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Abstract: We consider a modification of the three-dimensional Navier—Stokes equations
and other hydrodynamical evolution equations with space-periodic initial conditions in
which the usual Laplacian of the dissipation operator is replaced by an operator whose
Fourier symbol grows exponentially as e/¥/%d at high wavenumbers |k|. Using estimates
in suitable classes of analytic functions, we show that the solutions with initially finite
energy become immediately entire in the space variables and that the Fourier coefficients
decay faster than ¢~ k/ka) In(1kI/ka) for any C < 1/(21n 2). The same result holds for the
one-dimensional Burgers equation with exponential dissipation but can be improved:
heuristic arguments and very precise simulations, analyzed by the method of asymptotic
extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely
of the above form with C = C, = 1/1In 2. The same behavior with a universal constant
C. is conjectured for the Navier—Stokes equations with exponential dissipation in any
space dimension. This universality prevents the strong growth of intermittency in the
far dissipation range which is obtained for ordinary Navier—Stokes turbulence. Possible
applications to improved spectral simulations are briefly discussed.

1. Introduction

More than a quarter of a millenium after the introduction by Leonhard Euler of the equa-
tions of incompressible fluid dynamics, the question of their well-posedness in three
dimensions (3D) with sufficiently smooth initial data is still moot [1-4] (see also many
papers in [5] and references therein). Even more vexing is the fact that switching to
viscous flow for the solution of the Navier—Stokes equations (NSE) barely improves the
situation in 3D [6—10]. Finite-time blow up of the solution to the NSE can thus not be
ruled out, but there is no numerical evidence that this happens.

In contrast, there is strong numerical evidence that for analytic spatially periodic
initial data both the 3D Euler and NSE have complex space singularities. Indeed, when
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such equations are solved by (pseudo-)spectral techniques the Fourier transforms of
the solution display an exponential decrease at high wavenumbers, which is a sig-
nature of complex singularities [11]. This behavior was already conjectured by von
Neumann [12] who pointed out on p. 461 that the solution should be analytic with
an exponentially decreasing spectrum. Recently Li and Sinai used a Renormalization
Group method to prove that for certain complex-valued initial data the 3D NSE display
finite-time blow up in the real domain (and, as a trivial corollary, also in the complex
domain) [13].

For some PDEs in lower space dimensions explicit information about the position
and type of complex singularities may be available. For example, complex singularities
can sometimes be related to poles of elliptic functions in connection with the reaction
diffusion equation [14] and 2D incompressible Euler equations in Lagrangian coordi-
nates [15]. The best understood case is that of the 1D Burgers equation with ordinary
(Laplacian) dissipation:! its singularities are poles located at the zeroes of the solutions
of the heat equation to which it can be mapped by using the Hopf—Cole transformation
(see, e.g., [16,17] and references therein).

We now return to the 3D NSE with real analytic data. It is known that blow up in
the real domain can be avoided altogether by modifying the dissipative operator, whose
Fourier-space symbol is jt|k|?, to a higher power of the Laplacian with symbol |k|>*
(o > 5/4) [6,18]. The numerical evidence is however that complex singularities cannot
be avoided by this “hyperviscous” procedure, frequently used in geophysical simulations
(see, for example, [19]).

Actually, we are unaware of any instance of a nonlinear space-time PDE, with the
property that the Cauchy problem is well posed in the complex space domain for at least
some time and which is guaranteed never to have any complex-space singularities at a
finite distance from the real domain. In other words the solution stays or becomes entire
for all + > 0. Here we shall show that solutions of the Cauchy problem are entire for a
fairly large class of pseudo-differential nonlinear equations, encompassing variants of
the 3D NSE, which possess “exponential dissipation”, that is dissipation with a symbol
growing exponentially as e/kI/k¢ with the ratio of the wavenumber |k| to a reference
wavenumber kq.

The paper is organized as follows. In Sect. 2 we consider the forced 3D incompress-
ible NSE in a periodic domain with exponential dissipation. The initial conditions are
assumed just to have finite energy. The main theorem is established using classes of
analytic functions whose norms contain exponentially growing weights in the Fourier
space [20,21]. In Sect. 3 we show that the Fourier transform of the solution decays at
high wavenumbers faster than exp (—Clg In l;) forany C < 1/(21n2). Here, k= |k|/ka
is the nondimensionalised wavenumber. In Sect. 4 we briefly present extensions of the
result to other instances: different space dimensions and dissipation rates, problems for-
mulated in the whole space and on a sphere, and different equations. In Sect. 5 we then
turn to the 1D Burgers equation with a dissipation growing exponentially at high wave-
numbers, for which the same bounds hold as for the 3D Navier—Stokes case. However in
the Burgers case, simple heuristic considerations (Sect. 5.1) and very accurate numeri-
cal simulations performed by two different techniques (Sects. 5.2 and 5.3), indicate that
the leading-order asymptotic decay is precisely exp ((—1/In2)k In k). We observe that
the heuristic approach, which involves a dominant balance argument applied in spatial
Fourier space, is also applicable to the 3D Navier—Stokes case with exactly the same

! The case of the Burgers equation with modified dissipation will be considered in Sect. 5.
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prediction regarding the asymptotic decay. In the concluding Sect. 6 we discuss open
problems and a possible application.

2. Proof that the Solution is Entire

We consider the following 3D spatially periodic Navier—Stokes equations with an expo-
nential dissipation (expNSE)

ad
—M+u-Vu=—Vp—,uDu+f, V-ou=0, 2.1)

ot
u(x,0) = up(x). (2.2)

Here, D is the (pseudo-differential) operator whose Fourier space symbol is 2 /%! that
is a dissipation rate varying exponentially with the wavenumber |k|, ug is the initial
condition, f is a prescribed driving force and p and o are prescribed positive coeffi-
cients. The problem is formulated in a periodic domain €2 (for simplicity of notation we
take Q = [0, 277 ]%). The driving force is assumed to be a divergence-free trigonometric
polynomial in the spatial coordinates. For technical convenience we use o in the state-
ments and proofs of mathematical results, while the use of the reference wavenumber
kg = 1/(20) is preferred when discussing the results.

The initial condition is taken to be a divergence-free periodic vector field with a finite
L? norm (finite energy).

As usual the problem is rewritten as an abstract ordinary differential equation in a
suitable function space, namely

d
d—’: + e Ay B, w) = £ (2.3)
u(0) = ug; (2.4)
where A := —V? and B(u, u) is a suitable quadratic form which takes into account the

nonlinear term, the pressure term and the incompressibility constraint (see, e.g. [6,7,9]).
Note that the Fourier symbol of AY2 s |k|.

The problem is formulated in the space H := {¢ € (L*(Q))* : ¢ is periodic,
f ¢dx =0,V - ¢ = 0}. Here, forany A > 0, the Fourier symbol of the operator e“‘mls
given by ekl where k € Z3\{(0, 0, 0)}.

