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Abstract: In this paper we prove that if a suitable weak solution u of the Navier–
Stokes equations is an element of Lw(0, T ; Ls(R3)), where 1 ≤ 2/w + 3/s ≤ 3/2 and
3 < w, s < ∞, then the box-counting dimension of the set of space-time singularities is
no greater than max{w, s}(2/w + 3/s −1). We also show that if ∇u ∈ Lw(0, T ; Ls(�))

with 2 < s ≤ w < ∞, then the Hausdorff dimension of the singular set is bounded
by w(2/w + 3/s − 2). In this way we link continuously the bounds on the dimension
of the singular set that follow from the partial regularity theory of Caffarelli, Kohn, &
Nirenberg (Commun. Pure Appl. Math. 35:771–831, 1982) to the regularity conditions
of Serrin (Arch. Ration. Mech. Anal. 9:187–191, 1962) and Beirão da Veiga (Chin. Ann.
Math. Ser. B 16(4):407–412, 1995).

1. Introduction

The flow of an incompressible fluid in a domain � ⊆ R
3 is governed by the system of

the Navier–Stokes equations:

ut − �u + (u · ∇)u + ∇ p = 0, div u = 0, (1)

u(0) = u0, u|∂� = 0, (2)

where u is the velocity of the fluid and p is the pressure. Since the works of Leray [10],
Hopf [7] and Ladyzhenskaya [9], it is known that each divergence-free initial condition
u0 ∈ L

2(�) := [L2(�)]3 gives rise to a weak solution u ∈ L∞(0, T ; L
2)∩L2(0, T ; H

1
0)

that satisfies the Navier–Stokes equations in the distributional sense. The open question
is whether or not each initial condition u0 ∈ H

1
0 gives rise to a weak solution that is

actually strong: u ∈ L∞(0, T ; H
1
0) ∩ L2(0, T ; H

2).

� Permanenet address: Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,
Banacha 2 02-097, Warszawa, Poland.
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There are many results that give sufficient conditions for regularity of a weak solution
u. The simplest is due to Serrin [17] and says that u is regular if u ∈ Lw(0, T ; Ls(�))with

2

w
+

3

s
≤ 1. (3)

(In fact Serrin’s proof requires strict inequality in (3); that the condition in (3) is suffi-
cient was shown by Fabes, Jones, & Rivière [5] with the exception of the endpoint cases;
Struwe [18] gave an alternative proof including u ∈ L2(0, T ; L∞); and Escauriaza,
Seregin, & Šverák showed relatively recently in [4] that u ∈ L∞(0, T ; L3) implies
regularity).

Notice that the Sobolev embedding result H1(�) ⊂ L6(�) implies that any weak
solution is an element of L2(0, T ; L6) which gives 2/w + 3/s = 3/2. Even though this
‘regularity gap’ of 1/2 prevents one from proving the regularity of weak solutions, it has
been shown by many authors that the putative set S of points at which u is not regular
must be very small. For example, it is known that for a suitable weak solution the set
of singular points in space-time has one-dimensional parabolic Hausdorff measure zero
(Caffarelli, Kohn, & Nirenberg, [2]) and box-counting dimension no greater than 5/3
(Robinson & Sadowski [15]; see also Kukavica [8], for a finer result).

In this paper we present a link between these partial regularity results bounding
the dimension of the set of space-time singularities, and the regularity result of Serrin
(et al.). More precisely, in our first result we consider a suitable weak solution u with
u ∈ Lw(0, T ; Ls(R3)) where

1 ≤ 2

w
+

3

s
≤ 3

2

and 3 < w, s < ∞; as a consequence of the results of Caffarelli et al. we prove that the
box-counting dimension of the set of space-time singularities is no greater than

α = max{w, s}
(

2

w
+

3

s
− 1

)
.

Specialising this to the case w = s shows that if u ∈ Ls((0, T )×R
3), then dB(S) ≤ 5−s.

Observing that any weak solution belongs to L10/3((0, T ) × R
3) since∫ T

0
‖u(t)‖10/3

L10/3 dt ≤
∫ T

0
‖u(t)‖4/3

L2 ‖u(t)‖2
L6 dt

(by Hölder’s inequality), we recover the bound dB(S) ≤ 5/3 for weak solutions, which
decreases as s increases until we reach the critical value s = 5 known to guarantee
regularity from (3).

