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Abstract: This is part one of a two-part work that relates two different approaches to
two-dimensional open-closed rational conformal field theory. In part one we review the
definition of a Cardy algebra, which captures the necessary consistency conditions of the
theory at genus 0 and 1. We investigate the properties of these algebras and prove unique-
ness and existence theorems. One implication is that under certain natural assumptions,
every rational closed CFT is extendable to an open-closed CFT. The relation of Cardy
algebras to the solutions of the sewing constraints is the topic of part two.
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1. Introduction and Summary

This is part I of a two-part work which relates two different approaches to two-dimen-
sional open-closed rational conformal field theory (CFT).
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The first approach uses a three-dimensional topological field theory to express cor-
relators of the open-closed CFT [Fe,FRS,Fj]. Here one starts from a modular tensor
category, which defines a three-dimensional topological field theory [RT,T], and from
a special symmetric Frobenius algebra in this modular tensor category. To each open-
closed world sheet X one assigns a 3-bordism MX with embedded ribbon graph con-
structed from this Frobenius algebra. To the boundary of MX the topological field theory
assigns a vector space B�(X) and to MX itself a vector CX ∈ B�(X). One proves that
this collection of vectors CX provides a so-called solution to the sewing constraints [Fj].
If the modular tensor category is the category of representations of a suitable vertex
operator algebra, the spaces B�(X) are spaces of conformal blocks, and the CX are the
correlators of an open-closed CFT. In this approach one thus makes an ansatz for the
correlators on all world sheets simultaneously and then proves that they obey the neces-
sary consistency conditions. The relation to CFT rests on convergence and factorisation
properties of higher genus conformal blocks, and the precise list of conditions the vertex
operator algebra has to fulfill for these properties to hold is not known. However, from
a physical perspective one expects that interesting classes of models [W,FK] will have
all the necessary properties.

The second approach uses the theory of vertex operator algebras to construct directly
the correlators of the genus 0 and genus 1 open-closed CFT [HK1,HK2,K3]. More pre-
cisely, in this approach one uses a notion of CFT defined in [K3, Sect. 1] (and called partial
CFT1 there), where one glues Riemann surfaces around punctures with local coordinates
as in [V,H1] instead of gluing around parametrised circles as in [Se]. This approach is
based on the precise relation between genus-0 CFT and vertex operator algebras [H1],
and on the fact that the category of modules over a rational vertex operator algebra is
a modular tensor category [HL,H2]. Let us call a vertex operator algebra rational if it
satisfies the conditions in [H2, Sect. 1]. If one analyses the consistency conditions of a
genus-0,1 open-closed CFT, one arrives at a structure called Cardy CV |CV ⊗V - algebra
in [K3]. It is formulated in purely categorical terms in the categories CV and CV ⊗V of
modules over the rational vertex operator algebras V and V ⊗ V , respectively. Cardy
algebras (Definition 3.7) are the central objects in part I of this work, and we will describe
their relation to CFT in slightly more detail below. The data in a Cardy algebra amounts
to an open-closed CFT on a generating set of world sheets, from which the entire CFT
can be obtained by repeated gluing. The conditions on this data are necessary for this
procedure to give a consistent genus-0,1 open-closed CFT.

The two approaches just outlined start at opposite ends of the same problem. In
both cases the difficulty to obtain a complete answer lies in the lack of control over the
properties of higher genus conformal blocks. Nonetheless, both approaches give rise to
notions formulated in entirely categorical terms, and we can compare the structures one
finds. In part II we will come to the satisfying conclusion that giving a solution to the
sewing constraints is essentially equivalent, in a sense made precise in part II, to giving
a Cardy algebra.

To motivate the notion of a Cardy algebra and our interest in it, we would like to outline
how it emerges when formulating closed CFT and open-closed CFT at genus-0,1 in the
language of vertex operator algebras. The next one and a half pages, together with a few

1 The qualifier ‘partial’ refers to the fact that the gluing of punctures is only defined if the coordinates ζ1,
ζ2 around two punctures can be analytically extended to a large enough region containing no other punctures,
so that the identification ζ1 ∼ 1/ζ2 is well-defined. That is, if ζ1 can be extended to a disc of radius r , then ζ2
must be defined on a disc of radius greater than 1/r . Both discs must not contain further punctures.
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remarks in the main text, are the only places where we make reference to vertex operator
algebras. The reader who is not familiar with this structure is invited to skip ahead.

All types of field algebras occurring below are called self-dual if they are endowed
with non-degenerate invariant bilinear forms.

A genus-0 closed CFT is equivalent to an algebra over a partial dioperad consisting of
spheres with arbitrary in-coming and out-going punctures. The dioperad structure allows
to compose one in-going and one out-going puncture of distinct spheres, so that the result
is again a sphere. Such an algebra with additional natural properties is canonically equiv-
alent to a so-called self-dual conformal full field algebra [HK2,K1]. A conformal full
field algebra contains chiral and anti-chiral parts, the easiest nontrivial example is given
by V ⊗V , where V is a vertex operator algebra. A conformal full field algebra containing
V ⊗ V as a subalgebra is called a conformal full field algebra over V ⊗ V . When V is
rational, the category of self-dual conformal full field algebras over V ⊗V is isomorphic
to the category of commutative symmetric Frobenius algebras in CV ⊗V [K1, Thm. 4.15].

Similarly, a genus-0 open CFT is an algebra over a partial dioperad consisting of
disks with an arbitrary number of in-coming and out-going boundary punctures. Such
an algebra with additional natural properties is canonically equivalent to a self-dual
open-string vertex operator algebra as defined in [HK1]. A vertex operator algebra V is
naturally an open-string vertex operator algebra. An open-string vertex operator algebra
containing V as a subalgebra in its meromorphic centre is called an open-string vertex
operator algebra over V . When V is rational, the category of self-dual open-string vertex
operator algebras over V is isomorphic to the category of symmetric Frobenius algebras
in CV , see [HK1, Thm. 4.3] and [K3, Thm. 6.10].

Finally, a genus-0 open-closed CFT is an algebra over the Swiss-cheese partial dio-
perad, which consists of disks with both interior punctures and boundary punctures,
and is equipped with an action of the partial spheres dioperad. Such an algebra can be
constructed from a so-called self-dual open-closed field algebra [K2]. It consists of a
self-dual conformal full field algebra Acl, a self-dual open-string vertex operator algebra
Aop, and interactions between Acl and Aop satisfying certain compatibility conditions.
Namely, if Acl is defined over V ⊗ V and Aop over V , one requires that the boundary
condition on a disc is V -invariant in the sense that both the chiral copy V ⊗ 1 and the
anti-chiral copy 1 ⊗ V of V in Acl give the copy of V in Aop in the limit of the insertion
point approaching a point on the boundary of the disc [K2, Def. 1.25]. An open-closed
field algebra with V -invariant boundary condition is called an open-closed field algebra
over V . When V is rational, the category of self-dual open-closed field algebras over
V is isomorphic to the category of triples (Aop|Acl, ι̃cl-op), where Acl is a commuta-
tive symmetric Frobenius CV ⊗V -algebra, Aop a symmetric Frobenius CV -algebra, and
ι̃cl-op an algebra homomorphism T (Acl) → Aop satisfying a centre condition (given in
(3.20) below), see [K2, Thm. 3.14] and [K3, Sect. 6.2]. Here T : CV ⊗V → CV is the
Huang-Lepowsky tensor product functor [HL].

The genus-1 theory does not provide new data as it is determined by taking traces
of genus-0 correlators, but it does provide two additional consistency conditions: the
modular invariance condition for one-point correlators on the torus [So], and the Cardy
condition for boundary-two-point correlators on the annulus [C2,Lw]. Their categor-
ical formulations have been worked out in [HK3,K3]. Adding them to the axioms of
a self-dual open-closed field algebra over V finally results in the notion of a Cardy
CV |CV ⊗V -algebra. One can prove that the category of self-dual open-closed field alge-
bras over a rational vertex operator algebra V satisfying the two genus-1 consistency
conditions is isomorphic to the category of Cardy CV |CV ⊗V -algebras [K3, Thm. 6.15].



874 L. Kong, I. Runkel

If V is rational, then so is V ⊗ V [DMZ,HK2]. Thus both CV and CV ⊗V are
modular tensor categories. In fact, CV ⊗V ∼= CV � (CV )− (see [FHL, Thm. 4.7.4] and
[DMZ, Thm 2.7]), where the minus sign relates to the particular braiding used for CV ⊗V .
Namely, for a given modular tensor category D, we denote by D− the modular tensor
category obtained from D by inverting braiding and twist. We will also sometimes write
D+ for D. The product � amounts to taking direct sums of pairs of objects and tensor
products of morphisms spaces. The definition of a Cardy algebra can be stated in a way
that no longer makes reference to the vertex operator algebra V , and therefore makes
sense in an arbitrary modular tensor category C. Abbreviating C2± ≡ C+ � C−, this leads
to the definition of a Cardy C|C2±-algebra.

The relation to genus-0,1 open-closed CFT outlined above is the main motivation for
our interest in Cardy C|C2±-algebras. In part I of this work we investigate how much one
can learn about Cardy algebras in the categorical setting, and without the assumption
that the modular tensor category C is given by CV for some V . We briefly summarise
our approach and results below.

In Sect. 2.1–2.3, we recall some basic notions we will need, such as (co)lax tensor
functors, Frobenius functors, and modular tensor categories. In Sect. 2.4, we study the
functor T : C2± → C, which is defined by the tensor product on C via T (⊕i Ai × Bi ) =
⊕i Ai ⊗ Bi for Ai , Bi ∈ C. Using the braiding of C one can turn T into a tensor functor.
A tensor functor is automatically also a Frobenius functor, and so takes a Frobenius
algebra A in its domain category to a Frobenius algebra F(A) in its target category.

An important object in this work is the functor R : C → C2±, also defined in Sect. 2.4.
We show that R is left and right adjoint to T . As a consequence, R is automatically a
lax and colax tensor functor, but it is in general not a tensor functor. However, we will
show that it is still a Frobenius functor, and so takes Frobenius algebras in C to Frobenius
algebras in C2±. In fact, it also preserves the properties simple, special and symmetric
of a Frobenius algebra. In the case C = CV the functor R : CV → CV ⊗V was first
constructed in [Li1,Li2] using techniques from vertex operator algebras. This motivated
the present construction and notation. The functor R was also considered in a slightly
different context in [ENO2].

The above results imply that R and T form an ambidextrous adjunction, and we will
use this adjunction to transport algebraic structures between C and C2±. For example,
the algebra homomorphism ι̃cl-op : T (Acl) → Aop in C is transported to an algebra
homomorphism ιcl-op : Acl → R(Aop) in C2±. This gives rise to an alternative definition
of a Cardy C|C2±-algebra as a triple (Aop|Acl, ιcl-op).

To prepare the definition of a Cardy algebra, in Sect. 3.1 we discuss the so-called
modular invariance condition for algebras in C2± (Definition 3.1 below). We show that
when Acl is simple, the modular invariance condition can be replaced by an easier con-
dition on the quantum dimension of Acl (namely, the dimension of Acl has to be that of
the modular tensor category C), see Theorem 3.4.

In Sect. 3.2 we give the two definitions of a Cardy algebra and prove their equiva-
lence. Section 3.3 contains our main results. We first show that for each special symmet-
ric Frobenius algebra A in C (see Sect. 2.2 for the definition of special) one obtains a
Cardy algebra (A|Z(A), e), where Z(A) is the full centre of A (Theorem 3.18). The
full centre [Fj, Def. 4.9] is a subobject of R(A) and e : Z(A) → R(A) is the canonical
embedding. Next we prove a uniqueness theorem (Theorem 3.21), which states that if
(Aop|Acl, ιcl-op) is a Cardy algebra such that dim Aop �= 0 and Acl is simple, then Aop
is special and (Aop|Acl, ιcl-op) is isomorphic to (Aop|Z(Aop), e). When combined with
part II of this work, this result amounts to [Fj, Thm. 4.26] and provides an alternative
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(and shorter) proof. Finally we show that for every simple modular invariant commu-
tative symmetric Frobenius algebra Acl in C2± there exists a simple special symmetric
Frobenius algebra Aop and an algebra homomorphism ιcl-op : Acl → R(Aop) such that
(Aop, Acl, ιcl-op) is a Cardy algebra (Theorem 3.22). This theorem is closely related to
a result announced in [Mü2] and provides an independent proof in the framework of
Cardy algebras.

In physical terms these two theorems mean that a rational open-closed CFT with a
unique closed vacuum state can be uniquely reconstructed from its correlators involving
only discs with boundary punctures, and that every closed CFT with unique vacuum and
left/right rational chiral algebra V ⊗ V occurs as part of such an open-closed CFT.

2. Preliminaries on Tensor Categories

In this section, we review some basic facts of tensor categories and fix our conventions
and notations along the way.

2.1. Tensor categories and (co)lax tensor functors. In a tensor (or monoidal) category
C with tensor product bifunctor ⊗ and unit object 1, for U, V,W ∈ C, we denote the

associator U ⊗ (V ⊗ W )
∼=−→ (U ⊗ V ) ⊗ W by αU,V,W , the left unit isomorphism

1 ⊗ U
∼=−→ U by lU , and the right unit isomorphism U ⊗ 1

∼=−→ U by rU . If C is braided,
for U, V ∈ C we write the braiding isomorphism as cU,V : U ⊗ V → V ⊗ U .

