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Abstract: We construct local, boost covariant boundary QFT nets of von Neumann
algebras on the interior of the Lorentz hyperboloid HR , x2 − t2 > R2, x > 0, in the
two-dimensional Minkowski spacetime. Our first construction is canonical, starting with
a local conformal net on R, and is analogous to our previous construction of local bound-
ary CFT nets on the Minkowski half-space. This net is in a thermal state at Hawking
temperature. Then, inspired by a recent construction by E. Witten and one of us, we
consider a unitary semigroup that we use to build up infinitely many nets. Surprisingly,
the one-particle semigroup is again isomorphic to the semigroup of symmetric inner
functions of the disk. In particular, by considering the U (1)-current net, we can asso-
ciate with any given symmetric inner function a local, boundary QFT net on HR . By
considering different states, we shall also have nets in a ground state, rather than in a
KMS state.

1. Introduction

An algebraic description of Boundary CFT on the two-dimensional Minkowski half-
space x > 0 has been given in [11]. Recently an infinite new family of Boundary QFT
on the half-space has been set up in [13] by modifying this construction by elements of a
unitary semigroup, a construction conceptually related to the inverse scattering method,
in the sense that our first models are associated with (symmetric) scattering functions.

In two dimensions, since locally every Lorentz geometry is conformally flat, bound-
aries in Minkowski spacetime may be regarded as an analogue of curvature and horizons
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in higher dimensions. Considering QFT with and without boundaries therefore is a test-
ing ground for the generally covariant locality principle [4], a new paradigm for local
quantum field theory stipulating a simultaneous definition on flat and curved spacetimes.

As pointed out to us by Edward Witten, the same question arises in open string theory,
notably in the context of gauge-gravity (open-closed) duality. In his words, “studying
all possible extensions to manifolds with boundary of a specific 2d theory defined ini-
tially on manifolds without boundary is the analog of studying Yang-Mills theory in the
background of a specified solution of Einstein’s equations.” His suggestion that this is a
question the algebraic approach to QFT might shed light on, had motivated a previous
work [13].

In this paper we then study local, relativistic boundary CFT and QFT on the interior
HR of the Lorentz hyperboloid x2 − t2 = R2 (x > 0), in the Minkowski plane. For
simplicity we put R = 1 in this section.

A two-dimensional CFT on HR is a local QFT with a conserved and traceless stress-
energy tensor, subject to a boundary condition at the boundary x2 − t2 = 1. As is
well known, conservation and vanishing of the trace imply that the components TL =
1
2 (T00 +T01) and TR = 1

2 (T00−T01) are chiral fields, TL(u), TR(−v), where we are using
light-cone coordinates u = x + t , v = x − t . The boundary condition is the vanishing
of energy flux across the boundary, T 0μεμνdxν = 0, which in components becomes
(t + x)TL(t + x) = (t − x)TR(t − x), namely uTL(u)|uv=1 = −vTR(−v)|uv=1, so

uTL(u) = − 1

u
TR

(
− 1

u

)
≡ T (u).

It follows that the components T10 = T01, T11 = T00 of the stress-energy tensor are of
the form

T00(u, v) = 1

u
T (u) − vT

(
−1

v

)
, T01(u, v) = 1

u
T (u) + vT

(
−1

v

)
, (1.1)

i.e., bi-local expressions in terms of the chiral field T .
In terms of the local von Neumann algebras A(O) generated by the stress-energy

tensor, this means that if I, J are bounded intervals of R
+ with O = I × J a double

cone contained in HR (thus uv > 1; u ∈ I, v ∈ J ) we have

A(O) = A0(I ) ∨ A0(J−1) , (1.2)

where A0 is the net on R generated by the chiral stress-energy tensor (Virasoro net).
Indeed only the restriction A0|R+ of A0 to the positive half-line enters here.

Dilation covariance of A0|R+ gives boost covariance of A and the KMS property of
the vacuum state on A0(R

+) (Bisognano-Wichmann property) gives the KMS property
of the vacuum state on A(HR) w.r.t. the boosts at Hawking-Unruh inverse temperature
β = 2π .

In more generality, starting with any dilation covariant local net A0 of von
Neumann algebras on R

+ we may associate by formula (1.2) a local boost covariant
net of von Neumann algebras on HR . Of course, we could also start with a local transla-
tion covariant net on R as there is a one-to-one correspondence between local translation
covariant nets on R and local dilation covariant nets on R

+ by the change of variable
x ↔ ex .
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Now we can extend the above canonical construction (1.2) based on two local dilation
covariant nets A0 and B0 on R

+ such that B0 is forwardly local w.r.t. B0, i.e., A0(I1)

commutes with B0(I2) if I2 > I1:

A(O) = B0(I ) ∨ A0(J−1) ,

where J−1 = {1/v : v ∈ J }. The option to have different A0 and B0 is interesting not
least in string theory, because the “heterotic string” is of that kind (different internal
symmetry groups for left- and right-moving modes, but equal central charge; hence A0
and B0 share a common subnet of the stress-energy tensor). They are both conformal,
but not related by a unitary.

However, in analogy with the model building in [13], we may start with a local dila-
tion covariant net A0 and consider the semigroup Eδ(A0) of unitaries V commuting with
dilations such that

V A0(1,∞)V ∗ ⊂ A0(1,∞).

Thus V A0(a,∞)V ∗ ⊂ A0(a,∞) for all a > 0. Every element V ∈ Eδ(A0) then gives
a dilation covariant net B0 = V A0V ∗ that is forwardly local w.r.t. A0, thus a local, boost
covariant, Boundary QFT net of von Neumann algebras on HR by the formula

A(O) = V A0(I )V ∗ ∨ A0(J−1).