To prove the entire character, with respect to the spatial variables, of the solution
u(t) of expNSE for ¢ > 0, it suffices to show that its Fourier coefficients decrease faster
than exponentially with the wavenumber |k|. This will be done by showing that, for any
A > 0, the L? norm of e“‘l/zu, the solution with an exponential weight in Fourier space,
is finite. As usual, we here denote the L? norm of a real space-periodic function f by

| f|:= \/ f[o P | £ (x)|2dx. Moreover, H" will be the usual L? Sobolev space of index
m (i.e., functions which have up to m space derivatives in L?).

The main result (Theorem 2.1) will make use of the following proposition which was
inspired by [20] (see also [21])

Proposition 2.1. Leta > 0, 8 > 0, kc > 3 and ¢ € dom (e @A) Then

2—a(k) a(k)
e?A” . @5

"B, p)| < Ca (1(B))2®

}e(o&ﬂ)A”z(p
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where Ca is a universal constant and
K
_ K _
Le(B) = sup xKe P* = (—) e .
0<x<oo :3

Notation. In Proposition 2.1 and also in the sequel we use the following notation (to
avoid fractions in exponents):

(2.6)

2
a(x) —i, d(x) := K+5,
2K 2% —5 en
e()__4/(—5 fe) = 2K ’
m T T o TS

Proof. Letw € H.By using the Fourier representations ¢(x) = >, e!!* @ and w(x) =
>, ek %y and Parseval’s theorem, we have

(2711)3 (eaAl/2B(g0’ o). u)) _ Z Ikl Z

keZ3 k0

(@r-im)p | -0y, (2.8)
l+m=k; [,m##0

where the * means complex conjugation.
Since e?*l < e@lml+elll when k = | + m, we can estimate the absolute value of the
right-hand side from above as

I 2 " N
<> D> Mgl imle™ |Gl i

k#0 l+m=k, [, m#0

1
~ @n)’ /q)(x)\lf(x)W(x)dx = WH‘I’HLOo |®f W],

(2.9)
where the functions ®(x), W(x) and W (x) are given by
o(x) = > e Mg le!™, (2.10)
170
Wx) = mle|@yle ", 2.11)
m=#0
and
W) = [ele! (2.12)
k#0

and the last inequality follows from the Cauchy—Schwarz inequality.
By Agmon’s inequality [22] (see also [7]) in 3D we have

1 1 1 1
Wiz < CallWl;, W7, < Ca |A?W|2 [AW]2

_ CA ‘AeaAl/ng‘ ‘A3/2e0‘A1/2§0

, (2.13)
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where C5 > Oisauniversal constant. By using (2.10), (2.13) and the fact that |W| = |w]|,
we obtain

1 1
|4 Bg. @), w)| = Ca e o] |41 | [aTet o i @14)

And by using the interpolation inequality between L? and H*, where x > 3, we obtain>

2—a(k) K a(x)
(@B, @), w)] = Cale [T |5 T ul @a1s)

Now, to obtain the inequality in Proposition 2.1, we just need to estimate the L(H)
operator norm

e

< sup x¥eP¥ = (f) e = 1.(B). (2.16)

L(H) 0<x<o0 ,3

This concludes the proof of Proposition 2.1.

Next, we state and present the proof of the main theorem. The steps of the proof are
made in a formal way; however, they can be justified rigorously by establishing them first
for a Galerkin approximation system and using the usual Aubin compactness theorem
to pass to the limit (see, e.g. [6,7,9]). Furthermore, we do not assume that the initial
condition u is entire; it is only assumed to be square integrable, although it will become

entire for any ¢ > 0. This is why in estimating L norms of the solution with exponential
weights we have to stay clear of t = 0.

Theorem 2.1. Let ug € H, fix T > 0 and let f(t) = f(.,t) be an entire function with
respect to the spatial variable x. Then for every n = 0, 1,2... there exist constants
Cy, Cn, K, and K, which depend on |ug|, u, T, o and on the norm

T 2
/ e o as, 2.17)
0
moreover there exist integers py, q, > 1 such that
2 K
e""Al/zu(t)‘ < %+ Cy. forall 1 € (0,T] (2.18)
and
T 1 Al/2 2 Iz,, —
/ leDoA (6)2ds < o +Cy,, forallt e (0,T], (2.19)
t n

where u(t) is the solution of (2.3)—(2.4).

Corollary 2.1. Let ug € H, T > 0 and let f(x,t) be an entire function with respect to

2
the spatial variable x such that for every M > 0 we have fOT ‘eM”Al/zf(s)‘ ds < oo.

Then, the solution u(t) of (2.3)—(2.4) is an entire function with respect to the spatial
variable for all t € (0, T, and satisfies the estimates (2.18) and (2.19) in Theorem 2.1
foranyn=1,2,...

2 The simplest formulation is obtained for k = 5 but the optimization of the bound for the law of decay in
Sect. 3 requires using arbitrary «.
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Proof of Corollary2.1. Consider the Fourier series representation

u(x, 1) =y e ik, ). (2.20)
k
From (2.18) and Parseval’s theorem, we have, foranyn =0, 1,2...,
S e M ik, 1)) < oo, 2.21)
k
for ¢t > 0. In (2.20) we change x to a complex location z = x + 1y and obtain
u(x+iy, 1) =Y e ik 1) (2.22)
k
= > [ere ] [e W age, n]. (2.23)
k
For any n = 1,2, ..., the series (2.23) of complex analytic functions converges uni-

formly in the strip |y| + 1 < on. This is because the sum in (2.23) is shown to be
bounded, for any y, by use of the Cauchy—Schwarz inequality applied to the two brack-
eted expressions and use of (2.21) with |y|+1 < on. Hence the Fourier series represen-
tation converges in the whole complex domain. This concludes the proof of the entire
character of the solution with respect to the spatial variables.

Remark. This corollary just expresses the most obvious part of the Paley—Wiener
Theorem.

Proof of Theorem2.1. The proof of the theorem proceeds by mathematical induction.

Step n = 0. We prove the statement of the theorem for n = 0. We take the inner prod-
uct of (2.3) with u and use the fact that (B(u, u), u) = 0 to obtain (when there is no
ambiguity we shall henceforth frequently denote u(¢) by u)

12
ey

P (fiu) = @A £ 674y (2.24)

< e ]
—_g A2

- |G oA f|2

= —2M

where Young’s inequality has been used to obtain the third line. Therefore

——\u
2dt ”

12
ey

+ %|e"A|/2u|2, (2.25)

—o A2 £12
eaAl/zu‘2 < le 7 f| )

d 5
+ 2.26
dtlul J " (2.26)

Integrating the above from 0 to 7', we obtain

T
Iu(t)I2+u/
0

Hence

2 1 [T 2
e”Amu(s)‘ ds < Co = |u0|2+—/ ‘e*‘”“”f(s)‘ ds.  (2.27)
M Jo

lu(t)*> < Co, (2.28)
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H/
0

From (2.28) and (2.29) we obtain (2.18) and (2.19) for the case n = 0. Here Cy is given
by (2.27), Ko = 0, Ko = 0 and Cyp = Cy. Notice that since Ko = Ko = 0 there is
no need to determine the integers po and qq ; however, for the sake of initializing the
induction process we chose pg = go = 1.

