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Abstract: We present a construction of an entropy-preserving equivariant surjective
map from the d-dimensional critical sandpile model to a certain closed, shift-invariant
subgroup of T

Z
d

(the ‘harmonic model’). A similar map is constructed for the dissipative
abelian sandpile model and is used to prove uniqueness and the Bernoulli property of
the measure of maximal entropy for that model.
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1. Introduction

For any integer d ≥ 2 let

hd =
∫ 1

0
· · ·
∫ 1

0
log

(
2d − 2

d∑
i=1

cos(2πxi )

)
dx1 · · · dxd , (1.1)

h2 = 1.166, h3 = 1.673, etc. It turns out that for d ≥ 2, hd is the topological entropy of
three different d-dimensional models in mathematical physics, probability theory, and
dynamical systems. For d = 2, there is even a fourth model with the same entropy hd .

1.1. Four models. The d-dimensional abelian sandpile model was introduced by Bak,
Tang and Wiesenfeld in [3,4] and attracted a lot of attention after the discovery of the
Abelian property by Dhar in [8]. The set of infinite allowed configurations of the sandpile
model is the shift-invariant subset R∞ ⊂ {0, . . . , 2d − 1}Zd

defined in (4.4) and dis-
cussed in Sect. 4.1 In [10], Dhar showed that the topological entropy of the shift-action
σR∞ on R∞ is also given by (3.4), which implies that every shift-invariant measure µ

of maximal entropy on R∞ has entropy (1.1). Shift-invariant measures on R∞ were
studied in some detail by Athreya and Jarai in [1,2], Jarai and Redig in [13]; however,
the question of uniqueness of the measure of maximal entropy is still unresolved.

Spanning trees of finite graphs are classical objects in combinatorics and graph the-
ory. In 1991, Pemantle in his seminal paper [17] addressed the question of constructing
uniform probability measures on the set Td of infinite spanning trees on Z

d — i.e., on
the set of spanning subgraphs of Z

d without loops. This work was continued in 1993
by Burton and Pemantle [5], where the authors observed that the topological entropy of
the set of all spanning trees in Z

d is also given by the formula (1.1). Another problem
discussed in [5] is the uniqueness of the shift-invariant measure of maximal entropy on
Td (the proof in [5] is not complete, but Sheffield has recently completed the proof in
[22].

This coincidence of entropies raised the question about the relation between these
models. A partial answer to this question was given in 1998 by R. Solomyak in [24]: she
constructed injective mappings from the set of rooted spanning trees on finite regions
of Z

d into X f (d) such that the images are sufficiently separated. In particular, this pro-
vided a direct proof of coincidence of the topological entropies of α f (d) and σTd without
making use of formula (1.1).

In dimension 2, spanning trees are related not only to the sandpile models (cf. e.g.,
[19] for a detailed account) and, by [24], to the harmonic model, but also to a dimer
model (more precisely, to the even shift-action on the two-dimensional dimer model) by
[5].

However, the connections between the abelian sandpiles and spanning trees (as well
as dimers in dimension 2), are non-local: they are obtained by restricting the models to
finite regions in Z

d (or Z
2) and constructing maps between these restrictions, but these

maps are not consistent as the finite regions increase to Z
d .

In this paper we study the relation between the infinite abelian sandpile models and
the algebraic dynamical systems called the harmonic models. The purpose of this paper
is to define a shift-equivariant, surjective local mapping between these models: from the

1 In the physics literature it is more customary to view the sandpile model as a subset of {1, . . . , d}Zd
by

adding 1 to each coordinate.
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infinite critical sandpile model R∞ to the harmonic model. Although we are not able
to prove that this mapping is almost one-to-one it has the property that it sends every
shift-invariant measure of maximal entropy on R∞ to Haar measure on X f (d) . Moreover,
it sheds some light on the somewhat elusive group structure of R∞.

Firstly, the dual group of X f (d) is the group

Gd = Rd/( f (d)),

where Rd = Z[u±
1 , . . . , u±

d ] is the ring of Laurent polynomials with integer coeffi-
cients in the variables u1, . . . , ud , and ( f (d)) is the principal ideal in Rd generated by
f (d) = 2d −∑d

i=1(ui +u−1
i ). The group Gd is the correct infinite analogue of the groups

of addition operators defined on finite volumes, see [9,19] (cf. Sect. 7).
Secondly, the map ξId constructed in this paper gives rise to an equivalence relation ∼

on R∞ with

x ∼ y ⇐⇒ x − y ∈ ker(ξId ),

such that R∞/∼ is a compact abelian group. Moreover, R∞/∼, viewed as a dynami-
cal system under the natural shift-action of Z

d , has the topological entropy (1.1). This
extends the result of [16], obtained in the case of dissipative sandpile model, to the
critical sandpile model.

Finally, we also identify an algebraic dynamical system isomorphic to the dissipative
sandpile model. This allows an easy extension of the results in [16]: namely, the unique-
ness of the measure of maximal entropy on the set of infinite recurrent configurations
in the dissipative case. Unfortunately, we are not yet able to establish the analogous
uniqueness result in the critical case.

1.2. Outline of the paper. Sect. 2 investigates certain multipliers of the potential func-
tion (or Green’s function) of the simple random walk on Z

d . In Sect. 3 these results are
used to describe the homoclinic points of the harmonic model. These points are then used
to define shift-equivariant maps from the space �∞(Zd , Z) of all bounded d-parameter
sequences of integers to X f (d) . In Sect. 4 we introduce the critical and dissipative sand-
pile models. In Sect. 5 we show that the maps found in Sect. 3 send the critical sandpile
model R∞ onto X f (d) , preserve topological entropy, and map every measure of maxi-
mal entropy on R∞ to Haar measure on the harmonic model. After a brief discussion of
further properties of these maps in Subsect. 5.2, we turn to dissipative sandpile models
in Sect. 6 and define an analogous map to another closed, shift-invariant subgroup of
T

Z
d
. The main result in [16] shows that this map is almost one-to-one, which implies

that the measure of maximal entropy on the dissipative sandpile model is unique and
Bernoulli.

2. A Potential Function and its �1-Multipliers

Let d ≥ 1. For every i = 1, . . . , d we write e(i) = (0, . . . , 0, 1, 0, . . . , 0) for the i th unit
vector in Z

d , and we set 0 = (0, . . . , 0) ∈ Z
d .

We identify the cartesian product Wd = R
Z

d
with the set of formal real power series

in the variables u±1
1 , . . . , u±1

d by viewing each w = (wn) ∈ Wd as the power series∑
n∈Zd

wnun (2.1)
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with wn ∈ R and un = un2
1 · · · und

d for every n = (n1, . . . , nd) ∈ Z
d . The involution

w 	→ w∗ on Wd is defined by

w∗
n = w−n, n ∈ Z

d . (2.2)

For E ⊂ Z
d we denote by πE : Wd −→ R

E the projection onto the coordinates
in E .

For every p ≥ 1 we regard �p(Zd) as the set of all w ∈ Wd with

‖w‖p =
⎛
⎝∑

n∈Zd

|wn|p

⎞
⎠

1/p

< ∞.

Similarly we view �∞(Zd) as the set of all bounded elements in Wd , equipped with the
supremum norm ‖ · ‖∞. Finally we denote by Rd = Z[u±1

1 , . . . , u±1
d ] ⊂ �1(Zd) ⊂ Wd

the ring of Laurent polynomials with integer coefficients. Every h in any of these spaces
will be written as h = (hn) =∑n∈Zd hnun with hn ∈ R (resp. hn ∈ Z for h ∈ Rd ).

The map (m, w) 	→ um ·w with (um ·w)n = wn−m is a Z
d -action by automorphisms

of the additive group Wd which extends linearly to an Rd -action on Wd given by

h · w =
∑

n∈Zd

hnun · w (2.3)

for every h ∈ Rd and w ∈ Wd . If w also lies in Rd this definition is consistent with the
usual product in Rd .

For the following discussion we assume that d ≥ 2 and consider the irreducible
Laurent polynomial

f (d) = 2d −
d∑

i=1

(ui + u−1
i ) ∈ Rd . (2.4)

The equation

f (d) · w = 1 (2.5)

with w ∈ Wd admits a multitude of solutions.2 However, there is a distinguished (or
fundamental) solution w(d) of (2.5) which has a deep probabilistic meaning: it is a cer-
tain multiple of the lattice Green’s function of the symmetric nearest-neighbour random
walk on Z

d (cf. [6,12,25,27]).

Definition 2.1. For every n = (n1, . . . , nd) ∈ Z
d and t = (t1, . . . , td) ∈ T

d we set
〈n, t〉 =∑d

j=1 n j t j ∈ T. We denote by

F (d)(t) =
∑

n∈Zd

f (d)
n e2π i〈n,t〉 = 2d − 2 ·

d∑
j=1

cos(2π t j ), t = (t1, . . . , td) ∈ T
d , (2.6)

the Fourier transform of f (d).

2 Under the obvious embedding of Rd ↪→ �∞(Zd , Z), the constant polynomial 1 ∈ Rd corresponds to the
element δ(0) ∈ �∞(Zd , Z) given by

δ
(0)
n =

{
1 if n = 0,

0 otherwise.
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(1) For d = 2,

w(2)
n :=

∫
T2

e−2π i〈n,t〉 − 1

F (2)(t)
dt for every n ∈ Z

2.

(2) For d ≥ 3,

w(d)
n :=

∫
Td

e−2π i〈n,t〉

F (d)(t)
dt for every n ∈ Z

d .

The difference in these definitions for d = 2 and d > 2 is a consequence of the fact
that the simple random walk on Z

2 recurrent, while on higher dimensional lattices it is
transient.

Theorem 2.2. ([6,12,25,27]) We write ‖ · ‖ for the Euclidean norm on Z
d .

(i) For every d ≥ 2, w(d) satisfies (2.5).
(ii) For d = 2,

w(2)
n =
⎧⎨
⎩

0 if n = 0,

− 1
8π

log ‖n‖ − κ2 − c2

1
‖n‖4 (n4

1+n4
2)− 3

4

‖n‖2 + O(‖n‖−4) if n �= 0,
(2.7)

where κ2 > 0 and c2 > 0. In particular, w
(2)
0 = 0 and w

(2)
n < 0 for all n �= 0.

Moreover,

4 · w(2)
n =

∞∑
k=1

(P(Xk = n|X0 = 0) − P(Xk = 0|X0 = 0)),

where (Xk) is the symmetric nearest-neighbour random walk on Z
2.

(iii) For d ≥ 3,

‖n‖d−2w(d)
n = κd + cd

1
‖n‖4

∑d
i=1 n4

i − 3
d+2

‖n‖2 + O(‖n‖−4) (2.8)

as ‖n‖ → ∞, where κd > 0, cd > 0. Moreover,

2d · w(d)
n =

∞∑
k=0

P(Xk = n|X0 = 0) > 0 for every n ∈ Z
d ,

where (Xk) is again the symmetric nearest-neighbour random walk on Z
d .

Definition 2.3. Let w(d) ∈ Wd be the point appearing in Definition 2.1. We set

Id =
{

g ∈ Rd : g · w(d) ∈ �1(Zd)
}

⊃ ( f (d)), (2.9)

where ( f (d)) = f (d) · Rd is the principal ideal generated by f (d). Since w
(d)
n = w

(d)
−n

for every n ∈ Z
d it is clear that Id = I ∗

d = {g∗ : g ∈ Id}.
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Theorem 2.4. The ideal Id is of the form

Id = ( f (d)) + I3
d , (2.10)

where

Id = {h ∈ Rd : h(1) = 0} = (1 − u1) · Rd + · · · + (1 − ud) · Rd (2.11)

with 1 = (1, . . . , 1).