While this result requires us to consider the equations on R
3 due to problems estimat-

ing the pressure, we can circumvent this and consider the equations on a bounded domain
if we instead impose conditions on ∇u. In our second result we consider a suitable weak
solution u such that

∇u ∈ Lw(0, T ; Ls(�)) with 2 ≤ 2

w
+

3

s
≤ 5

2
.

We prove that if 2 < s ≤ w < ∞, then the Hausdorff dimension of the singular set of
u is no greater than

β = w

(
2

w
+

3

s
− 2

)
.
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This result provides a link between the partial regularity result in its standard form (a
bound on the Hausdorff dimension of the singular set) and the condition for regularity
due to Beirão da Veiga [1], that u is regular if 2/w + 3/s = 2. Again, in the case of weak
solutions we have w = s = 2 which yields the partial regularity result in its standard
form (the Hausdorff dimension of the singular set is no larger than one), and we recover
regularity when w = s = 5/2.

2. Notation and Auxiliary Results

Throughout the paper we use standard notation for Lebesgue and Sobolev spaces. The
Bochner space Lw(0, T ; Ls(�)) is endowed with the norm:

‖u‖Lw(0,T ;Ls (�)) =
∫ T

0
‖u(t)‖w

Ls (�) dt.

We denote by Qr (x, t) the space-time cylinder

Qr (x, t) = Br (x) × (t − r2, t),

where Br (x) is a three-dimensional ball of radius r > 0 centred at x .
In what follows we consider only suitable weak solutions, which are weak solutions

that in addition satisfy a local energy inequality and for which the associated pressure
belongs to L5/3(QT ), where QT is the space-time domain.

We say that z ∈ R
3 × R+ is a regular point of a suitable weak solution u if u is

bounded in some neighbourhood of z. A point is singular if it is not regular, and the set
of all singular points of a suitable weak solution u we denote by S.

For our main results we will need the following two lemmas. The first formalises
the fact that in some sense p ∼ u2. We do not know how to prove a similar result on
a bounded domain; this is the reason that we restrict to the whole of R

3 in Theorem 1.
However, a recent result due to Wolf [19] shows that one can remove the pressure term
from the condition of regularity used in the proof of Lemma 2 allowing its generalisation
to bounded domains.

Lemma 1. If u ∈ Lw(0, T ; Ls(R3)), then p ∈ Lw/2(0, T ; Ls/2(R3)).

Proof. Equations (1) and (2) imply formally that

�p = −
∑
i, j

∂2

∂xi∂x j
(ui u j ).

From the Calderon-Zygmund theorem we can now deduce that for all 2 < s < ∞,∫
R3

|p|s/2 dx ≤ C(s)
∫

R3
|u|s dx,

and therefore ∫ T

0
‖p(t)‖w/2

Ls/2 dt ≤
∫ T

0
‖u(t)‖w

Ls dt

(see Caffarelli et al., 1982, for details).
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The second simple lemma – essentially a version of the regularity criterion of
Caffarelli et al. obtained by repeated application of Hölder’s inequality – is the key
observation that allows us to prove our main results.

Lemma 2. Assume that u is a suitable weak solution to the Navier–Stokes equations and
u ∈ Lw(0, T ; Ls(R3)) with 3 ≤ w, s < ∞. There exists an absolute constant ε > 0
such that if z = (x, t) is a singular point of u then

εr
w

(
3
s + 2

w
−1

)
≤

∫ t

t−r2

(∫
Br (x)

|u|s dx

)w/s

dt +
∫ t

t−r2

(∫
Br (x)

|p|s/2 dx

)w/s

dt

for all sufficiently small r > 0.

Proof. The fundamental regularity result of Caffarelli et al. [2] is that there exists an
absolute constant ε0 such that if for any r > 0 such that Qr (x, t) ⊂ R+ × R

3,

1

r2

∫
Qr (x,t)

|u|3 dx dt +
1

r2

∫
Qr (x,t)

|p|3/2 dx dt < 2ε0,

then z = (x, t) is regular. It follows that if z is a singular point, then for all sufficiently
small r > 0 we have

ε0 ≤ 1

r2

∫
Qr (x,t)

|u|3 dx dt or ε0 ≤ 1

r2

∫
Qr (x,t)

|p|3/2 dx dt. (4)

From Hölder’s inequality it follows that for all s ≥ 3:

r−2
∫

Qr (x,t)
|u|3 dx dt ≤ r−2

∫ t

t−r2

(∫
Br (x)

|u|s dx

) 3
s
(∫

Br (x)

dx

)1− 3
s

dt

≤ cr1− 9
s

[∫ t

t−r2

(∫
Br (x)

|u|sdx

)w/s

dt

]3/w [∫ t

t−r2
dt

]1− 3
w

.

