3. Tightness

The goal of this section is to show tightness of the sequence Q
N in order to prove

Theorems 2, 3 and 4. Even though the state-spaces differ according to the models at stake,
the methodology of proof is the same. In Model 1- w and Model 2, the definition of
the topology on M and the tightness of the random measure(s) is postponed to Sect. 3.3.
Let us just note that we will define a metric on M that makes it a Polish space. Recall
that in these two models, we consider the product topology on D([0,∞), CMod 1- w)×M

(respectively on D([0,∞), CMod 2)×M×M), so that we can show separately the tightness
of h and the tightness of ζ (respectively of ζ (1), ζ (2)).

3.1. Tightness of h. To alleviate the notation, we take νN equal to the stationary measure
μN whenever we deal with Model 1- w and Model 2. When we use the generic
symbols CN , C and Q without superscript, we mean that our results apply indifferently to
any model. Tightness of h will follow from the following two properties (see for instance
Billingsley [3]):

(i) the sequence (νN , N ≥ 1) of measures on C is tight; and

(ii) for every T > 0 we have lim
β↓0

lim
N→∞Q

N
νN

[

sup
s,t∈[0,T ]
|t−s|<β

‖ht − hs‖2
C

]

= 0.

Property (i) is actually an hypothesis in our theorems. To show Property (ii) we would
like to prove that the process t 
→ ht is Hölder in space. As this process is not continuous
in time, we actually consider its time interpolation h̄ defined as

h̄t (x) :=
( ⌊

t (2N )2
⌋

+1−t (2N )2
)

h�t (2N )2�
(2N )2

(x)+
(

t (2N )2−
⌊

t (2N )2
⌋ )

h�t (2N )2�+1

(2N )2

(x),

(18)
which we prove to be Hölder continuous in time. First, we show that the difference
between h and h̄ vanishes as N → ∞.

Lemma 8. For all p > 6 we have lim
N→∞Q

N
νN

[

sup
t∈[0,T ]

∥
∥h̄t − ht

∥
∥p

C

]

= 0.

Proof. Fix p > 6. We start with Model 1 and Model 1- w. Suppose there exists
c > 0 such that for all N ≥ 1, k ∈ �0, 2N − 1�, i ∈ [0, �T (2N )2�] we have

Q
N
νN

[
sup

x∈[kN ,(k+1)N ]
sup

t (2N )2∈[i,i+1]

∣
∣h̄t (x)− ht (x)

∣
∣p
] 1

p ≤ c√
2N

, (19)
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then we deduce that

Q
N
νN

[
sup

t∈[0,T ]
∥
∥h̄t − ht

∥
∥p

C
]
≤

2N−1∑

k=0

�T (2N )2�∑

i=0

Q
N
νN

[
sup

x∈[kN ,(k+1)N ]
sup

t (2N )2∈[i,i+1]

∣
∣h̄t (x)− ht (x)

∣
∣p
]

≤ cpT (2N )3−
p
2 →

N→∞ 0.

We now prove (19). Fix k, i as above. The very definition of h̄ yields that for all x ∈
[kN , (k + 1)N ] and all t ∈ [i(2N )−2, (i + 1)(2N )−2]

|h̄t (x)− ht (x)| ≤ |hi(2N )−2(kN )− ht (kN )| + |hi(2N )−2
(
(k + 1)N

)− ht
(
(k + 1)N

)|
+|h(i+1)(2N )−2(kN )− ht (kN )| + |h(i+1)(2N )−2

(
(k + 1)N

)− ht
(
(k + 1)N

)|.
(20)

Now observe that supt∈[i(2N )−2,(i+1)(2N )−2] |hi(2N )−2(kN )−ht (kN )| is bounded by 2/
√

2N
times the number of jumps of R(kN ) + L(kN ) on the time interval [i(2N )−2, (i +
1)(2N )−2], that is, 2/

√
2N times a Poisson random variable with parameter 1. A similar

bound holds true for the other three terms. Consequently (19) follows. For Model 2,
the proof is almost identical: all the increments displayed in (20) are taken in R

2 rather
than in R and the Poisson random variable has parameter 2 rather than 1, since there are
four Poisson processes. ��
From now on, we write {|t − s| < β} for the set {s, t ∈ [0, T ] : |t − s| < β}. Then we
observe that for all p > 6

Q
N
νN

[

sup
{|t−s|<β}

‖ht − hs‖p
C

] 1
p ≤ 2 Q

N
νN

[

sup
t∈[0,T ]

∥
∥h̄t − ht

∥
∥p

C

] 1
p

+ Q
N
νN

[(

sup
{|t−s|<β}

∥
∥h̄t − h̄s

∥
∥C

|t − s|a
)p] 1

p

βa . (21)

The first term on the r.h.s. vanishes as N → ∞, thanks to Lemma 8, while the second
term on the r.h.s. is finite whenever a is small enough and p is large enough, as the
following result shows.

Proposition 9. There exists p > 8 and a > 0 such that

sup
N≥1

Q
N
νN

[(

sup
s,t∈[0,T ]

∥
∥h̄t − h̄s

∥
∥C

|t − s|a
)p] 1

p

<∞.

Letting N tend to infinity and β to 0 in (21), we deduce that Property (ii) is verified, so
that the tightness of h under Q

N
νN

now boils down to proving Proposition 9. Below we
provide the proof when h starts from the stationary measure μN , while the specific proof
for Model 1 starting from a measure νN that only satisfies the hypothesis of Theorem
2 is postponed to Appendix B, as it relies on different arguments.
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3.2. Proof of Proposition 9 under the stationary measure. We now restrict ourselves to
Model 2 as this is the most involved setting. The arguments can easily be adapted to
the other models. For any α ≥ 0 we define the Sobolev space of distributions:

H−α =
{

f ∈ S′([0, 1]) :
∑

n≥0

f̂ (n)2(1 + n)−2α <∞
}
.

Recall also the Sobolev-Slobodeckij spaces introduced in (12). Fix T > 0. In order to
prove Proposition 9, we first obtain a uniform bound on the Sobolev-Slobodeckij norm
of the increments of h̄, see Lemma 10, and we show tightness in H−α , see Proposition 11.
The proof of Proposition 9 then relies on an interpolation argument between these two
function spaces.

Lemma 10. For any η ∈ (0, 1
2 ), any r ≥ 1 and any integer p ≥ 1 we have

sup
N≥1

Q
N
μN

[
∥
∥h̄(i)t − h̄(i)s

∥
∥p

Wη,r

] 1
p

<∞.

Proof. By symmetry, it suffices to consider i = 1. Observe that

∥
∥h̄(1)t

∥
∥Wη,r ≤

∥
∥
∥
∥
∥
∥

h(1)�t (2N )2�
(2N )2

∥
∥
∥
∥
∥
∥Wη,r

+

∥
∥
∥
∥
∥
∥

h(1)�t (2N )2�+1

(2N )2

∥
∥
∥
∥
∥
∥Wη,r

.

Thus, by stationarity,

Q
N
μN

[
∥
∥h̄(1)t − h̄(1)s

∥
∥p

Wη,r

] 1
p ≤ 4μMod 2

N

[ ∥
∥h(1)
∥
∥p

Wη,r

] 1
p
.

Recall that πMod 2
N is the invariant measure in the symmetric case pN (·) = qN (·). We have

μMod 2
N

[ ∥
∥h(1)
∥
∥p

Wη,r

] 1
p ≤ πMod 2

N

[ ∥
∥h(1)
∥
∥2p

Wη,r

] 1
2p
πMod 2

N

[(dμMod 2
N

dπMod 2
N

)2] 1
2p
.

For every h ∈ CMod 2
N , we have

μMod 2
N (h) = exp((2N )

3
2 AN (h))

∑
h′∈CMod 2

N
exp((2N )

3
2 AN (h′))

, πMod 2
N (h) = 1

#CMod 2
N

,

so that the second moment of the Radon–Nikodym derivative can be written

πMod 2
N

[(dμMod 2
N

dπMod 2
N

)2] =
πMod 2

N

[
exp(2(2N )

3
2 AN (h))

]

πMod 2
N

[
exp((2N )

3
2 AN (h))

]2 .

The r.h.s. is uniformly bounded in N ≥ 1, as we showed in the proof of Theorem 1.

Moreover, Lemma 6 ensures that supN≥1 π
Mod 2
N

[ ∥
∥h(1)
∥
∥2p

Wη,r

]
<∞. This completes the

proof. ��
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The second result needed for the proof of Proposition 9 is the following control on the
modulus of continuity of h̄ in a Sobolev space of distributions.

Proposition 11. For any α > 1
2 and any integer p ≥ 1 there exists c > 0 such that for

every 0 ≤ s ≤ t ≤ T

sup
N≥1

Q
N
μN

[
∥
∥h̄(i)t − h̄(i)s

∥
∥2p

H−α

] 1
2p ≤ c(t − s)

1
4 .

We postpone the proof of this result to the end of this subsection.

Proof of Proposition 9 under the stationary measure. We use an interpolation argument
inspired by the work of Debussche and Zambotti [9] p.1721. Fix b ∈ (0, 1

2 ) and set

η := b + 1/2

2
∈ (0, 1/2), r := 8

1 − 2b
≥ 1, κ := 14b + 25

12b + 26
∈ (0, 1), α := 1 > 1/2.

Then we define δ := κη − (1 − κ)α and 1
q := κ

r + 1−κ
2 . Notice that these parameters

have been chosen such that we can apply Proposition 11 and Lemma 10, and such
that (δ − b)q > 1. Theorem 1 of Section 4.3.1, Remark 2-b of Section 2.4.2 and
Theorem-g of Section 1.3.3 in the book of Triebel [34] ensures the existence of a constant
cInterpo > 0 which only depends on the parameters of the function spaces at stake such
that ‖ f ‖Wδ,q ≤ cInterpo ‖ f ‖κWη,r ‖ f ‖1−κ

H−α for every f ∈ Wη,r ∩ H−α . Using Hölder’s
inequality we then obtain, for every p ≥ 1

Q
N
μN

[
∥
∥h̄(i)t − h̄(i)s

∥
∥p

Wδ,q

]

≤ cp
InterpoQ

N
μN

[
∥
∥h̄(i)t − h̄(i)s

∥
∥p

Wη,r

]κ

Q
N
μN

[
∥
∥h̄(i)t − h̄(i)s

∥
∥p

H−α

]1−κ
.

Since we chose the parameters such that (δ − b)q > 1, the space Wδ,q is continuously
embedded (see for instance Theorem 8.2 in [12]) into the Hölder space:

C b([0, 1],R) :=
{

f : [0, 1] → R s.t. f (0) = f (1) = 0,

sup
x �=y∈[0,1]

| f (x)− f (y)|
|x − y|b <∞

}

.

From this observation, and using Proposition 11 and Lemma 10, we deduce that for any
given integer p > 2

1−κ there exists a constant c > 0 such that

∀t, s ∈ [0, T ], sup
N≥1

Q
N
μN

[
∥
∥h̄(i)t − h̄(i)s

∥
∥2p

C b

]

≤ c|t − s| (1−κ)p2 .

Using Kolmogorov’s Continuity Theorem, we deduce the existence of a modification
of (h̄(i)t , t ∈ [0, T ]) which is a-Hölder continuous in time in the C b-norm for any
a ∈ (0, 1−κ

4 − 1
2p ). Since h̄ is already continuous in space and time by construction, we

deduce that it coincides Q
N
μN

-a.s. with its modification. Consequently there exists c > 0
such that for every i ∈ {1, 2}

sup
N≥1

Q
N
μN

[(

sup
s �=t∈[0,T ]

supx∈[0,1] |h̄(i)t (x)− h̄(i)s (x)|
|t − s|a

)p] 1
p

≤ c
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and thus

sup
N≥1

Q
N
μN

[(

sup
s �=t∈[0,T ]

supx∈[0,1]
(
|h̄(1)t (x)− h̄(1)s (x)| + |h̄(2)t (x)− h̄(2)s (x)|

)

|t − s|a
)p] 1

p

≤ 2c.