For the proof of Theorem 2.4 we need several lemmas. We set

Jd = ( f (d)) + I3
d ⊂ Rd . (2.12)

Lemma 2.5. Let g = ∑k∈Zd gkuk ∈ Rd. Then g ∈ Jd if and only if it satisfies the
following conditions (2.13)–(2.16).

∑
k∈Zd

gk = 0, (2.13)

∑
k=(k1,...,kd )∈Zd

gkki = 0 for i = 1, . . . , d, (2.14)

∑
k=(k1,...,kd )∈Zd

gkki k j = 0 for 1 ≤ i �= j ≤ d, (2.15)

∑
k=(k1,...,kd )∈Zd

gk(k2
i − k2

j ) = 0 for 1 ≤ i �= j ≤ d. (2.16)

Proof. Condition (2.13) is equivalent to saying that g ∈ Id . In conjunction with (2.13),
(2.14) is equivalent to saying that g ∈ I2

d : indeed, if g ∈ Id , then it is of the form

g =
d∑

i=1

(1 − ui ) · ai (2.17)

with ai ∈ Rd for i = 1, . . . , d. Then

∂g

∂u j
=

∑
k=(k1,...,kd )∈Zd

gkk j · uk1
1 · · · u

k j −1
j · · · ukd

d = −a j +
d∑

i=1

(1 − ui ) · ∂ai

∂u j
,

and ∂g
∂u j

(1) = 0 if and only if a j ∈ Id .

If g ∈ Id is of the form (2.17) and satisfies (2.14) we set

a j =
d∑

i=1

(1 − ui ) · bi, j (2.18)

with bi, j ∈ Rd . Condition (2.15) is satisfied if and only if

∂2g

∂ui∂u j
(1) = − ∂ai

∂u j
− ∂a j

∂ui
= bi, j (1) + b j,i (1) = 0

for 1 ≤ i �= j ≤ d.
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Finally, if g satisfies (2.13)–(2.14) and is of the form (2.17)–(2.18) with bi, j ∈ Rd
for all i, j , then (2.16) is equivalent to the existence of a constant c ∈ R with

∑
k=(k1,...,kd )∈Zd

gkk2
i = −2

∂ai

∂ui
(1) = 2bi,i (1) = c

for i = 1, . . . , d.
The last equation shows that bi,i − b1,1 ∈ Id for i = 2, . . . , d. By combining all

these observations we have proved that g satisfies (2.13)–(2.16) if and only if it is of the
form

g = h1 ·
d∑

i=1

(1 − ui )
2 + h2 (2.19)

with c ∈ Z, h1 ∈ Rd and h2 ∈ I3
d . The set of all such g ∈ Rd is an ideal which we

denote by J̃ . Clearly, I3
d ⊂ J̃ and

∑d
i=1(1 − ui )

2 ∈ J̃ . Since (1 − ui )
2 · (1 − u−1

i ) ∈ I3
d

for i = 1, . . . , d as well, we conclude that

f (d) =
d∑

i=1

(1 − ui )
2 −

d∑
i=1

(1 − u−1
i ) · (1 − ui )

2 ∈ J̃ . (2.20)

This shows that J̃ ⊂ Jd , and the reverse inclusion also follows from (2.20) and (2.19).
��

Lemma 2.6. Id ⊂ Jd .

Proof. We assume that g ∈ Id and set v = g · w(d). In order to verify (2.13) we argue
by contradiction and assume that

∑
k gk �= 0. If d = 2 then

vn = −
∑

k gk

2π
log ‖n‖ + l.o.t.,

for large ‖n‖. If d ≥ 3, then

vn = κd
∑

k gk

‖n‖d−2 + l.o.t.

for large ‖n‖. In both cases it is evident that v �∈ �1(Zd).
By taking (2.13) into account one gets that, for every d ≥ 2,

vn = (g · w(d))n =
∑

k

gkw
(d)
n−k

=
∫

Td
e−2π i〈n,t〉

∑
k gke2π i〈k,t〉

2d − 2
∑d

j=1 cos(2π t j )
dt.

Hence v = (vn) is the sequence of Fourier coefficients of the function

H(t) =
∑

k gke2π i〈k,t〉

2d − 2
∑d

j=1 cos(2π t j )
.
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If v ∈ �1(Zd), then H must be a continuous function on T
d . Since t = 0 is the only

zero of F (d) on T
d (cf. (2.6)), the numerator G =∑k gke2π i〈k,·〉 must compensate for

this singularity. Consider the Taylor series expansion of G at t = 0:

G(t) =
∑

k

gk + 2π i
d∑

j=1

t j

∑
k

gkk j − 2π2
d∑

j=1

t2
j

∑
k

gkk2
j − 4π2

∑
i �= j

ti t j

∑
k

gkki k j

+h.o.t.

The Taylor series expansion of F (d) at t = 0 is given by

F (d)(t) = 4π2
d∑

j=1

t2
j + h.o.t.

Suppose that

h(t) = a0 +
∑d

j=1 b j t j +
∑d

j=1 c j t2
j +
∑

i �= j di, j ti t j + h.o.t

t2
1 + · · · + t2

d + h.o.t

is continuous at t = 0. Then

a0 = 0, b j = 0 for all j, c j = c for all j, di j = 0 for all i �= j,

and for some constant c. If any of these conditions is violated, then one easily produces
examples of sequences t(m) → 0 as m → ∞ with distinct limits limm→∞ h(t(m)). By
applying this to H we obtain (2.13)–(2.16), so that g ∈ Jd by Lemma 2.5. ��

To establish the inclusion Jd ⊆ Id , we have to show that for any g ∈ Jd , g·u ∈ �1(Zd),
where u ∈ Wd of the form

ωn =
∑d

i=1 n4
i

‖n‖d+4 , or ωn = 1

‖n‖γ
with γ ≥ d − 2.

For d = 2, we also have to treat the case ωn = log ‖n‖.
These results are obtained in the following three lemmas.

Lemma 2.7. Suppose that d ≥ 2 and that ω ∈ Wd is given by

ωn =
{

0 if n = 0,∑d
i=1 n4

i
‖n‖d+4 if n �= 0.

If g ∈ Rd satisfies (2.13), then g · ω ∈ �1(Zd).

Proof. Let M = max{‖k‖ : gk �= 0}, and suppose that ‖n‖ > M . Then

(g · ω)n =
∑

k

gk

∑d
i=1(ni − ki )

4

‖n − k‖d+4 =
∑

k

gk

∑d
i=1 n4

i + O(‖n‖3)

‖n‖d+4(1 + O(‖n‖−1))

=
∑d

i=1 n4
i

‖n‖d+4

(∑
k

gk

)
+ O
(

1

‖n‖d+1

)
= O
(

1

‖n‖d+1

)
.

Therefore,
∑

n |(g · ω)n| < ∞. ��
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For the reverse inclusion Jd ⊂ Id we need different arguments for d = 2 and for
d ≥ 3. We start with the case d = 2.

Lemma 2.8. Suppose that g = ∑k∈Z2 gkuk ∈ R2 satisfies (2.13). We set S+ =
{k : gk > 0} and S− = {k : gk < 0}. Put

Mg = 2
∑
k∈S+

gk = 2
∑

k∈S−
|gk|

and define two polynomials in the variables (n1, n2):

P+(n1, n2) =
∏

k∈S+

(
(n1 − k1)

2 + (n2 − k2)
2
)gk =

∏
k∈S+

‖n − k‖2gk ,

P−(n1, n2) =
∏

k∈S−

(
(n1 − k1)

2 + (n2 − k2)
2
)|gk| =

∏
k∈S−

‖n − k‖2|gk|.
(2.21)

Let mg be the degree of P = P+ − P−. If

Mg − mg ≥ 3, (2.22)

then g · ω ∈ �1(Z2), where

ωn =
{

0 if n = (0, 0),

log ‖n‖ if n �= (0, 0).

Proof. Since
∑

k∈Z2 gk = 0 by (2.13), Mg = deg P+ = deg P− and

mg = deg P < max(deg P+, deg P−) = Mg.

Let v = g · ω. Hence, for all n with ‖n‖ > max{‖k‖ : k ∈ S+ ∪ S−}, one has

|(g · ω)n| = 1

2

∣∣∣∣log
P+(n1, n2)

P−(n1, n2)

∣∣∣∣ = 1

2

∣∣∣∣log

(
1 +

P+(n1, n2) − P−(n1, n2)

P−(n1, n2)

)∣∣∣∣ .
There exist constants C, N such that∣∣∣∣ P+(n1, n2) − P−(n1, n2)

P−(n1, n2)

∣∣∣∣ ≤ C
‖n‖mg

‖n‖Mg
= C

‖n‖Mg−mg
<

1

2

for ‖n‖ ≥ N . Hence we can find another constant C̃ such that

|(g · ω)n| ≤ C̃

‖n‖Mg−mg

for all sufficiently large ‖n‖. Since Mg−mg ≥ 3, we finally conclude that g ·ω ∈ �1(Z2).
��

Lemma 2.9. Suppose that g ∈ Jd (cf. (2.13)–(2.16)), and that ω ∈ Wd is given by

ωn =
{

0 if n = 0,
1

‖n‖γ if n �= 0,

for some integer γ ≥ d − 2. Then g · ω ∈ �1(Zd).



730 K. Schmidt, E. Verbitskiy

Proof. Let Sg = {k ∈ Z
d : gk �= 0}, M = max{‖k‖ : k ∈ Sg}, and note that

Sg ⊂ Bd = {y ∈ R
d : ‖y‖ ≤ M}, (2.23)

where ‖ · ‖ is the Euclidean norm on Z
d ⊂ R

d .
We fix n ∈ Z

d with ‖n‖ > M and set

h(n)(k) = ‖n − k‖−γ =
(

d∑
i=1

(ni − ki )
2

)−γ /2

. (2.24)

In calculating the Taylor expansion of h(n) as a function of the variables k1, . . . , kd we
use the notation

I ! = i1! · · · id !, |I | = i1 + · · · + id and
∂ |I |h(n)

∂kI
= ∂ i1+···+id h(n)

∂ki1
1 · · · ∂kin

n

, (2.25)

for I = (i1, . . . , id) ∈ Z
d
+, k = (k1, . . . , kd) ∈ Z

d , where Z+ = {n ∈ Z : n ≥ 0}. Then
the Taylor expansion of h(n) for ‖k‖ ≤ M is given by

h(n)(k) =
∑
|I |≤2

1

I !
∂ |I |h(n)

∂kI
(0) kI +

∑
|I |=3

R(n)
I kI ,

where

|R(n)
I | ≤ sup

y∈Bd

∣∣∣∣∣
1

I !
∂ |I |h(n)

∂kI
(y)

∣∣∣∣∣
(cf. (2.23)).

The first and second order derivatives of h(n) have the following form.

∂h(n)

∂ki
(k) = γ · (ni − ki ) · ‖n − k‖−γ−2 for i = 1, . . . , d,

∂2h(n)

∂ki∂k j
(k) = γ · (γ + 2) · (ni − ki ) · (n j − k j ) · ‖n − k‖−γ−4

for i, j = 1, . . . , d, i �= j,

∂2h(n)

∂k2
i

(k) = γ · (γ + 2) · (ni − ki )
2 · ‖n − k‖−γ−4 − γ · ‖n − k‖−γ−2

for i = 1, . . . , d.