Hence

1

r2

∫
Qr (x,t)

|u|3dx dt ≤ cr3− 9
s − 6

w

[∫ t

t−r2

(∫
Br (x)

|u|s dx

)w/s

dt

]3/w

. (5)

Similarly, for w ≥ 3, we obtain:

1

r2

∫
Qr (x,t)

|p|3/2dx dt ≤ cr3− 9
s − 6

w

[∫ t

t−r2

(∫
Br (x)

|p|s/2dx

)w/s

dt

]3/w

. (6)

Therefore taking ε = ε
w/3
0 c−w/3 we obtain the assertion of the lemma.

Notice that from Lemma 2 it follows immediately that if u ∈ Lw(0, T ; Ls) with
3/w + 2/s = 1 and w, s > 3 then it is regular. Indeed, it follows from (3),(4) and (5)
that if 2/w + 3/s = 1 then there exits a sequence rn → 0 such that for each n we have

ε ≤
∫ t

t−r2
n

(∫
Brn (x)

|u|sdx

)w/s

dt +
∫ t

t−r2
n

(∫
Brn (x)

|p|s/2dx

)w/s

dt

≤
∫ t

t−r2
n

‖u‖w
Ls (R3)

+ ‖p‖w/2
Ls/2(R3)

dt,

which contradicts the fact that u ∈ Lw(0, T ; Ls(R3)) and p ∈ Lw/2(0, T ; Ls/2(R3)).
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3. Main Results

In this section we give our main results concerning the dimension of the singular set.
The classical result of Caffarelli, Kohn, & Nirenberg is given in terms of the parabolic
Hausdorff measure. For a given s ≥ 0, let

Ps
δ (X) = inf

⎧⎨
⎩

∑
j

r s
j : X ⊂ ∪∞

j=1 Qr j (x j , t j ), r j < δ

⎫⎬
⎭ ,

and define the s-dimensional parabolic Hausdorff measure as

Ps(X) = lim
δ→0

Ps
δ (X).

One can define a parabolic Hausdorff dimension dP H (X) = inf{s : Ps(X) = 0};
if Ps(X) < ∞ then dP H (X) ≤ s. This quantity also bounds the standard Hausdorff
dimension dH (which can be defined in the same way but with cylinders replaced by
balls), dH (X) ≤ dP H (X).

We will also make use of the upper box-counting dimension dB(X). Let N (X, ε)

denote the minimum number of balls of radius ε necessary to cover X ; then

dB(X) = lim sup
ε→0

log N (X, ε)

− log ε
.

A useful observation here is that one obtains the same quantity if N (X, ε) instead denotes
the maximum number of disjoint balls of radius ε with centres in X . One always has
dH (X) ≤ dB(X). See Falconer [6] or Robinson [13] for details.

Theorem 1. Assume that u is a suitable weak solution with u ∈ Lw(0, T ; Ls(R3)) for
3 < w, s < ∞. Then the box-counting dimension of its singular set S is no greater than

α = max{w, s}
(

2

w
+

3

s
− 1

)
.

Proof. For a given sufficiently small r > 0 let N (r) be the maximal number of dis-
joint 4-dimensional balls of radius 2r centred at points zi = (xi , ti ) ∈ S, where i =
1, 2, 3, . . . , N (r). Observe that for all sufficiently small r the cylinders Qr (xi , ti ) are
disjoint, too.

For i = 1, 2, . . . , N (r) we define the function ai by

ai (t) =
∫

Br (xi )

|u(t, x)|s dx if ti − r2 ≤ t ≤ ti ,

and we let ai (t) = 0 for all other values of t . Similarly, for i = 1, 2, . . . , N (r) we define
functions bi by

bi (t) =
∫

Br (xi )

|p(t, x)|s/2dx if ti − r2 ≤ t ≤ ti ,

and bi (t) = 0 otherwise.
Notice that for each i = 1, 2, . . . , N (r) we have

∫ ti

ti −r2

(∫
Br (xi )

|u|s dx

)w/s

dt =
∫ T

0
[ai (t)]

w/s dt
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and
∫ ti

ti −r2

(∫
Br (xi )

|p|s/2 dx

)w/s

dt =
∫ T

0
[bi (t)]

w/s dt.