Step n — n + 1. Assume that (2.18) and (2.19) are true up to n = m and we would like
2(m+o A2,

and

2
e”Al/zu(s)‘ ds < Co. (2.29)

to prove them for n = m + 1. Let us take the inner product of (2.3) with e
and obtain

2 2

172
‘ (m+D)o A2

172
1 ‘e(m+2)crA "

2dt
< |ig.xmmnea't,

+ ‘(B(u, u), ez(’”“)"Alﬂ”)‘

< ‘ mo Al/2 f‘ ‘ (m+2)0A1/2

172
+ ’em(’A B(u, u)

172
‘e(m+2)oA "

Now we use Proposition 2.1 to majorize the previous expression by

172 1/2
S ‘emUA f‘ )e(m+2)O'A ul + CA (lk(ﬂ))a(K)

gmoAl? e oAl 1+a(K). (2.30)
By Young’s inequality we have
Call (8)1P® emoAl?y e em2o Al Hraco
d(x)
2k =5 _ of 2k +5
< 1 w d(x) CA(K) (IK(’B))Za(K)f(K) ( )
K K
X ’emUAl/zu 2e(c) + ﬁ ’e(m+2)UAl/2u 2 . (231)
It follows that
4 ‘e(’””)‘”‘l/zu 2 u ‘e"”“’“‘”zu L2 ‘e’”"Al/zf‘z
2k =5 _ 2f
+ 2K o d(x) CA(K) (ZK(ﬂ))Za(K)f(K)
d(x)
2k +5 2e(k)
x ( ) ‘e’"“'”u . (2.32)
K
Now we integrate this inequality on the interval (s, t) C (0, T'), obtaining
t
‘e(m+l)rrAl/2u(t)‘2+M/ Al 1y 2 ds’
s
< ‘e(m+1)aAl/2u(S)‘2+z/t mao A2 dS/+C// maAl/2 / 28(x) ds/
B wJs
T
< ‘e(m+l)crA'/2u(s)‘2 + E/ ‘emcrAl/2 NG ds' +C' / maAl/2 / 2e(k) ds’
J— IL 0 9

(2.33)
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where we have set for brevity
d(x)
2k —5 f 2k +5
C'=Clu. puie) = = —u 4 CAY (e ()R (T) . (234)

and where [, (B) is given by (2.6).
Now we come to the point where we use the actual induction assumptions. We use
(2.18) and the midpoint convexity to estimate the integrand in the last integral:

26 e(k) e(x)
)emaAl/zu(t)‘ “_ (:{Tm . Cm) < 20 (me) +2/0¢ce0 . (2.35)

Whence it follows that

of
N
1 1 1
() o7 e(x) .
= 2 ¢ e(K)pm —1 Km (se(K)Pml [e(K)pm1>

! e(x)
e(K)pm - 1 "

4 of CYCZ(K)(I — ). (2.36)

2e(k)

172
e AT (s ds

/

+210 ¢ 2w (1 —5) < '@

X —
Se(K)pm_l

2
e+ A2 (o017 467 in (2.33), we obtain from (2.33)

Discarding the positive term u fA !
and (2.36)

2 2 9 (T 2
e(m+1)oA'/2u(t)‘ < ‘e(m+l)oA'/2u(S)) +_/ ‘emaA'/zf(s/) ds’
K Jo

1 1
() e(x) fc) ot ) (5
e oW pm — 1 5m et +270C G = ). (2.37)

Integrating this inequality with respect to s over (t/2, t) we get

1/2 2 2t 1/2 2 2 (T 12 2
om+o Al u(t)‘ <z / ‘e(m+l)aA/ u(s)‘ ds + _/ ‘emaA/ Fh| as
t Jip K“Jo

f e(x) e()pm—1
+ 2 (k) c’ Km (%) or + 2f(K)C/ Ce(K) 5 (238)
(e()pm — () pm —2) \1 "4

Note that p,, > 1 implies that

e(k)pm —2 > 0. (2.39)
By using (2.19), we have

2 2 gm+l 7 92 (T
oo <% (2) e 2 |
t I uwJjo

o) ¢ g &) &) pn—1
+ 2 C Ky (2) w2 e T (2.40)
(e(w)pm — D) pm —2) \ 1 "4

2
12
A F(sh| ds
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From this relation follows that (2.18) holds for m + 1 with

Pm+1 = max {€(k) pm — 1, gm + 1}, (2.41)
gm+1 = max {€(k) pm — 1, gm +1}. (2.42)

By the induction assumption we use (2.33) to estimate

T 2 2(117116 _
/ ‘e<m+])"A1/2u(s) ds < "G (2.43)
/2 tdm

From this estimate and the above we conclude the existence of the constants K;,.1, Cy,+1
and the integer p,,+1 such that (2.18) holds forn = m+1. Using the estimate that we have
just established in (2.18) for n = m + 1, and substituting this in (2.33), we immediately
obtain the estimate (2.19) for n = m + 1. This concludes the proof of Theorem 2.1.

3. Rate of Decay of the Fourier Coefficients

The purpose of this section is to specify the behavior of various constants appearing in
the preceding section to obtain the rate of decay with the wavenumber of the Fourier
coefficients i (k, t) for t > 0. We again consider the 3D case in the periodic domain.
Since the decay may depend on the rate of decay of the Fourier transform of the forc-
ing term f(x, t), for simplicity we assume zero external forcing, which we expect to
behave as the case with sufficiently rapidly decaying forcing. The adaptation to suffi-
ciently regular forced cases, for example a trigonometric polynomial, is similar but more
technical.? Furthermore, it is enough to prove the decay result up to a time 7' such that
1/N:=TU/L <1, where L and U are a typical length scale and velocity of the initial
data. Extending the results to later times is easy (by propagation of regularity).