Let C1 and C2 be two tensor categories with units 11 and 12 respectively. For simplic-
ity, we will often write ⊗, α, l, r for the data of both C1 and C2. Lax and colax tensor
functors are defined as follows, see e.g. [Y, Ch. I.3] or [Ln, Ch. I.1.2].

Definition 2.1. A lax tensor functor G : C1 → C2 is a functor equipped with a mor-
phism φG

0 : 12 → G(11) in C2 and a natural transformation φG
2 : ⊗◦(G × G) → G ◦⊗

such that the following three diagrams commute:

G(A)⊗ (G(B)⊗ G(C))
α ��

idG(A)⊗φG
2

��

(G(A)⊗ G(B))⊗ G(C)

φG
2 ⊗idG(C)

��
G(A)⊗ G(B ⊗ C)

φG
2

��

G(A ⊗ B)⊗ G(C),

φG
2

��
G(A ⊗ (B ⊗ C))

G(α) �� G((A ⊗ B)⊗ C)

(2.1)

12 ⊗ G(A)

φG
0 ⊗idG(A)

��

lG(A) �� G(A)

G(l−1
A )

��
G(11)⊗ G(A)

φG
2 �� G(11 ⊗ A)

,

G(A)⊗ 12

idG(A)⊗φG
0

��

rG(A) �� G(A)

G(r−1
A )

��
G(A)⊗ G(11)

φG
2 �� G(A ⊗ 11)

.

(2.2)

Definition 2.2. A colax tensor functor is a functor F : C1 → C2 equipped with a mor-
phismψ F

0 : F(11) → 12 in C2, and a natural transformationψ F
2 : F◦⊗ → ⊗◦(F × F)

such that the following three diagrams commute:
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F(A)⊗ (F(B)⊗ F(C))
α �� (F(A)⊗ F(B))⊗ F(C)

F(A)⊗ F(B ⊗ C)

idF(A)⊗ψ F
2

��

F(A ⊗ B)⊗ F(C),

ψF
2 ⊗idF(C)

��

F(A ⊗ (B ⊗ C))
F(α) ��

ψF
2

��

F((A ⊗ B)⊗ C)

ψF
2

�� (2.3)

12 ⊗ F(A) F(A)
l−1
F(A)��

F(11)⊗ F(A)

ψF
0 ⊗idF(A)

��

F(11 ⊗ A)
ψF

2��

F(lA),

�� F(A)⊗ 12 F(A)
r−1

F(A)��

F(A)⊗ F(11)

idF(A)⊗ψ F
0

��

F(A ⊗ 11).

F(rA)

��

ψF
2��

(2.4)

We denote a lax tensor functor by (G, φG
2 , φ

G
0 ) or just G, and a colax tensor functor

by (F, ψ F
2 , ψ

F
0 ) or F .

Definition 2.3. A tensor functor T : C1 → C2 is a lax tensor functor (T, φT
2 , φ

T
0 ) such

that φT
0 , φ

T
2 are both isomorphisms.

A tensor functor (T, φT
2 , φ

T
0 ) is automatically a colax tensor functor (T, ψT

2 , ψ
T
0 )

with ψT
0 = (φT

0 )
−1 and ψT

2 = (φT
2 )

−1.
In the next section we will discuss algebras in tensor categories. The defining proper-

ties (2.1) and (2.2) of a lax tensor functor are analogues of the associativity, the left-unit,
and the right-unit properties of an algebra. Indeed, a lax tensor functor G : C1 → C2
maps a C1-algebra to a C2-algebra. Similarly, (2.3) and (2.4) are analogues of the coasso-
ciativity, the left-counit and the right-counit properties of a coalgebra, and a colax tensor
functor F : C1 → C2 maps a C1-coalgebra to a C2-coalgebra. We will later make use
of functors that take Frobenius algebras to Frobenius algebras. This requires a stronger
condition than being lax and colax and leads to the notion of a ‘functor with Frobenius
structure’ or ‘Frobenius monoidal functor’ [Sz,DP,P], which we will simply refer to as
Frobenius functor.

Definition 2.4. A Frobenius functor F : C1 → C2 is a tuple F ≡ (F, φF
2 , φ

F
0 , ψ

F
2 , ψ

F
0 )

such that (F, φF
2 , φ

F
0 ) is a lax tensor functor, (F, ψ F

2 , ψ
F
0 ) is a colax tensor functor,

and such that the following two diagrams commute:

F(A)⊗ (F(B)⊗ F(C))
α �� (F(A)⊗ F(B))⊗ F(C)

φF
2 ⊗idF(C)

��
F(A)⊗ F(B ⊗ C)

idF(A)⊗ψ F
2

��

φF
2

��

F(A ⊗ B)⊗ F(C)

F(A ⊗ (B ⊗ C))
F(α) �� F((A ⊗ B)⊗ C)

ψF
2

�� (2.5)
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F(A)⊗ (F(B)⊗ F(C))

idF(A)⊗φF
2

��

(F(A)⊗ F(B))⊗ F(C)
α−1

��

F(A)⊗ F(B ⊗ C) F(A ⊗ B)⊗ F(C)

ψF
2 ⊗idF(C)

��

φF
2

��
F(A ⊗ (B ⊗ C))

ψF
2

��

F((A ⊗ B)⊗ C)
F(α−1)��

(2.6)

Proposition 2.5. If (F, φF
2 , φ

F
0 ) is a tensor functor, then F is a Frobenius functor with

ψ F
0 = (φF

0 )
−1 and ψ F

2 = (φF
2 )

−1.

Proof. Since F is a tensor functor, it is lax and colax. If we replace ψ F
2 by (φF

2 )
−1 in

(2.5) and (2.6), both commuting diagrams are equivalent to (2.1), which holds because
F is lax. Thus F is a Frobenius functor. 	


The converse statement does not hold. For example, the functor R which we define
in Sect. 2.4 is Frobenius but not tensor.

Let us recall the notion of adjunctions and adjoint functors [Ma, Ch. IV.1].

Definition 2.6. An adjunction from C1 to C2 is a triple 〈F,G, χ〉, where F and G are
functors

F : C1 → C2, G : C2 → C1,

and χ is a natural isomorphism which assigns to each pair of objects A1 ∈ C1, A2 ∈ C2
a bijective map

χA1,A2 : HomC2(F(A1), A2)
∼=−−→ HomC1(A1,G(A2)),

which is natural in both A1 and A2. F is called a left-adjoint of G and G is called a
right-adjoint of F.

For simplicity, we will often abbreviate χA1,A2 as χ . Associated to each adjunction

〈F,G, χ〉, there are two natural transformations idC1

δ−→ G F and FG
ρ−→ idC2 , where

idC1 and idC2 are identity functors, given by

δA1 = χ(idF(A1)), ρA2 = χ−1(idG(A2)) (2.7)

for Ai ∈ Ci , i = 1, 2. They satisfy the following two identities:

G
δG−→ G FG

Gρ−→ G = G
idG−−→ G, F

Fδ−→ FG F
ρF−→ F = F

idF−−→ F. (2.8)

We have, for g : F(A1) → A2 and f : A1 → G(A2),

χ(g) = G(g) ◦ δA1 , χ−1( f ) = ρA2 ◦ F( f ). (2.9)

For simplicity, δA1 and ρA2 are often abbreviated as δ and ρ, respectively.
Let 〈F,G, χ〉 be an adjunction from a tensor category C1 to a tensor category C2

and (F, ψ F
2 , ψ

F
0 ) a colax tensor functor from C1 to C2. We can define a morphism
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φG
0 : 11 → G(12) and a natural transformation φG

2 : ⊗ ◦ (G × G) → G ◦ ⊗ by, for
A, B ∈ C2,

φG
0 = χ(ψ F

0 ) = 11
δ11−→ G F(11)

G(ψ F
0 )−−−−→ G(12),

φG
2 = χ((ρA ⊗ ρB) ◦ ψ F

2 ) = G(A)⊗ G(B)
δ−→ G F (G(A)⊗ G(B))

G(ψ F
2 )−−−−→ G (FG(A)⊗ FG(B))

G(ρA⊗ρB )−−−−−−→ G(A ⊗ B), (2.10)

where we have used the first identity in (2.9). Notice that φG
2 is natural because it is a

composition of natural transformations. One can easily show that ψ F
0 and ψ F

2 can be
re-obtained from φG

0 and φG
2 as follows:

ψ F
0 = χ−1(φG

0 ) = F(11)
FφG

0−−→ FG(12)
ρ−→ 12,

ψ F
2 = χ−1(φG

2 ◦ (δ ⊗ δ)) = F(U ⊗ V )
F(δ⊗δ)−−−−→ F (G F(U )⊗ G F(V ))

FφG
2−−→ FG (F(U )⊗ F(V ))

ρ−→ F(U )⊗ F(V ). (2.11)

for U, V ∈ C1. The following result is standard; for the sake of completeness, we give
a proof in Appendix A.1.

Lemma 2.7. (F, ψ F
2 , ψ

F
0 ) is a colax tensor functor iff (G, φG

2 , φ
G
0 ) is a lax tensor

functor.

2.2. Algebras in tensor categories. An algebra in a tensor category C, or a C-algebra, is
a triple A = (A,m, η), where A is an object of C, m (the multiplication) is a morphism
A ⊗ A → A such that m ◦ (m ⊗ idA) ◦ αA,A,A = m ◦ (idA ⊗ m), and η (the unit) is a
morphism 1 → A such that m ◦ (idA ⊗ η) = idA ◦ rA and m ◦ (η⊗ idA) = idA ◦ lA.
If C is braided and m ◦ cA,A = m, then A is called commutative.

A left A-module is a pair (M,mM ), where M ∈ C and m M is a morphism A⊗M → M
such that mM◦(idA⊗m M ) = m M◦(m A⊗idM )◦αA,A,M and m M◦(ηA⊗idM ) = idM◦lM .
Right A-modules and A-bimodules are defined similarly.

Definition 2.8. Let C be a tensor category and let A be an algebra in C.

(i) A is called simple iff it is simple as a bimodule over itself.
Let C be in addition k-linear, for k a field.

(ii) A is called absolutely simple iff the space of A-bimodule maps from A to itself is
one-dimensional, dimk HomA|A(A, A) = 1.

(iii) A is called haploid iff dimk Hom(1, A) = 1 [FS, Def. 4.3].

In the following we will assume that all tensor categories are strict to avoid spelling out
associators and unit constraints.

A C-coalgebra A = (A,�, ε) is defined analogously to a C-algebra, i.e. � : A →
A ⊗ A and ε : A → 1 obey coassociativity and counit conditions.

If C is braided and if A and B are C-algebras, there are two in general non-isomorphic
algebra structures on A ⊗ B. We choose A ⊗ B to be the C-algebra with multiplication
m A⊗B = (m A⊗m B)◦(idA⊗c−1

A,B⊗idB) and unitηA⊗B = ηA⊗ηB . Similarly, if A and B
are C-coalgebras, then A ⊗ B becomes a C-coalgebra if we choose the comultiplication
�A⊗B = (idA ⊗ cA,B ⊗ idB) ◦ (�A ⊗�B) and the counit εA⊗B = εA ⊗ εB .
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Definition 2.9. A Frobenius algebra A = (A,m, η,�, ε) is an algebra and a coalge-
bra such that the coproduct is an intertwiner of A-bimodules,

(idA ⊗ m) ◦ (�⊗ idA) = �⊗ m = (m ⊗ idA) ◦ (idA ⊗�).

We will use the following graphical representation for the morphisms of a Frobenius
algebra,

m =
A A

A

, η =
A

, � =
A A

A

, ε =
A

. (2.12)

A Frobenius algebra A in a k-linear tensor category, for k a field, is called special iff
m ◦� = ζ idA and ε ◦ η = ξ id1 for nonzero constants ζ , ξ ∈ k. If ζ = 1 we call A nor-
malised-special. A Frobenius algebra homomorphism between two Frobenius algebras
is both an algebra homomorphism and a coalgebra homomorphism.

A (strictly) sovereign tensor category is a tensor category equipped with a left and a
right duality which agree on objects and morphisms (see e.g. [Bi,FS] for more details).
We will write the dualities as

U∨ U

= dU : U∨ ⊗ U → 1,
U U∨

= d̃U : U ⊗ U∨ → 1,

U U∨

= bU : 1 → U ⊗ U∨,
U∨ U

= b̃U : 1 → U∨ ⊗ U.

(2.13)

In terms of these we define the left and right dimension of an object U as

diml U = dU ◦ b̃U , dimr U = d̃U ◦ bU , (2.14)

both of which are elements of Hom(1, 1).
Let now C be a sovereign tensor category. For a Frobenius algebra A in C, we define

two morphisms:

�A =

A

A∨

, �′
A =

A

A∨

. (2.15)

Definition 2.10. A Frobenius algebra A is symmetric iff �A = �′
A.

The following lemma shows that under certain conditions we do not need to distin-
guish the various notions of simplicity in Definition 2.8.

Lemma 2.11. Let A be a commutative symmetric Frobenius algebra in a C-linear semi-
simple sovereign braided tensor category C and suppose that diml A �= 0. Then the
following are equivalent.
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(i) A is simple.
(ii) A is absolutely simple.

(iii) A is haploid.