At this point we may produce families of local, boost covariant nets on HR once we
compute non-trivial elements of Eδ(A0) for a given local, Möbius covariant net on R.

We shall study the semigroup Eδ(A0) with A0 the U (1)-current net on R. One of our
main results is the computation of the sub-semigroup of Eδ(A0) consisting of second
quantization unitaries (unitaries V that are promotions of one-particle unitaries V0); we
have

V = �(V0) ∈ Eδ(A0) ⇔ V0 = ϕ(K ), ϕ symmetric inner function

on the upper half-plane,

where K is the one-particle generator of the dilation semigroup.
Thus, rather surprisingly, the above sub-semigroup is naturally isomorphic to the

semigroup of inner functions as was the case for the Boundary QFT on the half-space,
where positivity of the energy played a crucial role; that role is here played by the KMS
thermal equilibrium property.

2. Basic Definitions

Let M be the two-dimensional Minkowski spacetime and fix R > 0. We shall consider
the spacetime HR = {(t, x) ∈ M : x2 − t2 > R2, x > 0}, the interior of the Lorentz
hyperboloid x2 − t2 = R2, x > 0. Then HR inherits the Lorentz metric from M .

The Lorentz boosts provide a one-parameter group of diffeomorphisms 
 of HR :


(s) =
(

cosh s sinh s
sinh s cosh s

)
.

In light-cone coordinates u = x + t , v = x − t , the Lorentz hyperboloid is given by
uv = R2 and HR is the region uv > R2, u > 0.
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We shall denote by K the set of double cones strictly contained in HR , namely O ∈ K
if O = I1 × I2 with I1 and I2 bounded intervals of the chiral lines v = 0, u = 0 and
Ō ⊂ HR : so O = {(u, v) : u ∈ I1, v ∈ I2, uv > R2} and uv > R2 for all u ∈ Ī1,
v ∈ Ī2.

A local net A of von Neumann algebras on HR is a map

O 
→ A(O)

from K to the set of von Neumann algebras on a (fixed) Hilbert space H that satisfies
the following properties:

1. Isotony: If O1, O2 are double cones and O1 ⊂ O2, then A(O1) ⊂ A(O2).
2. Boost invariance: There is a strongly continuous one-pameter unitary group U

on H such that U (s)A(O)U (s)∗ = A(
(s)O), t ∈ R, O ∈ K.
3. Locality: If O1,O2 ∈ K are spacelike separated, the von Neumann algebras

A(O1) and A(O2) commute.
4. Invariant state: There exists a unit U-invariant vector ξ , cyclic for A(HR) ≡∨

O∈K A(O).

If the generator of the one-parameter group is positive, we shall say that ξ is a vacuum
vector, the state (ξ, · ξ) a vacuum (equivalently: ground) state, and that the net is in a
vacuum (equivalently: ground) representation.

If the one-parameter automorphism group τ = AdU of A(HR) satisfies the KMS
condition w.r.t. (ξ, · ξ), we shall say that A is in a KMS representation.

2.1. Translation and dilation covariant nets on R. A local, translation (resp. dilation)
covariant net of von Neumann algebras on R (resp. on R

+) on a Hilbert space H is a
triple (A0, U, ξ) where

• A0 is an isotonous map

I 
→ A0(I ),

where I ∈ I (resp. I ∈ I+) and A0(I ) is a von Neumann algebra on H;
• U is a unitary one-parameter group on H such that

U (t)A0(I )U (−t) = A0(I + t), (resp. A0(e
t I )), ∀I ∈ I (resp. I+), t ∈ R;

• ξ ∈ H is a unit U -invariant vector, cyclic for
⋃

I A0(I );
• A0(I1) and A0(I2) commute if I1, I2 are disjoint intervals.

Here I (resp I+) is the family of bounded, open, non-empty intervals of R (resp of R
+

with 0 /∈ Ī ). We do not assume positivity of the energy nor irreducibility of the net. If I1
is unbounded, A0(I1) denotes the von Neumann algebra generated by A0(I ) as I ⊂ I1
runs in the bounded intervals.

If the last condition is not satisfied, the net is called nonlocal.
Note that there is a one-to-one correspondence

translation covariant nets on R


dilation covariant nets on R

+
(2.1)

simply by the “change of variable” x ↔ ex .
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We shall say that the translation covariant nets A and A1 are abstractly isomorphic
(resp. isomorphic) if there is a coherent family of isomorphisms I : A1(I ) → A(I ),
I ∈ I, interchanging the translation action (and the invariant state). Analogous notions
can be given for dilation covariant nets.

Let A be a local Möbius covariant net of von Neumann algebras on R. Denote by U
(resp. V ) the one-parameter unitary translation (resp. dilation) group on H. Then A is a
translation covariant net on R, and the restriction of A to R

+ is a local dilation covariant
net on R

+ (w.r.t. the vacuum vector). We recall the following fact from [5]:

Proposition 2.1. If A0 is a diffeomorphism covariant local net on R and A1 the trans-
lation covariant net on R associated with A0|R+ by the above correspondence, then A1
and A0 are (canonically) abstractly isomorphic as translation covariant nets.

Therefore one can carry the vacuum state for A0|R+ to a translation invariant state for
A0. This is the geometric KMS state, a canonical KMS state for A0.

2.2. Forwardly local chiral nets. Let A0 and B0 be local nets of von Neumann algebras
on R on the same Hilbert space. We shall also assume that both A0 and B0 are covariant
w.r.t. the same one-parameter translation group. We shall say that B0 is forwardly local
w.r.t. A0 if A0(I1) commutes with B0(I2) for all intervals I1, I2 of R such that I2 > I1
(I2 is in the future of I1). We define backwardly local in the obvious way (I2 < I1). B0
is relatively local w.r.t. A0 if it is both forwardly and backwardly local.