We shall show that the bound for the square of the L% norm of the velocity weighted
no Al/2

by e is a double exponential in n. Specifically, we have

Theorem 3.1. Let u(t) be the solution of (2.3)—(2.4)in [0, T]with f =0and0 < T <
L/U. Then for every k > 3 and § > 0, there exists a number A, depending on § and «k,
such that, for all integers n > 0,

2 AL an
oA ) 5(_) . re@.T) (3.1)
Ut
T 2 AL\
/ o2 ) dsf(_) . 1e©.T] (3.2)
] Ut
4k —5\"
where a, = (1+9) . (-3)
2k — 5

Corollary 3.1. For any t > 0 the function u(t) of (2.3)—(2.4) is an entire function in
the space variable and its (spatial) Fourier coefficients tend to zero in the following

3 1t is conceivable that the results can be extended to forces entire in the space variables whose Fourier
transforms decrease faster than e~ C KN IKT yjth sufficiently large C.
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faster-than-exponential way: there exists a constant A such that, forany 0 < ¢ < 1, we
have

Bes

_o(-g) AL &0
i, o) e Ao L o a |k|z(\/a) : (34)

where

4 — 5
Be,s =1n ((1 +9) 2i - 5) . (3.5)

Proof of Corollary3.1. Since we are dealing with a Fourier series, the modulus of any

. . . 1/2 . .
Fourier coefficient of the function e®*)o4 / u(r) cannot exceed its L2 norm, hence it

is bounded by (3.1). Thus, discarding a factor (271)_3/2 < 1, we have for all k and n,

((1+8) e(x))"
S —no k| AL ) AL By,
luk, )] <e Tr =exp| In Ee S —nolkl), (3.6)

where e(k) is defined in (2.7). Now choosing

1 AL
In k| > 1 Bes In,/ ==, (3.7)
e o Ut

we obtain with n = In |k|/ B, s the following estimate:

o | — BesIn VAL/U? VAL/U’)} < o Ty Wl Ikl 3.9)

ik, 1)] < ex [— k| In [K] (
P17 Bes o In [K]

Remark 3.1. Since ¢ and é can be chosen arbitrarily small and « arbitrarily large, Corol-
lary 3.1 implies that, in terms of the dimensionless wavenumber k = 2ok, the Fourier

amplitude has a bound (at high enough k) of the form e=CkInk gor any C < 1/(2In2).
We shall see that the upper bound for the constant C can probably be improved to 1/1n 2.

Proof of Theorem3.1. We proceed again by induction. We assume that the following
inequalities hold:

2 K
enaAl/zu(t)‘ < ta_:’ (39)
and
T 2 K
etDo A2 (7 g < 21 (3.10)
t rén

where K, and a,, > 1 are still to be determined. Starting from expNSE (2.3), we take

2(n+1)o Al/?

the inner product with e u. Then we obtain from Proposition 2.1 with « = no
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and 8 = 20,
ld ‘e(n+l)UA1/2u
2dt

=<

12
A" Bu, u)‘

172
o+ A u‘

2—a(x) 1+a(k)
1/2 1/2
enaA u e(n+2)¢7A u

< Ca (e (B))2*)

< 2k =5 M_d(K) Cif(’() (ZK(ﬁ))Za(K)f(K)
- 4k
2e(k) 2
% (1+a(k))d® [gnoal?, +% ‘e<"+2>‘”‘”2u‘ . 3.11)
Then it follows that
i ‘e(n+])aAl/2u)2+M ‘e(n+2)crAl/2u‘2
dt
_ dee) 2e(
< 2K2 5 M_d(’() C/z\f(/() (ll( (ﬂ))za(K)f(K) (2K2+ 5) ‘enUAl/zu ) . (312)
K K
By using the induction assumption we obtain
d 2 2 K,\ %"
al ‘e(n+l)6A1/2u‘ o ‘e(n+2)UAl/2u‘ <" (Tn) ’ (3.13)
dt tn
where we have set
d(x)
2k —5 _ of 2k +5
"= T = MO CXY () (—ZK ) : (3.14)

Renaming the time variable in (3.13) from 7 to s” and integrating over s’ from s to ¢
(with0 < s <t < T) we obtain

t
e(n+l)aA'/2u(t)‘2+M/ ‘e(n+2)oA'/2u(S/) 2ds/
S
< 1 ol Klf(;() 1 . 1 + e(n+1)aA1/2u(s) 2
a,,e(fc) -1 sane(K)—l tane(l()—l
1 7 (k) (n+DoAl/? ‘2
< —- — 4+ e u(s)| . 3.15
~ azek) — 1 " ganelo—l ) (3.15)

Omitting the positive integral term on the left-hand side of the inequality we obtain

etenoa g o1 o kew__L ‘e(””)‘ml/zu(s) > G316
ae(k) —1 san€lc)—1
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Choosing 1 < y < N® = (L/UT)? and integrating over s from ¢/y to ¢ we obtain

t 2
(y — 1); ‘e(n+l)UAl/2M(t)‘

< 1 ] C// Ke(K) (J/)ane(/()_z 1 ane(K)fz
~ ape(k) — layek) —2 n p ;

t 2 ne(k)—2
+/ ds < 1 1 c” K:(K) (Z)a (k
t/y t

ape(k) — 1 a,e(k) —2
+Ky, (%) : (3.17)

e(n+l)aA'/2u(S)

where we have used the induction assumption (3.10). We obtain thus the following
estimate:

R s SR (1)
y — 1 a,el) — la,e() -2 t
1 Y\ an+l
+ K (—) ; (3.18)
y—1 t

which holds forevery 0 < ¢t < T.

2
To estimate ftT ‘e(""z)"Al/zu(s)‘ ds we integrate (3.13) from ¢ to T':

T
M-
t

<" 1 Pl Ke(x); + ‘e(’“'l)gAl/Qu(t)’z. (3.19)
- azek)—1 " pane()-l

12 2
(2o Al u(s)‘ ds

Omitting the first term on the right-hand side and using (3.18) we obtain

r N All2 2 , 1 1
M/ ’e(n+ Yo M(S)‘ ds < cl—_—____ ¢ KY?(K)—
1 ane(k) — 1 tan€()—1
+ 1 1 1 c" Kr?(’() (Z)ane(l()—l
y —1 ayex) —1a,e(k)—2 t
1 y ap+1
+ K, (_) ) (3.20)
y —1 t
We conclude that since a,, > 1 and
ap+1<a, |2+ = aye(k), (3.21)
2k — 5
for a suitable constant E > 0 we have
2 ne
’e(n+l)aA1/2u(t)‘ < EKOW (g)u (x) 3.22)

and

T
e(n+2)dA1/2u(S) 2 < EKE&W 14 anel) . (3.23)
" t
t
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Since, fort < T,

y N° L\°1 L\ U
—_ < — = — - < _ —,
t Tt ur) + — \Ut L
it follows that
2 a, (1+8)e(k) ape(k)
‘e(n+])<7Al/2u(t)‘ < EK,?(K) L g (324)
Ut L
and
T 2 an(1+d)e(x) ane(x)
/ (2ol zu(s)‘ < pxew (L v . (325
P Ut L
This finishes the induction step.
From the above follows that we can take
4k — 5
nst = an (1 +8)— Kpe1 = EK®9. (3.26)

2k —5°

Note that in the induction step we use the assumption that a@,, > 1. This fixes the value
of ap = 1. The solution of the recursion relations is given by

a0y = (148 =3  mK, —mE— "' mk (3.27)
" 2%-5) " ST = ST

Finally, choosing a sufficiently large number A we get the desired estimates (3.1) and
(3.2). This concludes the proof of Theorem 3.1.