This completes the proof of Proposition 9. ��
We now proceed to the proof of Proposition 11, which relies on the Fourier decom-

position of h. Consider the orthonormal basis of L2([0, 1], dx) defined by ε0(x) = 1
and εn(x) =

√
2 cos(nπx) for every n ≥ 1. For every n ≥ 0 and any tempered distri-

bution f ∈ S′([0, 1]), we define the n-th Fourier coefficient f̂ (n) := 〈 f, εn〉. A simple
calculation ensures that

ĥ(i)t (n) =
2N−1∑

k=1

cn,kh(i)t (kN ), i ∈ {1, 2},

where c0,k := 1
2N and cn,k := 4

√
2N

(nπ)2
cos(nπkN )

(
1 − cos( nπ

2N )
)

for all n ≥ 1. Observe
that

sup
n,k

|cn,k | ≤
√

2

2N
. (22)

We deduce from (4) that the Fourier coefficients satisfy, for all 0 ≤ s ≤ t ,

ĥ(i)t (n)− ĥ(i)s (n) =
∫ t

s
d̂ (i)u (n)du + M̂ (i)

s,t (n), (23)

where for i = 1 we have

d̂ (1)s (n) :=
2√
2N

2N−1∑

k=1

cn,k
(

pN (kN )1{�h(1)s (kN )>0}

−qN (kN )1{�h(1)s (kN )<0;h(1)s (kN )>h(2)s (kN )}
)
,

M̂ (1)
s,t (n) :=

2√
2N

∫ t

s

2N−1∑

k=1

cn,k

(
(dL1, N

u (kN )− pN (kN )du)1{�h(1)u (kN )>0}

−(dR1, N
u (kN )− qN (kN )du)1{�h(1)u (kN )<0;h(1)u (kN )>h(2)u (kN )}

)
.

The expressions for the corresponding processes for i = 2 follow via obvious modifi-
cations. The proof of Proposition 11 actually relies on three preliminary lemmas.

Lemma 12. supn≥0,N≥1 sups≤t Q
N
μN

[

exp
(
(t − s)− 1

2
∣
∣
∫ t

s d̂ (i)r (n)dr
∣
∣
)]

<∞.

The proof of this lemma is similar to that of Lemma 11.3.9 in Kipnis and Landim [25].

Proof. We restrict to i = 1 for simplicity. Until the end of the proof, we use the notations
of Sect. 2.3 and we work with the canonical process η on D([0, T ], EMod 2

N ). We define
the following operator V̂n :

V̂n(η) = 2√
2N

2N−1∑

k=1

cn,k
(

pN (kN )1{∇η(1)(k)=1} − qN (kN )1{∇η(1)(k)=−1;η(1),k,k+1∈EMod 2
N }
)
,
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where η(1),k,k+1 is obtained from η = (η(1), η(2)) by exchanging the values η(1)(k) and
η(1)(k + 1). For any a ∈ R, one can apply the methodology presented in Sect. 2.3 to
the operator L N + aV̂n . Let λN (a) be its largest eigenvalue which satisfies Formula (16)
where DN is the Dirichlet form defined for all f ≥ 0 by

DMod 2
N ( f ) :=

∑

η∈EMod 2
N

μMod 2
N (η)

2N−1∑

k=1

pN (kN )

((√

f
(
η(1),k,k+1

)−√ f (η)
)2
1{∇η(1)(k)=1}

+
(√

f
(
η(2),k,k+1

)−√ f (η)
)2
1{∇η(2)(k)=−1}

)

. (24)

Observe that, using the same argument as in Sect. 2.3 for Model 1- w, we have written
the Dirichlet form in such a way that the interaction between the interfaces does not
appear. Similarly, for all a ∈ R the quantity a

∑
η V̂n(η)μ

Mod 2
N (η) f (η) can be written:

a
2√
2N

2N−1∑

k=1

cn,k

∑

η

μMod 2
N (η)pN (kN )1{∇η(1)(k)=1}

(
f (η)− f

(
η(1),k,k+1)

)
.

Fix f ≥ 0 such that μMod 2
N [ f ] = 1. Since for all γ > 0 we have

∣
∣
∣ f (η)− f

(
η(1),k,k+1)

∣
∣
∣ ≤ 1

2γ

(√

f (η(1),k,k+1)−√ f (η)
)2

+
γ

2

(√
f (η) +

√

f (η(1),k,k+1)
)2
,

using (22) we see that
∣
∣a
∑
η V̂n(η)μ

Mod 2
N (η) f (η)

∣
∣ is bounded by

|a|√2

γ (2N )
3
2

2N−1∑

k=1

∑

η

μMod 2
N (η)pN (kN )1{∇η(1)(k)=1}

(√

f
(
η(1),k,k+1

)−√ f (η)
)2

+
|a|√2γ

(2N )
3
2

2N−1∑

k=1

∑

η

μMod 2
N (η)pN (kN )1{∇η(1)(k)=1}

(√

f
(
η(1),k,k+1

)
+
√

f (η)
)2
.

Taking γ = |a|√2(2N )−3/2, the last expression is bounded above by

DMod 2
N ( f ) +

2a2

(2N )3

2N−1∑

k=1

∑

η

μMod 2
N (η)pN (kN )1{∇η(1)(k)=1}

(√

f
(
η(1),k,k+1

)
+
√

f (η)
)2

≤ DMod 2
N ( f ) + 8a2,

where we use the fact that the L1 norm of f equals 1. The Feynman–Kac formula (see
for instance Appendix 1—Lemma 7.2 in [25]) ensures that for all t ≥ 0 and all a > 0

Q
N
μN

[
ea
∣
∣ ∫ t

0 d̂(1)s (n)ds
∣
∣] ≤ Q

N
μN

[
ea
∫ t

0 d̂(1)s (n)ds
]

+ Q
N
μN

[
e−a

∫ t
0 d̂(1)s (n)ds

]
≤ 2e8a2t .

The value a = 1/
√

t and a stationarity argument yield the asserted result. ��
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Lemma 13. For every integer m ≥ 1 there existsc(m) > 0 such that for every 0 ≤ s ≤ t
and every N ≥ 1

sup
n≥0

Q
N
μN

[(
ĥ(i)t (n)− ĥ(i)s (n)

)2m
] 1

2m ≤ c(m)
(√

t − s +
( t − s

N 3

) 1
4

+ N− 5
4

)
.

Observe that one cannot expect to have a bound of the form (t − s)a since otherwise
the process ĥ(i) would have a continuous modification by the Kolmogorov continuity
criterion. However, the extra terms vanish as N tends to infinity so that any limiting
process will be continuous.

Proof. We restrict to i = 1 for simplicity. Using (23) we write

Q
N
μN

[(
ĥ(1)t (n)− ĥ(1)s (n)

)2m
] 1

2m ≤Q
N
μN

[( ∫ t

s
d̂ (1)r (n)dr

)2m
] 1

2m

+ Q
N
μN

[(
M̂ (1)

s,t (n)
)2m
] 1

2m
.

The bound for the first term on the right hand side is a direct consequence of Lemma 12.
To bound the second term, we define the martingale D̂(1)

s,t (n) :=
[
M̂ (1)

s,·(n)
]

t−〈〈M̂ (1)
s,·(n)〉〉t ,

and we use the Burkholder–Davis–Gundy inequality twice (we refer to Formula (40) in
Appendix B) to obtain

Q
N
μN

[(
M̂ (1)

s,t (n)
)2m
] 1

2m

≤ cBDG(2m)
(
Q

N
μN

[
〈〈M̂ (1)

s,·(n)〉〉mt
] 1

2m
+
√
cBDG(m)Q

N
μN

[[
D̂(1)

s,·(n)
]m

2
t

] 1
2m
)
.

It is elementary to check that Q
N
μN

-a.s. 〈〈M̂ (1)
s,·(n)〉〉t ≤ 8(t − s) so that the bound for the

corresponding term is immediate. We turn to the quadratic variation and write

[
D̂(1)

s,·(n)
]

t =
2N−1∑

k=1

( 2cn,k√
2N

)4
#
{
τ ∈ (s, t] : h(1)τ (kN ) �= h(1)τ−(kN )

}

≤ N−6
2N−1∑

k=1

�(t−s)(2N )2�∑

j=0

(
L1, N

s+ j+1
(2N )2

(kN )−L1, N

s+ j
(2N )2

(kN )+R1, N

s+ j+1
(2N )2

(kN )−R1, N

s+ j
(2N )2

(kN )
)
.

Observe that for each j and each k the random variable on the right hand side of the last
equation has a Poisson distribution with mean 1. Consequently there exists a constant
c′ > 0 such that for every N ≥ 1

sup
n≥0

Q
N
μN

[[
D̂(1)

s,·(n)
]m

2
t

] 2
m ≤ c′

N 5

(�(t − s)(2N )2� + 1
)
,

and the asserted bound follows. ��
Lemma 14. For every integer m ≥ 1 there exists c̄(m) > 0 such that for all 0 ≤ s ≤
t ≤ T

sup
n≥0,N≥1

Q
N
μN

[( ˆ̄h(i)t (n)− ˆ̄h(i)s (n)
)2m
] 1

2m ≤ c̄(m)(t − s)
1
4 .



310 A. M. Etheridge, C. Labbé

A more technical proof would yield a bound of order (t − s)
1
2 which is more intuitive

since the Fourier modes in the limiting stochastic PDE are Brownian like. However we
will not need such an accurate bound.

Proof. We restrict to i = 1 for simplicity. Assume first that t − s < (2N )−2. We set

∀k ∈ �1, 2N − 1�,

Jk := L1, N

�t (2N )2�+1
(2N )2

(kN )− L1, N

�s(2N )2�
(2N )2

(kN ) + R1, N

�t (2N )2�+1
(2N )2

(kN )− R1, N

�s(2N )2�
(2N )2

(kN ).

Each Jk is a Poisson random variable with mean at most 2. Recall that h̄(1) is the time
interpolation of h(1), so that Q

N
μN

-a.s.

∣
∣h̄(1)t (kN )− h̄(1)s (kN )

∣
∣ ≤ 2√

2N
(t − s)(2N )2 Jk .

This implies, together with (22), that the Fourier coefficients of h̄(1) satisfy Q
N
μN

-a.s.,

sup
n≥0

∣
∣ ˆ̄h(1)t (n)− ˆ̄h(1)s (n)

∣
∣ ≤ 2

√
2

(2N )
3
2

(t − s)(2N )2
2N−1∑

k=1

Jk .

Since (t − s)(2N )2 < 1, we have (t − s)(2N )2 < (t − s)
1
4
√

2N and thus

sup
n≥0

Q
N
μN

[( ˆ̄h(1)t (n)− ˆ̄h(1)s (n)
)2m
] 1

2m ≤ 2
√

2 a(2m)(t − s)
1
4 ,

where a(2m) is the L2m-norm of a Poisson random variable with mean 2. The asserted
uniform bound follows. Assume now that t − s ≥ (2N )−2 and write

| ˆ̄h(1)t (n)− ˆ̄h(1)s (n)| ≤ |ˆ̄h(1)t (n)− ˆ̄h(1)�t (2N )2�
(2N )2

(n)| + | ˆ̄h(1)�t (2N )2�
(2N )2

(n)− ˆ̄h(1)�s(2N )2�
(2N )2

(n)|

+| ˆ̄h(1)s (n)− ˆ̄h(1)�s(2N )2�
(2N )2

(n)|.

The bound already obtained applies to the first and third terms, while we use the fact

that h̄(1) and h(1) coincide at times of the form �t (2N )2�
(2N )2

to bound the second term using
Lemma 13 as follows:

sup
n≥0

Q
N
μN

[( ˆ̄h(1)t (n)− ˆ̄h(1)s (n)
)2m
] 1

2m

≤ 4
√

2 a(2m)(2N )−
1
2 + c(m)

(
√�t (2N )2� − �s(2N )2�

2N

+
(�t (2N )2� − �s(2N )2�

(2N )2 N 3

) 1
4

+ N− 5
4

)

≤ 4
√

2 a(2m)(t − s)
1
4 + c(m)

(√
3(t − s) + 3

1
4 2

3
4 (t − s)

5
8 + 2

5
4 (t − s)

5
8

)
.

To obtain the third line, we have used the simple inequality |�t (2N )2� − �s(2N )2�| ≤
3(t − s)(2N )2 which holds since t − s ≥ (2N )−2. The asserted uniform bound follows
from the fact that, as s, t ∈ [0, T ], we have (t − s)

5
8 ≤ T

3
8 (t − s)

1
4 and

√
t − s ≤

T
1
4 (t − s)

1
4 . ��
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Proof of Proposition 11. Fix an integer p ≥ 1 and a real value α > 1
2 . Using the Cauchy–

Schwarz inequality p − 1 times in the first line and Lemma 14 in the second line, one
obtains that for all 0 ≤ s ≤ t ≤ T and all N ≥ 1

Q
N
μN

[
∥
∥h̄(i)t − h̄(i)s

∥
∥2p

H−α

]

≤
∑

n1,...,n p≥0

(1 + n1)
−2α . . . (1 + n p)

−2α
p∏

j=1

Q
N
μN

[( ˆ̄h(i)t (n j )− ˆ̄h(i)s (n j )
)2 j+1] 1

2 j

≤
∑

n1,...,n p≥0

(1 + n1)
−2α . . . (1 + n p)

−2α
p∏

j=1

(
c̄(2 j )(t − s)

1
4

)2

≤ (t − s)
p
2

(∑

n≥0

(1 + n)−2α max
j=1..p

c̄2(2 j )
)p
.

