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Abstract: We study a simple, rational and C2-cofinite vertex operator algebra whose
weight 1 subspace is zero, the dimension of weight 2 subspace is greater than or equal to
2 and with c = c̃ = 1. Under some additional conditions it is shown that such a vertex
operator algebra is isomorphic to L( 1

2 , 0)⊗ L( 1
2 , 0).

1. Introduction

The vertex operator algebra L( 1
2 , 0)⊗ L( 1

2 , 0) is characterized in [ZD] as a unique sim-
ple rational, C2-cofinite vertex operator algebra with c = c̃ = 1, weight one subspace
being zero and weight two subspace being 2 dimensional. In this paper we strengthen
this result by allowing the dimensions of weight two subspace to be greater than or equal
to 2. This proves the conjecture given in [ZD].

The importance of L( 1
2 , 0)⊗L( 1

2 , 0)was first noticed in [DMZ] (also see [M2,DGH])
for the study of the moonshine vertex operator algebra V � [FLM]. In fact, it was essen-
tially proved in [DMZ] that the fixed point vertex operator subalgebra V +

L under the
involution induced from the −1 isometry of L is isomorphic to L( 1

2 , 0)⊗ L( 1
2 , 0) if L

is a rank one lattice generated by a vector whose squared length is 4 and V � contains
L( 1

2 , 0)⊗48. This led to the theory of code vertex operator algebras [M1,M2,M3] and
framed vertex operator algebras [DGH]. A new construction of the moonshine vertex
operator algebra V � is given in [M4] using the theory of code and framed vertex operator
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algebras. Furthermore, the recent progress in [DGL and LY] on proving the uniqueness
of V � depends largely on the theory of framed vertex operator algebras and code vertex
operator algebras. Also see [KL] for the study of conformal nets arising from framed
vertex operator algebras.

The characterization of L( 1
2 , 0)⊗ L( 1

2 , 0) given in this paper is a necessary step in
the classification of rational vertex operator algebras with c = 1. It is a well known
conjecture (cf. [K,ZD]) that any simple rational vertex operator algebra with c = 1 is
either VL , V +

L or V G
L A1

where L is a rank one positive definite even lattice, L A1 is the

root lattice of type A1 and G is a subgroup of SO(3) isomorphic to A4, S4 or A5. As
pointed out in [ZD], the correct conjecture should also assume c is equal to the effective
central charge c̃. A characterization of VL for an arbitrary positive definite even lattice
is obtained in [DM1]. Although there was some progress at the q-character level on the
classification of rational vertex operator algebras with c = 1 in the physics literature
[K], there is still a long way to prove the conjecture completely by a lack of character-
ization of V +

L . It is desirable that the characterization of L( 1
2 , 0)⊗ L( 1

2 , 0) may help to
understand V +

L in general.
If the weight one subspace of a vertex operator algebra is 0, then its weight two sub-

space is a commutative (non-associative) algebra (cf. [FLM,DGL]). Since the weight
two subspace V2 in [ZD] is assumed to be 2-dimensional, it is necessarily a commutative
associative algebra. The main result in [ZD] was based on the study of the vertex operator
algebra W (2, 2) and the growth of the graded dimensions of vertex operator algebras.
But in this paper we assume dim V2 ≥ 2. So V2 is not an associative algebra and the
situation is much more complicated. By a result from [R], V2 either has two nontrivial
idempotent elements or has a nontrivial nilpotent element. The former case basically
follows from the argument in [ZD]. The key point in this paper is to use the fusion rules
for the Virasoro algebra with c = 1 to deal with the later case. This should explain
why we need the assumption in the main theorem that the vertex operator algebra is a
sum of highest weight modules for the Virasoro algebra. This assumption is expected
to be established for all rational vertex operator algebras with c = 1. This leads us
to the study of fusion rules for the Virasoro algebra with c = 1. The fusion rules for
the Virasoro algebra with c = 1 have been investigated from different points of view
[RT,X]. The fusion rules among irreducible modules L(1,m2/4) with m ∈ Z for the
Virasoro algebra have been given in [M] based on the A(V )-theory developed in [Z,FZ
and L2]. We extend these results to include irreducible modules L(1, n) for n ∈ Z. We
certainly believe that the fusion rules computed in this paper will play important roles
in the future classification of rational vertex operator algebras with c = 1.

The paper is organized as follows: In Sect. 2 we review the various notions of mod-
ules and define rational vertex operator algebras. Section 3 is about the Virasoro vertex
operator algebras and some results on the structure of highest weight modules for the
Virasoro algebra with c = 1. We also prove that any simple vertex operator algebra
with c > 1 is a completely reducible module for the Virasoro algebra. In Sect. 4 we
first review the A(V )-theory including how to use the bimodules to compute the fusion
rules. The new results in this section are the fusion rules for the Virasoro algebra with
c = 1. The most difficult case is the fusion rules for the irreducible modules L(1,m2)

for integers m as they are not the Verma modules. These fusion rules are fundamental
later in the proof of the main theorem. Section 5 is devoted to the proof of the main the-
orem. In the case that V2 has a nontrivial nilpotent element we need to construct some
highest weight vectors with certain properties. Then we use the fusion rules to prove this
is impossible. This forces the dimension of V2 to be 2 and the result in [ZD] applies.
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2. Preliminaries

Let V = (V,Y, 1, ω) be a vertex operator algebra [B,FLM]. We review various notions
of V -modules (cf. [FLM,Z,DLM1]) and the definition of rational vertex operator alge-
bras. We also discuss some consequences following [DLM1].

Definition 2.1. A weak V module is a vector space M equipped with a linear map

YM : V → End(M)[[z, z−1]],
v �→ YM (v, z) = ∑

n∈Z
vnz−n−1, vn ∈ End(M),

satisfying the following:

1) vnw = 0 for n >> 0, where v ∈ V and w ∈ M,
2) YM (1, z) = I dM ,

3) The Jacobi identity holds:

z−1
0 δ

(
z1 − z2

z0

)

YM (u, z1)YM (v, z2)− z−1
0 δ

(
z2 − z1

−z0

)

YM (v, z2)YM (u, z1)

= z−1
2 δ

(
z1 − z0

z2

)

YM (Y (u, z0)v, z2). (2.1)

Definition 2.2. An admissible V module is a weak V module which carries a Z+-grading
M = ⊕

n∈Z+
M(n), such that if v ∈ Vr then vm M(n) ⊆ M(n + r − m − 1).