Proof. (ii)⇔(iii): A is haploid iff it is absolutely simple as a left module over itself
[FS, Eq. (4.17)]. Furthermore, for a commutative algebra we have HomA(A, A) =
HomA|A(A, A), and so A is haploid iff it is absolutely simple.
(i)⇒(ii): If A is simple, then every nonzero element of HomA|A(A, A) is invertible.
Hence this space forms a division algebra over C, and is therefore isomorphic to C.
(iii)⇒(i): Since C is semi-simple and A is haploid, also Hom(A, 1) is one-dimensional.
The counit ε is a nonzero element in this space, and so gives a basis. This implies firstly,
that ε ◦ η �= 0, and secondly, that there is a constant β ∈ C such that

β · ε = dA ◦ (idA∨ ⊗ m) ◦ (b̃A ⊗ idA). (2.16)

Composing with η from the right yields β ε◦η = diml A. The right-hand side is nonzero,
and so β �= 0. By [FRS, Lem. 3.11], A is special. We have already proved (ii)⇔(iii),
and so A is absolutely simple. A special Frobenius algebra in a semi-simple category
has a semi-simple category of bimodules (apply [FS, Prop. 5.24] to the algebra tensored
with its opposite algebra). For semi-simple C-linear categories, simple and absolutely
simple are equivalent.2 Thus A is simple. 	

Remark 2.12. For a Frobenius algebra A the morphisms (2.15) are invertible, and hence
A ∼= A∨. In this case one has diml A = dimr A [FS, Rem. 3.6.3] and so we could have
stated the above lemma equivalently with the condition dimr A �= 0.

Let F : C1 → C2 be a lax tensor functor between two tensor categories C1, C2 and

let (A,m A, ηA) be an algebra in C1. Define morphisms F(A)⊗ F(A)
m F(A)−−−→ F(A) and

12
ηF(A)−−−→ F(A) as

m F(A) = F(m A) ◦ φF
2 , ηF(A) = F(ηA) ◦ φF

0 . (2.17)

Then (F(A),m F(A), ηF(A)) is an algebra in C2 [JS, Prop. 5.5]. If f : A → B is an
algebra homomorphism between two algebras A, B ∈ C1, then F( f ) : F(A) → F(B)
is also an algebra homomorphism. If (M,mM ) is a left (or right) A-module in C1, then
(F(M), F(mM )◦φF

2 ) is a left (or right) F(A)-module; if M has a A-bimodule structure,
then F(M) naturally has a F(A)-bimodule structure.

Similarly, if (A,�A, εA) is a coalgebra in C1 and F : C1 → C2 is a colax tensor func-

tor, then F(A) with coproduct F(A)
�F(A)−−−→ F(A) ⊗ F(A) and counit F(A)

εF(A)−−−→ 12
given by

�F(A) = ψ F
2 ◦ F(�A), εF(A) = ψ F

0 ◦ F(εA), (2.18)

is a coalgebra in C2. If f : A → B is a coalgebra homomorphism between two coalgebras
A, B ∈ C1, then F( f ) : F(A) → F(B) is also a coalgebra homomorphism.

2 To see this note that if U is simple, then the C-vector space Hom(U,U ) is a division algebra, and hence
Hom(U,U ) = C idU . Conversely, if U is not simple, then U = U1 ⊕ U2 and Hom(U,U ) contains at least
two linearly independent elements, namely idU1 and idU2 .
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Proposition 2.13.3 If F : C1 → C2 is a Frobenius functor and (A,m A, ηA,�A, εA) a
Frobenius algebra in C1, then (F(A),m F(A), ηF(A),�F(A), εF(A)) is a Frobenius alge-
bra in C2.

Proof. One Frobenius property, (m F(A)⊗ idF(A))◦ (idF(A)⊗�F(A)) = �F(A) ◦m F(A),
follows from the commutativity of the following diagram (we spell out the associativity
isomorphisms):

F(A)⊗ F(A)
idF(A)⊗F(�A) ��

φF
2

��

F(A)⊗ F(A ⊗ A)
idF(A)⊗ψF

2 ��

φF
2

��

F(A)⊗ (F(A)⊗ F(A))

αF(A),F(A),F(A)

��
F(A ⊗ A)

F(idA⊗�A) ��

F(m A)

��

F(A ⊗ (A ⊗ A))

F(αA,A,A)

��

(F(A)⊗ F(A))⊗ F(A)

φF
2 ⊗idF(A)

��
F((A ⊗ A)⊗ A)

F(m A⊗idA)

��

ψF
2 �� F(A ⊗ A)⊗ F(A)

F(m A)⊗idF(A)

��
F(A)

F(�A) �� F(A ⊗ A)
ψF

2 �� F(A)⊗ F(A)

(2.19)

The commutativity of the upper-left subdiagram follows from the naturalness of φF
2 , that

of the upper-right subdiagram follows from (2.5), that of the lower-left subdiagram fol-
lows from the Frobenius properties of A, and that of the lower-right subdiagram follows
from the naturalness of ψ F

2 . The proof of the other Frobenius property is similar. 	

Proposition 2.14. If F : C1 → C2 is a tensor functor and A a Frobenius algebra in C1,
then:

(i) F(A) has a natural structure of Frobenius algebra as given in Proposition 2.13;
(ii) If A is (normalised-)special, so is F(A).

Proof. Part (i) follows from Propositions 2.5 and 2.13. Part (ii) is a straightforward
verification of the definition, using ψ F

2 = (φF
2 )

−1 and ψ F
0 = (φF

0 )
−1. 	


Let C1, C2 be sovereign tensor categories and F : C1 → C2 a Frobenius functor. We
define two morphisms IF(A∨), I ′

F(A∨) : F(A∨) → F(A)∨, for a Frobenius algebra A in
C1, as follows:

IF(A∨) = ((ψ F
0 ◦ F(dA) ◦ φF

2 )⊗ idF(A)∨) ◦ (idF(A∨) ⊗ bF(A)) ,

I ′
F(A∨) = (idF(A)∨ ⊗ (ψ F

0 ◦ F(d̃A) ◦ φF
2 )) ◦ (b̃F(A) ⊗ idF(A∨)).

(2.20)

It is easy to see that these are isomorphisms.

Lemma 2.15. If F : C1 → C2 is a Frobenius functor and A a Frobenius algebra in C1,
then

�F(A) = IF(A∨) ◦ F(�A), �′
F(A) = I ′

F(A∨) ◦ F(�′
A). (2.21)

3 After the preprint of the present paper appeared we noticed that this proposition is also proved in
[DP, Cor. 5].
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Proof. We only prove the first equality, the second one can be seen in the same way. By
definition, we have

IF(A∨) ◦ F(�A)

= ((ψ F
0 ◦ F(dA) ◦ φF

2 )⊗ idF(A)∨) ◦ (idF(A∨) ⊗ bF(A)) ◦ F(�A)

=
{[
(ψ F

0 ◦ F(dA) ◦ φF
2 ) ◦ (F(�A)⊗ idF(A))

]
⊗ idF(A)∨

}
◦ (idF(A) ⊗ bF(A)).

For the term inside the square brackets we find

ψ F
0 ◦ F(dA) ◦ φF

2 ◦ (F(�A)⊗ idF(A)) = ψ F
0 ◦ F(dA) ◦ F(�A ⊗ idA) ◦ φF

2

= ψ F
0 ◦ F(dA ◦ (�A ⊗ idA)) ◦ φF

2 = ψ F
0 ◦ F(εA ◦ m A) ◦ φF

2 . (2.22)

On the other hand, by definition,�F(A) = [((ψ F
0 ◦ F(εA)◦ (F(m A)◦φF

2 ))⊗ idF(A)∨] ◦
(idF(A) ⊗ bF(A)). This demonstrates the first equality in (2.21). 	

Proposition 2.16. Let F : C1 → C2 be a tensor functor, G : C2 → C1 a functor,
〈F,G, χ〉 an adjunction, A a C1-algebra, and B a C2-algebra. Then f : A → G(B)
is an algebra homomorphism if and only if f̃ = χ−1( f ) : F(A) → B is an algebra
homomorphism.

Proof. We need to show that

mG(B) ◦ ( f ⊗ f ) = f ◦ m A and f ◦ ηA = ηG(B), (2.23)

is equivalent to

m B ◦ ( f̃ ⊗ f̃ ) = f̃ ◦ m F(A) and f̃ ◦ ηF(A) = ηBs. (2.24)

We first prove that the first identity in (2.23) is equivalent to the first identity in (2.24).
For the left-hand side of the first identity in (2.23) we have the following equalities:

mG(B) ◦ ( f ⊗ f )
(1)= G(m B) ◦ φG

2 ◦ ( f ⊗ f )
(2)= G(m B) ◦ G(ρ ⊗ ρ) ◦ G(ψ F

2 ) ◦ δ ◦ ( f ⊗ f )
(3)= G(m B) ◦ G(ρ ⊗ ρ) ◦ G(ψ F

2 ) ◦ G F( f ⊗ f ) ◦ δ
(4)= G(m B) ◦ G(ρ ⊗ ρ) ◦ G(F( f )⊗ F( f )) ◦ G(ψ F

2 ) ◦ δ
(5)= G

(
m B ◦ (ρ ⊗ ρ) ◦ (F( f )⊗ F( f )) ◦ ψ F

2

)
◦ δ

(6)= χ
(

m B ◦ (ρ ⊗ ρ) ◦ (F( f )⊗ F( f )) ◦ ψ F
2

)
, (2.25)

where (1) is the definition of mG(B) in (2.17), (2) is the second identity in (2.10), (3)
and (4) are naturality of δ and ψ F

2 , respectively, step (5) is functoriality of G and finally
step (6) is (2.9). For the right hand side of the first identity in (2.23) we get

f ◦ m A
(1)= Gρ ◦ δG ◦ ( f ◦ m A)

(2)= Gρ ◦ G F( f ◦ m A) ◦ δ
(3)= G(ρ ◦ F( f ◦ m A)) ◦ δ
(4)= χ(ρ ◦ F( f ) ◦ F(m A)), (2.26)
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where (1) is the adjunction property (2.8), (2) is naturality of δ, (3) functoriality of G,
and (4) amounts to (2.9) and functoriality of F .

On the other hand, we see that the first equality in (2.24) is equivalent to

m B ◦ (ρ ⊗ ρ) ◦ (F( f )⊗ F( f )) = ρ ◦ F( f ) ◦ F(m A) ◦ φF
2 . (2.27)

Using that φF
2 is invertible with inverse (φF

2 )
−1 = ψ F

2 and that χ is an isomorphism,
it follows that the statement that (2.25) is equal to (2.26) is equivalent to the identity
(2.27).

Now we prove that the second identity in (2.23) is equivalent to the second identity in
(2.24). Using (2.17) and (2.10) we can write ηG(B) = G(ηB)◦φF

0 = G(ηB)◦G(ψ F
0 )◦δ1.

Together with (2.9) this shows that the second identity in (2.23) is equivalent to

f ◦ ηA = χ(ηB ◦ ψ F
0 ). (2.28)

On the other hand, the second identity in (2.24) is equivalent to

ρ ◦ F( f ) ◦ F(ηA) ◦ φF
0 = ηB , (2.29)

which, by φF
0 = (ψ F

0 )
−1 and (2.9), is further equivalent to (2.28). 	


Definition 2.17. Let (A,m A, ηA,�A, εA) and (B,m B, ηB,�B, εB) be two Frobenius
algebras in a tensor category C. For f : A → B, we define f ∗ : B → A by

f ∗ = ((εB ◦ m B)⊗ idA) ◦ (idB ⊗ f ⊗ idA) ◦ (idB ⊗ (�A ◦ ηA)). (2.30)

The following lemma is immediate from the definition of (·)∗ and the properties of
Frobenius algebras. We omit the proof.

Lemma 2.18. Let C be a tensor category, let A, B,C be Frobenius algebras in C, and
let f : A → B and g : B → C be morphisms.

(i) (g ◦ f )∗ = f ∗ ◦ g∗.
(ii) f is a monomorphism iff f ∗ is an epimorphism.

(iii) f is an algebra map iff f ∗ is a coalgebra map.
(iv) If f is a homomorphism of Frobenius algebras, then f ∗ ◦ f = idA and f ◦ f ∗ =

idB.
(v) If C is sovereign and if A and B are symmetric, then f ∗∗ = f .

Let C and D be tensor categories and let F : C → D be a Frobenius functor. Given
Frobenius algebras A, B in C and a morphism f : A → B, the next lemma shows how
(·)∗ behaves under F .

Lemma 2.19. F( f ∗) = F( f )∗.

Proof. The definition of the structure morphisms of the Frobenius algebra F(A) is given
in (2.17) and (2.18). Substituting these definitions gives

F( f )∗ =
[(
ψ F

0 ◦ F(εB) ◦ F(m B) ◦ φF
2

)
⊗ idF(A)

]
◦ [

idF(B) ⊗ F( f )⊗ idF(A)
]

◦
[
idF(B) ⊗

(
ψ F

2 ◦ F(�A) ◦ F(ηA) ◦ φF
0

)]

= (ψ F
0 ⊗ idF(A)) ◦ [

F (εB ◦ m B ◦ (idB ⊗ f ))⊗ idF(A)
]

◦(φF
2 ⊗ idF(A)) ◦ (idF(B) ⊗ ψ F

2 )

◦ [
idF(B) ⊗ F(�A ◦ ηA)

] ◦ (idF(B) ⊗ φF
0 ). (2.31)
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In the middle line of the last expression we can use the defining property (2.5) of F ,
namely we substitute (φF

2 ⊗ idF(A)) ◦ (idF(B) ⊗ ψ F
2 ) = ψ F

2 ◦ φF
2 . Then ψ F

2 can be
moved to the left, and φF

2 to the right, until they can be omitted against ψ F
0 and φF

0 ,
respectively, using (2.2) and (2.4). This results in

F( f )∗ = F ((εB ◦ m B ◦ (idB ⊗ f ))⊗ idA) ◦ F (idB ⊗ (�A ◦ ηA)) , (2.32)

which is nothing but F( f ∗). 	