This completes the proof. ��

3.3. Tightness of ζ . We equip the set M of Borel measures on [0,∞)× (0, 1) satisfying∫

[0,t]×(0,1) x(1 − x)m(ds, dx) < ∞ for every t ≥ 0, with the smallest topology that
makes

m 
→
∫

[0,∞)×(0,1)
x(1 − x)g(t, x)m(dt, dx)

continuous, for all maps g that belong to Cc([0,∞)× [0, 1],R), taken to be the set of
continuous maps that vanish outside a compact set of [0,∞) × [0, 1]. Let us metrise
this topology. Consider the countable set P of polynomials of two variables, x and t ,
with rational coefficients. For each pair of rational values p, q > 0, let ρp,q : [0,∞)×
[0, 1] → R be a positive smooth function, equal to 1 on [0, p] × [0, 1], smaller than
1 on (p, p + q] × [0, 1] and that vanishes on [p + q,∞) × [0, 1]. Let gk, k ≥ 1 be an
enumeration of the product set { fρp,q : f ∈ P and p, q ∈ (0,∞) ∩ Q}. For every
k ≥ 1, we set ϕk(t, x) := x(1 − x)gk(t, x). Then

d(m,m′) :=
∑

k≥1

2−k
(

1 ∧
∣
∣
∣

∫

ϕkdm −
∫

ϕkdm′
∣
∣
∣

)

defines a distance on M that generates the above topology. Indeed, by the Stone–
Weierstrass theorem, for every continuous function g : [0,∞) × [0, 1] → R that
vanishes outside a compact set, [0, T ] × [0, 1] say, and for every ε > 0, there exists
k ≥ 1 such that ‖g − gk‖∞ < ε and supp gk ⊂ [0, T + ε] × [0, 1].
Lemma 15. The metric space (M, d) is Polish.

Proof. The set of linear combinations of Dirac masses on ([0,∞) × (0, 1)) ∩ (Q ×
Q) with rational coefficients is dense in this metric space, so that it is separable. The
completeness can be proved as follows. Let mn, n ≥ 1 be a Cauchy sequence for d.
Define νn(dt, dx) := x(1− x)mn(dt, dx). Then, by a diagonal argument there exists an
increasing sequence ni , i ≥ 1 such that for every k ≥ 1, νni (gk) converges as i → ∞
to a limit denoted by �(gk). Consider a continuous function g on [0,∞) × [0, 1] that
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vanishes outside a compact set, say [0, T ] × [0, 1]. Fix ε > 0 and consider gk such
that ‖g − gk‖∞ < ε and supp gk ⊂ [0, T + ε] × [0, 1]. There exists gp ≥ 0 such that
gp ≥ 1[0,T +ε]×[0,1]. We write:
∣
∣νni (g)− νn j (g)

∣
∣ ≤ ∣∣νni (g)− νni (gk)

∣
∣ +
∣
∣νni (gk)− νn j (gk)

∣
∣ +
∣
∣νn j (gk)− νn j (g)

∣
∣

≤ ‖g − gk‖∞
(
νni (gp) + νn j (gp)

)
+
∣
∣νni (gk)− νn j (gk)

∣
∣

Taking i, j large enough, the left side becomes smaller than ε(3�(gp) + 1), so that
(νni (g), i ≥ 1) is a Cauchy sequence. We denote by �(g) the limit. We have defined
a positive linear map � on the set of continuous functions on [0,∞) × [0, 1] with
compact support. By the Riesz representation theorem, there exists a Borel measure ν
on [0,∞) × [0, 1], finite on compact subsets, such that �(g) = ν(g). We then define
m(dt, dx) := 1

x(1−x) ν(dt, dx) on [0,∞) × (0, 1), which clearly belongs to M. It is
easily checked that d(mn,m) goes to 0 as n → ∞. ��
We work in Model 2, since the arguments are very similar in Model 1- w. For
A ⊂ M to be relatively compact, it is necessary and sufficient that for all k ≥ 1,
supm∈A |

∫
ϕkdm| < ∞. To show tightness of ζ (1) under Q

N
μN

, it suffices to find for
every ε > 0 a sequence λk > 0 such that

sup
N≥1

Q
N
μN

(∣
∣
∣

∫

[0,∞)×(0,1)
ϕk(t, x)ζ (1)(dt, dx)

∣
∣
∣ > λk

)
< ε 2−k . (25)

For any two Riemann-integrable functions g, h we define

〈g, h〉 :=
∫

[0,1]
g(x)h(x)dx, 〈g, h〉N := 1

2N

2N∑

k=0

g(kN )h(kN ). (26)

Notice that 〈〈·〉〉 denotes the bracket of a martingale. For every k ≥ 1, the function ϕk
introduced at the beginning of this subsection, is compactly supported in [0,∞)×[0, 1]
and vanishes for x ∈ {0, 1}. Furthermore ∂tϕk and ∂2

xϕk exist and are continuous. Using
(4), we see that for all N ≥ 1 the process

M N , (1)
t (ϕk) := 〈h(1)t , ϕk(t, ·)〉N − 〈h(1)0 , ϕk(0, ·)〉N − (2N )2

2

∫ t

0
〈�h(1)s , ϕk(s, ·)〉N ds

−
∫ t

0
〈h(1)s , ∂sϕk(s, ·)〉N ds − 2√

2N

∫ t

0

〈
(pN (·)− (2N )2

2
)1{�h(1)s (·) �=0}, ϕk(s, ·)

〉

N
ds

−
∫

[0,t]×(0,1)
ϕk(s, x)ζ (1)(ds, dx) (27)

is a martingale under Q
N
μN

.

Lemma 16. For every k ≥ 1, the sequence of processes (M N , (1)
t (ϕk), t ≥ 0) is tight in

D([0,∞),R) and any limit belongs to C([0,∞),R).

Proof. The bracket of the martingale is given by

〈〈M N , (1)(ϕk)〉〉t = 4

(2N )2

∫ t

0

〈
pN (·)1{�h(1)s (·)>0}

+qN (·)1{�h(1)s (·)<0;h(1)s (·)>h(2)s (·)}, ϕ
2
k (s, ·)

〉

N
ds.
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Since Q
N
μN

-a.s. for every t ≥ 0 we have 〈〈M N , (1)(ϕk)〉〉t ≤ 4 ‖ϕk‖2 t , we deduce that the
sequence of bracket processes (〈〈M N , (1)(ϕk)〉〉t , t ≥ 0) is C-tight. Theorem VI.4.13 in
Jacod and Shiryaev [23] thus implies that the sequence of martingales (M N , (1)

t (ϕk), t ≥
0), N ≥ 1 is D-tight. Since the jumps of these martingales are of vanishing

magnitude - at most 2 ‖ϕk‖ (2N )− 3
2 —we deduce that they are actually C-tight. ��

Fix ε > 0. For every k ≥ 1, let Tk > 0 be such that supp ϕk ⊂ [0, Tk] × (0, 1). As
a consequence of the tightness of h(1) and M N , (1)(ϕk), we deduce that for every k ≥ 1
there exists αk > 0 such that

sup
N≥1

Q
N
μN

(
sup

t∈[0,Tk ],x∈[0,1]
|h(1)t (x)| > αk

)
< ε 2−k−1,

sup
N≥1

Q
N
μN

(
|M N , (1)

Tk
(ϕk)| > αk

)
< ε 2−k−1.

Since ϕk(s, 0) = ϕk(s, 1) = 0 we have

∣
∣〈�h(1)s , ϕk(s, ·)〉N

∣
∣ = ∣∣〈h(1)s ,�ϕk(s, ·)〉N

∣
∣ ≤ (2N )−2 sup

[0,1]
|∂2

xϕ(s, ·)| sup
[0,1]

|h(1)s |.

Using (27) at time Tk , we obtain that
∣
∣
∫

[0,∞)×(0,1) ϕk(s, x)ζ (1)(ds, dx)
∣
∣ is bounded by

|M N , (1)
Tk

(ϕk)| + sup
t∈[0,Tk ]
x∈[0,1]

|h(1)t (x)|
(
2 ‖ϕk‖ +

Tk

2

∥
∥
∥∂

2
xϕk

∥
∥
∥ + Tk ‖∂sϕk‖

)

+2 Tk sup
N≥1

x∈[0,1]

|pN (x)− (2N )2

2 |√
2N

‖ϕk‖ .

We deduce the existence of a sequence λk satisfying (25). This ensures the tightness of
ζ (1) under Q

N
μN

. The proof works verbatim for ζ (2).

4. Identification of the Limit

We first give rigorous definitions of the stochastic PDEs of the statements then we
complete the proofs of Theorems 2, 3 and 4. Recall Assumption 1 on the asymmetry
σ . We start with the RSHE. Let C 2

c

(
(0, 1)

)
denote the space of compactly supported

functions on (0, 1) with a continuous second derivative.

Definition 17 (Nualart-Pardoux [31]). Consider a probability space (�, F, P) on which
are defined a process (ht , t ≥ 0) in C([0,∞), CMod 1- w) and a random measure ζ ∈ M.
We also assume that there exists a cylindrical Wiener process (Wt , t ≥ 0) on L2

(
(0, 1)

)

which is adapted to the natural filtration generated by h and ζ . We say that (h, ζ ) is a
solution to RSHE with initial condition ν if

(i) The CMod 1- w-valued random variable h0 has law ν and is independent of the cylin-
drical Wiener processes,
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(ii) For any ϕ ∈ C 2
c

(
(0, 1)

)
we have P-a.s.:

〈ht , ϕ〉 = 〈h0, ϕ〉 + t〈σ, ϕ〉 +
1

2

∫ t

0
〈hs, ϕ

′′〉ds

+
∫

[0,t]×(0,1)
ϕ(x)ζ(ds, dx) + 〈ϕ,Wt 〉,

(iii) P-a.s.,
∫

[0,∞)×(0,1) ht (x)ζ(dt, dx) = 0.

The definition of the SHE is even simpler: it suffices to remove the random measure
from this definition, so that we do not state it. It turns out that existence and uniqueness
hold for these two stochastic PDEs, see Da Prato and Zabczyk [8] and Nualart and
Pardoux [31]. Let us now state our definition of Pair of RSHEs.

Definition 18. Consider a probability space (�, F, P) on which are defined a process
(ht , t ≥ 0) in C([0,∞), CMod 2) and two random measures ζ (1), ζ (2) ∈ M. We also
assume that there exist two independent cylindrical Wiener processes (W (1)

t , t ≥ 0),
(W (2)

t , t ≥ 0) on L2
(
(0, 1)

)
which are adapted to the natural filtration generated by

h, ζ (1) and ζ (2). We say that (h, ζ (1), ζ (2)) is a solution to Pair of RSHEs with initial
condition ν if

(i) The CMod 2-valued random variable h0 has law ν and is independent of the cylindrical
Wiener processes,

(ii) For any ϕ ∈ C 2
c

(
(0, 1)

)
we have for every i ∈ {1, 2}

〈h(i)t , ϕ〉 = 〈h(i)0 , ϕ〉 − (−1)i t〈σ, ϕ〉 +
1

2

∫ t

0
〈h(i)s , ϕ

′′〉ds

−(−1)i
∫

[0,t]×(0,1)
ϕ(x)ζ (i)(ds, dx) + 〈ϕ,W (i)

t 〉,

(iii) P-a.s.,
∫

[0,∞)×(0,1)
(
h(1)t (x)− h(2)t (x)

)(
ζ (1)(dt, dx) + ζ (2)(dt, dx)

) = 0.

We now work with the canonical process (h, ζ (1), ζ (2)) on D([0,∞), CMod 2) × M × M

endowed with the natural filtration Ft generated by hs for all s ∈ [0, t] and
ζ (1)(B), ζ (2)(B) for all Borel sets B ⊂ [0, t]× (0, 1). We state a martingale problem that
allows to identify a solution to Pair of RSHEs, a similar statement holds for the two
other stochastic PDEs.

Proposition 19. Let ν be a probability measure on CMod 2. Suppose that Qν is a proba-
bility measure on C([0,∞), CMod 2)× M × M under which:

(a) h0 is distributed according to ν,
(b) For every ϕ,ψ ∈ C 2

c

(
(0, 1)

)
the processes

M (i)
t (ϕ) := 〈h(i)t , ϕ〉 − 〈h(i)0 , ϕ〉 + (−1)i t〈σ, ϕ〉 − 1

2

∫ t

0
〈h(i)s , ϕ

′′〉ds

+ (−1)i
∫

[0,t]×(0,1)
ϕ(x)ζ (i)(ds, dx),

L (i)
t (ϕ) := M (i)

t (ϕ)
2 − t〈ϕ, ϕ〉,

Kt (ϕ, ψ) := M (1)
t (ϕ)M

(2)
t (ψ)

are continuous Ft -martingales,
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(c) We have
∫

[0,∞)×(0,1)
(
h(1)t (x)− h(2)t (x)

)(
ζ (1)(dt, dx) + ζ (2)(dt, dx)

) = 0.