Since the cylinders are disjoint we have

∫ T

0

⎛
⎝N (r)∑

i=1

ai (t)

⎞
⎠

w/s

+

⎛
⎝N (r)∑

i=1

bi (t)

⎞
⎠

w/s

dt ≤ M, (7)

where

M =
∫ T

0

(∫
R3

|u|s dx

)w/s

dt +
∫ T

0

(∫
R3

|p|s/2 dx

)w/s

dt.

Now we are going to consider the cases w ≥ s and s > w separately.

Case 1. If w ≥ s then (3) implies that

N (r)∑
i=1

∫ T

0
[ai (t)]

w/s + [bi (t)]
w/s dt ≤ M.

From Lemma 2 it now follows that

N (r)εrw( 2
w

+ 3
s −1) ≤ M. (8)

If the box-counting dimension of S was greater than α = w( 2
w

+ 3
s − 1), then for some

constant δ > 0 there would exist a sequence rn → 0 such that N (S, rn) > r−α−δ
n . For

n → ∞ the left-hand side of (8) would tend to infinity, giving a contradiction.

Case 2. If w < s then from Hölder’s inequality it follows that

Nw/s−1

(
N∑

i=1

[ai ]w/s + [bi ]w/s

)
≤

(
N∑

i=1

ai

)w/s

+

(
N∑

i=1

bi

)w/s

.

Thus we have

N (r)N (r)r/s−1εrw( 2
w

+ 3
s −1) ≤ M,

and the proof is concluded as before.

As remarked in the Introduction, every suitable weak solution belongs to
L10/3((0, T ) × R

3), and so has a singular set whose box-counting dimension is no
greater than 5/3 (cf. Robinson & Sadowski [15]). At the other extreme, if u satisfies
Serrin’s condition (e.g. u ∈ L5((0, T ) × R

3) then the singular set has box-counting
dimension zero. (In fact we showed after the proof of Lemma 2 that in this case the
singular set is empty.)

We now provide a related result which, inspired by Beirão da Veiga [1], makes an
assumption on ∇u rather than on u itself. The advantage of this is that the following
theorem is also valid on bounded domains, since the regularity condition involved does
not require any properties of the pressure.
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Theorem 2. Assume that u is a suitable weak solution with

∇u ∈ Lw(0, T ; Ls(�)),

where 2 < s ≤ w < ∞. Then

Pβ(S) = 0,

where

β = w

(
2

w
+

3

s
− 2

)
.

Proof. For this result we use Caffarelli et al.’s second regularity theorem (which is what
allows them to deduce that P1(S) = 0 for any weak solution), namely that there exists
an absolute constant ε > 0 such that if

lim sup
r→0

1

r

∫
Qr (x,t)

|∇u|2 dxdt ≤ ε

then (x, t) is regular.
Fix δ > 0, and for each singular point z = (x, t) ∈ S choose a cylinder Qr (x, t)

with r < δ/5 such that

1

r

∫
Qr (x,t)

|∇u|2 dxdt ≥ ε;

let C be the family of all these cylinders. Using the covering lemma from Caffarelli et al.
we can choose a countable subfamily C′ of disjoint cylinders Qri (zi ) such that Q5ri (zi )

still covers the singular set S.
To show that dP H (S) ≤ β, it is sufficient to show that Pβ(S) < ∞. To this end we

notice that

∫
Qri (xi ,ti )

|∇u|2 dx dt ≤
∫ ti

ti −r2
i

(∫
Bri (xi )

|∇u|s dx

)2/s (∫
Bri (xi )

dx

)1− 2
s

dt

≤ c(ri )
3− 6

s

⎛
⎝∫ ti

ti −r2
i

(∫
Bri (xi )

|∇u|sdx

)w/s

dt

⎞
⎠

2/w(∫ ti

ti−r2
i

dt

)1−2
w

.