2.3. Modular tensor categories. Let C be a modular tensor category [T,BK], i.e. an
abelian semi-simple finite C-linear ribbon category with simple tensor unit 1 and a non-
degeneracy condition on the braiding (to be stated in a moment). We denote the set of
equivalence classes of simple objects in C by I, elements in I by i, j, k ∈ I and their
representatives by Ui ,U j ,Uk . We also set U0 = 1 and for an index k ∈ I we define k̄
by Uk̄

∼= U∨
k .

Since the tensor unit is simple, we shall for modular tensor categories identify
Hom(1, 1) ∼= C (cf. footnote 2). Define numbers si, j ∈ C by4

si, j = UiU j . (2.33)

They obey si, j = s j,i and s0,i = dim Ui , see e.g. [BK, Sect. 3.1]. (In a ribbon cate-
gory the left and right dimension (2.14) of Ui coincide and are denoted by dim Ui .)
The non-degeneracy condition on the braiding of a modular tensor category is that the
|I|×|I|-matrix s should be invertible. In fact [BK, Thm. 3.1.7],

∑
k∈I

sik sk j = Dim C δi,j̄ , (2.34)

where Dim C = ∑
i∈I(dim Ui )

2. One can show (even in the weaker context of fusion
categories over C) that Dim C ≥ 1 [ENO1, Thm. 2.3]. In particular, Dim C �= 0. We fix
once and for all a square root

√
Dim C of Dim C.

Let us fix a basis {λα(i, j)k}
N k

i j
α=1 in HomC(Ui ⊗U j ,Uk) and the dual basis {ϒ(i, j)k

α }N k
i j

α=1

in HomC(Uk,Ui ⊗U j ). The duality of the bases means that λα(i, j)k ◦ ϒ(i, j)k
β = δα,β idUk .

We also fix λ(0,i)i = λ(i,0)i = idUi . We denote the basis vectors graphically as follows:

λα(i, j)k = α

Uk

Ui U j

, ϒ(i, j)k
α = α

Uk

Ui U j

. (2.35)

4 In the graphical notation used below, we have given an orientation to the ribbons indicated by the arrows.
For example, it is understood that this orientation determines which of the duality morphisms in (2.13) to use.
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For V ∈ C we also choose a basis {b(i;α)V } of HomC(V,Ui ) and the dual basis {bV
(i;β)}

of HomC(Ui , V ) for i ∈ I such that b(i;α)V ◦ bV
(i;β) = δαβ idUi . We use the graphical

notation

b(i;α)V = α

Ui

V

, bV
(i;α) = α

Ui

V

. (2.36)

Given two modular tensor categories C and D, by C �D we mean the tensor product
of additive categories over C [BK, Def. 1.1.15], i.e. the category whose objects are direct
sums of pairs V × W of objects V ∈ C and W ∈ D and whose morphism spaces are

HomC�D(V × W, V ′ × W ′) = HomC(V, V ′)⊗C HomC(W,W ′) (2.37)

for pairs, and direct sums of these if the objects are direct sums of pairs.
If we replace the braiding and the twist in C by the antibraiding c−1 and the antitwist

θ−1 respectively, we obtain another ribbon category structure on C. In order to distin-
guish these two distinct structures, we denote (C, c, θ) and (C, c−1, θ−1) by C+ and C−
respectively. As in the Introduction, we will abbreviate

C2± = C+ � C−. (2.38)

Note that a set of representatives of the simple objects in C2± is given by Ui × U j for
i, j ∈ I.

For the remainder of Sect. 2 we fix a modular tensor category C.

2.4. The functors T and R. The tensor product bifunctor ⊗ can be naturally extended
to a functor T : C2± → C. Namely, T (⊕N

i=1Vi × Wi ) = ⊕N
i=1Vi ⊗ Wi for all Vi ,Wi ∈ C

and N ∈ N. The functor T becomes a tensor functor as follows. For φT
0 : 1 → T (1 × 1)

take φT
0 = id1 (or l−1

1 in the non-strict case). Next notice that, for U, V,W, X ∈ C,

T (U × V )⊗ T (W × X)= (U ⊗ V )⊗ (W ⊗ X),

T ((U × V )⊗ (W × X))= (U ⊗ W )⊗ (V ⊗ X).
(2.39)

We define φT
2 : T (U × V )⊗ T (W × X) → T ((U × V )⊗ (W × X)) by

φT
2 = idU ⊗ c−1

W V ⊗ idX . (2.40)

(In the non-strict case the appropriate associators have to be added.) The above definition
of φT

2 can be naturally extended to a morphism φT
2 : T (M1 ⊗ M2) → T (M1)⊗ T (M2)

for any pair of objects M1,M2 in C2±. The following result can be checked by direct
calculation [JS, Prop. 5.2].

Lemma 2.20. The triple (T, φT
2 , φ

T
0 ) gives a tensor functor.
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In particular, (T, φT
2 , φ

T
0 , ψ

T
2 , ψ

T
0 ), where ψT

2 = (φT
2 )

−1 and ψT
0 = (φT

0 )
−1, gives

a Frobenius functor.
Define the functor R : C → C2± as follows: for A ∈ C and f ∈ HomC(A, B),

R(A) =
⊕
i∈I

(A ⊗ U∨
i )× Ui , R( f ) =

⊕
i∈I

( f ⊗ idU∨
i
)× idUi . (2.41)

This functor was also considered in a slightly different context in [ENO2, Prop. 2.3].
The family of isomorphisms γ R

A = ⊕i∈I DimC
dim Ui

id(A⊗U∨
i )×Ui

∈ Aut(R(A)) defines a

natural isomorphism γ R : R → R.
Our next aim is to show that R is left and right adjoint to T , in other words R

and T form an ambidextrous adjunction (see e.g. [Ld] for a discussion of ambidextrous
adjunctions). To this end we introduce two linear isomorphisms, for A ∈ C and M ∈ C2±,

χ̂ : HomC(T (M), A) −→ HomC2±(M, R(A)),

χ̌ : HomC(A, T (M)) −→ HomC2±(R(A),M).
(2.42)

If we decompose M as M = ⊕N
n=1 Ml

n × Mr
n , then χ̂ and χ̌ are given by

χ̂ :
N⊕

n=1

fn

Ml
n Mr

n

A

�→
N⊕

n=1

⊕
i∈I

∑
α

fn

Ml
n

Mr
n

A

α

U∨
i

× α

Mr
n

Ui

(2.43)

and

χ̌ :
N⊕

n=1 gn

Ml
n Mr

n

A

�→
N⊕

n=1

⊕
i∈I

∑
α gn

Ml
n

Mr
n

A

α

U∨
i

× α

Ui

Mr
n

DimC
dim Ui

. (2.44)

Notice that χ̂ and χ̌ are independent of the choice of basis.

Theorem 2.21. 〈T, R, χ̂〉 and 〈R, T, χ̌−1〉 are adjunctions, i.e. R is both left and right
adjoint of T .

Proof. Write M as M = ⊕N
n=1 Ml

n × Mr
n . The isomorphism χ̂ amounts to the following

composition of natural isomorphisms,

HomC(T (M), A) = ⊕nHomC(Ml
n ⊗ Mr

n , A)
∼= ⊕n,i HomC(Ml

n ⊗ Ui , A)⊗ HomC(Mr
n ,Ui )

∼= ⊕n,i HomC(Ml
n, A ⊗ U∨

i )⊗ HomC(Mr
n ,Ui ) = HomC2±(M, R(A)). (2.45)
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Thus χ̂ is natural. Let (γ R
A )

∗ : HomC2±(R(A),M) → HomC2±(R(A),M) denote the

pull-back of γ R
A . The isomorphism χ̌ is equal to the composition of (γ R

A )
∗ and the

following sequence of natural isomorphisms:

HomC(A, T (M)) = ⊕n HomC(A,Ml
n ⊗ Mr

n)

∼= ⊕n,i HomC(A,Ml
n ⊗ Ui )⊗ HomC(Ui ,Mr

n)

∼= ⊕n,i HomC(A ⊗ U∨
i ,Ml

n)⊗ HomC(Ui ,Mr
n) = HomC2±(R(A),M). (2.46)

We have proved that both χ̂ and χ̌ are natural isomorphisms. 	

There are four natural transformations associated to χ̂ and χ̌ , namely

idC2±
δ̂−→ RT

ρ̌−→ idC2± and idC
δ̌−→ T R

ρ̂−→ idC, (2.47)

defined by, for A ∈ C, M ∈ C2±,

δ̂M = χ̂(idT (M)), ρ̂A = χ̂−1(idR(A)),

ρ̌M = χ̌ (idT (M)), δ̌A = χ̌−1(idR(A)).
(2.48)

They can be expressed graphically as follows, with M = ⊕N
n=1 Ml

n × Mr
n ,

δ̂M =
⊕
n,i

∑
α

Ml
n

Ml
n Mr

n U∨
i

α
×

Ui

Mr
n

α

, ρ̂A =
⊕
i∈I

A

A

U∨
i Ui

,

(2.49)

ρ̌M =
⊕
n,i

∑
α

Ml
n

Ml
n

Mr
n U∨

i

α ×

Ui

Mr
n

α DimC
dim Ui

, δ̌A =
⊕
i∈I

A

A U∨
i Ui

dim Ui
DimC .

Note that

ρ̌M ◦ δ̂M = Dim C · idM and ρ̂A ◦ δ̌A = idA. (2.50)

Lemma 2.22. The functors T and R as maps on the sets of morphisms have left inverses,
and thus are injective.

Proof. Let f : A → B be a morphism in C. We define a map Q R : HomC2±(R(A),

R(B)) → HomC(A, B) by f ′ �→ ρ̂B ◦ T ( f ′) ◦ δ̌A. Then we have

Q R ◦ R( f ) = ρ̂B ◦ T R( f ) ◦ δ̌A = ρ̂B ◦ δ̌B ◦ f = f, (2.51)
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where we used naturality of δ̌ and (2.50) in the second and third equalities, respectively.
So Q R is a left inverse of R on morphisms. Thus R is injective on morphisms. Similarly,
let g : M → N be a morphism in C2±. We define a map QT : HomC(T (M), T (N )) →
HomC2±(M, N ) by g′ �→ (Dim C)−1 · ρ̌N ◦ R(g′) ◦ δ̂M . Then we have

QT ◦ T (g) = (Dim C)−1 · ρ̌N ◦ RT (g) ◦ δ̂M = (Dim C)−1 · ρ̌N ◦ δ̂N ◦ g = g. (2.52)

So QT is a left inverse of T on morphisms. Thus T is injective on morphisms. 	

Using (2.9) and (2.50), one can express the two inverse maps χ̂−1, χ̌−1 as follows,

for f ∈ HomC2±(M, R(A)) and g ∈ HomC2±(R(A),M),

χ̂−1( f ) = ρ̂ ◦ T ( f ), χ̌−1(g) = T (g) ◦ δ̌. (2.53)

By Proposition 2.5 and Lemma 2.7, R is both a lax and colax tensor functor. In particular,
φR

0 : 1 × 1 → R(1) is given by

φR
0 = χ̂ (ψT

0 ) = R(ψT
0 ) ◦ δ̂1 × 1 = id1×1 (2.54)

and φR
2 : R(A)⊗ R(B) → R(A ⊗ B) by φR

2 = R(ρ̂A ⊗ ρ̂B) ◦ R(ψT
2 ) ◦ δ̂, which can

be expressed graphically as

φR
2 =

⊕
i, j,k∈I

∑
α

A

A

U∨
i B

B

U∨
j

U∨
k

α

×

Ui U j

α

Uk

. (2.55)

Similarly, ψ R
0 : R(1) → 1 × 1 is given by

ψ R
0 = ρ̌1 ◦ R(φT

0 ) = Dim C id1×1 (2.56)

and ψ R
2 : R(A ⊗ B) → R(A) ⊗ R(B) by ψ R

2 = ρ̌ ◦ R(φT
2 ) ◦ R(δ̌A ⊗ δ̌B), which in

graphical notation reads

ψ R
2 =

⊕
i, j,k∈I

∑
α

A

A U∨
i

B

B U∨
j

U∨
k

α

×

Ui U j

α

Uk

dim Ui dim U j

dim Uk Dim C .

(2.57)

If C has more than one simple object, then R does not take the tensor unit of C to the
tensor unit of C2± and so is clearly not a tensor functor. However, we will show that R is
still a Frobenius functor. This will imply that if A is a Frobenius algebra in C, then

R(A) = (R(A),m R(A), ηR(A),�R(A), εR(A)) (2.58)
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is a Frobenius algebra in C2±, where the structure morphisms were given in (2.17) and
(2.18). In the case A = 1 it was proved in [Mü1, Prop. 4.1] (see also [Fr, Lem. 6.19]
and [K1, Thm. 5.2]) that (2.58) is a commutative simple symmetric normalised-special
Frobenius algebra in C2±. In fact, given a Frobenius algebra A in C, it is straightforward
to verify that the structure morphisms in (2.58) are precisely those of (A × 1)⊗ R(1),
cf. Sect. 2.2.

Proposition 2.23. (R, φR
2 , φ

R
0 , ψ

R
2 , ψ

R
0 ) is a Frobenius functor.

Proof. Using the explicit graphical expression of φR
2 , φ

R
0 , ψ

R
2 , ψ

R
0 , it is easy to see that

the commutativity of the diagrams (2.5) and (2.6) are equivalent to the statement that
R(1) with structure morphisms as in (2.58) is a Frobenius algebra in C2±. The latter
statement is true by [Mü1, Prop. 4.1]. 	