Then, (h, ζ (1), ζ (2)) is a solution to Pair of RSHEs with initial condition ν.

Proof. The arguments are standard. Property (iii) follows from (c). By density of

C 2
c

(
(0, 1)

)
in L2

(
(0, 1)

)
, for every t > 0 we can extend the map ϕ 
→ t− 1

2 M (i)
t (ϕ)

into an isometry from L2
(
(0, 1), dx

)
into L2

(
C × M × M,Qν

)
. Then for every

ϕ ∈ L2
(
(0, 1), dx

)
, the process (M (i)

t (ϕ), t ≥ 0) is a Brownian motion with variance
t ‖ϕ‖2

L2 which is adapted to the filtration (Ft , t ≥ 0) so that it is independent of F0. Con-
sider the orthonormal basis (εn, n ≥ 0) of L2

(
(0, 1)

)
introduced at the beginning of the

proof of Proposition 11, and define W (i)
t :=∑n≥0 M (i)

t (εn)εn . This random variable takes
values in a distribution space. For each i ∈ {1, 2}, this is a cylindrical Wiener process
on L2

(
(0, 1)

)
. Property (ii) of Definition 18 follows. The fact that (Kt (ϕ, ψ), t ≥ 0)

is a martingale implies that the covariation of the Brownian motions (M (1)
t (ϕ), t ≥ 0)

and (M (2)
t (ψ), t ≥ 0) vanishes so that they are independent. Consequently, the Gaussian

processes W (1) and W (2) are independent. Finally, the independence of these Wiener
processes from h0 follows from the independence of the (Mt (ϕ), t ≥ 0)’s from F0.
Property (i) follows. ��

4.1. Conclusion of the proof of Theorems 2, 3 and 4. From now on, we restrict ourselves
to Model 2 as this is the most involved setting. The proof is very similar for the other
two models. We have already obtained tightness of the sequence Q

N
μN
, N ≥ 1. Consider

a convergent subsequence, which for simplicity we still denote Q
N
μN
, N ≥ 1, and let Q

′
be its limit which is supported by C([0,∞), CMod 2) × M × M. To complete the proof
of Theorem 4 we only need to show that the conditions of Proposition 19 are fulfilled
under Q

′ when the initial condition ν is taken to be QMod 2.

Martingale relations. We start with the proofs of the martingale relations on M (i)
t (ϕ)

and L(i)t (ϕ). By symmetry, it suffices to consider i = 1. The main idea of the proof
is to consider discrete versions M N , (1)

t (ϕ) and L N , (1)
t (ϕ) of the martingales M (1)

t (ϕ) and
L (1)

t (ϕ), and to show that the L2 norms of the differences vanish as N → ∞. Fix a map
ϕ in C 2

c

(
(0, 1)

)
, by linearity we can assume that ϕ ≥ 0. Recall the notation (26). We

define

M N , (1)
t (ϕ) := 〈h(1)t , ϕ〉N − 〈h(1)0 , ϕ〉N − 2√

2N

∫ t

0

〈(
pN (·)− (2N )2

2

)
1{�h(1)s (·) �=0}, ϕ

〉

N
ds

− (2N )2

2

∫ t

0
〈�h(1)s , ϕ〉N ds −

∫

[0,t]×(0,1)
ϕ(x)ζ (1)(ds, dx)

and

L N , (1)
t (ϕ) := (M N , (1)

t (ϕ)
)2 − 4

(2N )2

∫ t

0
〈pN (·)1{�h(1)s (.)>0}

+qN (·)1{�h(1)s (·)<0;h(1)s (·)>h(2)s (·)}, ϕ
2〉N ds.

Using the stochastic differential equations (4), it is elementary to check that both
processes are Ft -martingales under Q

N
μN

. Recall the definition of M (1)
t (ϕ) and L (1)

t (ϕ),
which are well-defined random variables on the space D × M × M.
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Lemma 20. For every t ≥ 0, we have:

(a) sup
N≥1

Q
N
μN

[∣
∣M (1)

t (ϕ)
∣
∣4
]
<∞, sup

N≥1
Q

N
μN

[∣
∣L (1)

t (ϕ)
∣
∣2
]
<∞,

(b) Q
N
μN

[
|M N , (1)

t (ϕ)− M (1)
t (ϕ)|2

]
−→

N→∞ 0, Q
N
μN

[|L N , (1)
t (ϕ)− L (1)

t (ϕ)|2
] −→

N→∞ 0.

Proof. The bound on the second moment of L (1)
t (ϕ) follows from the bound on the fourth

moment of M (1)
t (ϕ), so we only need to bound this term uniformly to obtain (a).

The Burkholder–Davis–Gundy inequality (we refer to Appendix B for notations)
implies

Q
N
μN

[(
M N , (1)

t (ϕ)
)4] ≤ cBDG(4)

4
Q

N
μN

[[
M N , (1)(ϕ)

]2
t

]

≤ 16cBDG(4)4

(2N )6
‖ϕ‖4

Q
N
μN

[( 2N−1∑

k=1

L1, N
t (kN ) + R1, N

t (kN )
)2]

.

On the right we have the second moment of a Poisson random variable with mean t (2N )3,
this is equal to t (2N )3 + t2(2N )6. Consequently

sup
N≥1

Q
N
μN

[(
M N , (1)

t (ϕ)
)4]

<∞.

To prove that the same holds for M (1)
t (ϕ) instead of M N , (1)

t (ϕ), it suffices to bound the
fourth moment of |M (1)

t (ϕ)− M N , (1)
t (ϕ)| uniformly. Actually, let us prove that the fourth

moment of this quantity vanishes when N goes to ∞. We have

M (1)
t (ϕ)− M N , (1)

t (ϕ) = 〈h(1)t , ϕ〉 − 〈h(1)t , ϕ〉N − 〈h(1)0 , ϕ〉 + 〈h(1)0 , ϕ〉N

−1

2

∫ t

0
〈h(1)s , ϕ

′′〉ds +
(2N )2

2

∫ t

0
〈�h(1)s , ϕ〉N ds

−t〈σ, ϕ〉 +
2√
2N

∫ t

0

〈(
pN (·)− (2N )2

2

)
1{�h(1)s (·) �=0}, ϕ

〉

N
ds.

The fourth moments of the terms in the first two lines can be shown to vanish using
standard arguments together with the uniform bound of the exponential moments of
‖h‖C under the stationary measure μN obtained in Theorem 1. The term on the third
line is more involved and requires Theorem 5. We do not provide the details since we
will apply this theorem for a very similar term below. Consequently we have uniform
bounds on the fourth moment of M (1)

t (ϕ) so that statement (a) of the lemma follows. The
above calculations also prove (b) for M (1)

t (ϕ).
It remains to prove (b) for L (1)

t (ϕ). First observe that the Cauchy-Schwarz inequality
yields:

Q
N
μN

[|(M N , (1)
t (ϕ))2 − (M (1)

t (ϕ))
2|2]

≤ Q
N
μN

[|M N , (1)
t (ϕ)− M (1)

t (ϕ)|4
] 1

2 Q
N
μN

[|M N , (1)
t (ϕ) + M (1)

t (ϕ)|4
] 1

2 .

The arguments above show that the first term on the right hand side vanishes as N → ∞
while the second is uniformly bounded. Consequently the left hand side vanishes as
N → ∞. Let us define
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AN :=
∣
∣
∣

4

(2N )2

∫ t

0
〈pN (·)1{�h(1)s (·)>0} + qN (·)1{�h(1)s (·)<0;h(1)s (·)>h(2)s (·)}, ϕ

2〉N ds−t〈ϕ, ϕ〉
∣
∣
∣.

To complete the proof of (b) for L (1)
t (ϕ), we only need to show that Q

N
μN

[A2
N ] → 0 as

N → ∞. The random variable AN is bounded by a deterministic constant uniformly in
N ≥ 1 so that it suffices to prove its convergence in probability to 0. Observe that

AN ≤
∣
∣
∣

∫ t

0

〈 4

(2N )2

(
pN (·)1{�h(1)s (·)>0} + qN (·)1{�h(1)s (·)<0}

)
− 1, ϕ2

〉

N
ds
∣
∣
∣

+t
2N−1∑

k=0

∣
∣
∣

1

2N
ϕ2(kN )−

∫ k+1
2N

k
2N

ϕ2(u)du
∣
∣
∣ +

2

(2N )
3
2

∫

[0,t]×(0,1)
ϕ2(x)ζ (1)(dt, dx).

The second term corresponds to the approximation of the Riemann integral, it vanishes
as N → ∞. To show that the third term vanishes in Q

N
μN

-probability as N → ∞
we argue as follows: for all rational values p, q such that p > t , the random variable∫

[0,t]×(0,1) ϕ
2(x)ζ (1)(ds, dx) is smaller than

∫

[0,∞)×(0,1)
ρp,q(s)ϕ

2(x)ζ (1)(ds, dx)

which converges in distribution, by the convergence of the measure ζ (1). To bound the
first term we apply Theorem 5 as follows. Recall the notation of Sect. 2.3. Let� : η 
→
2η(1)(1)(1 − η(1)(2)) + 2(1 − η(1)(1))η(1)(2) and observe that �̃(a) = 4a(1 − a). Recall
that τk denotes the shift by k introduced in Subsection 2.3. Then we write

∫ t

0

〈 4

(2N )2

(
pN (·)1{�h(1)s (·)>0} + qN (·)1{�h(1)s (·)<0}

)
− 1, ϕ2

〉

N
ds

=
∫ t

0

〈(4 pN (·)
(2N )2

− 2
)
1{�h(1)s (·)>0} +

(4 qN (·)
(2N )2

− 2
)
1{�h(1)s (·)<0}, ϕ

2
〉

N
ds

+
∫ t

0

2N−1∑

k=0

(
�(τkηs)− 1

) 1

2N
ϕ2
(k + 1

2N

)
ds.

The hypotheses made on pN , qN imply that the Q
N
μN

expectation of the absolute value
of the first term on the right goes to 0 as N → ∞. To deal with the second term on the
right, we introduce ε > 0 and we write

∫ t

0

2N−1∑

k=0

(
�(τkηs)− 1

) 1

2N
ϕ2
(k + 1

2N

)
ds

=
∫ t

0

2N−1∑

k=0

( 1

2εN + 1

∑

j :| j−k|≤εN

�(τ jηs)

−�̃
( ∑

j :| j−k|≤εN

1

2εN + 1
η(1)s ( j)

)) 1

2N
ϕ2
(k + 1

2N

)
ds

+
∫ t

0

2N−1∑

k=0

(

�̃
( ∑

j :| j−k|≤εN

1

2εN + 1
η(1)s ( j)

)
− 1

)
1

2N
ϕ2
(k + 1

2N

)
ds. (28)
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There is a slight abuse of notation in this formula: one should take the integer part of
εN everywhere this term appears. Notice also that all our indices are taken modulo 2N .
For ε small enough, Theorem 5 ensures that the first term on the right of (28) vanishes
in Q

N
μN

-probability as N → ∞. Now observe that

∑

j :| j−k|≤εN

1

2εN + 1
η(1)s ( j) = 1

2
+

√
2N

2

h(1)s

(
k

2N + εN
2N

)
− h(1)s

(
k

2N − εN
2N

)

2εN + 1
.

Since �̃(a) = 4a(1 − a), the second term on the right of (28) can be bounded by

t
∥
∥
∥ϕ

2
∥
∥
∥

2N

(2εN + 1)2
sup

s∈[0,T ],x∈[0,1]
∣
∣h(1)s (x + 2ε)− h(1)s (x)

∣
∣2.

For any fixed value ε, the Q
N
μN

-expectation of the supremum is uniformly bounded in
N ≥ 1 by Assertion (ii) of the proof of the tightness stated at the beginning of Sect. 3,
consequently the whole quantity vanishes in Q

N
μN

-probability as N → ∞. ��
Fix s ≥ 0 and let γs : D([0,∞), CMod 2) → R be a bounded measurable function,
measurable with respect to the σ -field generated by hr , r ∈ [0, s] and continuous at any
point in C([0,∞), CMod 2). We then set Gs to be the following bounded measurable map
from D × M × M into R:

Gs(h, ζ
(1), ζ (2)) = γs(h)

n∏

j=1

α j

( ∫

[0,s]×(0,1)
a j (r, x)ζ (1)(dr, dx)

)
β j

×
( ∫

[0,s]×(0,1)
b j (r, x)ζ (2)(dr, dx)

)
,

where n ≥ 1, α j , β j are bounded continuous functions on R, and a j , b j are non-negative
compactly supported functions from [0,∞) × (0, 1) into R that admit a continuous
derivative in time and a continuous second derivative in space.