We shall say that duality for half-lines holds for A0 if

A0(I )′ ∩ A0(R) = A(I ′) ,

where I ⊂ R is any half-line. The following is immediate.

Lemma 2.2. If B0 is forwardly local w.r.t. A0 and duality for half-lines holds for A0,
then B0(a,∞) ⊂ A0(a,∞), a ∈ R.

Proof. B0(a,∞) commutes withA0(−∞, a), so is contained inA0(−∞, a)′∩A0(R) =
A0(a,∞). ��
If duality for half-lines holds for both A0 and B0, and A0 and B0 are relatively local,
then B0(I ) = A0(I ) for all half-lines I ⊂ R.

It is immediate to translate the above notion for local nets on R
+ by the correspon-

dence (2.1). If A0 is a local Möbius covariant net of von Neumann algebras on R, then
duality for half-lines holds for A0|R+ (namely A0(0, a)′ ∩ A0(0,∞) = A0(a,∞),
a > 0) iff A0 is strongly additive.

3. BQFT on the Interior of the Lorentz Hyperboloid

Let A0 and B0 be dilation covariant, local nets of von Neumann algebras on R
+ with B0

forwardly local w.r.t. A0.
Given intervals I1, I2 of R

+ we define the von Neumann algebra A(O) associated
with the double cone O = I1 × I2 by

A(O) = B0(I1) ∨ A0(R2 I −1
2 ), (3.1)

where I −1 ≡ {λ−1 : λ ∈ I }.
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Formally we can write

A(u, v) = B0(u) ∨ A0(R2/v),

and for simplicity we use this formal writing here below; one can easily properly write
up by replacing a point (u, v) ∈ HR with a double cone O ∈ K.

Theorem 3.1. A is a local, boost covariant net of von Neumann algebras on HR.

Proof. To check locality, we have to show that if (u, v) and (u′, v′) are points of HR
that are spacelike, i.e., (u′ − u)(v′ − v) > 0, then A(u, v) and A(u′, v′) commute. So
choose (u, v) and (u′, v′) with uv > R2 and u′ > u, v′ > v.

Since u′ > u > R2/v > R2/v′, B0(u′) commutes with B0(u) (by locality of B0)
and with A0(R2/v) (by forward locality), so B0(u′) commutes with A(u, v). Moreover
A0(R2/v′) commutes with A0(R2/v) (by locality of A0) and with B0(u) (by forward
locality). Therefore B0(u′) ∨ A0(R2/v′) commutes with B0(u) ∨ A0(R2/v).

Concerning the covariance, let U be the dilation one parameter unitary group of A0
and B0, thus U (s)B0(u)U (−s) = B0(esu) and U (s)A0(v)U (−s) = A0(esv). Then

U (s)A(u, v)U (−s) = U (s)
(B0(u) ∨ A0(R2/v)

)
U (−s)

= B0(e
su) ∨ A0(e

s R2/v) = A(esu, e−sv) = A(

(s)(u, v)

)

as desired. ��
Proposition 3.2. A(HR) is generated by B0(R

+) and A0(R
+). So A(HR) = A0(R

+) if
B0(R

+) ⊂ A0(R
+), in particular if duality for half-lines holds for A0.

Proof. Immediate. ��
Corollary 3.3. If B0(R

+) ⊂ A0(R
+), ξ is a vacuum (resp. KMS) vector for A (w.r.t. the

boosts) if it is a vacuum (resp. KMS) vector for A0 (w.r.t. the dilations).

3.1. Constructing QFT on HR by an element of the semigroup Eδ(A). Let now A0
be a local, dilation covariant net of Neumann algebras on R

+. We denote by Eδ(A0)

the group of unitaries on H, commuting with the dilation unitary group U , such
that V A0(1,∞)V ∗ ⊂ A0(1,∞). As V commutes with dilations, V A0(a,∞)V ∗ ⊂
A0(a,∞) for all a > 0.

Proposition 3.4. Let A0 be in a KMS representation with an extremal KMS state. Then
for each V ∈ Eδ(A0), one has V A0(R

+)V ∗ = A0(R
+).

Proof. If the representation arises from an extremal KMS state, A0(R
+) is a factor.

In particular, the GNS vector ξ is (up to phases) the unique dilation invariant vector.
Because V commutes with the dilations, V ∗ξ is equal to ξ up to a phase, therefore cyclic
for A0(R

+). Thus, V A0(R
+)V ∗ is contained in A0(R

+), cyclic on the invariant vector
ξ , and globally invariant under the modular group of A0(R

+) (the rescaled dilations).
So V A0(R

+)V ∗ = A0(R
+) by Takesaki’s theorem. ��
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If A0 is a local, Möbius covariant net of Neumann algebras on R, then the restriction
A0|R+ of A0 to R

+ is a local, dilation covariant net on R
+ (in a KMS representation)

and we simply set Eδ(A0) = Eδ(A0|R+).
Setting

B0(I ) = V A0(I )V ∗, I ∈ I+ , (3.2)

B0 is a local net of von Neumann algebras on R+, with dilation unitary group U . The net
B0 is forwardly local w.r.t. A0: if 0 < a < b < c < d we have B0(c, d) ⊂ B0(c,∞) ⊂
A0(c,∞) so B0(c, d) commutes with A0(a, b).

With V a unitary in Eδ(A0) we denote by A0V the local net on HR associated with
A0 and B0 = V A0V ∗, i.e.,

A0V (O) = V A0(I1)V ∗ ∨ A0(I −1
2 ) ,

where O = I1 × I2 ∈ K. So we have:

Proposition 3.5. A0V is a local, boost covariant net of von Neumann algebras on HR.