From Lemma 2.20 and Proposition 2.23 we see that T and R take Frobenius alge-
bras to Frobenius algebras. The following two propositions show how the properties of
Frobenius algebras are transported.

Proposition 2.24. Let A be a Frobenius algebra in C2±. Then T (A) is a Frobenius algebra
in C and

(i) A is symmetric iff T (A) is symmetric.
(ii) A is (normalised-)special iff T (A) is (normalised-)special.

Proof. For part (i) write A as a direct sum ⊕N
n=1 Al

n × Ar
n . Then the maps IT (A), I ′

T (A) :
T (A∨) → T (A)∨ defined in (2.20) are given by:

IT (A) = I ′
T (A) = ⊕N

n=1c(Al
n)

∨,(Ar
n)

∨ . (2.59)

Therefore, by (2.21), �T (A) = �′
T (A) is equivalent to T (�A) = T (�′

A). Since by
Lemma 2.22, T is injective on morphisms, this proves part (i). Part (ii) can be checked
in the same way, for example the condition mT (A) ◦�T (A) = ζ idT (A) is easily checked
to be equivalent to T (m A ◦�A) = ζ T (idA). 	

Proposition 2.25. Let A be a Frobenius algebra A in C. Then R(A) is a Frobenius
algebra in C2± and

(i) A is symmetric iff R(A) is symmetric.
(ii) A is (normalised-)special iff R(A) is (normalised-)special.

Proof. Recall that the structure morphisms of the Frobenius algebra R(A) are equal to
those of (A × 1) ⊗ R(1). Using this equality, part (i) and (ii) follow because R(1) is
symmetric and normalised-special. For example,

m R(A) ◦�R(A) = [(m A ◦�A)× id1] ⊗ idR(1) = R(m A ◦�A), (2.60)

so that m R(A) ◦�R(A) = ζ idR(A) is equivalent to R(m A ◦�A) = ζ R(idA), which by
Lemma 2.22 is equivalent to m A ◦�A = ζ idA. 	


The functor R has one additional property not shared by T , namely R takes absolutely
simple algebras to absolutely simple algebras. We will see explicitly in Sect. 3.3 that
this is not true for T .
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Lemma 2.26. For a C-algebra A, the map

R : HomA|A(A, A) → HomR(A)|R(A)(R(A), R(A)) (2.61)

given by f �→ R( f ) is well-defined and an isomorphism.

Proof. Since R is a lax tensor functor, R(A) is naturally a R(A)-bimodule. It is easy to
see that R in (2.61) is a well-defined map. R(A) is also naturally a R(1)-bimodule, which
can be identified with the induced R(1)-bimodule structure on (A × 1)⊗ R(1), where
the left R(1) action on (A×1)⊗ R(1) is given by (idA×1 ⊗m R(1))◦(c−1

A×1,R(1)⊗ idR(1)).
We have the following natural isomorphisms:

HomR(1)|R(1)(R(A), R(A))
∼=−→ HomC2±(A × 1, R(A))

χ̂−1

−−→ HomC(A, A). (2.62)

which, by (2.53), are given by, for f ∈ HomR(1)|R(1)(R(A), R(A)),

f �→ f ′ = f ◦ (idA×1 ⊗ ηR(1)) �→ f ′′ = ρ̂ ◦ T ( f ′), (2.63)

and its inverse is given by, for g ∈ HomC(A, A),

g �→ g′ = R(g) ◦ δ̂ �→ g′′ = (idA×1 ⊗ m R(1)) ◦ (g′ ⊗ idR(1)), (2.64)

where g′′ is indeed a R(1)-bimodule map due to the commutativity of R(1). It is easy to
check that g′′ = R(g) in (2.64). Therefore R gives an isomorphism from HomC(A, A)
to HomR(1)|R(1)(R(A), R(A)). Moreover, one verifies that R(g) is an R(A)-bimodule
map iff g is an A-bimodule map. In other words, R : g �→ R(g) gives an isomorphism

HomA|A(A, A)
∼=−→ HomR(A)|R(A)(R(A), R(A)). 	


Corollary 2.27. Let A be a C-algebra.

(i) A is absolutely simple iff R(A) is absolutely simple.
(ii) Let A be in addition Frobenius. Then A is simple and special iff R(A) is simple and

special.

Proof. Part (i) immediately follows from Lemma 2.26. The statement of part (ii) without
the qualifier ‘simple’ is proved in Proposition 2.25. But, as in the proof of (iii)⇒(i) in
Lemma 2.11, a special Frobenius algebra in a semi-simple category has a semi-simple
category of bimodules, and for a semi-simple C-linear category, simple and absolutely
simple are equivalent. Part (ii) then follows from part (i). 	


The following lemma will be needed in Sect. 3.2 below to discuss the properties of
Cardy algebras.

Lemma 2.28. Let A be a Frobenius algebra in C. Then (δ̌A)
∗ = ρ̂A.

Proof. Recall from (2.50) that δ̌A is a morphism A → T R(A). Since T and R are both
Frobenius functors, T R(A) is a Frobenius algebra in C. Substituting the definitions, after
a short calculation one finds
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εT R(A) ◦ mT R(A) = Dim(C)
⊕
i∈I

A U∨
i Ui A U ∨̄

ı Uı̄

(2.65)

Substituting this in the definition of (δ̌A)
∗ gives, again after a short calculation, the mor-

phism ρ̂A. At an intermediate step one uses that the part of the morphism (δ̌A)
∗, which

is made up of Ui and Uı̄ ribbons, their duals, and the basis morphisms λ(i,ı̄)0 andϒ(i,ı̄)0,
can be replaced by 1

dim Ui
· dUi . 	


3. Cardy Algebras

In this section we start by investigating the properties of Frobenius algebras which sat-
isfy the so-called modular invariance condition. We then give two definitions of a Cardy
algebra and prove their equivalence. Finally, in Sect. 3.3, we study the properties of these
algebras and state our main results.

We fix a modular tensor category C. Recall that C2± is an abbreviation for C+ � C−.

3.1. Modular invariance. In C2±, we define the object K and the morphism ω : K → K
as

K =
⊕

i, j∈I
Ui × U j , ω =

∑
i, j∈I

dim Ui dim U j

Dim C idUi ×U j . (3.1)

They have the property (see e.g. [BK, Cor. 3.1.11])

ω

K

(Uk × Ul )
∨

(Uk × Ul )
∨

Ui × U j

Ui × U j

= δi,k δ j,l
Dim C

dim Ui dim U j
b̃Ui ×U j ◦ dUi ×U j . (3.2)
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Definition 3.1.

(i) Let A, B be objects of C2±. A morphism f : A ⊗ B → B is called S-invariant iff

A

B

W

W

f =

A

B

W

W

f

K

ω
(3.3)

holds for all for W ∈ C2±.
(ii) A C2±-algebra (Acl,mcl, ηcl) is called modular invariant iff θAcl = idAcl and mcl

is S-invariant.

Lemma 3.2. The morphism f : A ⊗ B → B is S-invariant if and only if

A

B

Ui × U j

Ui × U j

f = Dim C
dim Ui dim U j

∑
α

A

B

B

f

Ui × U j

Ui × U j

α

α

(3.4)

holds for all i, j ∈ I.

Proof. Condition (3.3) holds for all W iff it holds for all W = Ui × U j , i, j ∈ I, so it
is enough to show that the right-hand side of (3.3) with W = Ui × U j is equal to the
right-hand side of (3.4). Recall the notation for basis morphisms in (2.36). Starting from
(3.3), write

idB∨ ⊗ idUi ×U j =
⎛
⎝∑

k,l,α

(
b(k×l;α)

B

)∨ ◦
(

bB
(k×l;α)

)∨
⎞
⎠ ⊗ idUi ×U j , (3.5)

and then apply (3.2). The graphical representation of the resulting morphism can be
deformed to give (3.4). 	

Remark 3.3. As shown in [K3, Sect. 6.1], the modular invariance condition of a C2±-alge-
bra exactly coincides with the modular invariance condition for torus 1-point correlation
functions of a genus-0,1 closed CFT. In particular, the condition θAcl = idAcl is equiv-
alent to invariance under the modular transformation T : τ �→ τ + 1, and the condition
(3.4) with f = mcl is equivalent to invariance under S : τ �→ − 1

τ
. Combining the

modular invariance condition with the genus zero properties of a genus-0,1 closed CFT
results in a modular invariant commutative symmetric Frobenius algebra in C2±.
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Let Acl be a modular invariant C2±-algebra. Evaluating (3.4) for f = mcl, composing
it with ηcl ⊗ idUi ×U j and taking the trace implies the following identity:

Zi j = 1

DimC
AclUi ×U j where

(3.6)

Zi j = dimC HomC2±(Ui×U j , Acl).

Decomposing Acl into simple objects, this gives

Zi j =
∑

k,l∈I
Sik Zkl S−1

l j where Si j = si, j/
√

DimC, (3.7)

which in CFT terms is of course nothing but the invariance of the torus partition function
under the modular S-transformation.

The following theorem gives a simple criterion for modular invariance.

Theorem 3.4. Let Acl be a haploid commutative symmetric Frobenius algebra in C2±.

(i) If Acl is modular invariant, then dim Acl = Dim C.
(ii) If dim Acl = Dim C, then Acl is special and modular invariant.

Proof. Part (i): Since Acl is haploid, for i = j = 0, Equation (3.6) reduces to 1 =
dim Acl/DimC.
Part (ii): By the same reasoning as in the proof of (iii)⇒(i) in Lemma 2.11 one shows
that Acl is special. Thus mcl ◦�cl = ζclidAcl for some ζcl �= 0.

By [KO, Thm. 4.5], the category (C2±)loc
Acl

of local Acl-modules is again a mod-

ular tensor category and Dim (C2±)loc
Acl

= (Dim C/ dim Acl)
2 (see [Fr, Prop. 3.21 &

Rem. 3.23] for the same statement in the notation used here). Thus by assumption we
have Dim(C2±)loc

Acl
= 1. It then follows from [ENO1, Thm. 2.3] that up to isomorphism,

(C2±)loc
Acl

has a unique simple object (namely the tensor unit). In other words, every simple
local Acl-module is isomorphic to Acl (seen as a left-module over itself).

We have the following isomorphisms between morphism spaces [FS, Prop. 4.7 & 4.11],

HomAcl(Acl ⊗ (Ui × U j ), Acl) ∼= HomC2±(Ui × U j , Acl),

HomAcl(Acl, Acl ⊗ (Ui × U j )) ∼= HomC2±(Acl,Ui × U j ).

Using these to transport the bases (2.36) from the right to the left, we obtain bases {bα(i j)}α
of HomAcl(Acl ⊗ (Ui × U j ), Acl) and {b(i j)

β }β of HomAcl(Acl, Acl ⊗ (Ui × U j )). These
can be expressed graphically as
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bα(i j) =

Acl

Acl

Acl

Ui × U j

α

, b(i j)
β = DimC

dim Ui dim U j

1

ζcl

Acl

Ui × U jAcl

Acl

β

, (3.8)

where the nonzero factor in b(i j)
β is included for convenience. Notice that bα(i j) ◦ b(i j)

β is
a left Acl-module map. Since Acl is simple as a left module over itself, we have

bα(i j) ◦ b(i j)
β = λαβ idAcl (3.9)

for some λαβ ∈ C. By computing tr(bα(i j) ◦ b(i j)
β ), it is easy to verify that λαβ = δαβ .

We will now prove the following identity:

1

ζcl

Acl

Acl

Ui × U j

Ui × U j

Acl

=
∑
α

DimC
dim Ui dim U j

1

ζcl

Acl

Ui × U j

Ui × U j

Acl

Acl

Acl

α

α

. (3.10)

One checks that the left-hand side of this equation is an idempotent, which we denote by
ζ−1

cl Pl
Acl
(Ui ×U j ), cf. [Fr, Sect. 3.1]. By [Fr, Prop. 4.1] the image Im(ζ−1

cl Pl
Acl
(Ui ×U j ))

is a local Acl-module, and hence isomorphic to A⊕N
cl for some N ∈ Z≥0.

All left-module morphisms from Acl to Acl⊗(Ui ×U j ) are linear combinations of the

b(i j)
β . Furthermore one verifies that ζ−1

cl Pl
Acl
(Ui ×U j )◦b(i j)

β = b(i j)
β . Therefore, the b(i j)

β

describe precisely the image of the idempotent, i.e. ζ−1
cl Pl

Acl
(Ui ×U j ) = ∑

α b(i j)
α ◦bα(i j),

which is nothing but (3.10). Composing (3.10) with ζcl · εcl ⊗ idUi ×U j from the left (i.e.
from the top) produces (3.4).

In addition, since Acl is commutative symmetric Frobenius it satisfies θAcl = idAcl

[Fr, Prop. 2.25]. Altogether, this shows that Acl is modular invariant. 	

Remark 3.5. As we were writing this paper, we heard that the results in Theorem 3.4
were obtained independently by Kitaev and Müger [Ki].

Remark 3.6. Setting i = j = 0 in (3.6) gives the identity dim Acl = Z00 Dim C [KR,
Prop. 2.3]. Combining this with Theorem 3.4 (ii) one may wonder if a general modular
invariant commutative symmetric Frobenius algebra Acl in C2± is isomorphic to a direct
sum of simple such algebras. However, this is not so. For example, one can take the com-
mutative symmetric Frobenius algebra Acl = C[x]/x2 in the category of vector spaces
equipped with the non-degenerate trace ε(ax + b) = a. In this case the modular invari-
ance condition holds automatically, but Acl is clearly not a direct sum of two algebras.
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For a general modular tensor category C, the algebra C[x]/x2 � R(1), understood as an
algebra in C2± via the braided monoidal isomorphism Vect f (C) � C2± → C2±, provides
another counter-example.