Lemma 21. For all t ≥ s, the distribution of M N , (1)
t (ϕ)Gs under Q

N
μN

converges to the

distribution of M (1)
t (ϕ)Gs under Q

′, and similarly for L N , (1)
t (ϕ)Gs and L (1)

t (ϕ)Gs.

We postpone the proof of this lemma to the end of this subsection. Using Lemma 20,
Lemma 21, and Lemma 4, we deduce that for all t ≥ s:

Q
N
μN

[
M N , (1)

t (ϕ)Gs

]
−→

N→∞ Q
′[M (1)

t (ϕ)Gs

]
, Q

N
μN

[
L N , (1)

t (ϕ)Gs
] −→

N→∞ Q
′[L (1)

t (ϕ)Gs
]
.

Taking the limit as N → ∞ in the following martingale identities:

Q
N
μN

[
M N , (1)

t (ϕ)Gs
]=Q

N
μN

[
M N , (1)

s (ϕ)Gs
]
, Q

N
μN

[
L N , (1)

t (ϕ)Gs
]=Q

N
μN

[
L N , (1)

s (ϕ)Gs
]
,

we therefore obtain

Q
′[M (1)

t (ϕ)Gs
] = Q

′[M (1)
s (ϕ)Gs

]
, Q

′[L (1)
t (ϕ)Gs

] = Q
′[L (1)

s (ϕ)Gs
]
.

Since the indicator of any closed set of the form [u, v] × [a, b] ⊂ [0, s] × (0, 1) can be
approximated by functions of the type a j that appear in Gs , a classical argument based
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on the Monotone Class Theorem shows that M (1)
t (ϕ) and L (1)

t (ϕ) are Ft -martingales
under Q

′.
We now prove that Kt (ϕ, ψ) is an Ft -martingale under Q

′. We know that the process
Kt (ϕ, ψ)− 〈〈M (1)(ϕ),M (2)(ψ)〉〉t is an Ft -martingale under Q

′. Since

〈〈M (1)(ϕ),M (2)(ψ)〉〉t = 1

4

(
〈〈M (1)(ϕ) + M (2)(ψ)〉〉t − 〈〈M (1)(ϕ)− M (2)(ψ)〉〉t

)
, (29)

it suffices to show that the two brackets on the right are equal under Q
′. Using (4),

we easily check that (M N , (1)
t (ϕ) + M N , (2)

t (ψ))2 − 〈〈M N , (1)(ϕ)〉〉t − 〈〈M N , (2)(ψ)〉〉t is an
Ft -martingale under Q

N
μN

. Therefore, the same convergence arguments as above show

that (M (1)
t (ϕ)+ M (2)

t (ψ))
2 − t (〈ϕ, ϕ〉+ 〈ψ,ψ〉) is an Ft -martingale under Q

′. Similarly,
we obtain that (M (1)

t (ϕ)− M (2)
t (ψ))

2 − t (〈ϕ, ϕ〉+ 〈ψ,ψ〉) is an Ft -martingale under Q
′

so that (29) vanishes under Q
′. This completes the proof of the martingale relations.

Support condition. Let us show that for all T > 0 and all a < b ∈ (0, 1)we have Q
′-a.s.

∫

[0,T ]×(a,b)
(
h(1)t (x)− h(2)t (x)

)
(ζ (1) + ζ (2))(dt, dx) = 0.

Fix a < b ∈ (0, 1) and T > 0. Letψ be a non-negative continuous function with compact
support in [0,∞) × (0, 1) and such that ψ(t, x) = 1 for all (t, x) ∈ [0, T ] × [a, b].
Then we introduce F : D × M × M → R as follows:

F(h, ζ (1), ζ (2)) :=
∫

[0,∞)×(0,1)
ψ(t, x)

(
h(1)t (x)− h(2)t (x)

)
(ζ (1) + ζ (2))(dt, dx).

Lemma 22. The map F is Q
′-a.s. continuous.

Proof. Let (hn, ζ (1),n, ζ (2),n) be a sequence of elements of D×M×M that converges to
an element (h, ζ (1), ζ (2)) in C×M×M. We bound

∣
∣F(hn, ζ (1),n, ζ (2),n)−F(h, ζ (1), ζ (2))

∣
∣

by:
∣
∣F(hn, ζ (1),n, ζ (2),n)− F(h, ζ (1),n, ζ (2),n)

∣
∣ +
∣
∣F(h, ζ (1),n, ζ (2),n)− F(h, ζ (1), ζ (2))

∣
∣.

The first term is bounded by supt∈[0,T ]
∥
∥hn

t − ht
∥
∥C
∫
ψ(t, x)(ζ (1),n + ζ (2),n)(dt, dx). As

n → ∞, the integral converges to
∫
ψ(t, x)(ζ (1) + ζ (2))(dt, dx) while the supremum

vanishes since hn → h in D and since h belongs to C. We deduce that the first term
vanishes as n → ∞. The second term goes to 0 as n → ∞ by continuity of the map

(ζ (1), ζ (2)) 
→
∫

[0,∞)×(0,1)
ψ(t, x) (h(1)t (x)− h(2)t (x))(ζ

(1) + ζ (2))(dt, dx).

Since Q
′ is supported by C × M × M, this completes the proof. ��

As a consequence of this lemma, the pushforward of Q
N
μN

through F converges
weakly to the pushforward of Q

′ through F , and thus, for every δ > 0

Q
′(F > δ

)
≤ lim

N→∞
Q

N
μN

(
F > δ

)
= 0.
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The equality on the right follows from the fact that under Q
N
μN

, the function h(1) − h(2)

vanishes on the support of ζ (1) + ζ (2). Finally observe that

F(h, ζ (1), ζ (2)) ≥
∫

[0,T ]×(a,b)
(
h(1)t (x)− h(2)t (x)

)
(ζ (1) + ζ (2))(dt, dx),

so that Q
′-a.s.

∫

[0,T ]×(a,b)(h
(1)
t (x)−h(2)t (x))(ζ

(1)+ζ (2))(dt, dx) ≤ δ. By taking sequences

Tn ↑ ∞, δn ↓ 0, an ↓ 0 and bn ↑ 1 we conclude that Q
′-a.s.

∫

[0,∞)×(0,1)(h
(1)
t (x) −

h(2)t (x))(ζ
(1) + ζ (2))(dt, dx) = 0. We have proved that Q

′ fulfills all the conditions of
Proposition 19.

Proof of Lemma 21. The proof of Lemma 16 ensures that (M N , (1)
t (ϕ), t ≥ 0) under Q

N
μN

is
tight in D and that any limit is continuous. We first show that any limit has the same distri-
bution as (M (1)

t (ϕ), t ≥ 0) under Q
′. Let us extract a subsequence from Q

N
μN
, N ≥ 1 such

that the sequence of martingales converges, for simplicity we keep the same notation for
the subsequence. By the Skorokhod Representation Theorem, there exists a probability
space on which is defined a sequence (hN , ζ N , (1), ζ N , (2),M N , (1)(ϕ)) that converges almost
surely to (h∞, ζ∞, (1), ζ∞, (2),M∞, (1)(ϕ)), and such that (hN , ζ N , (1), ζ N , (2),M N , (1)(ϕ)) has
the same distribution as (h, ζ (1), ζ (2),M N , (1)(ϕ)) under Q

N
μN

. Recall that we have for
every t ≥ 0,

∫

[0,t]×(0,1)
ϕ(x)ζ N , (1)(ds, dx)

= −M N , (1)
t (ϕ) + 〈hN , (1)

t , ϕ〉N − 〈hN , (1)
0 , ϕ〉N

− 2√
2N

∫ t

0

〈(
pN (·)− (2N )2

2

)
1{�hN , (1)

s (·) �=0}, ϕ
〉

N
ds

− (2N )2

2

∫ t

0
〈�hN , (1)

s , ϕ〉N ds. (30)

Using the arguments in the proof of Lemma 20, we deduce that the left hand side
converges in probability to

−M∞, (1)
t (ϕ) + 〈h∞, (1)

t , ϕ〉 − 〈h∞, (1)
0 , ϕ〉 − t〈σ, ϕ〉 − 1

2

∫ t

0
〈h∞, (1)

s , ϕ′′〉ds. (31)

Up to an extraction, we can assume that the convergence is almost sure. We only
need to show that (31) coincides with

∫

[0,t]×(0,1) ϕ(x)ζ
∞, (1)(ds, dx). This is not obvi-

ous since our topology on M does not ensure continuity of the functional m 
→∫

[0,∞)×(0,1) f (s, x)m(ds, dx) when f is not continuous in time. However, the defin-
ition of our topology on M ensures that almost surely, for every pair of rational values
p, q the measure ρp,q(s)ϕ(x)ζ N , (1)(ds, dx) on [0,∞) × (0, 1) converges weakly to
ρp,q(s)ϕ(x)ζ∞, (1)(ds, dx). Since ϕ is non-negative, [0, t] × (0, 1) is a closed subset of
[0,∞) × (0, 1) and [0, t + ε) × (0, 1) is an open subset of [0,∞) × (0, 1), we obtain
that almost surely for all t, ε > 0,

lim
N→∞

∫

[0,t]×(0,1)
ϕ(x)ζ N , (1)(ds, dx) ≤

∫

[0,t]×(0,1)
ϕ(x)ζ∞, (1)(ds, dx)



Scaling Limits of Weakly Asymmetric Interfaces 321

and
∫

[0,t+ε)×(0,1)
ϕ(x)ζ∞, (1)(ds, dx) ≤ lim

N→∞

∫

[0,t+ε)×(0,1)
ϕ(x)ζ N , (1)(ds, dx).

Consequently almost surely for all t, ε > 0,

lim
N→∞

∫

[0,t]×(0,1)
ϕ(x)ζ N , (1)(ds, dx) ≤

∫

[0,t]×(0,1)
ϕ(x)ζ∞, (1)(ds, dx)

≤ lim
N→∞

∫

[0,t+ε]×(0,1)
ϕ(x)ζ N , (1)(ds, dx).

The continuity in time of (31) ensures that as ε ↓ 0, the difference between the rightmost
and the leftmost terms in the above inequality tends to zero, so that (31) coincides with∫

[0,t]×(0,1) ϕ(x)ζ
∞, (1)(ds, dx).

This ensures that the distribution of M N , (1)
t (ϕ)under Q

N
μN

converges to the distribution

of M (1)
t (ϕ) under Q

′. Recall the expression of Gs . To deal with M N , (1)(ϕ)Gs , it suffices to
consider the martingales M N , (1)(a j ) and M N , (2)(b j ), and to repeat the above arguments
in order to show the convergence in probability of
∫

[0,t]×(0,1)
a j (r, x)ζ N , (1)(dr, dx) and

∫

[0,t]×(0,1)
b j (r, x)ζ N , (2)(dr, dx)

towards
∫

[0,t]×(0,1)
a j (r, x)ζ∞, (1)(dr, dx) and

∫

[0,t]×(0,1)
b j (r, x)ζ∞, (2)(dr, dx).

Then, one multiplies both sides of (30) by Gs(hN , ζ N , (1), ζ N , (2)) and passes to the limit
as N → ∞, using the continuity of the map γs together with the previous convergences.
The second part of the statement on L N , (1)

t (ϕ) and L (1)
t (ϕ) follows from very similar

arguments, so we do not provide the details. ��
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A. Proof of the Large Deviation Result

This is an adaptation of Kipnis, Olla and Varadhan [27].

A.1. The symmetric case. We consider Model 1- w in the symmetric case pN (·) =
qN (·) = (2N )2/2. From now on,EN denotesEMod 1- w

N and P
N
πN

is taken to be the measure on
D([0,∞), EN ) of the process in this symmetric case starting from the invariant measure
πN . Recall the expression for VN , ε . A simple calculation (almost the same as p.120
of [27]) shows that for all i ∈ �1, 2N� and any given k ≥ 1
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∣
∣
∣

1

2εN + 1

∑

j :|i− j |≤εN

�(τ jη)− �̃
( 1

2εN + 1

∑

j :|i− j |≤εN

η( j)
)∣
∣
∣ ≤ O

( k

N

)

+
1

2εN + 1

∑

j :|i− j |≤εN

∣
∣
∣

1

2k + 1

∑

l:| j−l|≤k

�(τlη)− �̃
( 1

2k + 1

∑

l:| j−l|≤k

η(l)
)∣
∣
∣

+

∥
∥
∥�̃′
∥
∥
∥

(2εN + 1)2
∑

j :|i− j |≤εN

∑

j ′:|i− j ′|≤εN

1

2k + 1

∣
∣
∣
∑

l:| j ′−l|≤k

η(l)−
∑

l:| j−l|≤k

η(l)
∣
∣
∣,

where the term O
( k

N

)
is uniform in i, η so that its contribution to (17) vanishes. The

contributions of the second and third term above are dealt with by the following two
lemmas. From now on, f is implicitly taken to be non-negative and such that πN [ f ] = 1.

