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The statement of Lemma A.3 in [HllJdg11] is false.1 This lemma is used in the proof of
Lemma 8.2 which is also incorrect and is used in the proof of Proposition 9.1. Despite
this gap, Proposition 9.1 is correct and, in order to rectify the situation, we provide here
the correct estimates needed to derive Proposition 9.1. As a consequence, the statements
of the main results of the article [HllJdg11] are correct.

We would like to emphasize that the overall strategy of the proof of Proposition
9.1 remains unchanged. In particular, Proposition 9.1 is a statement about concentration
properties of quasimodes for the quadratic form aμ

t coming from separation of variables.
More precisely, it relies on the fact that a quasimode of order t for aμ

t at a non-critical
energy cannot concentrate on the turning point (and thus must have some mass in the
classically allowed region). In the exposition given in [HllJdg11], this non-concentra-
tion was hidden behind Lemmas 9.4 and 9.5. We will make it more transparent here by
directly using the Langer-Cherry transform and the following estimate for solutions to
the semiclassical Airy equation:2

t2 · W ′′(y) − y · W (y) = R(y). (1)

Lemma 0.1. Let a < 0 < b. For each ε > 0, there exists C > 0, δ0 > 0 and a positive
function T such that if δ < δ0, t < T (δ) and W satisfies (1), then

∫ δ

−δ

|W |2 ≤ ε · t−2
∫ b

a
|R|2 + C ·

(∫ −δ

−2δ

|W |2 +
∫ 2δ

δ

|W |2
)

. (2)

The online version of the original article can be found under doi:10.1007/s00220-010-1185-6.
1 To correct the statement, one could replace

√
α with α.

2 Lemma 0.1 may be viewed as a correction of Lemma 8.2 in [HllJdg11].
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Proof. Let W̃ be the solution to (1) that is defined in Lemma 8.1 of [HllJdg11] :

W̃ (y) := t− 4
3

w

[
A+(t−

2
3 y)

∫ b

y
A−(t−

2
3 z)R(z)dz + A−(t−

2
3 y)

∫ y

0
A+(t−

2
3 z)R(z)dz

]
,

where A± are the linearly independent Airy functions that are defined in the appendix of
[HllJdg11], and w is their Wronskian determinant. We use the Cauchy-Schwarz inequal-

ity and rescale the integrals with A± by t− 2
3 . Using the asymptotic behavior of A± near

±∞, we observe that X �→ ‖A−‖[X,∞)|A+(X)| + ‖A+‖[0,X ]|A−(X)| is bounded on R.

We thus obtain a constant C ′ such that

sup
[a,b]

∣∣W̃ ∣∣ ≤ C ′ · t−1‖R‖[a,b]. (3)

The rescaled difference A(x) = (
W − W̃

) (
t

2
3 · x

)
is a solution to the Airy equation

A′′(x) − x · A(x) = 0. Using estimates for Airy functions in the same manner as in the
proof of Lemma A.4 of [HllJdg11]—but with greater care on how the constant depends
on a and b—we find a constant C > 0 that is independent of δ and a positive function
t0 such that, for any δ > 0 and any t < t0(δ) and for any A which is a solution to Airy’s
equation,

∫ δ

−δ

∣∣∣A
(

t−
2
3 y

)∣∣∣2
dy ≤ C ·

(∫ −δ

−2δ

∣∣∣A
(

t−
2
3 y

)∣∣∣2
dy +

∫ 2δ

δ

∣∣∣A
(

t−
2
3 y

)∣∣∣2
dy

)
. (4)

The desired estimate (2) then follows from straightforward estimations: Use the
inequality |W |2 ≤ 2(|W − W̃ |2 + |W̃ |2). The second term is estimated by integrating
(3) over [−δ, δ]. To bound the first term, first apply estimate (4) to |W − W̃ |2, then use
the inequality |W − W̃ |2 ≤ 2(|W |2 + |W̃ |2), and finally apply (3) integrated over the
intervals [−2δ,−δ] and [δ, 2δ]. Since estimate (3) is integrated over intervals of width
δ, the prefactor ε results from choosing δ0 small enough. 	


Proposition 0.2. Given a compact set K ⊂
(

μ
σ(0)

,∞
)

and C > 0, there exist positive

constants C ′, s0 and t0 such that if 0 < t < t0, E ∈ K and for each v we have

∣∣aμ
t (w, v) − E · 〈w, v〉σ

∣∣ ≤ C · t · ‖w‖σ · ‖v‖σ , (5)

then

‖w‖2
σ ≤ C ′

∫ x
−s0
E

0
|w(x)|2 dx .