3.2. Two definitions. Define a morphism Pl
A : A → A for a Frobenius algebra A in C

or C2± as follows [Fr, Sect. 2.4],

Pl
A =

A

A

A

m

�

. (3.11)

If A is also commutative and obeys m A ◦�A = ζA idA, we have Pl
A = ζA idA. In partic-

ular, this holds if A is commutative and special. Using the fact that the Frobenius algebra
R(1) is commutative and normalised-special, one can check that Pl

R(A) : R(A) → R(A)
takes the following form:

Pl
R(A) =

⊕
i∈I

A

A

U∨
i

U∨
i

A

m

�

×

Ui

Ui

. (3.12)

With these ingredients, we can now give the first definition of a Cardy C|C2±-algebra,
which was introduced in [K3, Def. 5.14], cf. Remark 3.15 below.

Definition 3.7 (CardyC|C2±-algebra I). A CardyC|C2±-algebra is a triple (Aop|Acl, ιcl-op),
where (Acl,mcl, ηcl,�cl, εcl) is a modular invariant commutative symmetric Frobe-
nius C2±-algebra, (Aop,mop, ηop,�op, εop) is a symmetric Frobenius C-algebra, and
ιcl-op : Acl → R(Aop) an algebra homomorphism, such that the following conditions
are satisfied:

(i) Centre condition:

Acl R(Aop)

R(Aop)

R(Aop)

ιcl-op

m R(Aop)

=

Acl

ιcl-op

R(Aop)

R(Aop)

R(Aop)

m R(Aop)

. (3.13)
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(ii) Cardy condition:

ιcl-op ◦ ι∗cl-op =

R(Aop)

R(Aop)

R(Aop)

. (3.14)

Remark 3.8.

(i) The name “Cardy C|C2±-algebra” in Definition 3.7 was chosen because many of
the important ingredients were first studied by Cardy: the modular invariance of
the closed theory [C1], the consistency of the annulus amplitude [C2], and the
bulk-boundary OPE [CL]. On the other hand, the boundary-boundary OPE and
the OPE analogue of the centre condition were first considered in [Lw].

(ii) One can easily see that in the special case that C is the category Vect f (C) of finite-
dimensional C-vector spaces, a Cardy C|C2±-algebra gives exactly the algebraic
formulation of two-dimensional open-closed topological field theory over C (cf.
Remark 6.14 in [K3]), see [Lz, Sect. 4.8], [Mo, Thm. 1.1], [AN, Thm. 4.5], [LP,
Cor. 4.3], [MS, Sect. 2.2]. When passing to a general modular tensor category C
there are two important differences to the two-dimensional topological field the-
ory. Firstly, the algebras Acl and Aop now live in different categories, which in
particular affects the formulation of the centre condition and the Cardy condition.
Secondly, the modular invariance condition has to be imposed on Acl. In the case
C = Vect f (C), modular invariance holds automatically.

Definition 3.9. A homomorphism of Cardy C|C2±-algebras (A(1)op |A(1)cl , ι
(1)
cl-op) → (A(2)op

|A(2)cl , ι
(2)
cl-op) is a pair ( fop, fcl) of Frobenius algebra homomorphisms fop : A(1)op → A(2)op

and fcl : A(1)cl → A(2)cl such that the diagram

A(1)cl

fcl ��

ι
(1)
cl-op

��

A(2)cl

ι
(2)
cl-op

��
R(A(1)op )

R( fop) �� R(A(2)op )

(3.15)

commutes.

Remark 3.10. Since a homomorphism of Frobenius algebras is invertible (cf. Lemma
2.18 (iv)), a homomorphism of Cardy algebras is always an isomorphism.

For a homomorphism ( fop, fcl) of Cardy C|C2±-algebras, using the commutativity of
(3.15) and the fact that fcl and fop are both algebra and coalgebra homomorphisms, it
is easy to show that (3.15) commutes iff

R(A(1)op )
R( fop) ��

(ι
(1)
cl-op)

∗
��

R(A(2)op )

(ι
(2)
cl-op)

∗
��

A(1)cl

fcl �� A(2)cl

(3.16)
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commutes.
Let (Aop|Acl, ιcl-op) be a Cardy C|C2±-algebra. Define the morphism

ι̃cl-op = χ̂−1(ιcl-op) : T (Acl) −→ Aop. (3.17)

Decompose Acl as Acl = ⊕N
n=1Cl

n × Cr
n such that Cl

1 × Cr
1 = ηcl(1 × 1). We use ι(n)cl-op

to denote the restriction of ιcl-op to Cl
n × Cr

n and ι̃(n)cl-op to denote the restriction of ι̃cl-op

to Cl
n ⊗ Cr

n . We introduce the following graphical notation:

ι̃
(n)
cl-op =

Cl
n Cr

n

Aop

. (3.18)

By (2.43), ιcl-op can be expressed in terms of ι̃cl-op as follows:

ιcl-op =
N⊕

n=1

⊕
i∈I

∑
α

Cl
n

Cr
n

Aop

α

U∨
i

× α

Cr
n

Ui

. (3.19)

Lemma 3.11. The centre condition (3.13) is equivalent to the following condition in C:

Cl
n Cr

n

Aop

Aop

Aop

=

Cl
n Cr

n

Aop

Aop

Aop

for n = 1, . . . , N . (3.20)

Proof. First, insert (3.19) and the definition (2.17) of m R(Aop) into (3.13). Then apply the
commutativity of R(1) to the left hand side of (3.13). The equivalence between (3.13)
and (3.20) follows immediately. 	

Remark 3.12. The centre condition (3.20) is very natural from the open-closed confor-
mal field theory point of view. Correlators on the upper half plane are expressed in terms
of conformal blocks on the full complex plane. The objects Cl

n and Cr
n are associated to

the field insertion at a point z in the upper half plane and at the complex conjugate point
z̄ in the lower half plane, respectively. The object Aop corresponds to a field inserted at
a point r on the real axis. The centre condition (3.20) simply says that the correlation
functions in the disjoint domains |z| > r > 0 and r > |z| > 0 are analytic continuations
of each other, see [K2, Prop. 1.18].
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Recall that we define ι̃∗cl-op : Aop → T (Acl) as in (2.30). We introduce the graphical
notation

ι̃∗cl-op =
N⊕

n=1

Cl
n Cr

n

Aop

=
N⊕

n=1

Cl
n Cr

n

Aop

�Aop T (�−1
Acl
), (3.21)

where the second equality follows from (2.15), (2.21) and (2.59).

Lemma 3.13. The Cardy condition (3.14) is equivalent to the following identity in C:

N⊕
n=1

DimC
dim Ui

∑
α

Cl
n

Cr
n

Cr
n

α

α

Aop

Aop U∨
i

U∨
i

=
Aop

Aop

Aop

U∨
i

U∨
i

�op

mop for all i ∈ I. (3.22)

Proof. By (2.44), (3.12) and (3.19), it is easy to see that (3.22) is equivalent to the
following identity:

ιcl-op ◦ χ̌(ι̃∗cl-op) = Pl
R(Aop)

. (3.23)

Therefore, it is enough to show that

χ̌(ι̃∗cl-op) = ι∗cl-op. (3.24)

We have

χ̌−1(ι∗cl-op)
(1)= T (ι∗cl-op) ◦ δ̌ (2)= T (ιcl-op)

∗ ◦ δ̌∗∗ (3)= (
ρ̂ ◦ T (ιcl-op)

)∗ (4)= (
ι̃cl-op

)∗
. (3.25)

In step (1) we use the expression (2.53) for χ̌−1, step (2) follows from Lemma 2.18 (v)
and Lemma 2.19. Step (3) is Lemma 2.18 (i) and Lemma 2.28, and finally step (4)
amounts to substituting (2.53) and (3.17). Acting with χ̌ on both sides of the above
equality produces (3.24). 	


Combining Lemmas 3.11 and 3.13, and Proposition 2.16, we obtain the following
equivalent definition of Cardy C|C2±-algebra (recall the graphical notation (3.18) for
ι̃cl-op and (3.21) for ι̃∗cl-op).
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Definition 3.14 (CardyC|C2±-algebra II). A CardyC-algebra is a triple (Aop|Acl, ι̃cl-op),
where Acl is a commutative symmetric Frobenius C2±-algebra satisfying property (3.4)
with f = mcl, Aop is a symmetric Frobenius C-algebra, and ι̃cl-op : T (Acl) → Aop is
an algebra homomorphism satisfying the conditions (3.20) and (3.22).

Remark 3.15. Up to a choice of normalisation, Definition 3.14 is the same as the orig-
inal one in [K3, Def. 6.13]. The difference between the two definitions is the factor
Dim C/ dim Ui on the left hand side of (3.22), which in [K3, Def. 6.13] is given by√

Dim C/ dim Ui . The two definitions are related by rescaling the coproduct �cl and
counit εcl of Acl by 1/

√
Dim C and

√
Dim C, respectively. We chose the convention in

(3.22) to remove all dimension factors from the expression (3.14) for the Cardy condition.

3.3. Uniqueness and existence theorems. In this subsection we investigate the structure
of Cardy algebras. We start with the following proposition, which, when combined with
the results of part II, provides an alternative proof of [Fj, Prop. 4.22].

Proposition 3.16. Let (Aop|Acl, ιcl-op) be a Cardy C|C2±-algebra. If Acl is simple and
dim Aop �= 0, then Aop is simple and special.

Proof. By Remark 3.6, we have dim Acl = Z00 Dim C �= 0, and by Lemma 2.11, Acl
is therefore haploid. Restricting the Cardy condition (3.22) to the case Ui = 1 and
composing both sides with εop from the left, we see that εop kills all terms associated to
U j × 1 ∈ Acl in the sum except for a single 1 × 1 term. Thus we obtain the following
identity:

β εop = d̃Aop ◦ (mop ⊗ idA∨
op
) ◦ (idAop ⊗ bAop), (3.26)

where β ∈ C. Composing with ηop from the right in turn implies that βεop ◦ ηop =
dim Aop, which is nonzero by assumption. Thus also β �= 0 and εop is a nonzero multiple
of the morphism on the right hand side of (3.26). By [FRS, Lem. 3.11], Aop is special.

Since Aop is a special Frobenius algebra, Aop is semi-simple as an Aop-bimodule
(apply [FS, Prop. 5.24] to Aop tensored with its opposite algebra). Suppose Aop is not

simple, so that we can write Aop = A(1)op ⊕ A(2)op for nonzero Aop-bimodules A(1)op and A(2)op .
We denote the canonical embeddings and projections associated to this decomposition
as ι1,2 and π1,2. We have the identities

mop ◦ (ι1 ⊗ ι2) = 0, εop ◦ ηop =
2∑

i=1

εop ◦ ιi ◦ πi ◦ ηop. (3.27)

The first identity follows since π1 ◦ mop ◦ (ι1 ⊗ ι2) = 0 (as mop gives the left action of

Aop on Aop and hence it preserves A(2)op ), and similarly π2 ◦ mop ◦ (ι1 ⊗ ι2) = 0. The
second identity is just the completeness of ι1,2, π1,2.

Since εop ◦ ηop �= 0, without losing generality we can assume εop ◦ ι1 ◦π1 ◦ ηop �= 0.
Using that π2 is a bimodule map we compute

π2 ◦ [LHS of (3.22)]Ui =1 ◦ ι1 ◦ π1 ◦ ηop = π2 ◦ [RHS of (3.22)]Ui =1 ◦ ι1 ◦ π1 ◦ ηop

= Pl
A(2)op

◦ π2 ◦ ι1 ◦ π1 ◦ ηop = 0. (3.28)
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On the other hand, using that Acl is haploid, that ι̃cl-op is an algebra map, and that
ι̃ ∗cl-op is a coalgebra map, one can check that the left-hand side of (3.28) is equal to
λ(εop ◦ ι1 ◦ π1 ◦ ηop) π2 ◦ ηop for some λ �= 0. This implies that π2 ◦ ηop = 0. Thus
ηop = ∑

i ιi ◦ πi ◦ ηop = ι1 ◦ π1 ◦ ηop. Hence, we have

0 �= π2 ◦ ι2 = π2 ◦ mop ◦ (ηop ⊗ ι2) = π2 ◦ mop ◦ ((ι1 ◦ π1 ◦ ηop)⊗ ι2). (3.29)

However, the right-hand side is zero by (3.27). This is a contradiction and hence Aop
must be simple. 	


To formulate the next theorem we need the notion of the full centre of an algebra [Fj,
Def. 4.9]. Recall that an algebra A in a braided tensor category has a left centre and a
right centre [VZ,O], both of which are sub-algebras of A. Of these two, we will only
need the left centre. The following definition is [Fr, Def. 2.31], which in our setting is
equivalent to that of [VZ,O].

Definition 3.17. Let A be a symmetric special Frobenius algebra such that m A ◦�A =
ζA idA.