Definition 2.3. An ordinary V module is a weak V module which carries a C-grading
M = ⊕

λ∈C
Mλ, such that:

1) dim(Mλ) < ∞,

2) Mλ+n = 0 for fixed λ and n << 0,
3) L(0)w = λw = wt(w)w for w ∈ Mλ, where L(0) is the component operator of

YM (ω, z) = ∑
n∈Z

L(n)z−n−2.

Remark 2.4. It is easy to see that an ordinary V -module is an admissible one. If W is an
ordinary V -module, we simply call W a V -module.

We call a vertex operator algebra rational if the admissible module category is semi-
simple. We have the following result from [DLM2] (also see [Z]).

Theorem 2.5. If V is a rational vertex operator algebra, then V has finitely many
irreducible admissible modules up to isomorphism and every irreducible admissible
V -module is ordinary.

Suppose that V is a rational vertex operator algebra and let M1, . . . ,Mk be the
irreducible modules such that

Mi = ⊕n≥0 Mi
λi +n,

where λi ∈ Q [DLM3], Mi
λi

	= 0 and each Mi
λi +n is finite dimensional. Let λmin be the

minimum of λi ’s. The effective central charge c̃ is defined as c − 24λmin . For each Mi

we define the q-character of Mi by

chq Mi = q−c/24
∑

n≥0

(dim Mi
λi +n)q

n+λi .
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A vertex operator algebra is called C2-cofinite if C2(V ) has finite codimension where
C2(V ) = 〈u−2v|u, v ∈ V 〉.

Take a formal power series in q or a complex function f (z) = qλ
∑

n≥0 anqn . We
say that the coefficients of f (q) satisfy the polynomial growth condition if there exist
positive numbers A and α such that |an| ≤ Anα for all n.

If V is rational and C2-cofinite, then chq Mi converges to a holomorphic function on
the upper half plane [Z]. Using the modular invariance result from [Z] and results on
vector valued modular forms from [KM] we have (see [DM1])

Lemma 2.6. Let V be rational and C2-cofinite. For each i, the coefficients of η(q)c̃

chq Mi satisfy the polynomial growth condition where

η(q) = q1/24
∏

n≥1

(1 − qn).

3. Virasoro Vertex Operator Algebras

We will review vertex operator algebras associated to the highest weight representations
for the Virasoro algebra and study a general vertex operator algebra viewed as a module
for the Virasoro vertex operator algebra.

We first recall some basic facts about the highest weight modules for the Virasoro
algebra V ir . Let c, h ∈ C and V (c, h) be the corresponding highest weight mod-
ule for the Virasoro algebra V ir with central charge c and highest weight h. We set
V̄ (c, 0) = V (c, 0)/U (V ir)L(−1)v, where v is a highest weight vector with high-
est weight 0 and denote the irreducible quotient of V (c, h) by L(c, h). We have (see
[KR,FZ]):

Proposition 3.1. Let c be a complex number.

(1) V̄ (c, 0) is a vertex operator algebra and L(c, 0) is a simple vertex operator algebra.
(2) For any h ∈ C, V (c, h) is a module for V̄ (c, 0).
(3) V (c, h) = L(c, h), V̄ (c, 0) = L(c, 0), for c > 1 and h > 0.
(4) V (1, h) = L(1, h) if and only if h 	= m2

4 for m ∈ Z. In case h = m2 for a nonnega-
tive integer m, the unique maximal submodule of V (1,m2) is generated by a highest
weight vector with highest weight (m + 1)2 and is isomorphic to V (1, (m + 1)2).

We next study a general simple vertex operator algebra as a module for the Virasoro
algebra.

Lemma 3.2. Let V be a simple vertex operator algebra such that V0 = C1 and L(1)V1 =
0. Let h > 0 be such that the Verma module V (c, h) for the Virasoro algebra is irre-
ducible. Let U be the sum of irreducible submodules of V isomorphic to V (c, h). Then
V = U ⊕ U⊥, where U⊥ = {v ∈ V |(v,U ) = 0} and (, ) is the canonical non-degen-
erate symmetric invariant bilinear form on V such that (1, 1) = 1 [FHL], [L1].

Proof. It is enough to prove that U ∩U⊥ = 0. First note that U is a completely reducible
module for the Virasoro algebra. Also, U⊥ is a module for the Virasoro algebra. Suppose
that U ∩ U⊥ 	= 0. Let W be an irreducible submodule of U ∩ U⊥. Then X = V/W ⊥ is
an irreducible module for the Virasoro algebra isomorphic to V (c, h) and can be identi-
fied with the graded dual W ′ of W . Let v ∈ Vh be such that v + W ⊥ is the highest weight
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vector of V/W ⊥. Let M be the module for the Virasoro algebra generated by v. Then
M ∩ W ⊥ is a submodule of M, M/(M ∩ W ⊥) is isomorphic to X and

M ∩ Vh = Cv ⊕ (M ∩ W ⊥ ∩ Vh) (direct sum of subspaces).

Note that there are only finitely many composition factors in M ∩ W ⊥. We have the
following exact sequences for modules of the Virasoro algebra:

0 → M ∩ W ⊥ → M → L(c, h) → 0

and

0 → L(c, h) → M ′ → (M ∩ W ⊥)′ → 0.

Since (W, v) 	= 0, it follows that M can not be a direct sum of submodules L(c, h) and
M ∩ W ⊥ for the Virasoro vertex operator algebra. So M ′ can not be a direct sum of sub-
modules L(c, h) and (M ∩W ⊥)′. Therefore there exists a highest weight submodule Z of
M ′ such that L(c, h) is a submodule of Z . But from the module structure theory in [KR],
L(c, h) can never be a submodule of any highest weight module if V (c, h) = L(c, h).
This is a contradiction. The proof is complete. ��
Proposition 3.3. If V is a simple vertex operator algebra such that V0 = C1, L(1)V1 =
0 and c > 1. Then V is a completely reducible module for the Virasoro algebra.