It follows that

h(n)(0) = ‖n‖−γ ,

∂h(n)

∂ki
(0) = γ · ni · ‖n‖−γ−2,

∂2h(n)

∂ki∂k j
(0) = γ · (γ + 2) · ni · n j · ‖n‖−γ−4, i �= j,

∂2h(n)

∂k2
i

(0) = γ · (γ + 2) · n2
i · ‖n‖−γ−4 − γ · ‖n‖−γ−2.
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For I = (i1, . . . , id) ∈ Z
d
+ and y ∈ R

d ,

∂ |I |h(n)

∂kI
(y) = PI (n1, . . . , nd) · ‖n − y‖−γ−2|I |,

where PI is a polynomial of degree at most |I | in the variables n1, . . . , nd . Therefore,
for every I ∈ Z

d
+ with |I | = 3,

|R(n)
I | ≤ O(‖n‖−γ−3). (2.26)

By using the Taylor series expansion of h(n) above we obtain that, for all n with
sufficiently large norm,

|(g · ω)n| =
∣∣∣∣∣∣
∑
k∈Sg

gkh(n)(k)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣h

(n)(0)
∑
k∈Sg

gk

∣∣∣∣∣∣ +
∣∣∣∣∣∣

d∑
i=1

∂h(n)(0)

∂ki

⎛
⎝∑

k∈Sg

gkki

⎞
⎠
∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑
i �= j

∂2h(n)(0)

∂ki∂k j

⎛
⎝∑

k∈Sg

gkki k j

⎞
⎠
∣∣∣∣∣∣

+
1

2

∣∣∣∣∣∣
d∑

i=1

∂2h(n)(0)

∂k2
i

⎛
⎝∑

k∈Sg

gkk2
i

⎞
⎠
∣∣∣∣∣∣ + O(‖n‖−(γ +3)). (2.27)

The first three terms on the right-hand side of the above inequality vanish because of
(2.13), (2.14), and (2.15). The fourth term is estimated as follows: (2.16) implies that

∑
k∈Sg

gkk2
i = const for all i = 1, . . . , d,

and we denote by C this common value. Then

d∑
i=1

∂2h(n)(0)

∂k2
i

⎛
⎝∑

k∈Sg

gkk2
i

⎞
⎠

=
d∑

i=1

(
γ (γ + 2) · n2

i · ‖n‖−γ−4−γ · ‖n‖−γ−2
)

C =[γ (γ + 2) − γ d
]

C ||n||−γ−2.

Therefore, if γ = d − 2, then the fourth term vanishes. If γ > d − 2, i.e., if γ ≥ d − 1,
then the fourth term is of the order O(‖n‖−(d+1)), and is thus summable over Z

d . The
remainder term in (2.27) is always summable since γ + 3 ≥ d + 1. ��
Proof of Theorem 2.4. We start with the case d ≥ 3. Recall that for n �= 0,

w(d)
n = κd

‖n‖d−2 +cd

∑d
i=1 n4

i

‖n‖d+4 − 3cd

d + 2

1

‖n‖d
+O(‖n‖−(d+2)) =: ω(1)

n + ω(2)
n + ω(3)

n + rn.
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Applying g, we conclude that g · w ∈ �1(Zd), because g · ω(1), g · ω(3) ∈ �1(Zd) by
Lemma 2.9 for γ = d − 2 and γ = d, respectively; g · ω(2) ∈ �1(Zd) by Lemma 2.7;
(g · r)n = O(‖n‖−(d+2)), and hence g · r ∈ �1(Zd) as well.

Now consider the case d = 2. Then

w(2)
n =− 1

8π
log ‖n‖−κ2 − c2

n4
1 + n4

2

‖n‖4+2 − 3

4

1

‖n‖2 +O(‖n‖−4)=ω(1)
n + ω(2)

n + ω(3)
n + rn.

For any g ∈ J2,

g · ω(2), g · ω(3), g · r ∈ �1(Z2) (2.28)

by the results of Lemmas 2.7 and 2.9.
The remaining term g ·ω(1) has to be treated slightly differently. First of all, note that

since

J2 = ( f ) + (u1 − 1)3 · R2 + (u1 − 1)2(u2 − 1) · R2 + (u1 − 1)(u2 − 1)2 ·
R2 + (u2 − 1)3 · R2,

it is sufficient to check that g · ω(1) ∈ �1(Z2) only for the set of generators, i.e., for

g = f (2), (u1 − 1)3, (u1 − 1)2(u2 − 1), (u1 − 1)(u2 − 1)2, (u2 − 1)3.

For g = f (2), f (2) · w(2) = δ(0) ∈ �1(Z2) (cf. (2.5) and Footnote 2 on page 724),
and hence, given (2.28), f · ω(1) ∈ �1(Z2) as well.

For g = (u1 − 1)3 ∈ R2 we apply Lemma 2.8. Note that S+ = {(1, 0), (3, 0)},
S− = {(0, 0), (2, 0)},

P+ = ((n1 − 3)2 + n2
2)((n1 − 1)2 + n2

2)
3, P− = ((n1 − 2)2 + n2

2)
3(n2

1 + n2
2)

and

P+ − Pi = 9 − 60n1 + 108n2
1 − 84n3

1 + 30n4
1 − 4n5

1 − 36n2
2 + 60n1n2

2

−36n2
1n2

2 + 8n3
1n2

2 − 18n4
2 + 12n1n4

2.

Hence Mg = deg P+ = deg P− = 8, mg = deg P = 5, Mg − mg = 3. Therefore, by
Lemma 2.8, |(g ·ω(1))n| = O(‖n‖−3), and hence g ·ω(1) ∈ �1(Z2), which is equivalent
to g ∈ I2.

The same calculation shows that (u2 − 1)3 ∈ I2. Furthermore, since f (2) ∈ I2 and

u−1
1 (u1 − 1)3 + f (2) = −u−1

2 (u1 − 1)(u2 − 1)2,

we obtain that (u1 − 1)(u2 − 1)2 ∈ I2 and, by symmetry, that (u1 − 1)2(u2 − 1) ∈ I2.
This proves that J2 ⊂ I2, and Lemma 2.6 yields that J2 = I2. ��



Abelian Sandpiles and the Harmonic Model 733

3. The Harmonic Model

Let d > 1. We define the shift-action α of Z
d on T

Z
d

by

(αmx)n = xm+n (3.1)

for every m, n ∈ Z
d and x = (xn) ∈ T

Z
d

and consider, for every h ∈ Rd , the group
homomorphism

h(α) =
∑

m∈Zd

hmαm : T
Z

d −→ T
Z

d
. (3.2)

Since Rd is an integral domain, Pontryagin duality implies that h(α) is surjective for

every nonzero h ∈ Rd (it is dual to the injective homomorphism from Rd ∼= ̂
TZd to

itself consisting of multiplication by h).
Let f (d) ∈ Rd be given by (2.4) and let X f (d) ⊂ T

Z
d

be the closed, connected,
shift-invariant subgroup

X f (d) = ker f (d)(α) =
⎧⎨
⎩x = (xn) ∈ T

Z
d : 2dxn −

d∑
j=1

(xn+e( j) + xn−e( j) ) = 0

for every n ∈ Z
d

⎫⎬
⎭ .

(3.3)

We denote by α f (d) the restriction of α to X f (d) . Since every αm
f (d) , m ∈ Z

d , is a continu-

ous automorphism of X f (d) , the Z
d -action α f (d) preserves the normalized Haar measure

λX f (d)
of X f (d) .

The Laurent polynomial f (d) can be viewed as a Laplacian on Z
d and every

x = (xn) ∈ X f (d) is harmonic (mod 1) in the sense that, for every n ∈ Z
d , 2d · xn

is the sum of its 2d neighbouring coordinates (mod 1). This is the reason for calling
(X f (d) , α f (d) ) the d-dimensional harmonic model.

According to [21, Theorem 18.1] and [21, Theorem 19.5], the metric entropy of α f (d)

with respect to λX f (d)
coincides with the topological entropy of α f (d) and is given by

hλX
f (d)

(α f (d) ) = htop(α f (d) )

=
∫ 1

0
· · ·
∫ 1

0
log f (d)(2π i t1, . . . , 2π i td) dt1 · · · dtd < ∞. (3.4)

Furthermore, α f (d) is Bernoulli with respect to λX f (d)
(cf. [21]).

Since every constant element of T
Z

d
lies in X f (d) , α f (d) has uncountably many fixed

points and is therefore nonexpansive: for every ε > 0 there exists a nonzero point
x = (xn) in X f (d) with

|||xn||| < ε for every n ∈ Z
d ,

where

|||t (mod 1)||| = min {|t − n| : n ∈ Z}, t ∈ R. (3.5)
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3.1. Linearization. Consider the surjective map ρ : Wd = R
Z

d −→ T
Z

d
given by

ρ(w)n = wn (mod 1) (3.6)

for every n ∈ Z
d and w = (wn) ∈ Wd . We write σ for the shift action

(σmw)n = (u−m · w)n = wm+n (3.7)

of Z
d on Wd (cf. (2.3)). As in (3.2) we set, for every g = ∑n∈Zd gnun ∈ Rd , h =∑

n∈Zd hnun ∈ �1(Zd),

h(σ ) =
∑

n∈Zd

hnσ n : Wd −→ Wd . (3.8)

Then

h(σ )(w) = h∗ · w,

g(α)(ρ(w)) = ρ(g∗ · w)
(3.9)

for every w ∈ Wd (cf. (2.2) and (2.3)).
We set Wd(Z) = Z

Z
d ⊂ Wd . According to (3.3),

W f (d) := ρ−1(X f (d) ) = {w ∈ Wd : ρ(w) ∈ X f (d)}
= f (d)(σ )−1(Wd(Z)) = {w ∈ Wd : f (d) · w ∈ Wd(Z)}. (3.10)

For later use we denote by

R̃ ⊂ Wd , Z̃ ⊂ Wd(Z), T̃ ⊂ T
Z

d
(3.11)

the set of constant elements. If c is an element of R, Z or T we denote by c̃ the corre-
sponding constant element of R̃, Z̃ or T̃.

Equation (3.10) allows us to view W f (d) as the linearization of X f (d) .

3.2. Homoclinic points. Let β be an algebraic Z
d -action on a compact abelian group

Y , i.e., a Z
d -action by continuous group automorphisms of Y . An element y ∈ Y is

homoclinic for β (or β-homoclinic to 0) if limn→∞ βn y = 0. The set of all homoclinic
points of β is a subgroup of Y , denoted by �β(Y ).

If β is an expansive algebraic Z
d -action on a compact abelian group Y then �β(Y )

is countable, and �β(Y ) �= {0} if and only if β has positive entropy with respect to the
Haar measure λY (or, equivalently, positive topological entropy). Furthermore, �β(Y )

is dense in Y if and only if β has completely positive entropy w.r.t. λY . Finally, if β is
expansive, then βnx → 0 exponentially fast (in an appropriate metric) as ‖n‖ → ∞.
All these results can be found in [14].

If β is nonexpansive on Y , then there is no guarantee that �β(Y ) �= {0} even if β has
completely positive entropy. Furthermore, β-homoclinic points y may have the property
that βn y → 0 very slowly as ‖n‖ → ∞.

The Z
d -action α f (d) on X f (d) is nonexpansive and the investigation of its homoclinic

points therefore requires a little more care. In particular we shall have to restrict our atten-
tion to α f (d)-homoclinic points x for which αn

f (d) x → 0 sufficiently fast as ‖n‖ → ∞.
For this reason we set
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�(1)
α (X f (d) ) =

⎧⎨
⎩x ∈ �α(X f (d) ) :

∑
n∈Zd

|||xn||| < ∞
⎫⎬
⎭ , (3.12)

where ||| · ||| is defined in (3.5).
In order to describe the homoclinic groups �α(X f (d) ) and �

(1)
α (X f (d) ) we set

x� = ρ(w(d)) ∈ X f (d) . (3.13)

The fact that x� ∈ X f (d) is a consequence of Theorem 2.2 (1) and (3.10).