4. Remarks and Extensions for the Main Results

Although our main theorems are stated for the case of the 3D expNSE, their statements
and proofs are easily extended mutatis mutandis to arbitrary space dimensions d: with
exponential dissipation for any d the solution is entire in the space variables and the decay
of Fourier coefficients is bounded by exp(—C|k|In |k|) for any C < C, = 1/(2In2).
Some of the intermediate steps in the proof, such as the formulation of Agmon’s inequal-
ity, change with d but not the result about the constant 1/(21n 2).

We can also easily change the functional form of the dissipation.* One instance is a
dissipation operator D with a Fourier symbol e??¥I* with 0 < o < 1. One can prove
that the solution in this case satisfies

. K
S e ik, 1)]? < 4 Ca, (4.1)
k0 !

for all ¢+ € (0, T] and for all n. Hence the solution in this case belongs to C* but is
not necessarily an entire function. In fact it belongs to the Gevrey class G1/4. Gevrey

4 Note that the proof of Proposition 2.1 and Theorem 2.1 holds mutatis mutandis if we replace, in the
argument of the exponential, |k| by a subadditive function of |k| subject to some mild conditions, such as |k|*
with0 < o < 1.



532 C. Bardos, U. Frisch, W. Pauls, S. S. Ray, E. S. Titi

regularity with 0 < o < 1 does not even imply analyticity.” Actually, with such a dissi-
pation, the solutions are analytic even when o < 1. We shall return to this case of dual
Gevrey regularity and analyticity in Sect. 5.1.

Next, consider the case « > 1. The dissipation has a lower bound of the ordinary
exponential type, so that the entire character of the solution is easily established. How-
ever, for @ > 1 the bound exp(—C|k|In |k|) can be improved in its functional form, as
we shall see in Sect. 5.1.

Obviously, the results of Sects. 2 and 3 do still hold if we change the functional
form of the Fourier symbol of the dissipation at low wavenumbers |k| while keeping its
exponential growth at high wavenumber. One particularly interesting instance, to which
we shall come back in the next section on the Burgers equation and in the conclusion,
is “cosh dissipation”, namely a Fourier symbol —u(1 — cosh(k/kq)) with u > 0. The
dissipation rate at wavenumber much smaller than kq is then v|k|? with v = u/(2k4?),
just as for the ordinary Navier—Stokes equation.

It is worth mentioning that the key results of Sects. 2 and 3 still hold when the problem
is formulated in the whole space R? rather than with periodicity conditions. Similarly
they should hold on the sphere S2, a case for which spherical harmonics can be used
(see [23]).

Of course the result on the entire character of the solution, when exponential dis-
sipation is assumed, holds for a large class of partial differential equations. Besides
the exponential modification of the Navier—Stokes equations it applies to similar mod-
ifications, for example, of the magnetohydrodynamical equations and of the complex
Ginzburg-Landau equation

ou 82“+ﬁ +yluffu=0 (4.2)
— —a— u ul“u =0, .
ar Yox2 Y
where
Re o« >0, Re y > 0. 4.3)

The main idea would be in proving the analogue of Proposition 2.1 for the corresponding
nonlinear terms in the underlying equations following our proof combined with ideas
presented in [21 and 24].

5. The Case of the 1D Burgers Equation

The (unforced) one-dimensional Burgers equation with modified dissipation reads:

= (5.1)
ar Moy T T HEE '
u(x,0) = ug(x). (5.2)

We shall mostly consider the case of the cosh Burgers equation when D has the Fourier
symbol —u (1 — cosh(k/kq)). Since the cosh Burgers equation is much simpler than
expNSE we can expect to obtain stronger results or, at least, good evidence in favor of
stronger conjectures.

5 The special class when o = 1 of analytic functions is considered by some authors as one of the Gevrey
classes [20,21].
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Let us observe that the cosh Burgers equation can be rewritten in the complexified
space of analytic functions of z := x +1iy as

D 2D B g ) e — k) = 20 D], (5.3)

ot X 2
This is the ordinary Burgers equation with the dissipative Laplacian replaced by its cen-
tered second-order finite difference approximation, differences being taken in the pure
imaginary direction with a mesh 1/kq.

As already stated, Corollary 2.1 on the entire character of the solution and Corol-
lary 3.1 on the bound of the modulus of the Fourier coefficients by exp(—C |l€| In |I€|)
for any C < 1/(21n2) hold in the same form as for the expNSE. Of course, if the finite
differences were taken in the real rather than in the pure imaginary direction, the solution
would not be entire. Actually, (5.3) relates the values of the velocity on lines parallel to
the real axis shifted by =1/kq in the imaginary direction. It thereby provides a kind of
Jacob’s Ladder allowing us to climb to complex infinity in the imaginary direction. This
can be used to show, at least heuristically, that the complexified velocity grows with the
imaginary coordinate y as exp (C2!/k).

Such a heuristic derivation turns out to be equivalent to another derivation by dom-
inant balance which can be done on the Fourier-transformed equation, the latter being
not limited to cosh dissipation. Section 5.1 is devoted to Fourier space heuristics for
different forms of the dissipation. For exponential and cosh dissipation this suggests a
leading-order behavior of the Fourier coefficients for large wavenumber of the form
exp(—Cylk|In |k|) with C, = 1/In2, a substantial improvement over the rigorous
bound. Various numerical and semi-numerical results, discussed in Sects. 5.2 and 5.3,
support this improved result.

5.1. Heuristics: A dominant balance approach. We want to handle dissipation operators
D with an arbitrary positive Fourier symbol, taken here to be e”®), where G (k) is a real
even function of the wavenumber k € Z which is increasing without bound for £ > 0. It
is then best to rewrite the Burgers equation in terms of the Fourier coefficients. We set

u(x.t) = > ik, 1, (5.4)
keZ
and obtain from (5.1),
ou(k,r) ik
+ J—

o 5 a(p, Di(g, 1) = —pue’®hk, 1). (5.5)

p+q=k

This is the place where we begin our heuristic analysis of the large-wavenumber asymp-
totics. First, we drop the time derivative term since it will turn out not to be relevant to
leading order. (A suitable Galilean change of frame may be needed before this becomes
true.) For simplicity we now drop the time variable completely. The next heuristic step
is to balance the moduli of the two remaining terms, taking

i (k)| ~ e~ F®, (5.6)

where F'(k) is still to be determined but assumed sufficiently smooth and the symbol ~ is
used here to connect two functions “asymptotically equal up to constants and algebraic