Proof. Recall from [KR] or Proposition 3.1 that V (c, h) = L(c, h) if h > 0 and
L(c, 0) = V̄ (c, 0). It is clear that the vertex operator subalgebra of V generated by 1
is isomorphic to L(c, 0). So we can regard L(c, 0) as a subalgebra of V . Then we have
the decomposition V = L(c, 0)⊕ L(c, 0)⊥ as (1, 1) = 1 and L(c, 0) ∩ L(c, 0)⊥ = 0.
Let U n be the L(c, 0)-submodule of V generated by the highest weight vectors with
highest weight n. Then U n is a completely reducible module for the Virasoro algebra
and V = ⊕n≥0U n by Lemma 3.2. ��

We remark that in the case c = 1 we cannot establish the result in Proposition
3.3 although we strongly believe it is true if we also assume that V is rational and
C2-cofinite. We need this assumption for c = 1 later to characterize the vertex operator
algebra L(1/2, 0) ⊗ L(1/2, 0). This is also the original motivation for us to study the
complete reducibility of vertex operator algebras as modules for the Virasoro algebra.

It has been studied extensively on how to decompose an arbitrary vertex operator
algebra and its modules as a sum of indecomposable modules for sl(2,C) = CL(1) +
CL(−1) + CL(0) in [DLiM]. It seems that decomposing an arbitrary vertex operator
algebra into a sum of indecomposable modules for the Virasoro algebra is much more
difficult. But such a decomposition is definitely important in the study of vertex operator
algebras and their representations.

4. A(V )-Theory and Fusion Rules

Let V be a vertex operator algebra. An associative algebra A(V ) has been introduced
and studied in [Z]. It turns out that A(V ) is very powerful and useful in representation
theory for vertex operator algebras. One can use A(V ) not only to classify the irreduc-
ible admissible modules [Z], but also to compute the fusion rules using A(V )-bimodules
[FZ]. We will first review the definition of A(V ) and some important results about A(V )
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from [Z,FZ and L2]. We then apply the A(V )-theory to the vertex operator algebra
L(1, 0) to compute the fusion rules for L(1, 0). The central task is to determine the
A(L(1, 0))-bimodule A(L(1,m2)) for any integer m.

As a vector space, A(V ) is a quotient space of V by O(V ), where O(V ) denotes the
linear span of elements

u ◦ v = Resz(Y (u, z)
(z + 1)wt u

z2 v) =
∑

i≥0

(
wt u

i

)

ui−2v (4.1)

for u, v ∈ V with u being homogeneous. Product in A(V ) is induced from the multipli-
cation

u ∗ v = Resz(Y (u, z)
(z + 1)wt u

z
v) =

∑

i≥0

(
wt u

i

)

ui−1v (4.2)

for u, v ∈ V with u being homogeneous. A(V ) = V/O(V ) is an associative algebra
with identity 1 + O(V ) and with ω + O(V ) being in the center of A(V ). The most
important result about A(V ) is that for any admissible V -module M = ⊕n≥0 M(n)
with M(0) 	= 0, M(0) is an A(V )-module such that v + O(V ) acts as o(v), where
o(v) = vwtv−1 for homogeneous v.

For an admissible V -module W , we also define O(W ) ⊂ W to be the linear span of
elements of type

Resz(Y (v, z)
(z + 1)wt v

z2 w) =
∑

i≥0

(
wt v

i

)

vi−2w (4.3)

for homogeneous v ∈ V and w ∈ W. Let A(W ) = W/O(W ). Then A(W ) has an
A(V )-bimodule structure [FZ] induced by the following bilinear operations V ×W → W
and W × V → W : for w ∈ W and homogeneous v ∈ V,

v ∗ w = Resz(Y (v, z)
(z + 1)wt v

z
w) =

∑

i≥0

(
wt v

i

)

vi−1w, (4.4)

w ∗ v = Resz(Y (v, z)
(z + 1)wt v−1

z
w) =

∑

i≥0

(
wt v − 1

i

)

vi−1w. (4.5)

We quote the following proposition from [FZ]:

Proposition 4.1. If W is an admissible module for a vertex operator algebra V and M is
a submodule of W , then the image M̄ of M in A(W ) is a sub-A(V )-bimodule of A(W ),
and the quotient A(W )/M̄ is isomorphic to the A(V )-bimodule A(W/M) associated to
the quotient V -module W/M.

Let W i (i = 1, 2, 3) be ordinary V -modules. We denote by IV

(
W 3

W 1 W 2

)

the vector

space of all intertwining operators of type

(
W 3

W 1 W 2

)

. For a V -module W , let W ′ denote

the graded dual of W . Then W ′ is also a V -module [FHL]. It is well known that fusion
rules have the following symmetry (see [FHL]).
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Proposition 4.2. Let W i (i = 1, 2, 3) be V -modules. Then

dim IV

(
W 3

W 1 W 2

)

= dim IV

(
W 3

W 2 W 1

)

, dim IV

(
W 3

W 1 W 2

)

= dim IV

(
(W 2)′

W 1 (W 3)′
)

.

Let W i = ⊕n≥0W i (n) (i = 1, 2, 3) be V -modules such that L(0)|W i (0) = λi . Let

Y(·, z) be an intertwining operator of type

(
W 3

W 1 W 2

)

. Define the following bilinear

map:

fY : A(W 1)⊗A(V ) W 2(0) → W 3(0),

u1 ⊗ u2 → o(u1)u2, u1 ∈ A(W 1), u2 ∈ W 2(0),

where o(u1) is the component operator ofY(u1, z) such that o(u1)maps W 2(0) to W 3(0).
Then fY is an A(V )-module homomorphism [FZ]. To state the next result we need to
define the Verma type admissible module M(U ) associated to an A(V )-module U :

Definition 4.3. Let V be a vertex operator algebra and U an A(V )-module. An admis-
sible V -module M = ⊕∞

n=0 M(n) is called the Verma type module generated by U if
M(0) = U as A(V )-module and for any admissible V -module W = ⊕∞

n=0 W (n) with
W (0) = U as A(V )-module, the identity map from M(0) to W (0) lifts to a V -module
homomorphism from M to W .