Hence

εri ≤ c(ri )
3(1− 2

s )+2(1− 2
w

)

⎛
⎝∫ ti

ti −r2
i

(∫
Bri (xi )

|∇u|s dx

)w/s

dt

⎞
⎠

2/w

and finally

c−w/2εw/2 (ri )
β ≤

∫ ti

ti −r2
i

(∫
Bri (xi )

|∇u|s dx

)w/s

dt,

where β = w
( 3

s + 2
w

− 2
)
.
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Now for i = 1, 2, 3, . . . , let

ϕi (t) =
∫

Bri (xi )

|∇u(x, t)|sdx if ti − r2
i ≤ t ≤ ti ,

and ϕi (t) = 0 otherwise. Since

∫ ti

ti −r2
i

(∫
Bri (xi )

|∇u|sdx

)w/s

dt =
∫ T

0
[ϕi (t)]

w/s dt,

it follows that for C = cw/2ε−w/2 we have

∞∑
i=1

rβ
i ≤ C

∞∑
i=1

∫ T

0
[ϕi (t)]

w/s dt ≤ C
∫ T

0

[ ∞∑
i=1

ϕi (t)

]w/s

dt.

Since the cylinders are disjoint, for each 0 ≤ t ≤ T we have

∞∑
i=1

ϕi (t) ≤
∫

�

|∇u(x, t)|sdx .

Now let �S be the projection of S onto (0, T ) and let T be the set of singular times:

T = R \
∞⋃

q=1

Jq ,

where Jq are intervals of regularity of a weak solution u (the existence of such “epochs
of regularity” dates back to [10]). The set T has box-counting dimension no greater than
1/2 ([14]). Moreover1, �S ⊆ T . Indeed, if t0 ∈ Jq for some q, then for sufficiently
small ε > 0 the weak solution u is uniformly bounded for all (x, t) ∈ (t0 −ε, t0 +ε)×�.
It follows that if D is the projection of C′ onto (0, T ) then D ⊆ Oδ(T ), where Oδ(T ) is
δ-neighbourhood of T . In particular, since dB(T ) ≤ 1/2, for any θ > 1/2, one can cover
Oδ(T ) and hence D by cδ−θ intervals of length 4δ, and hence μ(D) ≤ cδ−θ (4δ) → 0
as δ → 0.

We have

∞∑
i=1

rβ
i ≤ C

∫ T

0

[ ∞∑
i=1

ϕi (t)

]w/s

dt ≤ C
∫

D

(∫
�

|∇u|sdx

)w/s

dt,

where the right-hand side tends to zero as δ → 0 (since the integrand is in L1(0, T )).
To summarise, given any δ > 0 we have found a covering of S by sets Q5ri (xi , ti )

such that 5ri < δ and

∞∑
i=1

(5ri )
β ≤ 5βC

∫
D

(∫
�

|∇u|sdx

)w/s

dt,

where the right hand side of the above inequality tends to zero as δ tends to zero. It
follows that Pβ(S) = 0, and hence that dH (S) ≤ dP H (S) ≤ β.

1 One can show equality in the case of periodic boundary conditions, see [12]. The proof there - which
relies on a compactness argument - does not obviously generalise to R

3 or a bounded domain.
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Note that if β = 0 then the set of singular points is empty. Indeed, if (x, t) is a
singular point, then taking into account that

lim sup
r→0

1

r

∫
Qr (x,t)

|∇u|2 dxdt > ε

and reasoning as above we can show that there exists a sequence rn → 0 such that

εw/2 ≤
∫ t

t−r2
n

(∫
Brn (x)

|∇u|s dx

)w/s

dt ≤
∫ t

t−r2
n

(∫
�

|∇u|s dx

)w/s

dt;

but the right-hand side tends to zero as n tends to infinity, which is a contradiction.

Conclusion

In this paper we presented the upper bounds on the box-counting and Hausdorff dimen-
sion of the singular set of a suitable weak solution to the Navier–Stokes equations that
has some additional regularity. As the border cases of these bounds we have obtained
the well-known conditions for regularity of weak solutions.

Some natural questions arise from these results. It would be interesting to relax the
assumption w > 2 in Theorem 1 and obtain the same bound for any w ≥ 2; similarly
in Theorem 2 one would like to relax the condition w ≥ s. In order to obtain Theorem
1 in a bounded domain we would require the analogue of Lemma 2 (estimates for the
pressure when u ∈ Lw(0, T ; Ls(�))).

An order of magnitude harder is to determine whether any of these partial regularity
results can be proved for general weak solutions, and not only suitable weak solutions.
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