534 C. Bardos, U. Frisch, W. Pauls, S. S. Ray, E. S. Titi

prefactors” (in other words, asymptotic equality of the logarithms). The convolution in
(5.5) can be approximated for large wavenumbers by a continuous wavenumber integral
~ [ e~ F(W=Fk=pr)gp Next we evaluate the integral by steepest descent, assuming that
the leading order comes from the critical point p = k/2, where the p-derivative of
F(p) + F(k — p) obviously vanishes. This will require that this point be truly a mini-
mum of F(p) + F(k — p). Balancing the logarithms of the nonlinear term and of the
dissipative term, we obtain the following simple equation for the function F (k):

k
2F (E) = F(k) — G(k). 5.7
This is a linear first order finite difference equation (in the variable In k) which is easily
solved for values of the wavenumber of the form k = 2":

G2) G4 N G(Z")}

FQ2" =2 |:F(1)+T+ ) e+ o

(5.8)

For exponential dissipation (and for cosh dissipation when |k|/kg > 1), we have

G (k) ~ 20 |k| and we obtain from (5.8), to leading order for large positive k,
F (k) Lk Fim20k=2 (5.9)
~ —klnk; =20k = —. .
In2 kd

If this heuristic result is correct — and the supporting numerical evidence is strong as we
shall see in Sects. 5.2 and 5.3 — the estimate given by Corollary 3.1 (adapted to the Burgers
case) that | (k)| < e~ CIkIIk] for sufficiently large |I€| andany C < C, = 1/(2In2)
still leaves room for improvement as to the value of C,. It can be shown that this domi-
nant balance argument remains unchanged if we reinsert the time-derivative term, since
its contribution is easily checked to be subdominant. Actually, the conjecture that the
solution of NSE is entire with exponential or cosh dissipation was based on precisely
this kind of dominant balance argument, which suggests a faster-than-exponential decay
of the Fourier coefficients.

When G (k) = 20 |k|* with @ > 1 we obtain to leading order

20

F >~ 1=

|k|. (5.10)
This is an even faster decay of the Fourier coefficients than in the exponential case (2.3).6

It is easily checked that for « > 1 the condition of having a minimum of F(p) +
F(k — p) at p = k/2 is satisfied. If however we were to use (5.10) for 0 < o < 1 the
condition would not be satisfied. In this case it is easily shown for the Burgers equation
and the NSE, by using a variant of the theory presented in Sect. 2, that the solution is in
the Gevrey class G, in the whole space R9. It is actually not difficult to show that the
solution is also analytic when 0 < & < 1, in a finite strip in C? about the real space R?.
For this it suffices to adapt to the proof of analyticity given for the ordinary NSE under
the condition of some mild regularity. Such regularity is trivially satisfied with the much
stronger dissipation assumed here [20].” We also found strong numerical evidence for
analyticity.

6 Actually, one can show, for the Burgers equation and the NSE that when « > 1 the Fourier coefficients
of the solution decay faster than exp(—C |k|* ™€) for any € > 0.

7 The first results on analyticity, derived in the more complex setting of flow with boundaries, were obtained
in [25].
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It is of interest to point out that, although analyticity is a stronger regularity
than Gevrey when 0 < o < 1, the Gevrey result implies a decay of the form
exp(—C|k|*In |k|), independently of the viscosity coefficient p, whereas analyticity
in a finite strip gives a decay of the form exp(—n|k|), where n depends on 1 [26].

5.2. Spectral simulation for the Burgers case. Here we begin our numerical tests on the
1D Burgers equation. So far we have a significant gap in the value of the constant C

appearing in the e ~C kI IK] estimate of the Fourier coefficient, between the bounds and a
heuristic derivation of the asymptotic behavior. In this section we shall exclusively con-
sider the case of the unforced Burgers equation with initial condition ug(x) = — sinx
and dissipation with arate 1 —cosh k. (Thus, # = 1 and kg = 1.) The numerical method
is however very easily extended to other functional forms of the dissipation and other
initial conditions. The spectral method is actually quite versatile. Its main drawback will
be discussed at the end of this section.

The standard way of obtaining a high-orders scheme when numerically integrating
PDE’s with (spatial) periodic boundary conditions is by the (pseudo)-spectral technique
with the 2/3 rule of alias removal [27]. The usual reason this is more precise than
finite differences is that the truncation errors resulting from the use of a finite number
N of collocation points (and thus a finite number N /3 of Fourier modes) decreases
exponentially with N if the solution is analytic in a strip of width § around the real
axis. Indeed this implies a bound for the Fourier coefficients at high |k| of the form
lu(k)| < e~ CIkl for any C < 4. In the present case, the solution being entire, the bound
is even better.

There are of course sources of error other than spatial Fourier truncation, namely
rounding errors and temporal discretization errors. Temporal discretization is a non-
trivial problem here because the dissipation grows exponentially with |k| and thus the
characteristic time scale of high-|k| modes can become exceedingly small. Fortunately,
these modes are basically slaved to the input stemming from nonlinear interaction of
lower-lying modes. It is possible to take advantage of this to use a slaving technique
which bypasses the stiffness of the equation (a simple instance of this phenomenon is
described in Appendix B of [28]). We use here the slaved scheme Exponential Time
Difference Runge Kutta 4 (ETDRK4) of [29] with a time step of 1073 .8

As to the rounding noise, it is essential to use at least double precision since otherwise
the faster-than-exponential decrease of the Fourier coefficients would be swamped by
rounding noise beyond a rather modest wavenumber. Even with double precision, round-
ing noise problems start around wavenumber 17, as we shall see. Hence it makes no sense
to use more than, say, 64 collocation points, as we have done.

Figure. 1 shows the discrepancy

Cnjak. Dl 1 S

D. k = )
iscr (k) k[In|k| _ In2

which, according to heuristic asymptotic theory (5.6)—(5.9), should converge to O as
k| — oo.

It is seen that the discrepancy falls to about 3.5% of the nominal value 1/ 1n 2 before
getting swamped by rounding noise around wavenumber 17.