Proposition 3.1. Let α f (d) be the algebraic Z
d-action on the compact abelian group

X f (d) defined in (3.3). Then every homoclinic point z ∈ �α(X f (d) ) is of the form

z = ρ(h · w(d)) for some h ∈ Rd. Furthermore,

�(1)
α (X f (d) ) = ρ

(
{h · w(d) : h ∈ Id}

)
(3.14)

(cf. Theorem 2.2, (2.9) and (3.12)).

Proof. If z ∈ �α(X f (d) ), then we choose w ∈ �∞(Zd) with limn→∞ wn = 0 and

ρ(w) = z. From (3.10) we know that f (d) · w ∈ Wd(Z), and the smallness of (most of)
the coordinates of w guarantees that h = f (d) · w ∈ Rd = �1(Zd) ∩ �∞(Zd , Z), where

�∞(Zd , Z) = {w = (wn) ∈ �∞(Zd) : wn ∈ Z for every n ∈ Z
d}.

If we multiply the last identity by w(d) we get that

w(d) · f (d) · w = w = w(d) · h = h · w(d)

for some h ∈ Rd .
If z ∈ �

(1)
α (X f (d) ) then w ∈ �1(Zd) and hence, by definition, h ∈ Id . Conversely, if

h ∈ Id , then z = ρ(h · w(d)) ∈ �
(1)
α (X f (d) ). ��

Remark 3.2. A homoclinic point z of an algebraic Z
d -action β on a compact abelian

group Y is fundamental if its homoclinic group �β(Y ) is the countable group generated
by the orbit {βnz : n ∈ Z

d} (cf. [14]).
Proposition 3.1 shows that x� = ρ(w(d)) also has the property that its orbit under

α f (d) generates the homoclinic groups �α(X f (d) ) and �
(1)
α (X f (d) ), although x� itself

may not be homoclinic (e.g., when d = 2).

3.3. Symbolic covers of the harmonic model. We construct, for every homoclinic point
z ∈ �

(1)
α (X f (d) ), a shift-equivariant group homomorphism from �∞(Zd , Z) to X f (d)

which we subsequently use to find symbolic covers of α f (d) .

According to Proposition 3.1, every homoclinic point z ∈ �
(1)
α (X f d ) is of the form

z = g(α)(x�) = ρ(g∗ · w(d)) for some g ∈ Id . We define group homomorphisms
ξ̄g : �∞(Zd) −→ �∞(Zd) and ξg : �∞(Zd) −→ T

Z
d

by

ξ̄g(w) = (g · w(d))(σ )(w) = (g∗ · w(d)) · w and ξg(w) = (ρ ◦ ξ̄g)(w). (3.15)
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These maps are well-defined, since

ξ̄g(w)n =
∑

k∈Zd

wn−k · (g∗ · w(d))k

converges for every n, and equivariant in the sense that

ξ̄g ◦ σ n = σ n ◦ ξ̄g, ξg ◦ σ n = αn ◦ ξg,

ξ̄g ◦ h(σ ) = h(σ ) ◦ ξ̄g, ξg ◦ h(σ ) = h(α) ◦ ξg,
(3.16)

for every n ∈ Z
d , g ∈ Id and h ∈ Rd . We also note that

ξg(v) =
∑

n∈Zd

vnα−n (g(α)(x�)
)

for every v = (vn) ∈ �∞(Zd , Z).

Proposition 3.3. For every g ∈ Id ,

ξg(�
∞(Zd , Z)) =

{
{0} if g ∈ ( f (d)),

X f (d) if g ∈ Ĩd := Id�( f (d)),
(3.17)

(cf. (2.9) and (3.15)–(3.16)).

We begin the proof of Proposition 3.3 with two lemmas.

Lemma 3.4. For every w ∈ �∞(Zd) and g ∈ Id ,

( f (d)(σ ) ◦ ξ̄g)(w)= f (d) · (g∗ · w(d)) · w=g∗ · ( f (d) · w(d)) · w=g∗ · w=g(σ )(w).

(3.18)

Furthermore, ξg(�
∞(Zd , Z)) ⊂ X f (d) .

Proof. For every h, v ∈ Rd , Theorem 2.2 (1) implies that

f (d) · h∗ · w(d) · v = h∗ · f (d) · w(d) · v = h∗ · v. (3.19)

Fix g ∈ Id and let K ≥ 1 and VK = {−K + 1, . . . , K − 1}Zd ⊂ �∞(Zd , Z). Then
VK is shift-invariant and compact in the topology of pointwise convergence, and the set
V ′

K ⊂ VK of points with only finitely many nonzero coordinates is dense in VK . For
v ∈ V ′

K ⊂ Rd ,

ξ̄g(v) = (g∗ · w(d)) · v (3.20)

and

( f (d)(σ ) ◦ ξ̄g)(v) = f (d) · g∗ · w(d) · v = g∗ · f (d) · w(d) · v = g∗ · v (3.21)

by (3.15) and (3.19). Since both ξ̄g and multiplication by g∗ are continuous on VK , (3.21)
holds for every v ∈ VK . By letting K → ∞ we obtain (3.21) for every v ∈ �∞(Zd , Z),
hence for every v ∈ 1

M �∞(Zd , Z) with M ≥ 1, and finally, again by coordinatewise
convergence, for every w ∈ �∞(Zd), as claimed in (3.18).

For the last assertion of the lemma we note that

ξg(v) = ρ((g∗ · w(d)) · v) = (g · v∗)(α)(x�) ∈ X f (d) (3.22)

for every v ∈ V ′
K (cf.(3.13)). The continuity argument above yields that ξg(v) ∈ X f (d)

for every v ∈ �∞(Zd , Z). ��
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Lemma 3.5. If g ∈ Ĩd then ξg(�
∞(Zd , Z)) = X f (d) . In fact,

ξg(�2d) = X f (d) ,

where �m = {0, . . . , m −1}Zd ⊂ �∞(Zd , Z) for every m ≥ 1. Furthermore, the restric-
tion of ξg to �2d (or to any other closed, bounded, shift-invariant subset of �∞(Zd , Z))
is continuous in the product topology on that space.

Proof. We fix x ∈ X f (d) and define w ∈ W f (d) by demanding that ρ(w) = x and

0 ≤ wn < 1 for every n ∈ Z
d . If v = f (d)(σ )(w) then −2d + 1 ≤ vn ≤ 2d − 1 for

every n ∈ Z
d .

Since ξ̄g commutes with f (d)(σ ) by (3.16), (3.21) shows that

ξg(v) = (ρ ◦ ξ̄g)(v) = g(α)(x). (3.23)

Hence

X f (d) ⊃ ξg(�
∞(Zd , Z)) ⊃ ξg(V2d) ⊃ g(α)(X f (d) ), (3.24)

where VK = {−K + 1, . . . , K − 1}Zd ⊂ �∞(Zd , Z).
We claim that

g(α)(X f (d) ) = X f (d) . (3.25)

Indeed, consider the exact sequence

{0} −→ ker g(α) ∩ X f (d) −→ X f (d)

g(α)−→ X f (d) −→ {0},
set Y = ker g(α)∩ X f (d) , Z = g(α)(X f (d) ) ⊂ X f (d) , write αY and αZ for the restrictions
of α to Y and Z , and denote by α′ the Z

d -action induced by α on X f (d)/Z .
Yuzvinskii’s addition formula ([21, (14.1)]) implies that

htop(α f (d) ) = htop(αY ) + htop(αZ ) = htop(α
′) + htop(αZ ),

where we are using the fact that the topological entropies of these actions coincide with
their metric entropies with respect to Haar measure. Since the polynomials f (d) and g
have no common factors, htop(αY ) = 0 by [21, Corollary 18.5], hence htop(α f (d) ) =
htop(αZ ) is given by (3.4) and 0 < htop(α f (d) ) < ∞. Since the Haar measure λX f (d)

of
X f (d) is the unique measure of maximal entropy for α f (d) we conclude that λX f (d)

(g(α)

(X f (d) )) = 1 and g(α)(X f (d) ) = X f (d) , as claimed in (3.25).

We have proved that ξg(V2d) = X f (d) . If v′ ∈ �∞(Zd , Z) satisfies that v′
n = 2d − 1

for every n ∈ Z
d , then v′ + V2d = �4d−1, and (3.24) implies that ξg(�4d−1) =

ξg(V2d) + ξg(v
′) = X f (d) + ξg(v

′) = X f (d) .
We still have to show that ξg(�2d) = X f (d) . Fix M ≥ 1 for the moment and put

QM = {−M, . . . , M}d ⊂ Z
d . (3.26)

Let

�∞(Zd , Z+) = {v ∈ �∞(Zd , Z) : vn ≥ 0 for every n ∈ Z
d}.
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For every v ∈ �∞(Zd , Z+) and n ∈ Z
d we set

h(v,n) =
{

un · f (d) if vn ≥ 2d
0 otherwise,

and we put

H (v,M) =
∑

n∈QM

h(v,n), T (v) = v − H (v,M).

If

DM (v) =
∑

n∈QM

vn · ‖n‖2
max, (3.27)

where ‖ · ‖max is the maximum norm on R
d , then T (v) = v if and only if vn < 2d for

every n ∈ QM , and

DM (T (v)) ≥ DM (v) + 2 (3.28)

otherwise. We define inductively T n(v) = T (T n−1(v)), n ≥ 2, and conclude from
(3.28) that there exists, for every v ∈ �∞(Zd , Z+), an integer KM (v) ≥ 0 with

ṽ(M) = T k(v) for every k ≥ KM (v). (3.29)

For v ∈ �4d−1 and any M ≥ 1, the corresponding ṽ(M) satisfies

0 ≤ ṽ(M)
n ≤ 2d − 1 if n ∈ QM ,

ṽ(M)
n ≥ vn if ‖n‖max = M + 1,∑

{n:‖n‖max=M+1}
ṽ(M)

n − vn ≤ (2d − 1) · (2M + 1)d ,

ṽ(M)
n = vn if ‖n‖max > M + 1,

(3.30)

where ‖ · ‖max is the maximum norm on R
d .

Let Ṽ (M) = {ṽ(M) : v ∈ �4d−1}. Since v − ṽ(M) ∈ ( f (d)) it is clear that ξg(v) =
ξg(ṽ

(M)) for every v ∈ �4d−1 and g ∈ Ĩd .
Since g ∈ Ĩd , Theorem 2.4 implies that there exists a constant C > 0 with

|(g∗ · w(d))n| ≤ C · ‖n‖−d−1
max for every nonzero n ∈ Z

d .

Hence

|ξ̄g(ṽ
(M))0 − ξ̄g(v̄

(M))0| < 4d · (2M + 1)d · C · (M + 1)−d−1 → 0

as M → ∞, where

v̄(M)
n =

{
ṽ

(M)
n if n ∈ QM ,

vn otherwise.
It follows that

lim
M→∞ ξ̄g(v − v̄(M)) = 0

in the topology of coordinate-wise convergence. Since

v̄(M) ∈ {v ∈ �4d−1 : 0 ≤ vn < 2d for every n ∈ QM }
for every v ∈ �4d−1 and M ≥ 1, we conclude that ξg(�2d) is dense in X f (d) . As ξg(�2d)

is also closed, this implies that ξg(�2d) = X f (d) , as claimed. ��
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Remark 3.6. Although we have not yet introduced sandpiles and their stabilization (this
will happen in Sect. 4), the second part of the proof of Lemma 3.5 is effectively a
‘sandpile’ argument, and ṽ(M) is a stabilization of v in QM .