(i) The left centre Cl(A) of A is the image of the idempotent ζ−1
A Pl

A.
(ii) The full centre Z(A) is Cl(R(A)).

That ζ−1
A Pl

A is an idempotent follows from [FRS, Lem. 5.2] when keeping track of
the factors ζA ([FRS] assumes normalised-special, i.e. ζA = 1). Note that Cl(A) is again
an object of C, while Z(A) is an object of C2±. Let el

A : Cl(A) → A be the embedding
of Cl(A) into A. The left centre is in fact the maximal subobject of A such that

m A ◦ cA,A ◦ (el
A ⊗ idA) = m A, (3.30)

see [Fr, Lem. 2.32]. This observation explains the name left centre and also makes the
connection to [O, Def. 15].

The full centre is by definition the image of the idempotent ζ−1
A Pl

R(A) : R(A) →
R(A). Since C2± is abelian, the idempotent splits and we obtain the embedding and
restriction morphisms

e : Z(A) ↪→ R(A) and r : R(A) � Z(A) (3.31)

which obey r ◦ e = idZ(A) and e ◦ r = ζ−1
A Pl

R(A). It follows from Proposition 2.25 and

[Fr, Prop. 2.37] that Z(A) is a commutative symmetric Frobenius algebra in C2± with
structure morphisms5

m Z(A) = r ◦ m R(A) ◦ (e ⊗ e), ηZ(A) = r ◦ ηR(A),

�Z(A) = ζA · (r ⊗ r) ◦�R(A) ◦ e, εZ(A) = ζ−1
A · εR(A) ◦ e.

(3.32)

Moreover, if A is simple then Z(A) is simple, and if A is simple and dim A �= 0, then
Z(A) is simple and special. The normalisation of the counit is such that

εZ(A) ◦ ηZ(A) = ζ−2
A dim A DimC. (3.33)

5 The normalisation of product and unit is the standard one. The factors in the coproduct and counit have
to be included in order for (A|Z(A), e) to be a Cardy algebra, see Theorem 3.18 below. The normalisation of
the counit enters the Cardy condition (3.14) through the definition of ( · )∗.
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Theorem 3.18. Let A be a special symmetric Frobenius C-algebra. Then (A|Z(A), e)
is a Cardy C|C2±-algebra.

The proof of this theorem makes use the following two lemmas.

Lemma 3.19. e : Z(A) ↪→ R(A) is an algebra map, and e∗ = ζA · r .

Proof. It follows from [Fr, Lem. 2.29] (or by direct calculation, using in particular
m R(A) ◦�R(A) = ζAidR(A)) that

m R(A) ◦ (e ⊗ e) = ζ−1
A · Pl

R(A) ◦ m R(A) ◦ (e ⊗ e). (3.34)

Substituting e ◦ r = ζ−1
A Pl

R(A) shows that e is compatible with multiplication. For the
unit one finds

e ◦ ηZ(A) = e ◦ r ◦ ηR(A) = ζ−1
A Pl

R(A) ◦ ηR(A) = ηR(A). (3.35)

Thus e is an algebra map. For the second statement one computes

e∗ (1)= ζA

R(A)

r

R(A)

R(A)

Z(A)

R(A)

Z(A)

r

e

e

(2)=

R(A)

r

R(A)

R(A)

R(A)

Z(A)

(3)=

R(A)

r

R(A)

Z(A)

(4)= ζA · r, (3.36)

where in (1) the definitions (2.30) and (3.32) have been substituted, step (2) is e ◦
r = ζ−1

A Pl
R(A), step (3) uses that R(A) is symmetric Frobenius, and step (4) is again

e ◦ r = ζ−1
A Pl

R(A). 	

Lemma 3.20. Let A be a symmetric Frobenius algebra in C. The morphism

Pl
R(A) ◦ m R(A) ◦

(
Pl

R(A) ⊗ Pl
R(A)

)
: R(A)⊗ R(A) −→ R(A) (3.37)

is S-invariant.

The proof of this lemma is a slightly lengthy explicit calculation and has been deferred
to Appendix A.2.
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Proof of Theorem 3.18. That e is an algebra map was proved in Lemma 3.19. The centre
condition (3.13) holds by property (3.30) of the left centre. The Cardy condition (3.14)
also is an immediate consequence of Lemma 3.19,

ιcl-op ◦ ι∗cl-op = e ◦ (ζA r) = Pl
R(A). (3.38)

The full centre Z(A) is a commutative symmetric Frobenius algebra. It remains to prove
modular invariance. That θZ(A) = idZ(A) is implied by commutativity and symmetry
of Z(A) [Fr, Prop. 2.25]. The S-invariance condition (3.3) follows from Lemma 3.20:
In (3.37) substitute Pl

R(A) = ζA e ◦ r and then put the resulting morphism into (3.3).
Compose the resulting equation with e ⊗ idW from the right (i.e. from the bottom) and
substitute the definition (3.32) of m Z(A). This results in the statement that m Z(A) is
S-invariant. 	


The following theorem is analogous to [LR, Prop. 2.9] and [Fj, Thm. 4.26], which,
roughly speaking, answer the question under which circumstances the restriction of a
two-dimensional conformal field theory to the boundary already determines the entire
conformal field theory. The first work is set in Minkowski space and uses operator alge-
bras and subfactors, while the second work is set in Euclidean space and uses modular
tensor categories.

Theorem 3.21. Let (A|Acl, ιcl-op) be a Cardy C|C2±-algebra such that dim A �= 0 and
Acl is simple. Then A is special and (A|Acl, ιcl-op) ∼= (A|Z(A), e) as Cardy algebras.

Proof. By Proposition 3.16, A is simple and special. Since Acl is simple, the algebra
map ιcl-op : Acl → R(A) is either zero or a monomorphism. But ιcl-op ◦ ηcl = ηR(A),
and so ιcl-op �= 0. Thus ιcl-op is monic. By Lemma 2.18 (ii), ζ−1

A ι∗cl-op is epi. The Cardy
condition (3.14) implies

ιcl-op ◦ ζ−1
A ι∗cl-op = ζ−1

A Pl
R(A) = e ◦ r. (3.39)

Composing this with e ◦ r from the left yields e ◦ r ◦ ιcl-op ◦ ζ−1
A ι∗cl-op = e ◦ r =

ιcl-op ◦ ζ−1
A ι∗cl-op. Since ζ−1

A ι∗cl-op is epi, we have

e ◦ r ◦ ιcl-op = ιcl-op. (3.40)

Actually, (3.40) also follows from (3.13) and specialness of R(A). We will prove that

( fop, fcl) : (A|Acl, ιcl-op) −→ (A|Z(A), e) where fop = idA, fcl = r ◦ ιcl-op,

(3.41)

is an isomorphism of Cardy algebras.
fcl is an algebra map: Compatibility with the units follows since ιcl-op is an algebra
map,

fcl ◦ ηcl = r ◦ ιcl-op ◦ ηcl = r ◦ ηR(A) = ηZ(A). (3.42)

Compatibility with the multiplication also follows since ιcl-op is an algebra map,

m Z(A) ◦ ( fcl ⊗ fcl) = r ◦ m R(A) ◦ (e ⊗ e) ◦ (r ⊗ r) ◦ (ιcl-op ⊗ ιcl-op)

= r ◦ m R(A) ◦ (ιcl-op ⊗ ιcl-op) = r ◦ ιcl-op ◦ mcl = fcl ◦ mcl, (3.43)

where in the second step we used (3.40).
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fcl is an isomorphism: As above, since fcl is an algebra map and since Acl is simple, fcl

has to be monic. By Lemma 3.19, r∗ = ζ−1
A e. Thus f ∗

cl = ι∗cl-op ◦ r∗ = ζ−1
A ι∗cl-op ◦ e and

fcl ◦ f ∗
cl = r ◦ ιcl-op ◦ ζ−1

A ι∗cl-op ◦ e = r ◦ e ◦ r ◦ e = idZ(A), (3.44)

and so fcl is also epi, and hence iso.
fcl is a coalgebra map: Since fcl is an algebra map, so is f −1

cl . By (3.44), f −1
cl = f ∗

cl
and by Lemma 2.18 (iii) this implies that fcl is a also coalgebra map.
The diagram (3.15) commutes: Commutativity of (3.15) is equivalent to e ◦ fcl = ιcl-op,
which holds by (3.40). 	


Let A be a special symmetric Frobenius algebra. So far we have seen that (A|Z(A), e)
is a Cardy algebra, and that all Cardy algebras with Aop = A and simple Acl are of this
form. It is now natural to ask if every simple Acl does occur as part of a Cardy algebra.
The following theorem provides an affirmative answer. Recall that for an A-left module
M , the object M∨ ⊗A M is an algebra (see e.g. [KR, Lem. 4.2]).

Theorem 3.22. If Acl is a simple modular invariant commutative symmetric Frobenius
C2±-algebra, then there exist a simple special symmetric Frobenius C-algebra A and a
morphism ιcl-op : Acl → R(A) such that

(i) Acl ∼= Z(A) as Frobenius algebras;
(ii) (A|Acl, ιcl-op) is a Cardy C|C2±-algebra;

(iii) T (Acl) ∼= ⊕κ∈J M∨
κ ⊗A Mκ as algebras, where {Mκ}κ∈J is a set of representa-

tives of the isomorphism classes of simple A-left modules.

Proof. By Remark 3.6, we have dim Acl = Z00 Dim C �= 0, and by Lemma 2.11, Acl
is haploid. It then follows from Theorem 3.4 that Acl is special. By Proposition 2.24,
T (Acl) is a special symmetric Frobenius algebra in C. Thus T (Acl) = ⊕i Ai , where the
Ai are simple symmetric Frobenius algebras. We will show that at least one of the Ai
is special. Since T (Acl) is special, we have mT (Acl) ◦ �T (Acl) = ζ idT (Acl) for some
ζ ∈ C

×. Restricting this to the summand Ai shows mi ◦ �i = ζ idAi . Furthermore,
εT (Acl) ◦ ηT (Acl) = ξ id1 for some ξ ∈ C

×. But εT (Acl) ◦ ηT (Acl) = ∑
i εi ◦ ηi , and so

at least one of the εi ◦ ηi has to be nonzero. Therefore, at least one of the Ai is special;
let A ≡ Ai be this summand. We denote the embedding A ↪→ T (Acl) by e0 and the
restriction T (Acl) � A by r0. Notice that r0 is an algebra homomorphism. Define

ιcl-op = χ̂ (r0) : Acl −→ R(A). (3.45)

By Proposition 2.16, ιcl-op is an algebra homomorphism. Next we verify the centre con-
dition (3.13), or rather its equivalent form (3.20). By substituting the definitions, one
can convince oneself that the commutativity mcl ◦cAcl,Acl = mcl of Acl in C2± implies the
condition mT (Acl) ◦� = mT (Acl) in C, see [K2, Prop. 3.6]. Here, � : T (Acl)⊗ T (Acl) →
T (Acl)⊗ T (Acl) is given by

� =
⊕
m,n

(
idCl

n
⊗ cCl

m ,C
r
n
⊗ idCr

m

)
◦

(
cCl

m ,C
l
n
⊗ c−1

Cr
n ,C

r
m

)
◦

(
idCl

m
⊗ c−1

Cl
n ,C

r
m

⊗ idCr
n

)
,

(3.46)

and we decomposed Acl as Acl = ⊕nCl
n × Cr

n . As a consequence we obtain the identity

r0 ◦ mT (Acl) ◦ � ◦ (idAcl ⊗ e0) = r0 ◦ mT (Acl) ◦ (idAcl ⊗ e0). (3.47)
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Using that r0 is an algebra map, and that by definition ι̃cl-op = r0, we obtain (3.20).
In order to show that (A|Acl, ιcl-op) is a Cardy algebra, it remains to show that the

Cardy condition (3.14) is satisfied. We will demonstrate this via a detour by first proving
that Acl ∼= Z(A) as Frobenius algebras.

Recall the notations e and r given in (3.31). Using the centre condition (3.20) one
can check that Pl

R(A) ◦ ιcl-op = m R(A) ◦ �R(A) ◦ ιcl-op. By specialness of A we have

m A ◦�A = ζA idA and so together with e ◦ r = ζ−1
A Pl

R(A) we get,

e ◦ r ◦ ιcl-op = ιcl-op. (3.48)

Next, consider the morphism

fcl = r ◦ ιcl-op : Acl −→ Z(A). (3.49)

By the same derivation as in (3.42) and (3.43) one sees that fcl is an algebra map. In
particular, fcl ◦ ηcl = ηZ(A) �= 0 and so fcl �= 0. Since Acl is simple, fcl has to be a
monomorphism.

By the same argument as used in the proof of Theorem 3.4 (ii), up to isomorphism
Acl is the unique simple local Acl-(left-)module. The algebra monomorphism fcl turns
Z(A) into an Acl-module. Since Z(A) is commutative, it is local as an Acl-module, and
so Z(A) ∼= A⊕N

cl for some N ≥ 1. By construction, A is a simple special symmetric
Frobenius algebra. Proposition 2.25 and Corollary 2.27 show that R(A) inherits all these
properties, and thus Z(A) is simple (see the comment below Eq. (3.32)). By Theorem
3.18, Z(A) is modular invariant, and then by Theorem 3.4 (i), dim Z(A) = Dim C. This
implies that N = 1 in Z(A) ∼= A⊕N

cl , and so fcl is in fact an isomorphism.
Since Acl and Z(A) are both haploid, we have εZ(A) ◦ fcl = ξ εcl for some ξ ∈ C

×.
The counit uniquely determines the Frobenius structure on Acl and Z(A) (see e.g. [FRS,
Lemma 3.7]), so that fcl is a coalgebra isomorphism iff ξ = 1. To compute ξ we compose
the above identity with ηcl from the right. Defining ζcl via εcl ◦ηcl = ζ−1

cl Dim C · id1 and
using (3.33) gives ξ = dim A ζcl/ζ

2
A. By rescaling the comultiplication and the counit

of A, and consequently changing ζA, we can always achieve ξ = 1. This proves part (i)
of the theorem.