The existence of a Verma type admissible module was given in [Z] (also see [DLM2]).
The following result comes from [L2]:

Lemma 4.4. Let W i be V -modules for i = 1, 2, 3. If W 3 is an irreducible V -module,
then the linear map Y �→ fY is an injective map from the space of intertwining operators

of type

(
W 3

W 1 W 2

)

to Hom A(V )(A(W 1)⊗A(V ) W 2(0),W 3(0)). Furthermore, Y �→ fY

is an isomorphism, if both W 2 and (W 3)′ are Verma type modules for V .

We quote a result about the vertex operator algebra V̄ (c, 0) from [FZ].

Proposition 4.5. (1) The associative algebra A(V̄ (c, 0)) is isomorphic to the polyno-
mial algebra C[x], with the isomorphism being given by xn ∈ C[x] �→ [(L(−2) +
L(−1))n1], where [a] = a + O(V̄ (c, 0)) for a ∈ V̄ (c, 0).

(2) For the Verma module V (c, h), the A(V̄ (c, 0))-bimodule A(V (c, h)) is C[x, y] with
x and y acting on the left and right as multiplications by x and y respectively. The
isomorphism from C[x, y] to A(V (c, h)) is given by xm yn �→ [(L(−2)+ 2L(−1)+
L(0))m(L(−2) + L(−1))n1h], where 1h is a fixed nonzero highest weight vector of
V (c, h).

We now discuss the relation between the Verma module for the Virasoro algebra and
the Verma type admissible module for vertex operator algebra V̄ (c, 0). By Proposition
4.5, A(V̄ (c, 0)) = C[x]. So any irreducible A(V̄ (c, 0))-module is one dimensional such
that [ω] acts as a constant h. Denote this module by U. It is clear that the Verma type
admissible V̄ (c, 0)-module generated by U is exactly the Verma module V (c, h).

We next turn our attention to the fusion rules for the vertex operator algebra L(1, 0).
The following theorem is the foundation in our computation of the fusion rules.
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Theorem 4.6. Let r be a positive integer. Then

A(L(1, r2)) = C[x, y]/ Ī ,

where

Ī =< (x − y)
r∏

i=1

[(x − y)2 − 2i2(x + y) + i4] >

is a two-sided ideal of C[x, y] generated by (x − y)
∏r

i=1[(x − y)2 − 2i2(x + y) + i4].
Proof. Since V̄ (1, 0) = L(1, 0), by Proposition 4.5, the associative algebra A(L(1, 0))
is C[x] and the A(L(1, 0))-bimodule A(V (1, r2)) is isomorphic to C[x, y] with x and
y acting on the left and right as multiplications by x and y respectively. By Proposition
4.1, as an A(L(1, 0))-bimodule,

A(L(1, r2)) ∼= C[x, y]/ Ī ,

where Ī is the image in A(V (1, r2)) of the maximal proper submodule I of V (1, r2).
Since I is generated by a non-zero element v(r+1) in V (1, r2) such that

L(0)v(r+1) = (r + 1)2v(r+1), L(k)v(r+1) = 0, 0 < k ∈ Z+,

it follows that Ī is generated by a polynomial f (x, y) in C[x, y] with degree s ≤ 2r + 1.
Assume that

f (x, y) =
s∑

i=0

ai (x)y
i ,

where ai (x), i = 0, 1, . . . , s are polynomials in x of degrees at most 2r + 1 − i.
We need to use the vertex operator algebra VL associated to the rank one even positive

definite lattice L = Zα with (α, α) = 2 [FLM]. Let h = L ⊗Z C, and ĥZ be the cor-
responding Heisenberg algebra. Denote by M(1) = C[α(−n)|n > 0] the associated
irreducible induced module for ĥZ such that the canonical central element of ĥZ acts as
1. Let C[L] be the group algebra of L with a basis eγ for γ ∈ L . Let β ∈ h be such
that (β, β) = 1. It is known that VL = M(1) ⊗ C[L] is a simple rational vertex oper-
ator algebra with 1 = 1 ⊗ e0 and ω = 1

2β(−1)21 [B,FLM,D,DLM1]. The subalgebra
generated by ω of VL is isomorphic to L(1, 0) and

M(1) = ⊕

p≥0
L(1, p2),

VL = ⊕

m≥0
(2m + 1)L(1,m2), (4.6)

as modules for the Virasoro algebra (cf. [DG]).
It is well-known that VL is isomorphic to the fundamental representation L(
0) for

the affine Kac-Moody algebra A(1)1 [FK]. Note that the weight one subspace (VL)1 of VL
forms a Lie algebra g isomorphic to sl(2,C), where the Lie bracket in (VL)1 is defined
as [u, v] = u0v and u0 is the component operator of Y (u, z) = ∑

n∈Z
unz−n−1. g acts

on VL via v0 for v ∈ (VL)1. The g-invariant elements V g
L = {v ∈ VL |g · v = 0} form a

simple vertex operator algebra and is isomorphic to L(1, 0) (see [DG]).
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Let Wm be the unique m + 1-dimensional highest weight module for g with highest
weight m ∈ Z≥0. Let V Wm

L be the sum of irreducible g-submodules of VL isomorphic

to Wm, and (VL)Wm the space of highest weight vectors in V Wm
L . Then by [DG], as a

(V g
L , g)-module VL has decomposition

VL =
⊕

m≥0

V W2m
L =

⊕

m≥0

(VL)W2m ⊗ W2m (4.7)

and (VL)W2m is an irreducible module for V g
L . Moreover, (VL)W2k and (VL)W2m are

isomorphic if and only if k = m. By [DG], (VL)W2m is isomorphic to L(1,m2) as
L(1, 0)-module. For m, n ∈ Z+, m ≥ n, let

W2m,2n = span{u jv|u ∈ W2m, v ∈ W2n, j ∈ Z}.
Then W2m,2n is a g-module. Let u ∈ W2m and v ∈ W2n such that

α(0)u = (2m − 2i)u, α(0)v = (2n − 2 j)v,

for some 0 ≤ i ≤ 2m, 0 ≤ j ≤ 2n,where α(0) = (α(−1)1)0 is the component operator
of α(z) = Y (α(−1)1, z) = ∑

k∈Z
α(k)z−k−1. Then

α(0)u pv = (α(0)u)pv + u pα(0)v = (2m + 2n − 2i − 2 j)u pv,

for all p ∈ Z. This means that W2m,2n is a sum of irreducible g-modules in {W2k |0 ≤
k ≤ m + n}. On the other hand, we have the following well-known tensor product
decomposition:

W2m ⊗ W2n = W2(m−n) ⊕ W2(m−n)+2 ⊕ · · · ⊕ W2(m+n)−2 ⊕ W2(m+n). (4.8)

By Lemma 2.2 of [DM2], for small enough integer p, the map ψp : W2m ⊗ W2n →
W2m,2n defined by ψp : u ⊗ v �→

∞∑
i=p

uiv, u ∈ W2m, v ∈ W2n is injective. There-

fore in the decomposition of W2m,2n into irreducible g-modules, each W2k appears for
m −n ≤ k ≤ m +n. Denote by Um,n the L(1, 0)-submodule of VL generated by W2m,2n .
Then by (4.7), we have

Um,n ⊇
⊕

m−n≤k≤m+n

(VL)W2k ⊗ W2k .