By Cor. 3.3, A0V is in a vacuum (resp. KMS) representation w.r.t. the boosts if A0|R+

is in a vacuum (resp. KMS) representation w.r.t. the dilations.
So, in particular, given a local Möbius covariant net A on R, we have maps:

V ∈ E(A0) 
→ BQFT net A0V on HR in a ground representation (3.3)

and

V ∈ Eδ(A0) 
→ BQFT net A0V on HR in a KMS representation, (3.4)

where the inverse temperature is β = 2π . Here, as in [13], E(A0) is the semigroup of
unitaries commuting with translations such that V A0(R

+)V ∗ ⊂ V A0(R
+)V ∗.

We shall say that two nets B1, B2 on HR , acting on the Hilbert spaces H1 and
H2, are locally isomorphic if for every double cone O ∈ K there is an isomorphism
O : B1(O) → B2(O) such that

Õ|B1(O) = O

if O, Õ ∈ K, O ⊂ Õ and

U2(t)O(X)U2(−t) = O+t (U1(t)XU1(−t)), X ∈ B1(O) ,

with U1 and U2 the corresponding boost unitary groups on H1 and H2.

Proposition 3.6. Let A0 be a local Möbius covariant net of Neumann algebras on R

with the split property. If V and W are unitaries in Eδ(A) the nets A0V and A0W on HR
are locally isomorphic.

Proof. The proof is similar to the one for the case of Boundary QFT on the half-space
[13, Prop. 3.5]. ��
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3.2. Induced nets on M+ and on HR. The logarithmic map t + x := log u, t − x :=
log R2/v is a diffeomorphism of the hyperboloid HR to the Minkowski half-space M+ =
{(t, x) ∈ R

2 : x > 0}. We write I ×J := {(t, x) : t +x ∈ I, t−x ∈ J }. Then I ×J ⊂ M+
iff I > J . The diffeomorphism identifies double cones I × J ⊂ M+ with double cones
eI × R2e−J ⊂ HR .

Let A(I ) = A0(eI ) and B(I ) = B0(eI ) be the translation covariant nets on R associ-
ated with A0|R+ and B0|R+ by the logarithmic map. We use the diffeomorphism to trans-
fer the above net (3.1) on HR to a net on M+, namely A+(I × J ) := AHR (eI × R2e−J ) =
B0(eI ) ∨ A0(eJ ) for I > J . Thus,

A+(I × J ) = B(I ) ∨ A(J ). (3.5)

This is a local net on the Minkowski half-space M+. If A and B are the same (Möbius
covariant) local nets, (3.5) is the BCFT net of chiral observables, constructed in [11].

The discussion in the beginning of this section shows that (3.5) is local if A and B
do not necessarily coincide, but B is forwardly local w.r.t. A. Indeed, if I1 × J1 ⊂ M+
and I2 × J2 ⊂ M+ are spacelike to each other, then without loss of generality I2 > I1 >

J1 > J2, so that forwardly locality is necessary and sufficient to establish locality of the
net A+.

In [13], local nets B that are forwardly local w.r.t. a given local net A are constructed
by conjugation with a unitary from the semigroup E . Thus, the present construction
comprises the two previous cases as special cases (after mapping the hyperboloid onto
the half-space); but the emphasis in this article is on the more flexible choice of states
and representations. In particular, we here admit A0 in the vacuum representation, which
means that A = A0|R+ is in a KMS representation (see above).

In this subsection, we want to place the present construction into context with the
more general construction of non-chiral BCFT observables on the half-space, presented
in [11]. Namely, in [11], we have considered a nonlocal but relatively local chiral exten-
sion of A, which we call C here to prevent confusion with B above; i.e., A(I ) ⊂ C(I )
for all I ∈ I. We then define the induced net on M+,

C+(I × J ) := C(K )′ ∩ C(L), (3.6)

where K is the open interval between I and J , and L is the open interval whose closure
equals the closure of I ∪ K ∪ J (i.e., L = I ∪ K ∪ J plus two interior points). C+ is a local
net on M+, and it contains the subnet A+(I × J ) = A(I ) ∨ A(J ) of chiral observables.

Also here, the conditions in [11] can actually be relaxed: Let A, B be two local
nets of von Neumann algebras on R, and C a possibly nonlocal net that extends both A
and B.

Proposition 3.7. If C is forwardly local w.r.t. A and backwardly local w.r.t. B, then B
is forwardly local w.r.t. A. The induced net C+ on the half-space M+ defined by (3.6) is
local and contains A+(I × J ) = B(I ) ∨ A(J ). Moreover, C+ is covariant under time
translations if A, B and C are translation covariant and the translations of C restrict to
the translations of A and B.
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There is also a partial converse: given a local net D+ on M+, one may define associated
nets on the boundary R as follows:

A(J ) :=
⋂

I : I>J

D+(I × J ),

B(I ) :=
⋂

J : J<I

D+(I × J ), (3.7)

C(L) :=
∨

I,J⊂L: I>J

D+(I × J ).

The following result is also straightforward.

Proposition 3.8. C contains both A and B, and C is forwardly local w.r.t. A and back-
wardly local w.r.t. B. In particular, B is forwardly local w.r.t. A, and both A and B are
local. If in addition D+ is time translation covariant, then A, B and C are translation
covariant and the translations of C restrict to the translations of A and B. Moreover,
one has the inclusions

B(I ) ∨ A(J ) ⊂ D+(I × J ) ⊂ C(K )′ ∩ C(L).

In particular, every local net on M+ is intermediate between a net of the form (3.5) and
an induced net of the form (3.6).