Equation (3.48) implies that ιcl-op = e◦ fcl. Since fcl is an isomorphism of Frobenius
algebras, by Lemmas 2.18 and 3.19 we have

ιcl-op ◦ ι∗cl-op = e ◦ fcl ◦ f ∗
cl ◦ e∗ = ζA e ◦ r = Pl

R(A). (3.50)

Thus (A|Acl, ιcl-op) is a Cardy algebra. This proves part (ii) of the theorem.
Part (iii) can be seen as follows. By [KR, Prop. 4.3], T Z(A) ∼= ⊕κ∈J M∨

κ ⊗A Mκ as
algebras. Together with the observation that T ( fcl) : T (Acl) → T Z(A) is an isomor-
phism of algebras, this proves part (iii). 	

Remark 3.23. Part (i) of Theorem 3.22 was announced by Müger [Mü2]. We provide an
independent proof in the setting of Cardy algebras

The above theorem, together with Lemma 2.11 and Theorem 3.4, shows that a sim-
ple commutative symmetric Frobenius C2±-algebra Acl with dim Acl = Dim C is always
part of a Cardy algebra (Aop|Acl, ιcl-op) for some simple special symmetric Frobenius
algebra Aop in C. However, the above proof also illustrates that Aop is not unique. This
raises the question how two Cardy algebras with a given Acl can differ. This question is
answered by [KR, Thm. 1.1], which in the present framework can be restated as follows.
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Theorem 3.24. If (A(i)op |A(i)cl , ι
(i)
cl-op), i = 1, 2 are two Cardy C|C2±-algebras such that

A(i)cl is simple and dim A(i)op �= 0 for i = 1, 2, then A(1)cl
∼= A(2)cl as algebras if and only

if A(1)op and A(2)op are Morita equivalent.

Proof. Theorem 1.1 in [KR] is stated for A(i)op being non-degenerate algebras and A(i)cl =
Z(A(i)op ) for i = 1, 2. By Proposition 3.16, A(i)op are simple and special for i = 1, 2.

Then by [KR, Lem. 2.1], A(i)op are non-degenerate algebras. By Theorem 3.21, we have

A(i)cl
∼= Z(A(i)op ) as Frobenius algebras. Finally, by [KR, Thm. 1.1], Z(A(1)op ) ∼= Z(A(2)op )

as algebras iff A(1)op and A(2)op are Morita equivalent. 	

Let Cmax(C2±) be the set of equivalence classes [B] of simple modular invariant

commutative symmetric Frobenius algebras B in C2±. Two such algebras B and B ′ are
equivalent if B and B ′ are isomorphic as algebras (but not necessarily as Frobenius alge-
bras). Let Msimp(C) be the set of Morita classes of simple special symmetric Frobenius
algebras in C. Define the map z : Msimp(C) → Cmax(C2±) by z : {A} → [Z(A)], where
{A} denotes the Morita class of A. From Theorem 3.22 (i) and [KR, Thm. 1.1] we learn:

Corollary 3.25. The map z : Msimp(C) → Cmax(C2±) is a bijection.

A. Appendix

A.1. Proof of Lemma 2.7 . We will show that if (F, ψ F
2 , ψ

F
0 ) is a colax tensor functor

from C1 to C2, then (G, φG
2 , φ

G
0 ) is a lax tensor functor from C2 to C1. Applying this

result to the opposed categories then gives the converse statement.
We need to show that φG

0 and φG
2 make the diagrams (2.1) and (2.2) commute. We

first prove the commutativity of (2.1). Consider the following diagram:

G(A)⊗ (G(B)⊗ G(C))

GψF
2 ◦δ

��

idG(A)⊗φG
2 �� G(A)⊗ G(B ⊗ C)

GψF
2 ◦δ

��
G(FG(A)⊗ F(G(B)⊗ G(C)))

G(F(idG(A))⊗F(φG
2 )) ��

G(idFG(A)⊗ψ F
2 )

��

G(FG(A)⊗ FG(B ⊗ C))

G(ρA⊗ρB⊗C )

��
G(FG(A)⊗ (FG(B)⊗ FG(C)))

G(ρA⊗(ρB⊗ρC )) �� G(A ⊗ (B ⊗ C)).

(A.1)

The top subdiagram is commutative because of the naturality of Gψ F
2 ◦ δ. The commu-

tativity of the bottom subdiagram follows from the following identities:

(ρB ⊗ ρC ) ◦ ψ F
2 = (ρB ⊗ ρC ) ◦ ψ F

2 ◦ ρF ◦ Fδ

= ρB⊗C ◦ FG(ρB ⊗ ρC ) ◦ FG(ψ F
2 ) ◦ Fδ

= ρB⊗C ◦ F(φG
2 ) (A.2)

as a map F(G(B) ⊗ G(C)) → B ⊗ C . The commutativity of (A.1) implies that the
composition of maps in the left column in (2.1) can be replaced by

G(ρA ⊗ (ρB ⊗ ρC )) ◦ G
(
(idFG(A) ⊗ ψ F

2 ) ◦ ψ F
2

)
◦ δ. (A.3)
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Similarly, we can show that the composition of maps in the right column in (2.1) can be
replaced by

G((ρA ⊗ ρB)⊗ ρC ) ◦ G
(
(ψ F

2 ⊗ idFG(C)) ◦ ψ F
2

)
◦ δ. (A.4)

Using the commutativity of (2.3), it is easy to see that (2.1) with the left and right col-
umns of (2.1) replaced by (A.3) and (A.4) respectively is commutative. Hence (2.1) is
commutative.

Now we prove the commutativity of the first diagram in (2.2).

φG
2 ◦ (φG

0 ⊗ idG(A))

(1)= G(ρ12 ⊗ ρA) ◦ Gψ F
2 ◦ δ ◦

[
(Gψ F

0 ◦ δ11)⊗ idG(A)

]

(2)= G(ρ12 ⊗ ρA) ◦ Gψ F
2 ◦ G F(Gψ0 ⊗ idG(A)) ◦ G F(δ11 ⊗ idG(A)) ◦ δ

(3)= G(ρ12 ⊗ ρA) ◦ G(FG(ψ F
0 )⊗ idFG(A)) ◦ Gψ F

2 ◦ G F(δ11 ⊗ idG(A)) ◦ δ
(4)= G(id12 ⊗ ρA) ◦ G

(
[ψ F

0 ◦ ρF(11) ◦ (Fδ)11] ⊗ idFG(A)

)
◦ Gψ F

2 ◦ δ
(5)= G(id12 ⊗ ρA) ◦ G(ψ F

0 ⊗ idFG(A)) ◦ Gψ F
2 ◦ δ

(6)= G(id12 ⊗ ρA) ◦ G(l−1
FG(A)) ◦ G F(lG(A)) ◦ δ

(7)= G(l−1
A ) ◦ GρA ◦ δG ◦ lG(A)

(8)= G(l−1
A ) ◦ lG(A), (A.5)

where in step (1) we substituted the definition of φG
0 , φ

G
2 given in (2.10); in step (2)

we used the naturality of δ; in step (3) we used the naturality of Gψ F
2 ; in step (4) we

switched the position between Gρ12 and G FG(ψ F
0 ) and the position between Gψ2 and

G F(δ12 ⊗ idG(A)) using the naturality of ρ and FψG
2 respectively; in step (5) we applied

the second identity in (2.8); in step (6) we used (2.4); in step (7) we used the naturality
of l−1 and δ; in step (8) we used the first identity in (2.8).

The proof of the commutativity of the second diagram in (2.2) is similar. Thus we
have shown that G is a lax tensor functor. 	


A.2. Proof of Lemma 3.20. To prepare the proof, recall that for a given object B ∈ C,
the modular group P SL(2,Z) acts on the space ⊕i HomC(B ⊗ Ui ,Ui ), see e.g. [BK,
Sect 3.1] and [K3, Eq. (4.55)]. We will only need the action of S and S−1. Let f ∈
⊕i HomC(B ⊗ Ui ,Ui ). Then

S :
⊕
i∈I

B Ui

Ui

f �−→
⊕
j∈I

dim U j√
DimC

∑
i∈I

B

U j

U j

Ui

f
, (A.6)
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S−1 :
⊕
i∈I

B Ui

Ui

f �−→
⊕
j∈I

dim U j√
DimC

∑
i∈I

B

U j

U j

Ui

f
. (A.7)

By Lemma 3.2, to establish that (3.37) is S-invariant, it is enough to prove the identity
(3.4) when f is given by (3.37). Using (A.6) and (A.7), we can see that Eq. (3.4) simply
says that ⊕i, j [RHS of (3.4)] is invariant under the action of S × S. Consider the element
g of ⊕ j,k∈IHomC2±(R(A)⊗ (U∨

j × Uk),U∨
j × Uk) given by

g =
⊕
j,k∈I

∑
α

R(A)

R(A)

R(A)

R(A)

U∨
j × Uk

U∨
j × Uk

α

α

. (A.8)

By the above arguments, proving S-invariance of (3.37) is equivalent to proving invari-
ance of g under the action of S × S.

For i ∈ I, we denote by gi the component of g in
(
⊕ j∈IHomC(A ⊗ U∨

i ⊗ U∨
j ,U

∨
j )

)
⊗ (⊕k∈IHomC(Ui ⊗ Uk,Uk)) .

We view the second Hom-space in the above tensor product as a Hom-space in C+ instead
of C−. It is enough to show that gi is invariant under the action of S × S−1. Note that
the action of S−1 in C+ is equivalent to that of S in C−.

The morphism gi can be canonically identified with a bilinear pairing

( · , · )i :
⎛
⎝⊕

j∈I
HomC(U∨

j , A ⊗ U∨
i ⊗ U∨

j )

⎞
⎠

×
(⊕

k∈I
HomC(Uk,Ui ⊗ Uk)

)
−→ C (A.9)

as follows. For h1 ∈ HomC(U∨
j , A ⊗ U∨

i ⊗ U∨
j ) and h2 ∈ HomC(Uk,Ui ⊗ Uk) we set

(h1, h2)i = (dim U j dim Uk)
−1 trU∨

j ×Uk
[gi ◦ (h1 × h2)] . (A.10)
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When substituting the explicit form of the product m R(A) of R(A) = (A × 1) ⊗ R(1),
after a short calculation one finds

(h1, h2)i =
∑
α

1

dim U j

A

A

A

A

A A

A α

α

h1

h2

U j
Uk

U∨
j

Ui

Uk . (A.11)

Here the top morphism Pl
R(A) has been simplified with the help of the identity

PR(A) ◦ m R(A) ◦ (PR(A) ⊗ PR(A))

=
(⊕

i∈I
((m A ◦�A)⊗ idU∨

i
)× idUi

)
◦ m R(A) ◦ (PR(A) ⊗ PR(A)), (A.12)

which can be checked by direct calculation along the same lines as in the proof of [Fr,
Lem 3.10].

The action of the modular transformation S on ⊕i∈I(B ⊗ Ui ,Ui ) for B ∈ C nat-
urally induces an action on ⊕i∈I(Ui , B ⊗ Ui ) [K3, Prop. 5.14], which we denote by
S∗. In the present case we get an action of S∗ on ⊕ j∈IHomC(U∨

j , A ⊗ U∨
i ⊗ U∨

j ) and

⊕k∈IHomC(Uk,Ui ⊗ Uk). Then to show gi is invariant under the action of S × S−1

amounts to showing that

(h1, h2)i = ((S−1)∗ h1, S∗ h2)i , (A.13)
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for all h1 ∈ HomC(U∨
j , A ⊗ U∨

i ⊗ U∨
j ) and h2 ∈ HomC(Uk,Ui ⊗ Uk). We have

((S−1)∗ h1, S∗ h2)i =
∑

m,n,α

dim Un

DimC

A

A

A

A

A A

A

Uk

α

α

h1

h2

Ui

U j

Um
Un

.

(A.14)

Now drag the upper vertex indexed by α in the above graph along its U∨
m -leg until it

meets the lower vertex also indexed by α, then sum over α and m. This gives

((S−1)∗ h1, S∗ h2)i =
∑

n

dim Un

DimC

A

A

A

A

A A

A

Uk

Un

h1

h2

Ui

U j

.

(A.15)
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If we just look at the neighbourhood of the Un-loop in the above graph, we see the
following subgraphs:

∑
n

dim Un

DimC

A A∨

U∨
j U j

Uk U∨
k

Un
=

∑
α

1

dim U j

A A∨ Uk U∨
k

U∨
j U j

α
α

,

(A.16)

where we have applied [BK, Cor. 3.1.11]. Substituting this subgraph back to the original
graph in (A.15), we obtain

((S−1)∗ h1, S∗ h2)i =
∑
α

1

dim U j

A

A

A

A

A A

A

A

A

U∨
j

α

α

h1

h2
m A

Ui

U jUk

Uk

.

(A.17)

The graph in (A.17) is equal to that in (A.11). In order to see this, we first drag the
“bubble” (m A ◦ �A) along A lines and through the m A vertex (because m A ◦ �A is a
bimodule map) until it reaches the lower-left leg of the upper vertex indexed by α. Then
drag the m A vertex along the (red) dotted line in the above graph. Finally, we apply
the associativity of A, (A.12), and [Fr, Lem 3.11]. Then we see that the graph in (A.17)
exactly matches with the one in (A.11). 	
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