Proof of Proposition 3.3. If g lies in Ĩd , Lemma 3.5 shows that ξg(�2d) = ξg(�
∞

(Zd , Z)) = X f (d) . On the other hand, if g = h· f (d) for some h ∈ Rd , then g∗·w(d) ∈ Rd ,
and hence ξ̄g(v)n ∈ Z for every n ∈ Z

d and v ∈ �∞(Zd , Z), implying that ξg(v) = 0.
��

3.4. Kernels of covering maps. Having found compact shift-invariant subsets V ⊂
�∞(Zd , Z) such that the restrictions of ξg to V are surjective for every g ∈ Ĩd (cf.
Lemma 3.5), we turn to the problem of determining the kernels of the group homomor-
phisms ξg : �∞(Zd , Z) −→ X f (d) , g ∈ Id (cf. (3.15)). We shall see below that ker(ξg)

depends on g and that ker ξgh � ker(ξg) for g ∈ Id and 0 �= h ∈ Rd . In view of this it
is desirable to characterize the set

Kd =
⋂
g∈Id

ker(ξg) (3.31)

of all v ∈ �∞(Zd , Z) which are sent to 0 by every ξg, g ∈ Id .
In the following discussion we set, for every ideal J ⊂ Rd ,

X J = {x ∈ T
Z

d : g(α)(x) = 0 for every g ∈ J } =
⋂
g∈J

ker g(α), (3.32)

and put

X̃ f (d) = ̂Id/( f (d)) = X f (d)/X Id . (3.33)

In order to explain (3.33) we note that the dual group of X̃ f (d) is a subgroup of X̂ f (d) =
Rd/( f (d)), hence X̃ f (d) is a quotient of X f (d) by a closed, shift-invariant subgroup,

which is the annihilator of Id/( f (d)) and hence equal to X Id . The Z
d -action α f (d) on

X f (d) induces a Z
d -action α̃ f (d) on X̃ f (d) . Note that α̃n

f (d) is dual to multiplication by un

on Id/( f (d)). With this notation we have the following result.

Theorem 3.7. There exists a surjective group homomorphism η : �∞(Zd , Z) −→ X̃ f (d)

with the following properties:

(1) The homomorphism η is equivariant in the sense that η ◦ σ n = α̃n
f (d) ◦ η for every

n ∈ Z
d;

(2) ker(η) = Kd;
(3) The topological entropy of α̃ f (d) coincides with that of α f (d) (cf. (3.4)).

For the proof of Theorem 3.7 we choose and fix a set of generators Gd = {g(1), . . . ,

g(m)} of Id (for d = 2 we may take, for example, G2 = {g(1), g(2), g(3)} with g(1) =
(1 − u1)

2 · (1 − u2), g(2) = (1 − u1) · (1 − u2)
2 and g(3) = (1 − u1)

2 + (1 − u2)
2); for

d ≥ 3 we can use the set of generators Gd = { f (d)} ∪ {(ui − 1) · (u j − 1) · (uk − 1) :
i, j, k = 1, . . . , d}). With such a choice of Gd we define a map

ξId : �∞(Zd , Z) −→ Xm
f (d) (3.34)
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by setting

ξId (v) = (ξg(1) (v), . . . , ξg(m) (v)) (3.35)

for every v ∈ �∞(Zd , Z).

Lemma 3.8. There exists a continuous shift-equivariant group isomorphism

θd : ξId (�
∞(Zd , Z)) −→ X̃ f (d) . (3.36)

Proof. We define a continuous group homomorphism θ ′ : X f (d) −→ Xm
f (d) by setting

θ ′(x) = (g(1)(α)(x), . . . , g(m)(α)(x)) for every x ∈ X f (d) .
According to (3.15) and (3.16),

ξg ◦ h(σ )(v) = ρ(g∗ · w(d) · h∗ · v) = g(α) ◦ ξh(v)

for every g, h ∈ Ĩd and v ∈ Rd , and hence, by continuity, for every g, h ∈ Ĩd and
v ∈ �∞(Zd , Z). Since ξh(�∞(Zd , Z)) = X f (d) by Lemma 3.5 we conclude that

ξId (�
∞(Zd , Z)) ⊃ ξId ◦ h(σ )(�∞(Zd , Z)) = θ ′(X f (d) ).

On the other hand,

ξId (v) = (g(1)(α) ◦ v∗(α)(x�), . . . , g(m)(α) ◦ v∗(α)(x�)) ∈ θ ′(X f (d) )

for every v ∈ Rd and hence, again by continuity, for every v ∈ �∞(Zd , Z). We have
proved that

ξId (�
∞(Zd , Z))) = θ ′(X f (d) ).

The homomorphism θ ′ has kernel X Id and induces a group isomorphism θ ′′ :
X̃ f (d) −→ θ ′(X f (d) ). The proof is completed by setting θd = (θ ′′)−1. ��
Proof of Theorem 3.7. We set η = θd ◦ ξId (cf. (3.34)–(3.36)). By definition, Kd =
ker(ξId ) = ker(η).

The equivariance of η is obvious. Furthermore, htop(α̃) ≤ htop(α f (d) ), since X̃ f (d) is

an equivariant quotient of X f (d) . On the other hand, X̃ f (d)
∼= ξId (�

∞(Zd , Z)), and the
first coordinate projection π1 : ξId (�

∞(Zd , Z) −→ X f (d) is surjective by Lemma 3.5.
This implies that htop(β1) = htop(α̃) ≥ htop(α f (d) ), so that these entropies have to
coincide. ��

In order to characterize the kernel Kd of η further we need a lemma and a definition.

Lemma 3.9. For every y ∈ �∞(Zd) with ρ(y) ∈ XI3
d

there exists a unique c(y) ∈ [0, 1)

with f (d) ·y+c̃(y) ∈ �∞(Zd , Z), where c̃(y) denotes the element of R̃ with c̃(y)n = c(y)

for every n ∈ Z
d .
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Proof. Let x ∈ XI3
d

and y ∈ �∞(Zd) with ρ(y) = x . According to the definition of XI3
d

this means that

g(α)(x) = ρ(g∗ · y) = 0

for every g ∈ I3
d .

Since g j = (u j − 1) · f (d) ∈ I3
d for j = 1, . . . , d, g j (α)(x) = ρ(g∗

j · y) = 0 for

j = 1, . . . , d, which implies that f (d)(α)(x) is a fixed point of the Z
d -action α on XI3

d
.

Hence there exists a unique constant c(y) ∈ [0, 1) with f (d) · y + c̃(y) ∈ �∞(Zd , Z).
��

Definition 3.10. We call points v ∈ �∞(Zd) and x ∈ T
Z

d
periodic if their orbits (under

σ and α, respectively) are finite.
If � ⊂ Z

d is a subgroup of finite index we denote by �(Zd)(�), �∞(Zd , Z)(�) and
K (�)

d the sets of all �-invariant elements in the respective spaces.

Theorem 3.11. (1) For every y ∈ �∞(Zd) with ρ(y) ∈ XI3
d
,

v = f (d) · y + c̃(y) + m̃ ∈ Kd ⊂ �∞(Zd , Z) (3.37)

for every m̃ ∈ Z̃ (cf. (2.10), (3.11), (3.32) and Lemma 3.9).
(2) Let � ⊂ Z

d be a subgroup of finite index. An element v ∈ �∞(Zd , Z)(�) lies in Kd
if and only if it is of the form (3.37) with y ∈ �∞(Zd)(�), ρ(y) ∈ XI3

d
and m̃ ∈ Z̃.

We start the proof of Theorem 3.11 with two lemmas.

Lemma 3.12. For every g ∈ Id and every constant element m̃ ∈ �∞(Zd , Z), ξg(m̃) = 0.
In other words, Z̃ ⊂ Kd.

Proof. We know that g ∈ Id if and only if it satisfies (2.13)–(2.16). We fix g =∑
k∈Zd gkuk ∈ Id , put v = g∗ · w(d) ∈ �1(Zd), and set c =∑k∈Zd gkk2

j ∈ Z (note that
this value is independent of j ∈ {1, . . . , d} by (2.16)).

For every n ∈ Z
d ,

vn = (g∗ · w(d))n =
∑

k∈Zd

gkw
(d)
n+k =

∫
Td

e−2π i〈n,t〉
∑

k gke−2π i〈k,t〉

2d − 2
∑d

j=1 cos(2π t j )
dt.

Hence v = (vn) is the sequence of Fourier coefficients of the function

Hg(t) =
∑

k gke−2π i〈k,t〉

2d − 2
∑d

j=1 cos(2π t j )
.

Since these Fourier coefficients are absolutely summable by assumption, we get that

∑
n∈Zd

vn = Hg(0). (3.38)
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On the other hand, given the Taylor series expansion of Hg at t = 0, we have

Hg(t) =
−2π2∑d

j=1 t2
j

(∑
k gkk2

j

)
+ h.o.t

4π2
∑d

j=1 t2
j + h.o.t

= −2π2c
∑d

j=1 t2
j + h.o.t

4π2
∑d

j=1 t2
j + h.o.t

,

and hence

Hg(0) = −c/2.

We are going to show that Hg(0) ∈ Z. Indeed, since
∑

k gkk j = 0 for all j by (2.14),
we have that

Hg(0) = −1

2

∑
k

gkk2
j = −1

2

∑
k

gkk j (k j − 1) = −
∑

k

gk
k j (k j − 1)

2
∈ Z. (3.39)

Finally, for any g ∈ Id and m̃ ∈ Z̃, we have

ξ̄g(m̃) = m ·
∑

n∈Zd

vn = m Hg(0) ∈ Z (3.40)

by (3.38), and hence ξg(m̃) = 0 ∈ X f (d) . ��
Lemma 3.13. For every g ∈ I3

d , Hg(0) = 0 (cf. (3.38)).

Proof. Every element of I3
d is of the form h · g with h ∈ Rd and g = (ui −1) · (u j −1) ·

(uk − 1) for some i, j, k ∈ {1, . . . , d}. We set v = g∗ · w(d) and obtain from (3.39) that
Hg(0) = ∑n∈Zd vn = 0. If w = (hg)∗ · w(d) = h∗ · v, then Hhg(0) = ∑n∈Zd wn =∑

k∈Zd hk
∑

n∈Zd vn−k = 0. ��
Proof of Theorem 3.11. Let x ∈ XI3

d
, y ∈ �∞(Zd) with ρ(y) = x , m̃ ∈ Z̃, and v =

f (d) · y + c̃(y) + m̃ ∈ �∞(Zd , Z) (cf. Lemma 3.9). Then

g(α)(x) = ρ(g∗ · y) = 0

for every g ∈ I3
d . We set w = g∗ · w(d) and obtain from (3.16), (3.18) and Lemma 3.12,

that

ξg(v) = ξg( f (d) · y + c̃(y) + m̃) = ξg( f (d) · y + c̃(y))

= ρ(g∗ · w(d) · f (d) · y + g∗ · w(d) · c̃(y)) = ρ(g∗ · y + w · c̃(y))

= ρ(g∗ · y) = 0,

since
∑

n∈Zd wn = 0 by Lemma 3.13. This proves that every v ∈ �∞(Zd , Z) of the
form (3.37) lies in Kd .

For (2) we assume that � ⊂ Z
d is a subgroup of finite index. In view of (1) we only

have to verify that every v ∈ �∞(Zd , Z)(�) ∩ Kd has the form (3.37).
Assume therefore that v ∈ �∞(Zd , Z)(�) ∩ Kd . We choose a set C� ⊂ Z

d which
intersects each coset of � in Z

d in a single point and set �
(�)
0 = {w ∈ �∞(Zd)(�) :∑

n∈C�
wn = 0}. As �

(�)
0 is finite-dimensional and ker( f (d)(σ )) = R̃ there exists, for

every y ∈ �
(�)
0 , a unique y′ ∈ �

(�)
0 with f (d) · y′ = y.