Proof. Only the locality properties need a little argument. If L > J , choose I > L .
Then I × J is spacelike separated from I1 × J1 for all I1, J1 ⊂ L , I1 > J1. Because
D+ is local, it follows that C(L) commutes with A(J ), i.e., C is forwardly local w.r.t. A.
Backward locality of C w.r.t. B is similar, and the other statements follow because C(I )
contains A(I ) and B(I ). Notice that a net is local if it is forwardly or backwardly local
w.r.t. itself. ��

It would be interesting to characterize possible nonlocal nets C for which the induced
net is not trivial (= C). E.g., if D+ is given as in (3.5), and C is generated from D+ as
in (3.8), then the net induced from C contains at least B(I ) ∨ A(J ). Even if B = A,
the extension A(I ) ∨ A(J ) ⊂ C+(I × J ) is nontrivial in general, reflecting the super-
selection sectors of A [8,11]. Thus, for a given local net A and an element V of the
associated semigroup E , putting B = V AV ∗, it would be a highly interesting problem
to understand the structure of the resulting induced net in terms of A and V .

The analogous question arises when A and B are different chiral extensions of a given
chiral net (e.g., that of the stress-energy tensor), differing by a cohomological twist of
the Q-system [7]. We hope to return to these issues in a future publication.

Clearly, the entire discussion of this subsection can be transferred back to the hyper-
boloid by the change of coordinates as above. Thus, on the hyperboloid one has for
I, J ∈ I+, I > R2 J−1,

CHR (I × J ) = C0(K )′ ∩ C0(L),

where C0 is a net on R
+, and K is the open interval between I and R2 J−1, and L =

I ∪ K ∪ R2 J−1 plus two interior points. If C0 is dilation covariant, then CHR is Lorentz
covariant.
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4. Endomorphisms of Standard Subspaces

4.1. Preliminary comments. With a ∈ (0,∞] we denote by Sa the strip of the complex
plane {z ∈ C : 0 < �z < a} (so S∞ is the upper half-plane). Let f ∈ L1(R), and ϕ

be the Fourier transform of f . Then, if f is real and supp( f ) ⊂ R
+, ϕ is a symmetric

function (ϕ(−s) = ϕ(s)) and belongs to the Hardy space H
∞(S∞), namely it is the

boundary value of a bounded analytic function on the upper half-plane S∞. The space
of such functions is weakly dense in H

∞(S∞).
Let H be a (complex) Hilbert space, H1 a real Hilbert subspace of H and K a sel-

fadjoint operator on H. Suppose that

eit K H1 ⊂ H1, ∀t ≥ 0.

For f and its Fourier transform ϕ as before, we have

ϕ(K ) =
∫ ∞

−∞
f (t)eit K dt.

Then, if supp( f ) ⊂ R
+, we have ϕ(K )H1 ⊂ H1.

Suppose further that K has Lebesgue spectrum. Then the map ϕ ∈ L∞(R) 
→
ϕ(K ) ∈ B(H) is weakly continuous so, taking limits, we have

ϕ(K )H1 ⊂ H1 , ∀ϕ ∈ H
∞(S∞), ϕ symmetric,

and, in particular, every symmetric inner function ϕ on S∞ gives a unitary V = ϕ(K )

such that V H1 ⊂ H1.
We shall see here below a situation where this occurs. In our case a converse will

hold. Our standard subspace methods will be appropriate as they allow us to prove such
a converse too; moreover the reducible case is treatable too.

4.2. Characterization of the semigroup. Let H be a complex Hilbert space, H ⊂ H
a standard subspace, i.e., a closed real subspace such that H + i H is dense in H and
H ∩ i H = {0}, and �H , JH the modular operator and modular conjugation of H .

Recall that, if V ∈ B(H) a bounded linear operator on H, we have the following
[1,9].

Proposition 4.1. The following are equivalent:

(i) V H ⊂ H;
(i i) The map s ∈ R → V (s) ≡ �−is V �is extends to a bounded weakly continuous

function on the closed strip S1/2, analytic in S1/2, such that V (i/2) = J V J ,

where � = �H , J = JH .

Let now (H, T ) be a standard pair of the Hilbert space H. Namely H is a stan-
dard subspace of the Hilbert space H and there exists a one parameter unitary group
T (t) = eit P on H such that T (t)H ⊂ H for all t ≥ 0, and P > 0.

Assume that (H, T ) is irreducible and let Ha ≡ T (a)H , so �H1 = T (1)�T (−1).
Then

�−is H1 ⊂ H1, s ≥ 0 , (4.1)

indeed �−is H1 = �−is T (1)H = T (e2πs)�−is H = T (e2πs)H = He2πs .
If an inclusion of standard subspaces H1 ⊂ H satisfies the condition (4.1) we shall

say that H1 ⊂ H is a half-sided modular (hsm) inclusion (of standard subspaces).
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Proposition 4.2. Let H1 ⊂ H be an inclusion of standard subspaces of H. The following
are equivalent:

(i) H1 ⊂ H is a half-sided modular inclusion.
(i i) There exists a standard pair (H, T ) with T (1)H = H1. Moreover T is uniquely

determined.

Proof. The equivalence between (i) and (i i) follows by the analogs of theorems by
Borchers and Wiesbrock, see [9], except for the uniqueness of T that we show now. Given
the hsm inclusion H1 ⊂ H , let T1 and T2 be one-parameter unitary groups on H such
that Ti (t)H ⊂ H , t ≥ 0 and Ti (1)H = H1. Then T2(−1)T1(1)H = H , so T2(−1)T1(1)

commutes with �. On the other hand �−is T2(−1)T1(1)�is = T2(−e2πs)T1(e2πs), so
T2(−t)T1(t) = T2(−1)T1(1), t ≥ 0; thus T2(1 − t) = T1(1 − t) and T1 = T2 by the
group property. ��
Proposition 4.3. Let H1 ⊂ H be an inclusion of standard subspaces of H and V be a
unitary on H such that V H1 ⊂ H1. Then V commutes with � iff V H = H.