8 This is far larger than would have have been permitted without the slaving. Actually it can still be increased
somewhat to 5 x 1073 without affecting the results.
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Discr (k)

Fig. 1. Discrepancy Discr, as predicted by (5.11), vs wavenumber & for data obtained by spectral simulation
in double precision; rounding noise becomes significant beyond wavenumber 17

It is actually possible to significantly decrease the discrepancy by using a better pro-
cessing of the numerical output, called asymptotic extrapolation, developed recently by
van der Hoeven [30] and which is related to the theory of transseries [31,32]. The basic
idea is to perform on the data a sequence of transformations which successively strip off
the leading and subleading terms in the asymptotic expansion (here for large |k|). Even-
tually, the transformed data allow a very simple interpolation (mostly by a constant).
The procedure can be carried out until the transformed data become swamped by round-
ing noise or display lack of asymptoticity, whichever occurs first. After the interpolation
stage, the successive transformations are undone. This determines the asymptotic expan-
sion of the data up to a certain order of subdominant terms. An elementary introduction
to this method may be found in [33], from which we shall also borrow the notation for
the various transformations: I for “inverse”, R for “ratio”, SR for “second ratio”, D for
“difference” and Log for “logarithm”. The choice of the successive transformations is
dictated by various tests which roughly allow to find into which broad asymptotic class
the data and their transformed versions fall. In the present case, the appropriate sequence
of transformations is: Log, D, D, I, D. Because of the relatively low precision of the data
it is not possible to perform more than five transformations, so that the method gives us
access only to the leading-order asymptotic behavior, namely | (k, 1)| ~ e~ C+kIIn Ikl
It may be shown that the constant C, = —1/ u®, where u® is the constant value of
the high-|k| interpolation u® (|k)) after the 5% stage of transformation. Figure. 2 shows
the discrepancy u (|k|) + In2. The absolute value of the discrepancy lingers around
0.002 to 0.005 before being swamped by rounding noise at wavenumber 17. Thus with
asymptotic extrapolation the discrepancy does not exceed 0.7% of the nominal value
In 2. The accuracy of the determination has thus improved by about a factor 5, compared
to the naive method without asymptotic extrapolation.

To improve further on this result and get some indication as to the type of sub-
dominant corrections present in the large-wavenumber expansion of the Fourier coeffi-
cients, it would not suffice to increase the spatial resolution, since rounding noise would
still swamp the signal beyond a wavenumber of roughly 17. Higher precision spectral



Entire Solutions of Hydrodynamical Equations with Exponential Dissipation 537

0.55

0.45

0.35

0.25

0.15

0.05

Discr (k)

-0.05

-0.15

-0.25

5 7 9 11 13 15 17 19 21
k

Fig. 2. Discrepancy Discr vs wavenumber k for the same data as in Fig. 1, but processed by a 5-stage asymptotic
extrapolation method

calculations are doable but not very simple because high-precision fast Fourier transform
packages are still in the experimental phase.

In the next section we shall present an alternative method, significantly less versatile
as to the choice of the initial condition because it exploits the algebraic structure of
a certain special class of solutions, but which also allows to work easily in arbitrary
precision and thus to make better use of asymptotic extrapolation for determining the
constant C,.

5.3. Half-space (Fourier) supported initial conditions. So far we have limited ourselves
to initial conditions that are real entire functions. Hence the Fourier coefficients had
Hermitian symmetry: #io(—k) = ij(k), where the star denotes complex conjugation.
With complex initial data there are no analytical results when the dissipation is exponen-
tial, even when the initial conditions are entire because the energy conservation relation
— now about a complex-valued quantity — ceases to give L>-type bounds. Actually, as
already pointed out, Li and Sinai [13] showed that the 3D NSE can display finite-time
blow up with suitable complex initial data. It is however straightforward to adapt to
complex solutions the heuristic argument of Sect. 5.1 and to predict a high-wavenumber
leading-order term exactly of the same form as for real solutions. This is of interest
since we shall see that there is a class of periodic complex initial conditions for which,
provided the Burgers equation is written in terms as the Fourier coefficients as in [34]
and [13], any given Fourier coefficient can be calculated at arbitrary times ¢ with a finite
number of operations, most easily performed on a computer, by using either symbolic
manipulations or arbitrary-high precision floating point calculations.

For the case of the Burgers equation, this class consists of initial conditions having
the Fourier coefficients supported in the half line k > 0.° We shall refer to this class of
initial data as “half-space (Fourier) supported”.

9 1If the coefficient for wavenumber k = 0 is non-vanishing a simple Galilean transformation can be used
to make it vanish.
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Because of the convolution structure of the nonlinearity when written in terms of
Fourier coefficients, it is obvious that with an initial condition supported in the £k > 0
half line, the solution will also be supported in this half line. A similar idea has been
used in three dimensions for studying the singularities for complex solutions of the 3D
Euler equations [35].

Specifically, we consider again the 1D Burgers equation (5.1)—(5.2) with 2 -periodic
boundary conditions for + > 0, rewritten as (5.5), in terms of the Fourier coefficients
it(k, t), assumed here to exist. The k-dependent real, even, non-negative dissipation
coefficient ue®® is denoted by p (k). The initial conditions ig(k) (k = 1,2,...) are
chosen arbitrarily, real or complex. We then have the following proposition, which is of
purely algebraic nature:

Proposition 5.1. Equation (5.5) with the initial conditions u(k,0) = 0 (k < 0) and
u(k,0) = ug(k) (k =1,2,...)defines, forallk > 0andt > 0, u(k, t) as a polynomial
functions of the set of tig(p) with0 < p < k.

Proof. From (5.5), after integration of the dissipative term, we obtain, for k > 0 and
t >0,

k—1
ik
ik, t):e_m(k)Ao(k)—T/ dse (0~ W’(")Zu(p itk — p,s). (5.12)
p=1

Observe that i (k, t), given by (5.12), involves i (k, 0) (linearly) and the set of Fourier
coefficients i (p,s)forl < p <k—1land0 <s <t (quadratlcally) The proof follows
by recursive use of this property for k, k — 1, ..., 1.10

Note that the solution can be obtained without any truncation error on a com-
puter, using symbolic manipulation. Alternatively it can be calculated in arbitrary high-
precision floating point arithmetic.

Now we specialize the initial condition even further, by assuming that the only Fourier
harmonic present in the initial condition has k = 1.!! We take

uo(x) = 1iAe*, (5.13)

for which 11g(1) = i.A, while all the other coefficients vanish.
Setting, for k > 0,
ik, t)
iAk
we obtain from (5.12) by working out the power series to the second order the following
fully explicit expressions of the first two Fourier coefficient at any time ¢ > 0:

vk, 1) == (5.14)

R _ (l)l n 672:0(1)1 efp(z)t
B, =e M 52,1) = - . (5.15)
p2) =2p(1)  p(2)—2p(1)

10" This proposition has an obvious counterpart for the NSE in any dimension when the the Fourier coefficients
of the initial condition are compactly supported in a product of half-spaces.

' What follows can be easily extended to the case of a finite number of non-vanishing initial Fourier
harmonics.
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Fig. 3. Fifth stage of asymptotic extrapolation showing the discrepancy with respect to the heuristic prediction
C, = 1/1n2. Note the decaying oscillatory behavior

For the one-mode initial condition with A = 1 and p(k) = el (exponential dissi-
pation with . = 1 and (kg = 1), we have calculated the Fourier coefficients 0(k, 1) for
k=1,2,...,24 using Maple symbolic calculation with a forty-digit accuracy.