This proves that

IL(1,0)

(
L(1, k2)

L(1,m2) L(1, n2)

)

	= 0,

for all m, n, k ∈ Z+ such that |m − n| ≤ k ≤ n + m.
Let m = r , then we have f (n2, k2) = 0, for all n, k ∈ Z+ satisfying |r − n| ≤ k ≤

n + r . Thus for n ∈ Z+ with n − r ≥ 0, we have
⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 (n − r)2 (n − r)4 (n − r)6 · · · (n − r)2s

1 (n − r + 1)2 (n − r + 1)4 (n − r + 1)6 · · · (n − r + 1)2s

1 (n − r + 2)2 (n − r + 2)4 (n − r + 2)6 · · · (n − r + 2)2s

...
...

...
...

...
...

1 (n + r)2 (n + r)4 (n + r)6 · · · (n + r)2s

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a0(n2)

a1(n2)

a2(n2)
...

as(n2)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= 0.

(4.9)
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If s ≤ 2r , then for each n ∈ Z+ such that n ≥ r , the coefficient matrix of (4.9) contains
a (s + 1)× (s + 1)-minor which is a non-singular Vandermonde determinant, it follows
that (4.9) has only zero solution. This implies that ai (x) = 0 for all i, a contradiction.
So we have

s = 2r + 1.

We may assume that a2r+1(x) = 1. Then we have

A(n)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a0(n2)

a1(n2)

a2(n2)
...

a2r (n2)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−(n − r)2(2r+1)

(n − r + 1)2(2r+1)

−(n − r + 2)2(2r+1)

...

(n + r)2(2r+1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (4.10)

where

A(n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 (n − r)2 (n − r)4 (n − r)6 · · · (n − r)4r

1 (n − r + 1)2 (n − r + 1)4 (n − r + 1)6 · · · (n − r + 1)4r

1 (n − r + 2)2 (n − r + 2)4 (n − r + 2)6 · · · (n − r + 2)4r

...
...

...
...

...
...

1 (n + r)2 (n + r)4 (n + r)6 · · · (n + r)4r

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

This shows that (4.10) has a unique solution for each n ∈ Z+ such that n ≥ r . Since
ai (x), i = 0, 1, . . . , 2r + 1 are polynomials in x with degrees at most 2r + 1, it fol-
lows that f (x, y) is uniquely determined (up to a non-zero scalar) by the condition that
f (n2, k2) = 0 for all n, k ∈ Z+ such that |n − r | ≤ k ≤ n + r . Let

fi (x, y) = (x − y)2 − 2i2(x + y) + i4, i = 1, 2, · · · , r.
Then we have

fi (n
2, (n ± i)2) = 0.

This proves that the polynomial

(x − y)
r∏

i=1

[(x − y)2 − 2i2(x + y) + i4]

satisfies the above condition. So we have

f (x, y) = (x − y)
r∏

i=1

[(x − y)2 − 2i2(x + y) + i4],

as expected. ��
We are now in a position to give the fusion rules for the vertex operator algebra

L(1, 0).
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Theorem 4.7. We have

dim IL(1,0)

(
L(1, k2)

L(1,m2) L(1, n2)

)

= 1, k ∈ Z+, |n − m| ≤ k ≤ n + m, (4.11)

dim IL(1,0)

(
L(1, k2)

L(1,m2) L(1, n2)

)

= 0, k ∈ Z+, k < |n − m| or k > n + m, (4.12)

where n,m ∈ Z+. For n ∈ Z+ such that n 	= p2, for all p ∈ Z+, we have

dim IL(1,0)

(
L(1, n)

L(1,m2) L(1, n)

)

= 1, (4.13)

dim IL(1,0)

(
L(1, k)

L(1,m2) L(1, n)

)

= 0, (4.14)

for k ∈ Z+ such that k 	= n.

Proof. By Lemma 4.4, for k1, k2, k3 ∈ Z+, dim IL(1,0)

(
L(1, k3)

L(1, k1) L(1, k2)

)

is less than

or equal to

dim Hom A(L(1,0))(A(L(1, k1))⊗A(L(1,0)) L(1, k2)(0), L(1, k3)(0)),

where L(1, h)(0) = C1h is the one-dimensional lowest weight space of the irreducible
L(1, 0)-module L(1, h) such that

L(0)1h = h1h, L(n)1h = 0, 1 ≤ n ∈ Z+.

That is, x in C[x] = A(L(1, 0)) acts on L(1, h)(0) as h.
Let m, n, k ∈ Z+ such that |m − n| ≤ k ≤ m + n. It is easy to see that

A(L(1,m2))⊗A(L(1,0)) L(1, n2)(0) ∼= C[x]/ < (x − n2)

m∏

i=1

[(x − n2)2

−2i2(x + n2) + i4] > .

Denote the ideal < (x − n2)
∏m

i=1[(x − n2)2 − 2i2(x + n2) + i4] > by Īn . For 0 	= φ ∈
Hom A(L(1,0))(A(L(1,m2))⊗A(L(1,0)) L(1, n2)(0), L(1, k2)(0)), we have

x · φ(1 + Īn)1k2 = k21k2 = φ(x + Īn)1k2 ,

since x · 1k2 = k21k2 . So

φ(p(x) + Ī )1k2 = p(k2)1k2 ,

for p(x) ∈ C[x]. This means that

dim Hom A(L(1,0))(A(L(1,m2))⊗A(L(1,0)) L(1, n2)(0), L(1, k2)(0)) = 1.