Proof. If V H = H then V commutes with � by modular theory, see [9]. We show the
converse.

As �is H1 = He−2πs and V commutes with �, we have V Ha ⊂ Ha for all a > 0,
thus V H ⊂ H because H = ∪a>0 Ha (as ∪a>0 Ha is a standard �is-invariant subspace
of H ).

Now V H ⊂ H and V �is = �is V imply that V H = H because V H is a standard,
�is-invariant subspace of H . ��
Lemma 4.4. Let H1 ⊂ H be an inclusion of standard subspaces of H as in Prop. 4.2.
Let V be a unitary on H, commuting with �. Then V = ϕ(K ), where 2π K = − log �

and ϕ is a Borel function on R with |ϕ(x)| = 1 for almost all x ∈ R.
Moreover V H1 ⊂ H1 iff the operator-valued function

F : a ∈ (1,∞) 
→ ϕ(K + a P)

admits a bounded analytic continuation in the upper half-plane S∞, and F(z)|z=0 =
ϕ(K ).

Proof. As (H, T ) is irreducible and V commutes with �, we have V = ϕ(K ) with ϕ is
a Borel function on R and |ϕ(x)| = 1 for almost all x ∈ R by the unitarity of V .

By Prop. 4.2 V H = H and in particular

V J = J V .

So we have

ϕ(K ) = V = J V J = Jϕ(K )J = ϕ̄(−K ) ,

that is ϕ(−x) = ϕ̄(x) for almost all x ∈ R. By the implication (i) ⇒ (i i) in Prop. 4.1
above we then have

�−is
H1

V �is
H1

|s=i/2 = JH1 V JH1

(namely the map s ∈ R → V1(s) ≡ �−is
H1

V �is
H1

extends to a bounded weakly continu-

ous function on the closed strip S1/2, analytic in S1/2, such that V1(i/2) = JH1 V JH1 ).
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So

T (1)�−is T (−1)V T (1)�is T (−1)|s=i/2 = T (1)J T (−1)V T (1)J T (−1)

namely

�−is T (−1)V T (1)�is |s=i/2 = J T (−1)V T (1)J.

Since J T (1)J = T (−1) and J V J = V , we have

T (−e2πs)V T (e2πs)|s=i/2 = T (1)V T (−1)

or

T (−(1 + e2πs))V T (1 + e2πs)|s=i/2 = V .

In other words

T (−(1 + e2πs))ϕ(K )T (1 + e2πs)|s=i/2 = ϕ(K )

in the sense that the operator-valued function F : a ∈ (1,∞) 
→ T (a)ϕ(K )T (−a)

admits a bounded analytic continuation in the upper half-plane S∞ and

F(z)|z=0 = T (−z)ϕ(K )T (z)|z=0 = ϕ(K ).

Now

T (a)ϕ(K )T (−a) = ϕ(T (a)K T (−a))

and

T (a)�−is T (−a) = T (a)�−is T (−a)�is�−is = T (a)T (−ae2πs)�−is

= T (a(1 − e2πs))�−is

so, differentiating at zero w.r.t. s the first and the last member, we have

T (a)K T (−a) = K + a P.

Thus, the operator-valued function F : a ∈ (1,∞) 
→ ϕ(K + a P) admits a bounded
analytic continuation in the upper half-plane S∞, and

F(z)|z=0 = ϕ(K + z P)|z=0 = ϕ(K ).

The above arguments are reversible so the lemma is proved. ��
Theorem 4.5. Let (H, T ) be an irreducible standard pair of the Hilbert space H, set
H1 ≡ T (1)H and let V be a unitary on H commuting with �H .

The following are equivalent:

(i) V H1 ⊂ H1 ;
(i i) V = ϕ(K ), where 2π K = − log �H and ϕ is a symmetric inner function on the

upper half-plane.

Moreover the implication (i i) ⇒ (i) is true also if the standard pair (H, T ) is reducible.
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The characterization by property (ii) looks very similar to the characterization of E(H, T )

in [13, Thm. 2.3 and Cor. 2.4], with H replaced by H1 and the generator P of T replaced
by K . Yet, it requires a quite different proof, because of the lack of positivity of K . The
trick, as in Lemma 4.4, is to consider functions t 
→ ϕ(K +z P) and exploit the positivity
of P instead, see Appendix B.

Proof. (i i) ⇒ (i): If ϕ is a symmetric inner function on the upper half-plane, then by
Cor. A.3 the operator-valued function F : a ∈ (1,∞) 
→ ϕ(K + a P) admits a bounded
analytic continuation in the upper half-plane S∞, and F(z)|z=0 = ϕ(K ). Therefore by
Lemma 4.4 V = ϕ(K ) satisfies V H1 ⊂ H1.

The implication (i) ⇒ (i i) is proved in Appendix B. ��
With (H, T ) a standard pair of H, we shall denote by EH (H1) the semigroup of all

unitaries on H such that V H = H and V H1 ⊂ H1. By Thm. 4.5, if (H, T ) is irreducible,
EH (H1) is naturally isomorphic to the semigroup of symmetric inner functions on S∞.

5. Classes of Models

5.1. The two local nets on HR associated with a chiral net. Let A be a local
Möbius covariant net of von Neumann algebras on R. There are two canonical local,
boost covariant nets on HR associated with A, namely the ones given by (3.3) and (3.4)
with V = 1.