Lemma 23. For any c > 0

lim
k→∞ lim

N→∞ sup
f :DN ( f )≤cN

1

N

2N∑

i=1

∑

η∈EN

∣
∣
∣

1

2k + 1

∑

j :|i− j |≤k

�(τ jη)

−�̃
( 1

2k + 1

∑

j :|i− j |≤k

η( j)
)∣
∣
∣πN (η) f (η) = 0.

Proof. Fix N ≥ 1, k ∈ �1, N�. First observe that we can split the sum over i into two
sums: the first over i ∈ {1, . . . , k} ∪ {2N − k + 1, . . . , 2N } and the second over the
remaining i’s. It is a simple matter to check that the first sum is bounded by a quantity
of order k/N so that it vanishes when N goes to infinity, k being fixed. To deal with the
second sum we set O2k + 1 := {0, 1}2k+1 and write

sup
f :DN ( f )≤cN

1

N

2N−k∑

i=k+1

∑

η∈EN

∣
∣
∣

1

2k + 1

∑

j :|i− j |≤k

�(τ jη)

−�̃
( 1

2k + 1

∑

j :|i− j |≤k

η( j)
)∣
∣
∣πN (η) f (η)

≤ sup
f :DN ( f )≤cN

1

N

2N−k∑

i=k+1

∑

ξ∈O2k + 1

∑

η∈EN
η|�i−k,i+k�

=ξ

∣
∣
∣

1

2k + 1

2k∑

j=0

�(τ jξ)

−�̃
( 1

2k + 1

2k+1∑

j=1

ξ( j)
)∣
∣
∣πN (η) f (η) + O

(1

k

)
. (32)

The second term on the right bounds the error we make when we replace �(τi−k+ jη)

by�(τ jξ); it vanishes when N and k go to infinity. It remains to bound the first term on
the right. To that end, we prove an inequality for the Dirichlet form.

Consider the symmetric simple exclusion process on O2k + 1 without wall. The uniform
measure on O2k + 1 is reversible so that the Dirichlet form associated with this process is
given by

D∗(g) := 1

2

∑

ξ∈O2k + 1

2−(2k+1)
2k∑

j=1

(√

g(ξ j, j+1)−√g(ξ)
)2
1{∇ξ( j)=1},
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for all maps g : O2k + 1 → R+. We introduce, in particular, the map

fk(ξ) := 1

(2N − 2k)

2N−k∑

i=k+1

∑

η∈EN
η|�i−k,i+k�

=ξ
πN (η) f (η).

Recall that πN [ f ] = 1 and observe that
∑
ξ∈O2k + 1

fk(ξ) = 1. For any two sequences

ai , bi ≥ 0 whose sums are finite, the triangle inequality implies
(√∑

i ai −
√∑

i bi
)2 ≤

∑
i

(√
ai −√

bi
)2. This yields

D∗( fk) ≤ 2−(2k+1)

2(2N − 2k)

∑

ξ∈O2k + 1

2N−k∑

i=k+1

∑

η∈EN
η|�i−k,i+k�

=ξ
πN (η)

×
2k∑

j=1

(√

f (ηi−k+ j−1,i−k+ j )−√ f (η)
)2
1{∇η(i−k+ j−1)=1}

≤ k2−2k

2(2N − 2k)

∑

η∈EN

πN (η)

2N−1∑

j=1

(√

f (η j, j+1)−√ f (η)
)2
1{∇η( j)=1}

≤ k2−2k

(2N − 2k)(2N )2
DN ( f ).

Now observe that the first term on the right of Eq. (32) can be written

sup
f :DN ( f )≤cN

1

N

∑

ξ∈O2k + 1

∣
∣
∣

1

2k + 1

2k∑

j=0

�(τ jξ)− �̃
( 1

2k + 1

2k+1∑

j=1

ξ( j)
)∣
∣
∣(2N − 2k) fk(ξ)

≤ 2 sup
gk :D∗(gk )≤ ck2−2k

2N (2N−2k)

∑

ξ∈O2k + 1

∣
∣
∣

1

2k + 1

2k∑

j=0

�(τ jξ)− �̃
( 1

2k + 1

2k+1∑

j=1

ξ( j)
)∣
∣
∣gk(ξ),

where the inequality comes from the bound on the Dirichlet form proved above and
the supremum is implicitly taken over the compact set of non-negative maps gk such
that
∑
ξ gk(ξ) = 1. Since the Dirichlet form is lower semi-continuous, we deduce that

{gk : D∗(gk) ≤ ck2−2k

2N (2N−2k) } is compact (as a closed subset of a compact set). Also if we
write

F(gk) := 2
∑

ξ∈O2k + 1

∣
∣
∣

1

2k + 1

2k∑

j=0

�(τ jξ)− �̃
( 1

2k + 1

2k+1∑

j=1

ξ( j)
)∣
∣
∣gk(ξ),

then the map F is continuous and we deduce that for each N ≥ 1 there exists gN
k realising

the supremum. We stress that

lim
N→∞ F(gN

k ) ≤ sup
gk :D∗(gk )=0

F(gk).

Indeed, take any sub-sequence of (gN
k , N ≥ 1) whose image under F converges to the

lim on the left. Then by compactness one can extract a sub-sub-sequence that converges
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to a limiting point g∞k such that D∗(g∞k ) = 0 and
∑
ξ g∞k (ξ) = 1. To complete the proof,

observe that O2k + 1 can be decomposed into 2k+2 irreducible classes, each corresponding
to the subsets O2k + 1, l ⊂ O2k + 1 with a constant number of particles l ∈ �0, 2k + 1�. For
each l, the uniform measure ml on O2k + 1, l is invariant so that {gk : D∗(gk) = 0} is the
set of probability distributions on O2k + 1 obtained as convex combinations of the ml ’s.
Consequently

sup
gk :D∗(gk )=0

F(gk)=2 sup
l∈�0,2k+1�

∑

ξ∈O2k + 1, l

(
2k + 1

l

)−1∣
∣
∣

1

2k + 1

2k∑

j=0

�(τ jξ)−�̃
( l

2k + 1

)∣
∣
∣.

Using the local central limit theorem (see for instance Step 6 in Chapter 5.4 of [25]) we
deduce that lim

k→∞ supgk :D∗(gk )=0 F(gk) = 0.

Lemma 24. For any c > 0

lim
k→∞ lim

ε↓0
lim

N→∞ sup
f :D( f )≤cN

1

N

2N∑

i=1

1

(2εN + 1)2
∑

j :| j−i |≤εN
j ′ :| j ′−i |≤εN

∑

η∈EN

1

2k + 1

∣
∣
∣
∣

j ′+k∑

l= j ′−k

η(l)

−
j+k∑

l= j−k

η(l)

∣
∣
∣
∣πN (η) f (η) = 0.

Proof. Fix N ≥ 1. Observe that the sum over i can be restricted to {�εN�+1, . . . , �2N−
2εN�} since the sum over the remaining i’s vanishes when ε goes to 0. Similarly the
sum over j, j ′ can be restricted to the set

J (i) := {( j, j ′) : | j − i | ≤ εN , | j ′ − i | ≤ εN , j ′ − j > 2k}
and the term (2εN + 1)2 can be replaced by 2 #J (i). Since #J (i) does not depend on i ,
we can write #J . Consequently we obtain

sup
f :D( f )≤cN

1

N

�2N−2εN�∑

i=�2εN�+1

1

#J

∑

( j, j ′)∈J (i)

∑

η∈EN

1

2k + 1

∣
∣
∣
∣

j ′+k∑

l= j ′−k

η(l)−
j+k∑

l= j−k

η(l)

∣
∣
∣
∣πN (η) f (η).

(33)
We consider three Dirichlet forms associated to three variants of the simple exclusion
process on O2k + 1 × O2k + 1. From now on, (ξ1, ξ2) will implicitly denote an element of
the latter set while η will designate an element of O2N . For all gk : O2k + 1 ×O2k + 1 → R+
we set

D1(gk) := 1

2

∑

ξ1,ξ2

2−2(2k+1)
2k∑

n=1

(√

gk(ξ
n,n+1
1 , ξ2)−

√
gk(ξ1, ξ2)

)2
1{∇ξ1(n)=1},

D2(gk) := 1

2

∑

ξ1,ξ2

2−2(2k+1)
2k∑

n=1

(√

gk(ξ1, ξ
n,n+1
2 )−√gk(ξ1, ξ2)

)2
1{∇ξ2(n)=1},

D◦(gk) := 1

2

∑

ξ1,ξ2

2−2(2k+1)
(√

gk

(
(ξ1, ξ2)◦

)−√gk(ξ1, ξ2)
)2
1{ξ1(k+1)=0,ξ2(k+1)=1},
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where (ξ1, ξ2)
◦ is the configuration obtained from (ξ1, ξ2) by exchanging the values

of ξ1(k + 1) and ξ2(k + 1). The Dirichlet form D1 (resp. D2) corresponds to a simple
exclusion process only acting on ξ1 (resp. ξ2) while D◦ induces an interaction between
ξ1 and ξ2. We now introduce the following map:

fk(ξ1, ξ2) :=
�2N−2εN�∑

i=�2εN�+1

1

(�2N − 2εN� − �2εN�)#J

∑

( j, j ′)∈J (i)

∑

η∈EN
η|� j−k, j+k�=ξ1
η|� j ′−k, j ′+k�=ξ2

πN (η) f (η).

By symmetry, we have D1( fk) = D2( fk) and

D1( fk) ≤ 1

2

∑

ξ1,ξ2

k−1∑

n=−k

�2N−2εN�∑

i=�2εN�+1

2−2(2k+1)

(�2N − 2εN� − �2εN�)#J

∑

( j, j ′)∈J (i)

×
∑

η∈EN
η|� j−k, j+k�=ξ1
η|� j ′−k, j ′+k�=ξ2

πN (η)
(√

f
(
η j+n, j+n+1

)−√ f (η)
)2
1{∇η( j+n)=1}

≤ 8k(εN + k)εN
(�2N − 2εN� − �2εN�)(2N )2#J

DN ( f ).

Indeed, for a given flip appearing in the Dirichlet form, we have at most 2(εN + k)
choices for i , 2k choices for j and 2εN choices for j ′. D◦( fk) can be bounded by

∑

ξ1,ξ2

�2N−2εN�∑

i=�2εN�+1

(�2N − 2εN� − �2εN�)−1

2#J2−2(2k+1)

×
∑

( j, j ′)∈J (i)

∑

η∈EN
η|� j−k, j+k�=ξ1
η|� j ′−k, j ′+k�=ξ2

πN (η)
(√

f
(
η j, j ′)−√ f (η)

)2
1{η( j)=0,η( j ′)=1},

where η j, j ′ is obtained from η by exchanging the values η( j) and η( j ′). Observe that
we have

η j, j ′ =
(
. . .
(((

. . .
(
(η j, j+1) j+1, j+2) . . .

) j ′−1, j ′) j ′−2, j ′−1)
. . .
) j, j+1

.

We denote by ηp the configuration obtained at the p-th step of the above formula, that
is, η0 := η, η1 := η j, j+1,. . ., η2( j ′− j)−1 = η j, j ′ . We stress that all these configurations
belong to EN , this is a consequence of our condition {η( j) = 0, η( j ′) = 1}. We thus
have

(√

f
(
η j, j ′)−√ f (η)

)2 ≤ (2( j ′ − j)− 1
)

2( j ′− j)−1∑

p=1

(√

f (ηp)−
√

f (ηp−1)
)2
.



326 A. M. Etheridge, C. Labbé

One obtains ηp from ηp−1 by exchanging the values of two consecutive sites. Then a
simple calculation ensures the existence of a constant r > 0 such that when k/εN is
small enough

D◦( fk) ≤ rε2

N
DN ( f ).

We introduce the set Gk
N (ε) of maps gk : O2k + 1 × O2k + 1 → R such that∑

ξ1,ξ2
gk(ξ1, ξ2) = 1 and

D1(gk), D2(gk) ≤ 4kc(εN + k)εN
(�2N − 2εN� − �2εN�)2N#J

; D◦(gk) ≤ rε2c.

Expression (33) can be rewritten as follows:

sup
f :DN ( f )≤cN

1

N

∑

ξ1,ξ2

�2N−2εN�∑

i=�2εN�+1

(�2N − 2εN� − �2εN�)−1

#J

×
∑

( j, j ′)∈J (i)

∑

η∈EN
η|� j−k, j+k�=ξ1
η|� j ′−k, j ′+k�=ξ2

1

2k + 1

∣
∣
∣
∑

l:| j ′−l|≤k

η(l)−
∑

l:| j−l|≤k

η(l)
∣
∣
∣πN (η) f (η)

≤ 2 sup
gk∈Gk

N (ε)

∑

ξ1,ξ2

1

2k + 1

∣
∣
∣

2k+1∑

l=1

ξ1(l)−
2k+1∑

l=1

ξ2(l)
∣
∣
∣gk(ξ1, ξ2).