Proof. Let WE denote the Langer-Cherry transform of w at energy E , and let φE :
[0,∞) → R denote the associated change of variables (see §7 in [HllJdg11]). Let

a = 1
2 sup{φE (0) | E ∈ K }. For each E ∈ K , there exists sE > 0 so that a = φE

(
x−sE

E

)
.

Let b = sup{φE
(
xsE

E

) | E ∈ K }.
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By Proposition 7.3 in [HllJdg11], WE satisfies (1) on [a, b] with a right-hand side
RE that can be estimated using Lemma 7.5. Using the latter lemma, the assumptions on
w, and Lemma 6.23, we get the following bound:

∫ b

a
|RE (y)|2dy ≤ C · t2 · ‖w‖2

σ . (6)

By Lemma 7.4 in [HllJdg11] and using the compactness of K , there exists M > 0 so
that for each interval I ⊂ [a, b],

M−1
∫

φ−1
E (I )

|w|2 dx ≤
∫

I
|WE |2 dy ≤ M

∫
φ−1

E (I )
|w|2 dx . (7)

Using Lemma 0.1 and (6) and choosing ε small enough, we find δ0, C and a positive
function T such that, for any δ < δ0 and any t ≤ T (δ) we have

∫
φ−1

E ([−δ,δ])
|w(x)|2σ(x)dx ≤ 1

4
‖w‖2

σ + C ·
∫

φ−1
E ([−δ,δ]c)

|w(x)|2σ(x)dx,

where we have set [−δ, δ]c := [a, b]\[−δ, δ]. We choose δ = δ0
2 and fix some s0 such

that φE ([x−s0
E , xs0

E ]) ⊂]−δ, δ[. Since [x−s0
E , xs0

E ] ⊂ φ−1
E ([−δ, δ]) and φ−1

E ([−δ, δ]c) ⊂
R\(x−s0

E , xs0
E ), we obtain the following estimate:

∫ x
s0
E

x
−s0
E

|w(x)|2σ(x)dx ≤ 1

4
‖w‖2

σ + C ·
∫

R\(x
−s0
E ,x

s0
E )

|w(x)|2σ(x)dx .

The claim now follows in a quite standard way: We split the integral defining ‖w‖2
σ

into three parts : [0, x−s0
E ], [x−s0

E , xs0
E ] and [xs0

E ,∞). We use the preceding bound for the
second integral and we use Lemma 6.2 to bound each integral over [xs0

E ,∞). We obtain
the following estimate:

‖w‖2
σ ≤

(
1

4
+ C · t

)
‖w‖2

σ + (C + 1) ·
∫ x

−s0
E

0
|w(x)|2 σ(x)dx .

For t small enough, the term ‖w‖2
σ on the right can be absorbed on the left. The claim

follows since σ is bounded. 	

Proof of Proposition 9.1 in [HllJdg11]. It suffices to prove that there exists κ > 0 so
that under the assumptions of Proposition 0.2 we have

∫ ∞

0
(E · σ(x) − μ) · |w(x)|2 dx ≥ κ · ‖w‖2

σ . (8)

Let s0, t0 be as in Proposition 0.2. For any s < s0, split the integral on the left of (8)
into the integrals corresponding to the intervals [0, x−s0

E ], [x−s0
E , x−s

E ], [x−s
E , xs

E ], and

3 In Lemma 6.2, the integral on the right can be replaced by the integral from 0 to xs
E . This allows us to

put the weight σ on both sides.
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[xs
E ,∞). Observe that the integral over the second interval is positive. This yields the

following lower bound:
∫ ∞

0
(E · σ(x) − μ) · |w(x)|2 dx

≥ s0

∫ x
−s0
E

0
|w(x)|2 dx − 2Cs‖w‖2

σ − C
∫ ∞

xs
E

|w(x)|2dx .

By Proposition 0.2, the first term is bounded below by s0
C ′ ‖w‖2

σ , where C ′ is the con-
stant in Proposition 0.2. We choose s small enough so that the second term is bounded
below by − s0

4C ′ ‖w‖2
σ and we choose t small enough so that, using Lemma 6.2 in

[HllJdg11], the third is term is also bounded by the latter quantity. The claim follows
with κ = s0/2C ′. 	
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