On the other hand, by Theorem 4.6, we have

IL(1,0)

(
L(1, k2)

L(1,m2) L(1, n2)

)

	= 0.

So (4.11) holds.
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For n, k ∈ Z+ such that k < |n − m| or k > n + m, let x = k2, y = n2, then we have

f (k2, n2) = (k2 − n2)

m∏

i=1

[(k2 − n2)2 − 2i2(k2 + n2) + i4]

= (k2 − n2)

m∏

i=1

[k2 − (n − i)2][k2 − (n + i)2] 	= 0.

This proves that

dim Hom A(L(1,0))(A(L(1,m2))⊗A(L(1,0)) L(1, n2)(0), L(1, k2)(0)) = 0.

So (4.12) is true. For (4.14), we have

f (k, n) = (k − n)
m∏

i=1

[(k − n)2 − 2i2(k + n) + i4]

= (k − n)
m∏

i=1

[(k − n − i)2 − 4i2n] 	= 0,

since n 	= k and n 	= p2, for all p ∈ Z+. Therefore (4.14) holds. By Theorem 4.6, we
have

dim Hom A(L(1,0))(A(L(1,m2))⊗A(L(1,0)) L(1, n)(0), L(1, n)(0)) = 1.

Since for n ∈ Z+ such that n 	= p2, for all p ∈ Z+, L(1, n) = V (1, n) ∼= L(1, n)′,
(4.13) then follows from Lemma 4.4. ��

The following corollary is not used in this paper. But it is an interesting result.

Corollary 4.8. Let U be a highest weight module for the Virasoro algebra generated by
the highest weight vector u(r) such that

L(0)u(r) = r2u(r), L(k)u(r) = 0, r ∈ Z+\{0}.
Let m, n ∈ Z+\{0} be such that m 	= n and m, n are not perfect squares. Then

IL(1,0)

(
U

L(1,m) L(1, n)

)

= 0.

Proof. If U is irreducible, the lemma immediately follows from Proposition 4.2 and The-
orem 4.7. Otherwise, let U ′ be the graded dual of U . Then U ′ contains an irreducible
submodule W (r) which is isomorphic to L(1, r2). By Theorem 4.7,

IL(1,0)

(
L(1, n)

W (r) L(1,m)

)

= 0.

U ′ contains a submodule W (r+1) such that W̄ (r+1) = W (r+1)/W (r) is an irreducible
L(1, 0)-module isomorphic to L(1, (r + 1)2). Again by Theorem 4.7, we have

IL(1,0)

(
L(1, n)

W̄ (r+1) L(1,m)

)

= 0.
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This implies

IL(1,0)

(
L(1, n)

W (r+1) L(1,m)

)

= 0.

Continuing the above steps, we deduce that

IL(1,0)

(
L(1, n)

W L(1,m)

)

= 0

for any proper submodule W of U ′.
We now claim that

IL(1,0)

(
L(1, n)

U ′ L(1,m)

)

= 0.

Let Y ∈ IL(1,0)

(
L(1, n)

U ′ L(1,m)

)

be a nonzero intertwining operator. Then Y(u, z) 	= 0

for some u ∈ U ′. Since U is a highest weight module for the Virasoro algebra, there
exists a proper submodule W of U ′ such that u ∈ W. This shows that

IL(1,0)

(
L(1, n)

W L(1,m)

)

	= 0,

a contradiction.
Using Proposition 4.2 we conclude that

dim IL(1,0)

(
U

L(1,m) L(1, n)

)

= dim IL(1,0)

(
L(1, n)

U ′ L(1,m)

)

= 0,

as desired. ��

5. Uniqueness of L(1/2, 0) ⊗ L(1/2, 0)

In this section we prove the main theorem in this paper:

Theorem 5.1. If V is a simple, rational and C2-cofinite vertex operator algebra such
that V1 = 0, c = c̃ = 1, V is a sum of highest weight modules for the Virasoro algebra
and dim V2 ≥ 2, then dim V2 = 2 and V is isomorphic to L(1/2, 0)⊗ L(1/2, 0).

From now on we assume that V satisfies all the assumptions given in Theorem 5.1.
First we notice that Vn = 0 if n < 0 and V0 = C1 (see [DGL]). Also there is a unique
symmetric, non-degenerate invariant bilinear from (, ) on V such that (1, 1) = 1 (see
[L1]). Then for any u, v, w ∈ V,

(u, v)1 = Resz z−1Y (eL(1)z(−z−2)L(0)u, z−1)v.

In particular, the restriction of the form to each homogeneous subspace Vn is non-degen-
erate and

(un+1v,w) = (v, u−n+1w)
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for all u, v ∈ V2 and w ∈ V . V2 is a commutative non-associative algebra with the
product ab = a1b for a, b ∈ V2 and the identity ω

2 (cf. [FLM]). For a, b ∈ V2 we have
(a, b)1 = a3b. Moreover, the form on V2 is associative. That is, (ab, c) = (a, bc) for
a, b, c ∈ V2.

By [R], either there is a nontrivial nilpotent element x ∈ V2 or V2 is spanned by
idempotent elements.

Lemma 5.2. If V2 is spanned by the idempotent elements, then V is isomorphic to
L(1/2, 0)⊗ L(1/2, 0).

Proof. Let x ∈ V2 be a nontrivial idempotent element. Set ω1 = 2x and ω2 = ω − 2x .
Then ωi are Virasoro elements [M1]. It follows from the proof of Theorem 3.1 of [ZD]
that V contains L(c1, 0) ⊗ L(c2, 0) as a subalgebra for some complex numbers c1, c2
such that c1 +c2 = 1. In fact, L(ci , 0) is isomorphic to the subalgebra generated byωi . It
then follows from the proof of Lemmas 4.5 and 4.6 of [ZD] that both c1 and c2 are 1/2.
That is, V contains rational vertex operator algebra L(1/2, 0)⊗ L(1/2, 0) (see [DMZ]
and [W]) as a subalgebra and V is a completely reducible L(1/2, 0)⊗L(1/2, 0)-module.
Since the irreducible modules of L(1/2, 0)⊗ L(1/2, 0) are L(1/2, h1)⊗ L(1/2, h2) for
hi ∈ {0, 1

2 ,
1

16 } and dim V0 = 1, dim V1 = 0, we immediately see that V = L(1/2, 0)⊗
L(1/2, 0). In particular, dim V2 = 2. ��

We now deal with the case that there exists 0 	= x ∈ V2 such that x2 = 0. There are
two cases: (1) (ω, x) 	= 0; (2) (ω, x) = 0.