By the same compactness arguments as in the proof of the previous lemma, it suffices
to show that

lim
k→∞ sup

D1(gk )=D2(gk )=�(gk )=0

∑

ξ1,ξ2

1

2k + 1

∣
∣
∣

2k+1∑

l=1

ξ1(l)−
2k+1∑

l=1

ξ2(l)
∣
∣
∣ gk(ξ1, ξ2) = 0.

We now see gk as a probability measure on O2k + 1 × O2k + 1. The conditions D1(gk) =
D2(gk) = D◦(gk) = 0 imply that gk is a convex combination of the uniform measures
on O2k + 1×O2k + 1 with a given number of particles. As at the end of the preceding lemma,
the local central limit theorem completes the proof. ��

A.2. The asymmetric case. In the last subsection, we proved Theorem 5 under P
N
πN

. Let

VN (δ) be the Borel subset of D([0, t], EN ) defined by VN (δ) :=
{
η : 1

N

∫ t
0 VN , ε(ηs)ds >

δ
}

. Recall that we work implicitly in Model 1- w, so that we drop the superscript on

the state-spaces. For any measure νN on CN we have

P
N
νN

(VN (δ)
) =
∫

η∈EN

1{η∈VN (δ)}
νN (η0)

πN (η0)
dP

N
πN
(η) ≤ 22N

P
N
πN

(VN (δ)
)
,
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so that Theorem 5 also holds under P
N
νN

. We now extend it to the asymmetric setting. To
that end, we write

Q
N
νN

(VN (δ)
) =
∫

1{η∈VN (δ)}
dQ

N
νN

dPN
νN

dP
N
νN
(η)

≤
(

P
N
πN

(VN (δ)
)
) 1

2
(∫ (dQ

N
νN

dPN
νN

)2
dP

N
νN
(η)

) 1
2

.

Hence the result for Q
N
νN

will follow if we can prove the existence of a constant c > 0
such that for all N ≥ 1
∫ (dQ

N
νN

dPN
πN

)2
dP

N
πN
(η) =

∫ (dQ
N
η0

dPN
η0

(η)
)2( νN (η0)

πN (η0)

)2
dP

N
πN
(η) ≤ exp(cN ), (34)

where Q
N
η0

denotes the distribution of the process starting from δη0 at time 0. The
assumption on the asymmetry yields the following uniform estimates:

pN (·) = (2N )2

2
+σ(·)√2N +O((2N )−1), qN (·) = (2N )2

2
−σ(·)√2N +O((2N )−1).

(35)
For any initial condition η0 ∈ EN , the measures Q

N
η0

and P
N
η0

are equivalent and their
Radon–Nikodym derivative up to time t is given by (see for instance Appendix 1—
Proposition 2.6 in [25])

log
dQ

N
η0

dPN
η0

(η) =
∫ t

0

2N−1∑

k=1

(
pN (kN )− (2N )2

2

)(
1{∇ηs (k)=+1} − 1{∇ηs (k)=−1}

)
ds

−
2N−1∑

k=1

(
log

2qN (kN )

(2N )2
J k,k+1

t + log
2pN (kN )

(2N )2
J k+1,k

t

)
(36)

where J k,k+1
t (resp. J k+1,k

t ) is the number of particles that have jumped from k to k + 1
(resp. from k + 1 to k) up to time t . We rewrite the first term on the right of (36) as
follows:

2N−1∑

k=1

(
pN (kN )− (2N )2

2

)(
ηs(k + 1)− ηs(k)

)

=
2N−1∑

k=2

(
pN ((k − 1)N )− pN (kN )

)
ηs(k) +

(
pN (1 − 1

2N
)− (2N )2

2

)
ηs(2N )

−
(

pN (
1

2N
)− (2N )2

2

)
ηs(1)

so that the uniform estimates (35) together with the 1/2-Hölder regularity of σ ensures
that this last expression is of order N uniformly in η. We now focus on the second term
on the right of (36) and write this as the sum of

A :=
2N−1∑

k=1

2σ(kN )

(2N )
3
2

(
J k+1,k

t − J k,k+1
t

)
, B := O((2N )−3)

2N−1∑

k=1

(
J k,k+1

t + J k+1,k
t

)
.
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A simple calculation shows that A = (2N )
3
2

2

(
AN (ht ) − AN (h0)

)
where AN (·) is the

discrete weighted area under the interfaces as defined in Proposition 1. Consequently
we have |A| ≤ sup |σ |√2N for every η. Concerning B, observe that the sum is less than∑

k LN
t (kN )+RN

t (kN )which is a Poisson random variable with mean t (2N )3 under P
N
πN

.
Putting all these arguments together we deduce that (34) is fulfilled. This concludes the
proof of Theorem 5. ��

B. Proof of the Tightness in MODEL 1

We work in the natural filtration induced by the canonical process (ht , t ≥ 0): all the
martingales will be considered w.r.t. this filtration. Recall the notation kN = k

2N . First we
rewrite the system of stochastic differential equations (1) in the following semimartingale
form

dht (kN ) = (2N )2

2
�ht (kN )dt +

2√
2N

(
pN (kN )− (2N )2

2

)
1{�ht (kN ) �=0}dt + d Mt (kN ),

(37)
where

Mt (kN ) := 2√
2N

( ∫ t

0
(dLN

s (kN )− pN (kN )ds)1{�hs (kN )>0}

−
∫ t

0
(dRN

s (kN )− qN (kN )ds)1{�hs (kN )<0}
)

is a martingale. We introduce the fundamental solution gN = g that solves for all
k, l ∈ �0, 2N�

⎧
⎪⎨

⎪⎩

∂tgt (kN , lN ) = (2N )2

2 �gt (kN , lN ),

g0(kN , lN ) = δkN (lN ),

gt (kN , 0) = gt (kN , 1) = gt (0, lN ) = gt (1, lN ) = 0.

Notice that the discrete Laplacian on the first line acts on the map lN 
→ gt (kN , lN )

for any given kN . Classical arguments (see for instance Chapter V p.237 in the book of
Spitzer [33]) ensure that for all t ≥ 0 and all k, l ∈ �0, 2N� we have

gt (kN , lN ) = 1

N

2N−1∑

n=1

sin
(
nπkN

)
sin
(
nπlN

)
e(2N )2t

(
cos( n

2N π)−1
)

. (38)

Remark 25. The function (t, k, l) 
→ gt (kN , lN ) is the Green function associated to the

differential operator ∂t − (2N )2

2 �. It corresponds to the transition kernel of a continuous-
time simple random walk on {0, 1

2N , . . . , 1} sped up by (2N )2/2 and killed at 0
and 1.

From the fundamental solution, one can write the mild formulation of the semimartin-
gale:

ht (kN ) =
2N∑

k=0

gt (kN , lN ) h0(kN ) + N t
t (lN )

+
2√
2N

2N∑

k=0

∫ t

0
gt−r (kN , lN )

(
pN (kN )− (2N )2

2

)
1{�hr (kN ) �=0}dr, (39)
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where we have introduced the collection of martingales (N t
s (lN ), 0 ≤ s ≤ t), l ∈ �0, 2N�

as follows:

N t
s (lN ) :=

2N∑

k=0

∫ s

0
gt−r (kN , lN )d Mr (kN ).

This mild formulation is valid since (39) defines a process satisfying the stochastic
differential equations (37) for which pathwise uniqueness is known.

Let us introduce some notation. For every p ∈ [1,∞), ‖F‖p will denote the Lp

norm of a real-valued random variable F . For any square integrable càdlàg martingale
(Xt , t ≥ 0), [X ] will denote its quadratic variation. In the particular case of purely
discontinuous martingales, we have

∀t ≥ 0, [X ]t :=
∑

τ≤t

(
Xτ − Xτ−

)2
.

We also denote by 〈〈X〉〉 the bracket of X , defined as the unique predictable process
such that (X2

t − 〈〈X〉〉t , t ≥ 0) is a martingale. We recall the Burkholder–Davis–Gundy
inequality [30] that ensures, for any p ∈ [1,∞), the existence of a constant cBDG(p) > 0
such that for all t ≥ 0

‖Xt‖p ≤ cBDG(p)
√
‖ [X ]t ‖p/2.

Since the process Dt := [X ]t − 〈〈X〉〉t is itself a martingale, for any p ≥ 2 we have the
following inequality

‖Xt‖p ≤ cBDG(p)
√
‖〈〈X〉〉t‖p/2 + cBDG(p)

√
cBDG(p/2)

∥
∥
[
D
]

t

∥
∥

1
4
p/4
. (40)

The proof of Proposition 9 requires a series of lemmas that we now present. From the
hypothesis on pN , qN , we know that there exists σ̃ > 0 such that for all N ≥ 1

sup
k∈�1,2N−1�

|qN (kN )− pN (kN )| ≤ σ̃
√

2N . (41)

Fix T > 0 until the end of the section.

Lemma 26. The following properties hold true

(i) For all N ≥ 1, t ≥ 0, k, l ∈ �0, 2N�, gt (kN , lN ) ≤ 1 ∧
√

2π
(2N )2t

.

(ii) Fix γ ∈ (0, 1]. There exists a constant c′kernel(γ, T ) > 0 such that for all N ∈ N,
l ∈ �0, 2N� and all t ≤ t ′ ∈ [0, T ]

sup
k∈�0,2N�

∣
∣gt ′(kN , lN )− gt (kN , lN )

∣
∣ ≤ c′kernel(γ, T )

2N
√

t

( t ′ − t

t

)γ
.

(iii) For all N ∈ N, 0 ≤ s ≤ t and all k, l ∈ �0, 2N�, supr∈[s,t] gr (kN , lN ) ≤
e(2N )2(t−s)gt (kN , lN ).

Proof. First, observe that (38) can be rewritten

gt (kN , lN ) = 2
∫ 1

0
sin
( �2Nu�πkN

)
sin
( �2Nu�πlN

)
e(2N )2t

(
cos( �2Nu�

2N π)−1
)

du.
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Second, recall that for all a ∈ [0, π ], 1 − a2/2 ≤ cos(a) ≤ 1 − 2a2/π2. To prove (i),
we write

gt (kN , lN ) ≤ 2
∫ 1

0
e−2(2N )2t (u− 1

2N )
2
du

≤
√

2π

(2N )2t

∫

R

√

2(2N )2t

π
e−2(2N )2tu2

du =
√

2π

(2N )2t
,

where we use the bound on the cosine in the first inequality and we recognise the Gaussian
distribution in the second step. Bound (i) follows.

We turn to (ii). Fix N and γ as in the statement. For all k, l ∈ �0, 2N� and all
0 ≤ t ≤ t ′ ≤ T , we bound |gt ′(kN , lN )− gt (kN , lN )| by

2
√
(2N )2t

∫ √
(2N )2t

0

(
1 − e

(2N )2(t ′−t)
(

cos(

⌊
2Nv√
(2N )2 t

⌋
π

2N )−1
)
)

×e
(2N )2t

(
cos(

⌊
2Nv√
(2N )2 t

⌋
π

2N )−1
)

dv

≤ 2
√
(2N )2t

∫ √
(2N )2t

0

(
1 − e−

(t ′−t)π2
2t v2

)
e−2(v−√t)2 dv.

Since γ belongs to (0, 1], we have 1 − e−a ≤ aγ for all a ≥ 0, and we deduce that

|gt ′(kN , lN )− gt (kN , lN )| ≤ 2
√
(2N )2t

( t ′ − t

t

)γ (π2

2

)γ
∫ √

(2N )2t

−√t

∣
∣v +

√
t
∣
∣2γ e−2v2

dv.

Setting c′kernel(γ, T ) := 2(π2/2)γ
∫

R
|v +

√
2T |2γ e−2v2

dv, the asserted bound follows.
Finally we observe that

gt (kN , lN ) = e−(2N )2t
∞∑

n=0

((2N )2t)n

n! gn(k, l),

where gn(k, l) is the probability that a discrete time symmetric random walk on �0, 2N�,
starting from k and killed at 0 and 2N , reaches l after n jumps. Bound (iii) then easily
follows. ��

From now on the Lp norm is always implicitly taken under the measure Q
N
νN

.

Lemma 27. Fix p ∈ [4,∞) and γ ∈ (0, 1
4∧βinit

2 ). There existsktime = ktime(p, T, γ ) > 0
such that for all 0 ≤ t ≤ t ′ ≤ T and all N ≥ 1, under Q

N
νN

we have

sup
l∈�0,2N�

∥
∥ht ′
(
lN

)− ht
(
lN

)∥
∥

p ≤ ktime

(
(t ′ − t)γ +

1

(2N )
1
2∧βinit

)
.