Put ã = (∑n∈C�
vn
)
/|Zd/�|, regarded as an element of R̃. If v′ = v − ã, then

v′ ∈ �
(�)
0 and f (d) · y = v′ for some y ∈ �

(�)
0 .
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Since v ∈ Kd , ξg(v) = 0 for every g ∈ Id . For g ∈ I3
d , Lemma 3.13 shows that

ξ̄g(v) = g∗ · w(d) · v = g∗ · w(d) · v′ + g∗ · w(d) · ã = g∗ · y + g∗ · w(d) · ã

= g∗ · y ∈ �∞(Zd , Z).

Hence ρ(g∗ · y) = g(α)(ρ(y)) = 0 for all g ∈ I3
d , so that ρ(y) ∈ XI3

d
.

We obtain that

v = f (d) · y + ã

for some y ∈ �∞(Zd) with ρ(y) ∈ XI3
d

and some ã ∈ R̃, which completes the proof
of (2). ��

Theorem 3.11 implies that there exist nonconstant elements v ∈ Kd � f (d)(σ )(�∞
(Zd , Z)). However, if two elements v, v′ ∈ �∞(Zd , Z) differ in only finitely many coor-
dinates, then they get identified under ξId (i.e., their difference lies in Kd ) if and only if
they differ by an element in ( f (d)) ⊂ �∞(Zd , Z). This is a consequence of the following
assertion:

Proposition 3.14. For every g ∈ Ĩd , ker(ξg) ∩ Rd = ( f (d)) = f (d) · Rd.

Proof. Suppose that h ∈ Rd ∩ ker(ξg). Then

v := ξ̄g(h) = g∗ · w(d) · h ∈ �∞(Zd , Z). (3.41)

Since g ∈ Id , g∗ · w(d) ∈ �1(Zd) and hence v ∈ Rd = �1(Zd) ∩ �∞(Zd , Z). If we
multiply both sides of (3.41) by f (d) we get that

f (d) · v = g · h.

As Rd has unique factorization this implies that h ∈ f (d) · Rd . ��
Remarks 3.15. (1) One can show that the periodic points are dense in Kd , so that every

v ∈ Kd is a coordinate-wise limit of elements of the form (3.37) in Theorem 3.11.
(2) Theorem 3.11 (1) gives a ‘lower bound’ for the kernel Kd of the maps ξg, g ∈

Id . There is also a straightforward ‘upper bound’ for that kernel: an element v ∈
�∞(Zd , Z) lies in Kd if and only if

ξ̄g(v) = g∗ · w(d) · v =: wg ∈ �∞(Zd , Z) for every g ∈ Id .

By multiplying this equation with f (d) we obtain that

Kd ⊂ {v ∈ �∞(Zd , Z) : g · v ∈ f (d) · �∞(Zd , Z) for every g ∈ Id} =: K̄d .

(3.42)

It is not very difficult to see that the inclusion in (3.42) is strict. In fact, K̄d/Kd
turns out to be isomorphic to T

d .
(3) In [18], the kernel K̄d of ξId was studied using methods of commutative algebra.
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4. The Abelian Sandpile Model

Let d ≥ 2, γ ≥ 2d, and let E ⊂ Z
d be a nonempty set. For every n ∈ E we denote by

NE (n) the number of neighbours of n in E , i.e.,

NE (n) =
∣∣∣E ∩ {n ± e(i) : 1 = 1, . . . , d}

∣∣∣ , (4.1)

where e(i) is the i th unit vector in Z
d . We set

�γ = {0, . . . , γ − 1}Zd
(4.2)

(cf. Lemma 3.5) and put

P(γ )

E = {v ∈ {0, . . . , γ − 1}E : vn ≥ NE (n) for at least one n ∈ E},
R(γ )

E =
⋂

∅�=F⊂E
0<|F |<∞

PF . (4.3)

In the literature the set R(γ )

E is called the set of recurrent configurations on E . A config-
uration v ∈ {0, . . . , γ − 1}E is recurrent if and only if it passes the burning test, which
is described as follows: given v ∈ {0, . . . , γ − 1}E , delete (or burn) all sites n ∈ E such
that

vn ≥ NE (n),

thereby obtaining a configuration v′ ∈ {0, . . . , γ − 1}E (1)
with E (1) ⊂ E . We repeat

the process and obtain a sequence E ⊃ E (1) ⊃ · · · ⊃ E (k) ⊃ · · ·. If at some stage
E (k) = E (k+1) �= ∅ we say that v fails the burning test, and v is a forbidden (or
nonrecurrent) configuration.

The closed, shift-invariant subset

R(γ )∞ = R(γ )

Zd ⊂ �γ ⊂ �∞(Zd , Z) (4.4)

is called the d-dimensional sandpile model with parameter γ . For γ = 2d, R∞ = R(2d)∞
is called the critical sandpile model, and for γ > 2d, the model R(γ )∞ is said to be dis-
sipative.

In order to motivate this terminology we assume that E ⊂ Z
d is a nonempty set. An

element v ∈ Z
E
+ is called stable if yn < γ for every n ∈ E . If v ∈ Z

E
+ is unstable at

some n ∈ E , i.e., if vn ≥ γ , then v topples at this site: the result is a configuration Tn(v)

with

Tn(v)k =

⎧⎪⎨
⎪⎩

vn − γ if k = n,

vk + 1 if ‖n − k‖max = 1,

vk otherwise.

If vm, vm ≥ γ for some m, n ∈ E , m �= n, then Tn(Tn(v)) = Tm(Tn(v)), i.e., toppling
operators commute. A stable configuration ṽ ∈ {0, . . . , γ − 1}E is the result of toppling
of v, if there exist n(1), . . . , n(k) ∈ E such that

ṽ =
(

k∏
i=1

Tn(i)

)
(v).
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If the set E is finite (in symbols: E � Z
d ), then every v ∈ Z

E
+ will lead to a stable con-

figuration ṽ by repeated topplings. However, if E is infinite, then repeated toppling of a
configuration v ∈ Z

E
+ will, in general, lead to a stable configuration ṽ ∈ {0, . . . , γ −1}E

only if γ > 2d, i.e., in the dissipative case.3

We denote by σ = σR(γ )∞
the shift-action of Z

d on R(γ )∞ ⊂ �∞(Zd , Z) ⊂ Wd

(cf. (3.7)).
For the following discussion we introduce the Laurent polynomial

f (d,γ ) = γ −
d∑

i=1

(ui + u−1
i ) ∈ Rd = Z[u±

1 , . . . , u±
d ]. (4.5)

For γ = 2d, f (d,γ ) = f (d) (cf. (2.4)).

Proposition 4.1. Let d ≥ 2 and γ ≥ 2d. The following conditions are equivalent for
every v ∈ �γ :

(1) v ∈ R(γ )∞ ;
(2) For every nonzero h ∈ Rd with hn ∈ {0, 1} for every n ∈ Z

d , ( f (d,γ ) ·h)n +vn ≥ γ

for at least one n ∈ supp(h) = {m ∈ Z
d : hm �= 0}.

(3) For every h ∈ Rd with hn > 0 for some n ∈ Z
d , ( f (d,γ ) · h)n + vn ≥ γ for at least

one n ∈ {m ∈ Z
d : hm > 0}.

Furthermore, if v, v′ ∈ R(γ )∞ and 0 �= v − v′ ∈ Rd, then v − v′ /∈ f (d,γ ) · Rd.

Proof. Fix an element v ∈ �γ . If h ∈ Rd with hn ∈ {0, 1} for every n ∈ Z
d and

E = supp(h), then ( f (d,γ ) · h)n + vn ∈ {0, . . . , γ − 1} for every n ∈ E if and only if
vn ≤ NE (n) − 1 for every n ∈ E , in which case πE (v) /∈ PE and v /∈ R(γ )∞ (cf. (4.3)).
This proves the equivalence of (1) and (2).

Now suppose that h ∈ �∞(Zd , Z) with Mh = maxm∈Zd hm > 0, and that f (d,γ ) ·
h + v ∈ �γ . We set

Smax(h) = {n ∈ Z
d : hn = Mh} (4.6)

and observe that

vn + ( f (d,γ ) · h)n ≥ vn + Mh · (γ − NSmax(h)) < γ

for every n ∈ Smax(h), so that

vn ≤ NSmax(h) − 1 for every n ∈ Smax(h). (4.7)

If h ∈ Rd , then Smax(h) is finite and (4.7) yields a contradiction to the definition of
R(γ )∞ . This proves the implication (1) ⇒ (3), and the reverse implication (3) ⇒ (2) is
obvious.

The last assertion of this proposition is a consequence of (3). ��
The proof of Proposition 4.1 has the following corollary.

3 Even in the dissipative case stable configurations will, in general, only arise as coordinate-wise limits of
infinite sequences of topplings of v.



746 K. Schmidt, E. Verbitskiy

Corollary 4.2. If v ∈ R(γ )∞ , and if h ∈ �∞(Zd , Z) satisfies that maxm∈Zd hm > 0 and

v + f (d,γ ) · h ∈ R(γ )∞ , then every connected 4 component of Smax(h) is infinite (cf. (4.6)).

Proof. If Smax(h) has a finite connected component C then (4.7) shows that

( f (d,γ ) · h)n + vn ≥ ( f (d,γ ) · h̄)n + vn = γ − NC (n)

for every n ∈ C , where

h̄n =
{

hn if n ∈ C,

0 otherwise.

As in (4.7) we obtain a contradiction to (4.3). ��
Remark 4.3. Proposition 4.1 implies that ( f (d,γ )(σ )(h) + R(γ )∞ ) ∩ R(γ )∞ = ∅ for every
nonzero h ∈ Rd . However, if h ∈ {0, 1}Zd

satisfies that the set S(h) = {n ∈ Z
d : hn =

1} is infinite and connected, then one checks easily that there exists a v ∈ R(γ )∞ with
f (d)(σ )(h) + v ∈ R(γ )∞ . In spite of this the following result holds.

Proposition 4.4. The set

V = {v ∈ R(γ )∞ : v + w /∈ R(γ )∞ for every nonzero w ∈ f (d,γ )(σ )(�∞(Zd , Z))} (4.8)

is a countable intesection of dense open sets (i.e., a dense Gδ-set) in R(γ )∞ .

Proof. Let v ∈ R(γ )∞ and h ∈ �∞(Zd , Z) be such that maxn∈Zd hn ≥ 0, f (d,γ ) · h �= 0

and v + f (d,γ ) · h ∈ R(γ )∞ . We set Mh = maxm∈Zd hm, define Smax(h) ⊂ Z
d as in (4.6),

and put

∂Smax(h) = {n ∈ Smax(h) : ‖m − n‖max = 1 for some m ∈ Z
d

� Smax(h)}.
As ( f (d,γ ) · h)n > 0 for every n ∈ ∂Smax(h), the set ∂Smax(h) must have empty
intersection with

F(v) = {n ∈ Z
d : vn = γ − 1}.

Now suppose that v ∈ R(γ )∞ has the following properties:

(a) The set F(v) is connected.
(b) Every connected component of Z

d
� F(v) is finite.

(c) minn∈Zd vn = 0.

According to Corollary 4.2, every connected component C of Smax(h) is infinite.
If C �= Z

d , then the hypotheses (a)–(b) above guarantee that the boundary ∂C =
C ∩ ∂Smax(h) of C is a union of finite sets, each of which is contained in one of the
connected components of Z

d
� F(v).