The data have then been processed using asymptotic extrapolation as in Sect. 5.2
with the same five transformations Log, D, D, I, D. Figure 3 shows the discrepancy
5 (k, 1) +In 2 between the 5™ stage of interpolation and the prediction from the dom-
inant balance argument. It is seen that the discrepancy drops to —2.3 x 1073, Thus
the relative error is about 3 x 1073, The oscillations in the discrepancy, if they con-
tinue to higher wavenumbers would indicate that the first subdominant correction to the

asymptotic behavior of the Fourier coefficient e ~(1/ M 2IkInlkl i 5 prefactor involving a
complex power of the wavenumber.

Finally, we address the issue of what kind of solution we have constructed by this
Fourier-based algebraic method. Is it a “classical” sufficiently smooth global-in-time
solution of the Burgers equations (5.1)—(5.2) written in the physical space? We have
here obtained strong numerical evidence that the Fourier coefficients decrease faster
than exponentially with the wavenumber and thus define a classical solution which is an
entire function of the space variable. This is however just a conjecture. The tools used in
Sect. 2 to prove the entire character of the solution rely heavily on the definite positive
character of the energy, a property lost with complex solutions.'?

6. Conclusions

In this paper we have proved that for a large class of evolution PDE’s, including the 3D
NSE, exponential or faster-growing dissipation implies that the solution becomes and
remains an entire function in the space variables at all times. Exponential growth consti-
tutes a threshold: subexponential growth with a Fourier symbol ell”, where 0 < o < 1,
makes the solution analytic (but not entire) as is the case in 2D (and generally conjectured

12 1t is however not difficult to prove, for short times, that our solution is also a classical entire solution.
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in 3D). Furthermore, for the 3D NSE and the 1D Burgers equation with a dissipation
having the Fourier symbol uel//%d we have shown that the amplitude of the Fourier

coefficients is bounded by e~ Clkin k] (where k := k/kq) for any C < 1/(21In2). For
the case of the 1D Burgers equation we have good evidence that this can be improved to
C < C, = 1/1In2 since the high-|k| asymptotics seems to have a leading term precisely

of the form e ~C+*11n Ikl the evidence comes both from a heuristic dominant balance argu-

ment and from high-precision simulations. The heuristic argument can actually be carried
over somewhat loosely to the expNSE in any dimension: again the dominant nonlinear
interaction contributing to wave vector k comes from the wave vectors p = g = k/2;
actually the condition of incompressibility kills nonlinear interactions between exactly
parallel wave vectors but this is only expected to modify algebraic prefactors in front of
the exponential term.

We thus conjecture that the C, = 1/1n 2 also holds for expNSE in any space dimen-
sion d > 2. Of course there is a substantial gap between the bound and the conjectured
asymptotic behavior. It seems that such a gap is hard to avoid when using L2-type norms.
For proving the entire character of the solution such norms were appropriate. Beyond
this, it appears more advisable to try bounding directly the moduli of Fourier coeffi-
cients by using the power series method [13,34]. A first step in this direction would be
to prove that C, = 1/ In 2 for initial conditions whose Fourier coefficients are compactly
supported in a product of half-spaces, of the kind considered in Sect. 5.3.13

Exponential dissipation differs from ordinary dissipation (with a Laplacian or a power
thereof) not only by giving a faster decay of the Fourier coefficients but by doing so in
a universal way: with ordinary dissipation the decay of the Fourier coefficient is gen-
erally conjectured to be, to leading order, of the form eI, where 1 depends on the
viscosity v and on the energy input or on the size of the initial velocity; with exponential

dissipation the decay is e ~C+KI" Kl where C, = 1/1n2 and thus depends neither on the
coefficient ;. which plays the role of the viscosity nor on the initial data.'* As a con-
sequence, it is expected that exponential dissipation will not exhibit the phenomenon
of dissipation-range intermittency, which for the usual dissipation can be traced back
either to the fluctuations of n [36] or to complex singularities of a velocity field that is
analytic but not entire [37].

Finally some comments on the practical relevance of modified dissipation. First, let us
comment on “hyperviscosity”, the replacement of the (negative) Laplacian by its power
of order @ > 1. Of course we know that specialists of PDE’s have traditionally been
interested in the hyperviscous 3D NSE, perhaps to overcome the frustration of not being
able to prove much about the ordinary 3D NSE. But scientists doing numerical simula-
tions of the NSE, say, for engineering, astrophysical or geophysical applications, have
also been using hyperviscosity because it is often believed to allow effectively higher
Reynolds numbers without the need to increase spatial resolution. Recently, three of us
(UF, WP, SSR) and other coauthors have shown that when using a high power « of the
Laplacian in the dissipative term for 3D NSE or 1D Burgers, one comes very close to
a Galerkin truncation of Euler or inviscid Burgers, respectively [38]. This produces a
range of nearly thermalized modes which shows up in large-Reynolds number spectral
simulations as a huge bottleneck in the Fourier amplitudes between the inertial range
and the far dissipation range. Since the bottleneck generates a fairly large eddy viscos-

13 Progress on this issue has been made and will be reported elsewhere.

14 1t does however depend on the type of nonlinearity. For example with a cubic nonlinearity the same kind
of heuristics as presented in Sect. 5.1 predicts a constant C, = 1/1In 3.



Entire Solutions of Hydrodynamical Equations with Exponential Dissipation 541

ity, the hyperviscosity procedure with large o actually decreases the effective Reynolds
number.

Next, consider exponential dissipation. In 1996 Achim Wirth noticed that when
used in the 1D Burgers equation, cosh dissipation produces almost no bottleneck al-
though it grows much faster than a power of the wavenumber at high wavenumbers
[39]. It is now clear that such a dissipation will produce a faster-than-exponential
decay at the highest wavenumbers. But at wavenumbers such that |k| < kq a dis-
sipation rate —u (1 — cosh k/kq) reduces to wlk|?/(2kq?), to leading order, which is
the ordinary (Laplacian) dissipation. With the ordinary 1D Burgers equation it may
be shown analytically that there is no bottleneck. For the ordinary 3D NSE, exper-
imental and numerical results show the presence of a rather modest bottleneck (for
example the “compensated” three-dimensional energy spectrum [k|3E(|k|) over-
shoots by about 20%.). If in a simulation with cosh dissipation p and kq are adjusted
in such a way that dissipation starts acting at wavenumbers slightly smaller than k4,
the beginning of the dissipation range will be mostly as with an ordinary Laplacian,
that is with no or little bottleneck.'> At higher wavenumbers, where the exponential
growth of the dissipation rate is felt, faster than exponential decay will be observed.
In principle this can be used to avoid wasting resolution without developing a seri-

ous bottleneck. Faster than exponentially growing dissipation, e.g. u (e(“"/ ka)* 1),

may be even better because the prediction is that the Fourier coefficients will dis-
play Gaussian decay.'® Testing the advantages and drawbacks of different types of
faster-than-algebraically growing dissipations for numerical simulations is left for fu-
ture work.
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