In other words, A gives rise to two local dilation covariant nets on R
+. One is A|R+ :

the associated net on HR is in a KMS state at inverse temperature β = 2π . The second
one is the dilation covariant net obtained by the translation covariant net A on R by the
logarithmic change of variable: the associated net on HR is in a ground state.

5.2. The net associated with a KMS state on a chiral net. Let A be a local translation
covariant net of von Neumann algebras on R. Every KMS state ω on A, namely every
locally normal KMS state at inverse temperature β w.r.t. translations on the C∗-algebra
∪a>0A(−a, a), gives rise to a local, boost covariant Aω net on HR by the construction
in Sect. 3.

Assuming half-line duality of A, the net Aω is in a KMS state at inverse temperature β.
The KMS states for the U (1)-current nets are known, see [6], so we have an infinite

family of nets on HR in a KMS state.
An infinite (possibly complete) family of KMS states for the Virasoro nets is also

given in [6], providing another infinite family of nets on HR in a KMS state.

5.3. The semigroup and family of models associated with the U (1)-current. Let A(0)

be the Möbius covariant net on R associated with the U (1)-current j , and A(k) the net
generated by the k-derivative of j .

With V0 a unitary on the one-particle Hilbert space H0 we denote by �(V0) its second
quantization promotion to the Bosonic Fock space over H0. We shall refer to a unitary
of the form �(V0) as a second quantization unitary. Similarly as in the half-space case
[13, Thm. 3.6], one immediately sees that �(V0) belongs to Eδ(A(k)) iff V commutes
with K (k) and V H1 ⊂ H1, where K (k) is the generator of the dilation unitary group on
the one-particle Hilbert space H(k)

0 , and H1 is the standard subspace associated with the
interval (1,∞). By Thm. 4.5, we then have:
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Theorem 5.1. A second quantization unitary �(V0) belongs to Eδ(A(k)) if and only if
V0 = ϕ(K (k)) with ϕ the boundary value of a symmetric inner function on S∞.

Therefore, by Cor. 3.3, we have:

Corollary 5.2. For every symmetric inner function ϕ on S∞ there is a QFT local net A(k)
V

of von Neumann algebras on HR in a KMS representation at β = 2π (V = �(ϕ(K (k)))).
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Appendix A. On the H∞ Functional Calculus of Sz.-Nagy and Foias

Let H be a Hilbert space and T ∈ B(H). If ||T || ≤ 1, T is called a contraction. If T is a
contraction and there is no direct sum decomposition T = T1 ⊕ T2 with T2 unitary, one
says that T is completely non-unitary.

If T is a completely non-unitary contraction, there is an H∞ functional calculus for
T , i.e., a Banach algebra homomorphism

ϕ ∈ H
∞(D) 
→ ϕ(T ) ∈ B(H),

defined by

ϕ(T ) = lim
r→1− ϕr (T ) ,

where ϕr (z) = ϕ(r z), (note that ϕr is analytic in the disk of radius 1/r so the usual
holomorphic functional calculus applies because sp(T ) ⊂ D see [14]).

Proposition A.1. Let T (z) be an operator-valued analytic function on a region G of C,
with T (z) completely non-unitary contractions on H. Given ϕ ∈ H

∞(D), the function
z ∈ G 
→ ϕ(T (z)) is analytic in G.

Proof. With 0 < r < 1, the function z ∈ G 
→ ϕr (T (z)) is analytic in G by the
usual holomorphic functional calculus. As r → 1−, ϕr converges to ϕ uniformly on
D, so ϕr (T (z)) converges to ϕ(T (z)) uniformly on D too by the continuity of the H∞
functional calculus. ��
A densely defined linear operator A : D(A) ⊂ H → H is accretive if �(ξ, Aξ) ≥ 0 for
all ξ ∈ D(A) and maximal accretive if there is no non-trivial accretive extension of T
on H.

A maximal accretive operator is closed and its spectrum is contained in the right half-
plane �z ≥ 0. In this case the Cayley transform T = (A + 1)(A − 1)−1 is a contraction.
Suppose that T is completely non-unitary. Then one can define a functional calculus
for T,

ϕ(A) = ϕ0(h
−1(T ))

for every function ϕ in H
∞(�z > 0), where h(λ) = λ+1

λ−1 is the Cayley map (because
ϕ0 = ϕ ◦ h ∈ H

∞(D)).
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A.1. Case of K + z P. Let U be the irreducible, positive energy unitary representation
of the “ax + b” group with non-trivial translation group. Let P and K be the generators
of the translation and dilation group. The operator −i(K + z P) is densely defined on
D = D(P) ∩ D(K ). If �z ≥ 0 the operator −i(K + z P) is accretive: with z = a + ib
and ξ ∈ D,

�(ξ,−i(K + z P)ξ) = �[−i(ξ, K ξ) − ia(ξ, Pξ) + b(ξ, Pξ)] = b(ξ, Pξ) ≥ 0.

Denote by A(z) the closure of −i(K + z P) (�z ≥ 0).

Lemma A.2. For every z ∈ C with �z ≥ 0:

• −i A(z) is maximal accretive.
• The Cayley transform T (z) = (A(z) + i)/(A(z) − i) is a completely non-unitary

contraction.
• The operator valued function z 
→ T (z) is analytic on S∞ and continuous on S∞.

Proof. To show the first part, note that −i A(z) is accretive, so it is maximal accretive
iff the range of −i(K + z P) + i is dense if �z > 0, so we have to show that the range of
K + z P − I is dense if �z > 0. We may assume that U is in the Schrödinger represen-
tation, namely H = L2(R, dx), K = i d

dx and P is the multiplication by ex . Then the
result follows by elementary first order linear differential equation theory.