Proof. Fix N , l, t, t ′, γ as in the statement. Using (39), we treat separately the initial
condition, the asymmetric terms and the martingale term by writing

∥
∥ht ′
(
lN

)− ht
(
lN

)∥
∥

p ≤ I(l, t, t ′) + A(l, t, t ′) + N (l, t, t ′)
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where

I(l, t, t ′) :=
∥
∥
∥
∥
∥

2N∑

k=0

(
gt ′(kN , lN )− gt (kN , lN )

)
h0(kN )

∥
∥
∥
∥
∥

p

,

A(l, t, t ′) := 2
2N∑

k=0

|pN (kN )− (2N )2

2 |√
2N

∥
∥
∥
∥

( ∫ t ′

0
gt ′−r (kN , lN )1{�hr (kN ) �=0}dr

−
∫ t

0
gt−r (kN , lN )1{�hr (kN ) �=0}dr

)∥∥
∥
∥

p

,

N (l, t, t ′) :=
∥
∥
∥N t ′

t ′ (lN )− N t
t (lN )

∥
∥
∥

p
.

Below, we prove that each of the three terms separately satisfies the bound of the state-
ment. We start with the initial condition. Observe that one can extend h0 into a 2-periodic
asymmetric function on the whole of R. The solution to the discrete heat equation on
[0, 1] starting from h0 is then the restriction of the solution to the discrete heat equation
on R starting from h0. The fundamental solution f for this discrete heat equation on R

is translation invariant, and we can write

I(l, t, t ′) :=
∥
∥
∥
∥
∥

∑

k∈Z

(
ft ′(lN − kN )− ft (lN − kN )

)
h0(kN )

∥
∥
∥
∥
∥

p

=
∥
∥
∥
∥
∥

∑

i∈Z

ft ′−t (lN − iN )
(∑

k∈Z

ft (iN − kN )h0(kN )−
∑

k∈Z

ft (lN − kN )h0(kN )
)
∥
∥
∥
∥
∥

p

≤ cinit

∑

i∈Z

ft ′−t ((l − i)N )
∣
∣(l − i)N

∣
∣βinit ,

where we have used the semigroup property in the second line. A simple calculation (or
Proposition A.1 in [11]) ensures that supr≥0

∑
i∈Z

fr ((l− i)N ) exp( |l−i |N√
r∨ 1

2N
) <∞. Since

xβinit e−|x | is bounded on R, we deduce that

∑

i∈Z

ft ′−t ((l − i)N )
∣
∣(l − i)N

∣
∣βinit � |t ′ − t |βinit

2 +
1

(2N )βinit
.

This implies the bound for the initial condition. The asymmetric term can be handled
using Eq. (41) and Lemma 26 (i) and (ii):

A(l, t, t ′) ≤ 2σ̃
2N∑

k=0

∫ t

0

∣
∣gt ′−r (kN , lN )− gt−r (kN , lN )

∣
∣dr + 2σ̃

2N∑

k=0

∫ t ′

t
gt ′−r (kN , lN )dr

≤ 2σ̃
∫ t

0

c′kernel(γ, T )√
t − r

(
t ′ − t

t − r

)γ

dr + 2σ̃
∫ t ′

t

√
2π

t ′ − r
dr

≤ 4σ̃ Tc′kernel(γ, T )

1 − 2γ
(t ′ − t)γ + 4σ̃

√
π(t ′ − t).

This ensures the expected bound for the asymmetric term since (t ′−t)
1
2 ≤ (t ′−t)γ T

1
2−γ .
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We turn to the martingale term. We want to bound, for all 0 ≤ t ≤ t + δ ≤ T , the
Lp-norm of N t+δ

t+δ (lN ) − N t
t (lN ). To that end, we split it into N t+δ

t+δ (lN ) − N t+δ
t (lN ) and

N t+δ
t (lN )− N t

t (lN ). To deal with the first term, we introduce

∀u ∈ [0, δ], At+δ
u (l) :=

2N∑

k=0

∫ t+u

t
gt+δ−r (kN , lN )d Mr (kN ),

which is an Ft+u-martingale. We easily see that At+δ
δ (l) = N t+δ

t+δ (lN ) − N t+δ
t (lN ). We

introduce Dt+δ
u (l) := [At+δ(l)

]

u − 〈〈At+δ(l)〉〉u . Let us partition the interval [0, δ] into
the subintervals Ii := [i(2N )−2, (i + 1)(2N )−2] for all i = 0, . . . ,

⌊
δ(2N )2

⌋ − 1 and
I�δ(2N )2� := [⌊δ(2N )2

⌋
(2N )−2, δ]. Observe that

∥
∥
∥LN

(i+1)(2N )2(kN )− LN
i(2N )2(kN ) + RN

(i+1)(2N )2(kN )− RN
i(2N )2(kN )

∥
∥
∥

p

is the Lp-norm of a Poisson random variable with mean 1; let us denote this quantity by
a(p). Then we obtain

∥
∥
[
Dt+δ(l)

]

δ

∥
∥

p
=
∥
∥
∥
∥
∥
∥

∑

τ∈(0,δ]

2N∑

k=0

gt+δ−τ (kN , lN )
4 (ht+τ (k)− ht+τ−(kN )

)4

∥
∥
∥
∥
∥
∥

p

≤ 24

(2N )2

2N∑

k=0

⌊
δ(2N )2

⌋

∑

i=0

sup
r∈Ii

gt+δ−r (kN , lN )
4 a(p).

Additionally, for every i in the above sum we bound
∑

k supr∈Ii
gt+δ−r (kN , lN )

4 by

e4 sup
k

gt+δ−i(2N )−2(kN , lN )
3
∑

k

gt+δ−i(2N )−2(kN , lN )

≤ e4(1 ∧ 2π

(2N )2(t + δ − i(2N )−2)
)3/2,

using Lemma 26 (i) and (iii). Consequently

∥
∥
[
Dt+δ(l)

]

δ

∥
∥

p
≤ 24

(2N )2
e4a(p)

(

1 +

⌊
δ(2N )2

⌋−1
∑

i=0

( 2π

(2N )2(t + δ − i(2N )−2)

) 3
2
)

.

The r.h.s. can be bounded by (2N )−2 times a constant d(p) that does not depend on t, δ.
Moreover, we use the Q

N
νN

-a.s. bound d〈〈M(kN )〉〉r ≤ 8Ndr to write

∥
∥〈〈At+δ(l)〉〉δ

∥
∥

p =
∥
∥
∥
∥
∥

∫ t+δ

t

2N∑

k=0

gt+δ−r (kN , lN )
2 d〈〈M(kN )〉〉r

∥
∥
∥
∥
∥

p

≤ 8N
∫ t+δ

t

√
2π

(2N )2(t + δ − r)
dr ≤ 8

√
2πδ.
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Thus, using (40), we obtain

∥
∥N t+δ

t+δ (lN )− N t+δ
t (lN )

∥
∥

p ≤ 2
√

2cBDG(p)(2πδ)
1
4 +

cBDG(p)cBDG(p/2)
1
2 d(p/4)

1
4√

2N
.

Consequently for all 0 ≤ t ≤ t ′ ≤ T we have

∥
∥
∥N t ′

t ′ (lN )− N t ′
t (lN )

∥
∥
∥

p
≤ 2

√
2cBDG(p)

(
2π(t ′ − t)

) 1
4 +

cBDG(p)cBDG(p/2)
1
2 d(p/4)

1
4√

2N
,

which proves the bound for the first part of the martingale term. We now turn to the
second part, N t+δ

t (lN ) − N t
t (lN ), of the martingale term. For every 0 ≤ t ≤ t + δ ≤ T ,

we introduce [0, t] $ s 
→ Bt
s(δ, l) := N t+δ

s (lN )− N t
s (lN ) and [0, t] $ s 
→ Et

s(δ, l) :=[
Bt (δ, l)

]

s −
〈
Bt (δ, l)

〉

s . Both are Fs-martingales. As above we subdivide [0, t] into
subintervals of length (2N )−2 and we obtain

∥
∥
[
Et (δ, l)

]

t

∥
∥

p
=
∥
∥
∥
∥
∥
∥

∑

τ∈[0,t]

2N∑

k=0

(
gt+δ−τ (kN , lN )− gt−τ (kN , lN )

)4(hτ (kN )− hτ−(kN )
)4

∥
∥
∥
∥
∥
∥

p

≤ 28

(2N )2
e4a(p)

(
2 +

�t (2N )2�−1∑

i=0

( 2π

(2N )2(t + δ − i(2N )−2)

) 3
2

+
( 2π

(2N )2(t − i(2N )−2)

) 3
2
)
,

where the r.h.s. can be bounded by (2N )2 times a constant, say d ′(p), that does not
depend on t, δ. Concerning the bracket of Bt , Lemma 26 (ii) with 2γ ∈ (0, 1/2) instead
of γ yields

∥
∥〈〈Bt (δ, l)〉〉t

∥
∥

p =
∥
∥
∥
∥
∥

∫ t

0

2N∑

k=0

(
gt+δ−r (kN , lN )− gt−r (kN , lN )

)2
d〈〈M(kN )〉〉r

∥
∥
∥
∥
∥

p

≤ 16N
∫ t

0
sup

k
|gt+δ−r (kN , lN )− gt−r (kN , lN )|dr

≤ 8c′kernel(2γ, T )δ2γ
∫ t

0

dr

(t − r)
1
2 +2γ

≤ 16 T
1
2−2γc′kernel(2γ, T )δ2γ

1 − 4γ
.

Arguing as above, for all 0 ≤ t ≤ t ′ ≤ T we have

∥
∥
∥N t ′

t (l)− N t
t (l)
∥
∥
∥

p
≤ 4cBDG(p)(t

′ − t)γ

√

c′kernel(2γ, T )T
1
2−2γ

1 − 4γ

+
cBDG(p)cBDG(p/2)

1
2 d ′(p/4) 1

4√
2N

,

which proves the bound for the second part of the martingale term. ��
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We now state a similar result for the space increments; the proof rests on the same
arguments.

Lemma 28. Fix p ∈ [4,∞)andβ ∈ (0, 1
2∧βinit). There existskspace = kspace(p, T, β) > 0

such that for all N ≥ 1 and all x, y ∈ [0, 1], under Q
N
νN

we have

sup
t∈[0,T ]

‖ht (x)− ht (y)‖p ≤ kspace|x − y|β.

Since h is not continuous in time, we consider its interpolation h̄ defined in (18). The
proof of the next result is an easy adaptation of that of Lemma 14.

Lemma 29. Fix p ∈ [4,∞) and γ ∈ (0, 1
4∧βinit

2 ). There exists k̄time = k̄time(p, T, γ ) > 0
such that for all 0 ≤ t ≤ t ′ ≤ T and all N ≥ 1, under Q

N
νN

we have

sup
x∈[0,1]

∥
∥h̄t ′(x)− h̄t (x)

∥
∥

p ≤ k̄time(t
′ − t)γ .

Proof of Proposition 9. Fix N ≥ 1, γ ∈ (0, 1
4 ∧ βinit

2 ) and p ∈ ( 2
γ
,∞). For all 0 ≤ t ≤

t ′ ≤ T and x, y ∈ [0, 1] we have
∥
∥h̄t (x)− h̄t ′(y)

∥
∥

p ≤ ∥∥h̄t (x)− h̄t (y)
∥
∥

p +
∥
∥h̄t (y)− h̄t ′(y)

∥
∥

p .

Using Lemma 28, we bound the first term on the right

∥
∥h̄t (x)− h̄t (y)

∥
∥

p ≤
∥
∥
∥
∥
∥

h �t (2N )2�
(2N )2

(x)− h �t (2N )2�
(2N )2

(y)

∥
∥
∥
∥
∥

p

+

∥
∥
∥
∥
∥

h �t (2N )2�+1
(2N )2

(x)− h �t (2N )2�+1
(2N )2

(y)

∥
∥
∥
∥
∥

p

≤ 2kspace|x − y|γ

while the second term on the right can be dealt with using Lemma 29. Consequently we
obtain

∀x, y ∈ [0, 1],∀t, t ′ ∈ [0, T ],
∥
∥h̄t (x)− h̄t ′(y)

∥
∥

p ≤ 2kspace|x − y|γ + k̄time|t ′ − t |γ
≤ (2kspace + k̄time

)(|x − y| + |t ′ − t |)γ .
Using Kolmogorov’s Continuity Theorem, we obtain the existence of a modification
of h̄ satisfying the statement of the proposition for all a ∈ (0, pγ−2

p ) = (0, γ − 2
p ).

Notice that h̄ is already continuous in the variable (x, t) (it is the interpolation of h
taken at the values x = l/2N , t = k/(2N )2 for all integers l, k), so it coincides with its
modification. ��
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