Lemma 5.3. We must have (ω, x) = 0.

Proof. If (ω, x) 	= 0, we can assume that (ω, x) = 1. Then the component operators
W (n) of Y (x, z) = ∑

n∈Z
W (n)z−n−2 and the component operators L(n) of the Y (ω, z)

generate a copy of the W -algebra W (2, 2) with central charge 1, where W (2, 2) is an
infinite dimensional Lie algebra with basis Lm,Wm,C for m ∈ Z and Lie brackets,

[Lm, Ln] = (m − n)Lm+n +
m3 − m

12
δm+n,0C,

[Lm,Wn] = (m − n)Wm+n +
m3 − m

12
δm+n,0C,

[Wm,Wn] = 0

for m, n ∈ Z, where C is a central element( see [ZD]).
Let c, h1, h2 ∈ C and denote by V (c, h1, h2) the Verma module for W (2, 2) with

central charge c and highest weight (h1, h2). Then V (c, h1, h2) = U (W (2, 2))/Ic,h1,h2 ,

where Ic,h1,h2 is the left ideal of the universal enveloping algebra U (W (2, 2)) generated
by Lm,Wm, C − c, L0 − h1 and W0 − h2 for positive m. By PBW theorem V (c, h1, h2)

has basis

{W−m1 · · · W−ms L−n1 · · · L−nt 1(h1,h2)|m1 ≥ · · · ≥ ms ≥ 1, n1 ≥ · · · ≥ nt ≥ 1},
where 1(h1,h2) = 1 + Ic,h1,h2 . It is standard that V (c, h1, h2) has a unique maximal
submodule J (c, h1, h2) so that L(c, h1, h2) = V (c, h1, h2)/J (c, h1, h2) is an irre-
ducible highest weight module of W (2, 2). By Theorem 2.1 of [ZD], if c 	= 0 then
J (c, 0, 0) = U (W (2, 2))L−11(0,0) + U (W (2, 2))W−11(0,0) and L(c, 0, 0) has a basis

{W−m1 · · · W−ms L−n1 · · · L−nt 10|m1 ≥ · · · ≥ ms > 1, n1 ≥ · · · ≥ nt > 1}, (5.1)

where 10 is the canonical highest weight vector of L(c, 0, 0).
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Let U be the vertex operator subalgebra generated by ω, x . Then U is a highest
weight W (2, 2)-module with highest weight vector 1 such that Wn acts as W (n) and Ln
acts as L(n) for all n ∈ Z. Since L(−1)1 = W (−1)1 = 0, we see that U is isomorphic
to L(1, 0, 0). By (5.1), U has q-character

chqU = q−1/24
∏

n>1(1 − qn)2
.

By Proposition 4.2 of [ZD], the coefficients of η(q)chqU = 1−q∏
n>1(1−qn)

grow faster than

any polynomial in n. But this is a contradiction as the coefficients of η(q)chq V satisfy
the polynomial growth condition by Lemma 2.6. ��

So we can now assume that (ω, x) = 0. Since L(1)x ∈ V1 and (ω, x) = (L(2)x, 1)
we see that x is a highest weight vector for the Virasoro algebra. By the fact that the
bilinear form (·, ·) on V is non-degenerate and (ω, ω) = 1

2 , there exists y ∈ V2 such
that (x, y) = 1, (y, ω) = 0. So (L(2)y, 1) = 0. This means that L(2)y = 0. Since
L(1)y ∈ V1 = 0, we deduce that y is a highest weight vector for the Virasoro algebra.
Assume that

xy = aω + αx + βy + u,

where α, β ∈ C , and u ∈ V2 such that (u, x) = (u, y) = (u, ω) = 0. Note that

(x, y) = 1

2
(x, yω) = 1

2
(xy, ω)

and (ω, ω) = 1
2 . We have a = 4. Since (y, xx) = (xy, x) = β(x, y) = 0, it follows

that β = 0. Therefore

xy = 4ω + αx + u.

It is obvious that u is a highest weight vector for the Virasoro algebra.
The following lemma is an immediate consequence of the commutator formula in

vertex operator algebras.

Lemma 5.4. Let v be a highest weight vector for the Virasoro algebra with highest
weight 2. Then

[L(m), vn] = (m − n + 1)vn+m

for all m, n ∈ Z.

Lemma 5.5. Assume that x−1x = 0. Then we have

(1) u1x = −10x,
(2) u0x = −5x−21.

Proof. Since Vn = 0 for n < 0, we have xn x = 0, for n ≥ 4. By the fact that
x1x = x2 = 0, we have (x, x) = (x3x, 1) = (ω/2, x2) = 0. So x3x = 0. Using the
skew symmetry Y (x, z)x = eL(−1)zY (x,−z)x we see that

x0x = −x0x + L(−1)x1x = −x0x + L(−1)x2 = −x0x .
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This proves that x0x = 0. Note that x2x = 0, since V1 = 0. So we have xn x = 0 for
n ≥ 0. Thus

Y (x, z1)Y (x, z2) = Y (x, z2)Y (x, z1)

and Y (x−1x, z) = Y (x, z)Y (x, z) = 0. In particular,

x1x1 + 2
∑

i≥1

x1−i x1+i = 0

and

(x1x1 + 2
∑

i≥1

x1−i x1+i )y = x1x1 y + 2x = 10x + x1u = 0.

This proves (1).
For (2), we apply the zero operator

∑
i≥0 x−i xi+1 to y to obtain

0 = x0x1 y + x−2x3 y = x0(4ω + αx + u) + x−21 = 5x−21 + x0u,

where we have used Lemma 5.4. Thus, x0u = −5x−21. Using the skew symmetry we
see that

u0x = −x0u + L(−1)x1u = 5x−21 − 10x−21 = −5x−21,

as desired. ��
From now on we redefine y as y = y + α

10 u. It follows from Lemma 5.5 that x1 y =
y1x = 4ω + u. Although this new y is again a highest weight vector for the Virasoro
algebra, we cannot assume (y, u) = 0 any more.