Let C and D be connected components of Smax(h) and Z
d

� F(v), respectively, with
D ∩ ∂C �= ∅. Since C is infinite and connected and F(v) is connected, we must have
that hm = Mh = 0 for every m ∈ F(v).

4 A set S ⊂ Z
d is connected if we can find, for any two coordinates m and n in S, a ‘path’ p(0) = m,

p(1), . . . , p(k) = n in S with ‖p( j) − p( j − 1)‖max = 1 for every j = 1, . . . , k.



Abelian Sandpiles and the Harmonic Model 747

Define h̃ by

h̃n =
{

hn if n ∈ D
0 otherwise.

Then ( f (d,γ ) · h̃)n = ( f (d,γ ) ·h)n for every n ∈ D, and 0 ≤ ( f (d,γ ) · h̃)n ≤ ( f (d,γ ) ·h)n

for every n ∈ F(v). For n ∈ Z
d

� (F(v) ∪ D), ( f (d,γ ) · h̃)n = 0. By combining these
statements we see that v+ f (d,γ ) · h̃ ∈ R(γ )∞ . Since 0 �= h̃ ∈ Rd we obtain a contradiction
to Proposition 4.1.

This shows that v + f (d,γ ) ·h /∈ R(γ )∞ for every v ∈ R(γ )∞ satisfying conditions (a)–(b)
above and every nonzero h ∈ �∞(Zd , Z) with maxn∈Zd hn ≥ 0.

If γ = 2d and h ∈ �∞(Zd , Z) satisfies that f (d) · h �= 0, then we may add a constant
to h, if necessary, to ensure that maxn∈Zd hn ≥ 0. Since such an addition will not affect

f (d) ·h, we obtain that v+ f (d) ·h /∈ R(γ )∞ = R∞ for every v ∈ R∞ satisfying conditions
(a)–(c) above and every nonconstant h ∈ �∞(Zd , Z).

If γ > 2d and h ∈ �∞(Zd , Z) satisfies that maxn∈Zd hn < 0, then ( f (d,γ ) · h)n < 0

for every n ∈ Z
d , and v + f (d,γ ) · h /∈ R(γ )∞ for every v ∈ R(γ )∞ satisfying condition (c)

above.
Let V ′ ⊂ R(γ )∞ be the set of all points satisfying conditions (a)–(c) above. This set is

clearly dense and

V ′ ⊂ V ={v ∈ R(γ )∞ : v + w /∈ R(γ )∞ for every nonzero w ∈ f (d)(σ )(�∞(Zd , Z))}.
(4.9)

The set V is therefore dense, and it is obviously shift-invariant.
In order to verify that V is a Gδ we write its complement as an Fσ of the form

R(γ )∞ � V =
⋃
M≥1

⋃
N≥1

⋃
0 �=c∈Z

QM

π̃
(
{(v, h) ∈ R(γ )∞ × BN (�∞(Zd , Z)) :

v + f (d) · h ∈ R(γ )∞ and πQM ( f (d,γ ) · h) = c}
)

,

where BN (�∞(Zd , Z)) = {h ∈ �∞(Zd , Z) : ‖h‖∞ ≤ N }, QM appears in (3.26) and
π̃ : R(γ )∞ × �∞(Zd , Z) −→ R(γ )∞ is the first coordinate projection. ��

5. The Critical Sandpile Model

Throughout this section we assume that d ≥ 2 and γ = 2d. We write R∞ = R(2d)∞ for
the critical abelian sandpile model, define the harmonic model X f (d) ⊂ T

Z
d

by (2.4)
and (3.3), and use the notation of Sect. 3.

5.1. Surjectivity of the maps ξg : R∞ −→ X f (d) . For every g ∈ Ĩd (cf. (3.17)) we define
the map ξg : �∞(Zd , Z) −→ X f (d) by (2.9) and (3.15). We shall prove the following
results.
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Theorem 5.1. For every g ∈ Ĩd , ξg(R∞) = X f (d) . Furthermore, the shift-action σR∞
of Z

d on R∞ has topological entropy,

htop(σR∞) = lim
N→∞

1

|QN | log
∣∣πQN (R∞)

∣∣

=
∫ 1

0
· · ·
∫ 1

0
log f (d)(e2π i t1 , . . . , e2π i td ) dt1 · · · dtd = h(α f (d) ).

(5.1)

For the proof of this result we need a bit of notation and several lemmas. For every
Q ⊂ Z

d and v ∈ Wd we set

S(Q)(v) = {v′ ∈ Wd : πZd�Q(v′) = πZd�Q(v)}. (5.2)

If V ⊂ Wd is a subset we set S(Q)
V (v) = S(Q)(v) ∩ V .

We fix g ∈ Ĩd . Let ε with 0 < ε < 1/4d. Since g∗ · w(d) ∈ �1(Zd) we can find
K ≥ 1 with

|ξ̄g(v)0 − ξ̄g(v
′)0| < ε for every v, v′ ∈ �2d with πQK (v) = πQK (v′) (5.3)

(cf. (3.26))

Lemma 5.2. Let v ∈ �2d , Q ⊂ Z
d be a finite set and v′ ∈ S(Q)

�2d
(v) (cf. (4.2) and (5.2)).

(1) ξg(v
′) = ξg(v) if and only if v′ − v ∈ ( f (d)).

(2) If ξg(v
′) �= ξg(v), then

|||ξg(v
′)n − ξg(v)n||| ≥ 1/4d

for some n ∈ Q + QK = {m + k : m ∈ Q, k ∈ QK }, where K is defined in (5.3),
QK in (3.26) and ||| · ||| in (3.5).

Proof. We put y = ξ̄g(v), x = ρ(y) = ξg(v), y′ = ξ̄g(v
′) and x ′ = ξg(v). Assume that

|||x ′
n − xn||| < 1/4d (5.4)

for every n ∈ Q + QK . Since (5.4) holds automatically for n ∈ Z
d

� (Q + QK ) by (5.3),
it holds for every n ∈ Z

d .
We choose z ∈ W f (d) with ρ(z) = x ′ − x and ‖zn‖∞ < 1/4d (cf. (3.10)). Then

f (d) · z ∈ �∞(Zd , Z), and the smallness of the coordinates of z implies that f (d) · z = 0.
Since ρ(z) = ρ(y′ − y) we obtain that z − (y′ − y) ∈ �∞(Zd , Z). As the coordinates

of z are small and limn→∞ |y′ − y| = limn→∞ |ξ̄g(v
′ − v)| = 0, due to the continuity

of ξ̄g , we conclude that h = z − (y′ − y) ∈ Rd .
According to (3.18),

f (d) · (z − (y′ − y)) = f (d) · h = g∗ · (v′ − v).

As Rd has unique factorization and g∗ is not divisible by f (d), v′ −v must lie in the ideal
( f (d)) ⊂ Rd . Theorem 2.2 (i) and (3.15) together imply that ξg(v

′) = x ′ = x = ξg(v).
��
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If ε′ > 0 and Q ⊂ Z
d we call a subset Y ⊂ X f (d) (Q, ε′)-separated if there exists,

for every pair of distinct points x, x ′ ∈ Y , an n ∈ Q with |||xn − x ′
n||| ≥ ε′. The set Y is

(Q, ε′)-spanning if there exists, for every x ∈ X f (d) , an x ′ ∈ Y with |||xn − x ′
n||| < ε′ for

every n ∈ Q.

Lemma 5.3. Let Q ⊂ Z
d be a finite set and v ∈ �2d . Then the set ξg(S(Q+QK )

�2d
(v)) is

(Q, ε)-spanning.

Proof. According to Lemma 3.5, ξg(�2d) = X f (d) . If we fix w ∈ �2d and set

w′
n =
{

vn if n ∈ Q + QK ,

wn otherwise,

then w′ ∈ S(Q+QK )
�2d

(v) and |||ξg(w)n − ξg(w
′)n||| < ε for every n ∈ Q by (5.3). ��

Lemma 5.4. For every finite set Q ⊂ Z
d and every w ∈ R∞, the restriction of ξg to

S(Q)

R∞(w) is injective and the set ξg(S(Q)

R∞(w)) is (Q + QK , 1/4d)-separated.

Proof. If v, v′ are distinct points in S(Q)

R∞(w), then Proposition 4.1 and Lemma 5.2 show
that |||ξg(v)n − ξg(v

′)n||| ≥ 1/4d for some n ∈ Q + QK . ��
We write every h ∈ Rd as h =∑n∈Zd hnun and set supp(h) = {n ∈ Z

d : hn �= 0}.
For Q ⊂ Z

d we put

R(Q) = {h ∈ Rd : supp(h) ⊂ Q},
R+(Q) = {h ∈ R(Q) : hn ≥ 0 for every n ∈ Z

d}, (5.5)

S+(Q) = {h ∈ R(Q) : hn ∈ {0, 1} for every n ∈ Z
d}.

For L ≥ 1, v ∈ �2d and q ≥ 0 we set

Yv(q) = {w ∈ S(QL+K +1)(v) : for every n ∈ Z
d , 0 ≤ wn < 2d if ‖n‖max �= L + K + 1

and − q ≤ wn < 2d if ‖n‖max = L + K + 1}, (5.6)

Y ′
v(q) = {w ∈ Yv(q) : πQL+K (w) ∈ πQL+K (R∞)}.

Lemma 5.5. Let L ≥ 1, q ≥ 0 and v ∈ �2d . Then

Y ′
v(q) = Yv(q) �

⋃
0 �=h∈S+(QL+K )

(Yv(q + 1) − h · f (d)). (5.7)

Proof. Suppose that v ∈ Y ′
v(q). According to the proof of Proposition 4.1 there exists,

for every nonzero h ∈ S+(QL+K ), an n ∈ supp(h) ⊂ QL+K with (v+h · f (d))n > 2d−1.
In particular, v + h · f (d)(q) /∈ Yv(q + 1) and v /∈ Yv(q + 1) − h · f (d). This shows that

Y ′
v(q) ⊂ Yv(q)�

⋃
0 �=h∈S+(QL+K )

(Yv(q + 1) − h · f (d)).

Conversely, if v ∈ Yv(q) �
⋃

0 �=h∈S+(QL+K )(Yv(q + 1) − h · f (d)), but v /∈ Y ′
v(q),

then the proof of Proposition 4.1 allows us to find a nonzero h ∈ S+(QL+K ) with
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(v+h · f (d))n < 2d for every n ∈ supp(h). If (v+h · f (d))n < 0 for some n ∈ QL+K , then
n /∈ supp(h) and−2d ≤ (v+h· f (d))n < 0. We replace h by h′ = h+un ∈ S+(QL+K ) and
obtain that 0 ≤ (v+h′ · f (d))n < 2d for every n ∈ supp(h′). By repeating this process we
can find h′′ ∈ S+(QL+K )with supp(h′′) ⊃ supp(h) such that 0 ≤ (v+h′′· f (d))n ≤ 2d−1
for every n ∈ QL+K . Since 0 ≥ (h′′ · f (d))n ≥ −1 if ‖n‖max = L + K + 1 and
(h′′ · f (d))n = 0 outside QL+K +1, we see that v + h′′ · f (d) ∈ Y ′

v(q + 1). This contradicts
our choice of v and proves (5.7). ��
Lemma 5.6. For every v ∈ �2d and L ≥ 1 there exists an h ∈ R+(QL) with v′ =
v + h · f (d) ∈ Y ′

v((2d − 1) · (2L + 1)d).