Concerning the second part, if T (z) were not completely non-unitary, then K + z P
would have a selfadjoint restriction on a non-zero closed subspace; this implies P = 0
on this subspace, which is not possible as there is no non-zero translation fixed vector.

The analyticity of T (z) can be checked directly. ��
Therefore, if �z ≥ 0, we can define as above ϕ(A(z)) for every ϕ ∈ H

∞(S∞), and we
have:

Corollary A.3. For every fixed ϕ ∈ H
∞(S∞) the map z 
→ ϕ(A(z)) is analytic on S∞

and bounded, continuous on S∞.

Proof. Immediate by Prop. A.1 and the above discussion. ��

Appendix B. End of Proof of Theorem 4.5

Proposition B.1. With the notions in Thm. 4.5, if V is a unitary commuting with dilations
such that V H1 ⊂ H1, then V = ϕ(K ) with ϕ ∈ H

∞(S∞).

As already noted, since (H, T ) is assumed to be irreducible, V must be of the form
V = ϕ(K ) with ϕ ∈ L∞(R), and we must show that ϕ ∈ H

∞(S∞). We prove this in a
few steps.

• We may assume that ϕ rapidly decreases at ±∞.

Let jn be a non-negative, smooth function on R with integral 1 and supp( jn) ⊂
[0, 1/n], n ∈ N. Then the sequence { jn} is an approximate unit in L1(R) and ĵn con-
verges weakly to 1 in L∞(R) (in the σ(L∞, L1)-topology). Set ϕn ≡ ĵnϕ; then each ϕn
rapidly decreases at ±∞ and their sequence converges weakly to ϕ in L1(R). Morever
ĵn ∈ H

∞(S∞), so ĵn(K )H1 ⊂ H1 by the proven implication (i i) ⇒ (i) in Thm. 4.5.
So ϕn(K )H1 ⊂ H1.
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It is therefore sufficient to prove the claim ϕn ∈ H
∞(S∞) for rapidly decreasing func-

tions ϕn . Then also ϕ ∈ H
∞(S∞) follows, because ϕn → ϕ and H

∞(S∞) is weakly
closed in L∞(R).

• There is a dense linear space D ⊂ H such that:

(a1) For every fixed t > 0, the function a ∈ R 
→ (η, eit (K +a P)ξ ) is the boundary
value of a function in H

∞(S∞), continuous in S∞;
(a2) For every fixed z with �z > 0, the function t ∈ R

+ 
→ (η, eit (K +z P)ξ ) belongs
to L2.

Since, for a fixed t > 0, the function ϕt : s 
→ eits is a symmetric inner function on
S∞, by Lemma 4.4 the operator-valued map a ∈ R 
→ eit (K +a P) is bounded analytic on
S∞, continuous in S∞, because eit K H1 ⊂ H1. So the first statement (a1) follows.

To show (a2), we may work in the Schrödinger representation, so H = L2(R, dx),
eit K is the translation group and P is the multiplication by ex . Then

eit (K +a P) = T (a)eit K T (−a) :
ξ(x) 
→ T (a)eit K e−iaex

ξ(x) = T (a)e−iaex−t
ξ(x − t)

= eiaex
e−iaex−t

ξ(x − t) = eiaex (1−e−t )ξ(x − t),

so

(η, eit (K +a P)ξ ) =
∫

eiaex (1−e−t )ξ(x − t)η(x)dx .

If ξ, η are rapidly decreasing functions we then have

|(η, eit (K +z P)ξ )| ≤
∫

|eizex (1−e−t )ξ(x − t)η(x)|dx =
∫

e−bex (1−e−t )|ξ(x − t)η(x)|dx

≤ |ξ | ∗ |η̃|(t),
where z = a + ib, b > 0, η̃(t) = η(−t), and ∗ denotes the convolution product. The
statement follows because |ξ | ∗ |η̃| is rapidly decreasing.

In the following ϕ ∈ L∞(R) is rapidly decreasing at infinity, V = ϕ(K ) maps H1
into itself.

• Let f be the Fourier anti-transform of ϕ. Then f ∈ L2(R) and

(η, ϕ(K )ξ) =
∫ ∞

−∞
f (t)(η, eit K ξ)dt

for all vectors ξ, η such that t 
→ (η, eit K ξ) belongs to L2, in particular for ξ, η ∈ D.
This is obvious for all f ∈ L1, and true in our case by an approximation argument.

• The map

F+ : a ∈ R 
→
∫ ∞

0
f (t)(η, eit (K +a P)ξ )dt

admits a bounded analytic continuation in S∞ for all ξ, η ∈ D.
By the above point we may define

F+(z) =
∫ ∞

0
f (t)(η, eit (K +z P)ξ )dt
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for �z > 0 providing the desired analytic continuation.

• The map

F− : a ∈ R 
→
∫ 0

−∞
f (t)(η, eit (K +a P)ξ )dt

admits a bounded analytic continuation in S∞ for all ξ, η ∈ D.
This is now immediate because F− = F − F+ where F(a) = (η, ϕ(K + a P)ξ)

admits an analytic continuation in S∞ because ϕ(K )H1 ⊂ H1.
• Conclusion.

We have

F−(a) =
∫ 0

−∞
f (t)(η, eit (K +a P)ξ )dt = −

∫ ∞

0
f (−t)(η, e−i t (K +a P)ξ )dt,

and by the above argument F− admits a bounded analytic continuation in the lower half-
plane −S∞. So F− is constant by Liouville theorem. So F = F+ plus a constant that
must be zero by L2-integrability. This means that supp( f ) ⊂ [0,∞), so ϕ ∈ H

∞(S∞).
This completes the proof of Prop. B.1, and thus the conclusion (i) ⇒ (i i) in

Thm. 4.5.
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