Corollary 5.6. (1) [um, xn] = 5(n − m)xm+n−1 for m, n ∈ Z.
(2) (u, u) = −10.

Proof. (1) follows from Lemma 5.5 and the commutator formula

[um, xn] =
∑

i≥0

(
m

i

)

(ui x)m+n−i .

For (2) we compute (x1 y, x1 y) = (4ω + u, 4ω + u) = 8 + (u, u). On the other hand,

(x1 y, x1 y) = (y, x1(4ω + u)) = (y, 8x − 10x) = −2.

That is, (u, u) = −10. ��
Lemma 5.7. Assume that x−1x = 0. Then there exist a, b ∈ C such that v = u−1x +
ax−31 + bL(−2)x is a nonzero highest weight vector of weight 4 for the Virasoro
algebra.
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Proof. We first use the conditions L(1)v = L(2)v = 0 to determine a, b.Using Lemmas
5.4 and 5.5 we have

L(1)v = L(1)u−1x + aL(1)x−31 + bL(1)L(−2)x

= 3u0x + 5ax−21 + 3bx−21
= (−15 + 5a + 3b)x−21

and

L(2)v = L(2)u−1x + aL(2)x−31 + bL(2)L(−2)x

= 4u1x + 6ax + b(4L(0) +
1

2
)x

= (−40 + 6a + b(8 +
1

2
))x .

So a = 15

49
, b = 220

49
are uniquely determined by the linear system

5a + 3b = 15, 12a + 17b = 80.

It is clear that L(n)v = 0 for n > 2.
We now prove that v is nonzero. It is enough to prove that y3v 	= 0. We have the

following computation:

y3v =
3∑

i=0

(
3

i

)

(yi u)2−i x + u + a
3∑

i=0

(
3

i

)

(yi x)−i 1 + b(4y1 + L(−2)y3)x

= (y0u)2x + 3(y1u)1x + (y, u)x + u + 3ay1x + 4by1x + bω

= (−u0 y + L(−1)u1 y)2x + 3(y1u)1x + (y, u)x + u + (3a + 4b)(4ω + u) + bω

= −u0 y2x +y2u0x−2(u1 y)1x +3(y1u)1x + (y, u)x + (12a + 17b)ω + (3a + 4b + 1)u

= −5y2x−21 + (u1 y)1x + (y, u)x + (12a + 17b)ω + (3a + 4b + 1)u.

Thus we have

(y3v, u) = (−5y2x−21 + (u1 y)1x + (y, u)x + (12a + 17b)ω + (3a + 4b + 1)u, u)

= −5(x−21, y0u) + (u1 y, x1u) + (3a + 4b + 1)(u, u)

= −5(x−21,−u0 y + L(−1)u1 y)− 10(u1 y, x)− 10(3a + 4b + 1)

= 5(u2x−21, y)− 5(L(1)x−21, u1 y) + 100 − 10(3a + 4b + 1)

= −100(x, y)− 20(x, u1 y) + 100 − 10(3a + 4b + 1)

= 200 − 10(3a + 4b + 1) = 60

49
	= 0.

The proof is complete. ��
Lemma 5.8. Assume that x−1x = 0. Let v = u−1x + ax−31 + bL(−2)x be the nonzero
highest weight vector given in Lemma 5.7. Then xiv = 0 for all i ≥ 0.
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Proof. Since x−1x = 0, it follows that x−2x = 1

2
L(−1)x−1x = 0. So for i ≥ 0, we

have

xiv = xi u−1x + axi x−31 + bxi L(−2)x

= 5(−1 − i)xi−2x + u−1xi x + b(i + 1)xi−2x + bL(−2)xi x = 0,

as desired. ��
Lemma 5.9. V is a completely reducible module for the Virasoro algebra.

Proof. By the assumption, V is a sum of highest weight modules for the Virasoro alge-
bra. We claim that any highest weight module for the Virasoro algebra generated by a
highest weight vector w ∈ V with highest weight n is isomorphic to L(1, n). If not, let
U be the highest weight module generated by w for the Virasoro algebra. Then U has
a unique maximal submodule M generated by a highest weight vector f . Then we can
write f as a linear combination of L(−n1) · · · L(−nk)w for n1 ≥ · · · ≥ nk ≥ 1. Let X
be a highest weight module in V for the Virasoro algebra generated by a highest weight
vector g. It is clear that

(L(−n1) · · · L(−nk)w, g) = (w, L(nk) · · · L(n1)g) = 0,

and so ( f, g) = 0. Let L(−m1) · · · L(−m p)g ∈ X such that mi > 0 and p ≥ 1. Then

( f, L(−m1) · · · L(−m p)g) = (L(m p) · · · L(m1) f, g) = 0.

This shows that ( f, V ) = 0. Since the form is non-degenerate, this is impossible. As a
result, V is a completely reducible module for the Virasoro algebra. ��

We now can complete the proof of Theorem 5.1. Let v be the vector given in Lemma
5.7 if x−1x = 0, otherwise let v = x−1x . Then v is a nonzero highest weight vector for
the Virasoro algebra with highest weight 4 such that xiv = 0 for all i ≥ 0. It follows
from Lemma 5.9 that highest weight modules generated by x and v are isomorphic to
L(1, 2) and L(1, 4) respectively. By Proposition 11.9 of [DL], Y (x, z)v 	= 0 as V is
simple. Thus there exists n > 0 such that x−nv 	= 0 and x−mv = 0 for all m < n.
Then x−nv is a highest weight vector for the Virasoro algebra with highest weight n + 5
and generates an irreducible highest weight module isomorphic to L(1, n + 5). As a

result we have a nonzero intertwining operator of type

(
L(1, n + 5)

L(1, 4), L(1, 2)

)

. This is a

contradiction by Theorem 4.7. Hence there is no nontrivial nilpotent element in V2 and
Theorem 5.1 holds by Lemma 5.2. ��
Remark 5.10. As we pointed out in [ZD] the assumption c = c̃ in Theorem 5.1 is nec-
essary. We believe that the assumption that V is a sum of highest weight modules for
the Virasoro algebra is unnecessary. But we do not know how to prove the main result
without this assumption in this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial
License which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited.
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