Proof. For every v ∈ �∞(Zd , Z) we define DQL+1(v) by (3.27). Since DQL+1(v + un ·
f (d)) ≤ DQL+1(v) − 2 for every n ∈ QL , DQL+1(v + h · f (d)) ≤ DQL+1(v) − 2‖h‖1 for
every h ∈ S+(QL).

Suppose that v ∈ �2d . If w /∈ Y ′
v(0) then (5.7) shows that we can find a nonzero

h(1) ∈ S+(QL) with v(1) = v + h(1) · f (d) ∈ Yv(1), and the first paragraph of this proof
shows that DQL+1(v

(1)) ≤ DQL+1(v) − 2‖h(1)‖1.
If v(1) /∈ Y ′

v(1) we can repeat this argument and find a nonzero h(2) ∈ S+(QL) with
v(2) = v(1) + h(2) · f (d) ∈ Yv(2) and DQL+1(v

(2)) ≤ DQL+1(v) − 2‖h(1)‖1 − 2‖h(2)‖1.
Proceeding by induction, we choose nonzero elements h(1), . . . , h(m) ∈ S+(QL) with

v(k) = v + (h(1) + · · · + h(k)) · f (d) ∈ Yv(m) for every k = 1, . . . , m.
We claim that v(k) ∈ Yv((2d − 1) · (2L + 1)d) for every k ≥ 1, and that this process

has to stop, i.e., that

v′ = v(m) = v + (h(1) + · · · + h(m)) · f (d) ∈ Y ′
v((2d − 1) · (2L + 1)d) (5.8)

for some m ≥ 1.
In order to verify this we assume that we have found h(1), . . . , h(k) ∈ S+(L) with

v(k) = v + (h(1) + · · · + h(k)) · f (d) ∈ Yv(k). Since
∑

n∈QL+1
v

(k)
n = ∑n∈QL+1

vn,

0 ≤ v
(k)
n ≤ 2d − 1 for n ∈ QL , v

(k)
n ≤ vn if ‖n‖max = L + 1 and v

(k)
n = vn for every

n /∈ QL+1, we know that

(2d − 1) · 2d · (2L + 1)d−1 ≥
∑

{n:‖n‖max=L+1}
vn ≥

∑
{n:‖n‖max=L+1}

v(k)
n

≥
∑

{n:‖n‖max=L+1}
vn −

∑
n∈QL

v(k)
n (5.9)

≥ −(2d − 1) · (2L + 1)d ,

so that v(k) ∈ Yv((2d − 1) · (2L + 1)d) for every k ≥ 1.
Furthermore,

DQL+1(v
(k)) = DQL+1(v) − 2

k∑
j=1

‖h( j)‖1 ≤ DQL+1(v) − 2k

< (L + 1)2 · (2d − 1) · (2L + 3)d − 2k

and

DQL+1(v
(k)) ≥ −(L + 1)2 · (2d − 1) · (2L + 1)d · |QL+1 � QL |

for every k, so that the integer k has to remain bounded. This shows that our inductive
process has to terminate, which proves (5.8). ��
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Before we complete the proof of Theorem 5.1 we state another consequence of
Lemmas 5.5 and 5.6.

Proposition 5.7. Let v ∈ �∞(Zd , Z) and M ≥ 1. Then there exists a unique h ∈ Rd
with the following properties:

(1) supp(h) = {m ∈ Z
d : hm �= 0} ⊂ QM ;

(2) If v′ = v + h · f (d), then πQM (v′) ∈ πQM (R∞);
(3) vm = v′

m for every m ∈ Z
d with ‖m‖max > M + 1;

(4)
∑

{n:‖n‖max=M+1} |v′
n| ≤ (2M + 3)d · ‖v‖∞.

Proof. The proof of Lemma 5.5 allows us to find a polynomial h− ∈ Rd with nonnega-
tive coefficients and supp(h−) ⊂ QM such that (v−h−· f (d))n < 2d for every n ∈ QM .
Next we proceed as in the proof of Lemma 5.6 and choose a polynomial h+ ∈ Rd with
nonnegative coefficients and supp(h+) ⊂ QM such that v′ = v+(h+−h−)· f (d) satisfies
(2). Condition (3) holds obviously, and (4) follows from the fact that

∑
n∈QM+1

vn =∑
n∈QM+1

v′
n.

In order to verify the uniqueness of h = h+ − h− we assume that h′ ∈ Rd is another
polynomial with supp(h′) ⊂ QM such that v′′ = v + h′ · f (d) satisfies Condition (2)
above. We assume without loss in generality that hm > h′

m for some m ∈ QM and set
g = h − h′ and

wn =
{

v′′
n if n ∈ QM ,

2d otherwise.

Then w ∈ R∞ and (w + g · g(d))n = vn < 2d for every n ∈ QM . Since supp(g) ⊂ QM
and gn > 0 for some n ∈ QM this contradicts Proposition 4.1. ��
Proof of Theorem 5.1. We fix ε > 0 and choose K according to (5.3). Lemma 5.6 and
(5.9) show that X f (d) = ξg(�2d) = ξg(�2d(L + K + 1, (2d − 1) · (2L + 2K + 1)d)),
where

�2d(M, q)=
{
v ∈ �∞(Zd , Z) : vm < 2d for every n ∈ Z

d ,

vn ≥ 0 for every n ∈ Z
d with ‖n‖max > M + 1,∑

{n∈Zd :‖n‖max=M+1} vn ≥ −q and πQM (v) ∈ πQM (R∞)
}

. (5.10)

Exactly the same argument as in the proof of Lemma 3.5 shows that ξg(R∞) = X f (d) .
Since ξg(R∞) = X f (d) we know that

htop(σR∞)≥htop(α f (d) )=
∫ 1

0
· · ·
∫ 1

0
log f (d)(e2π is1 , . . . , e2π isd ) ds1 · · · dsd (5.11)

(cf. [15] or [21, Theorem 18.1]).
In order to prove the reverse inequality we note that ξg is injective on S(QL )

R∞ (v) for

every v ∈ R∞ and L ≥ 1 and that ξg(S(QL )

R∞ (v)) is a (QL+K , 1/4d)-separated subset of
X f (d) , by Proposition 4.1 and Lemma 5.2. In particular, if v̄ ∈ R∞ is given by
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v̄n = 2d − 1 for every n ∈ Z
d , (5.12)

then
∣∣∣πQL (S(QL )

R∞ (v̄))

∣∣∣ = ∣∣πQL (R∞)
∣∣ for every L ≥ 1.

For every L ≥ 0 we denote by n(L + K ) the maximal size of a (QL+K , 1/4d)-
separated set in X f (d) . From the definition of topological entropy we obtain that

htop(σR∞) = lim
L→∞

1

|QL | log
∣∣πQL (R∞)

∣∣ = lim
L→∞

1

|QL | log
∣∣∣S(QL )

R∞ (v̄)

∣∣∣
= lim

L→∞
1

|QL | log
∣∣∣ξg(S(QL )

R∞ (v̄))

∣∣∣ ≤ lim
L→∞

1

|QL | log n(L + K )

= lim
L→∞

1

|QL+K | log n(L + K ) = htop(α
(d)
f ), (5.13)

which completes the proof of the theorem. ��
Remark 5.8. The expression (3.4) for the topological entropy of σR∞ can be found in [10,
p. 56]. By using the fact that α f (d) and σR∞ have the same topological entropy one can
prove Theorem 5.1 a little more directly: Lemmas 5.3 and 5.4 imply that the restriction of
α to the closed, shift-invariant subset ξg(R∞) ⊂ X f (d) has the same topological entropy
as α f (d) . Since the Haar measure λX f (d)

is the unique measure of maximal entropy for
α f (d) by [15], ξg(R∞) has to coincide with X f (d) , as claimed in Theorem 5.1.

Theorem 5.9. For every w ∈ R∞ and L ≥ 1 we denote by ν
(w)
L the equidistributed

probability measure on the set S(QL )

R∞ (w) in (5.2). Fix w ∈ R∞ and let µ(w) be any limit
point of the sequence of probability measures

µ
(w)
L = 1

|QL |
∑

k∈QL

σ k∗ ν
(w)
L

as L → ∞. Then µ(w) is a measure of maximal entropy on R∞ and (ξg)∗µ(w) = λX f (d)

for every g ∈ Ĩd .
In fact, if µ is any shift-invariant probability measure of maximal entropy on R∞,

then (ξg)∗µ = λX f (d)
for every g ∈ Ĩd .

Proof. We fix w ∈ R∞. Let L ≥ 1 and let ν̃L = (ξg)∗ν(w)
L be the equidistributed

probability measure on the (QL+K , 1/4d)-separated set ξg(S(QL )

R∞ (w)) of cardinality

≥ ∣∣πQL−1(R∞)
∣∣.

We set µ̃(w)
L = (ξg)∗µ(w)

L = 1
|QL |
∑

k∈QL
(αk

f (d) )∗ν̃
(w)
L . By choosing a suitable subse-

quence (Lk, k ≥ 1) of the natural numbers we may assume that limk→∞ µ
(w)
Lk

= µ(w)

and limk→∞ µ̃
(w)
Lk

= µ̃(w) = (ξg)∗µ(w).

We denote by µ′ = (π{0})∗µ̃(w) the projection of µ̃(w) onto the zero coordinate in
X f (d) and choose a partition {I1, . . . , I8d} of T into half-open intervals of length 1/8d
such that the endpoints of these intervals all have µ′-measure zero. For i = 1, . . . , 8d
we set Ai = {x ∈ X f (d) : x0 ∈ Ii } and observe that µ̃(w)(∂ Ai ) = 0. We write
ζ = {A1, . . . , A8d} for the resulting partition of X f (d) .



Abelian Sandpiles and the Harmonic Model 753

For every L ≥ 1 we set ζL = ∨k∈QL+K
α−k

f (d) (ζ ). Since each atom of ζL con-

tains at most one atom of ν̃
(w)
L (by Lemma 5.4) and all these atoms have equal mass,

H
ν̃

(w)
L

(ζL) = log |S(QL )

R∞ (w)|.
Exactly the same argument as in the proof of the inequality (∗) in [28, Theorem 8.6]

shows that, for every M, L ≥ 1 with 2M + 2K < L ,

|QM |
|QL | log |S(QL )

R∞ (w)| = H
ν̃

(w)
L

(ζM ) ≤ H
µ̃

(w)
L

(ζM )

+
|QM+K | · (|QL+K | − |QL−M−K |

|QL | · log(8d).

By setting L = Lk and letting k → ∞ we obtain from (5.13) that

|QM | · htop(α f (d) ) ≤ lim
k→∞ H

µ̃
(w)
Lk

(ζM ) = Hµ̃(w) (ζM )

for every M ≥ 1, and hence that

htop(α f (d) ) ≤ lim
M→∞

1

|QM+K | · Hµ̃(w) (ζM ) = hµ̃(w) (α f (d) ).

Since λX f (d)
is the unique measure of maximal entropy on X f (d) , µ̃(w) coincides with

λX f (d)
, and µ(w) is a measure of maximal entropy on R∞.

In order to complete the proof of Theorem 5.9 we assume that µ is an arbitrary ergo-
dic shift-invariant probability measure with maximal entropy on R(γ )∞ . We let M ≥ 5,
put F = πQM (R∞) and set, for every z ∈ F ,

Oz = {v ∈ R∞ : πQM (v) = z}.
Fix z ∈ F with c = µ(Oz) > 0. The ergodic theorem guarantees that

lim
N→∞

1

|QN |
∑

m∈QN

1O(σ 3Mmv) = c (5.14)

for µ-a.e. v ∈ R∞. Let z′ ∈ F be given by

z′
n =
{

2d − 1 if ‖n‖max = M,

zn if n ∈ QM−1.

We claim that µ(Oz′) > 0. In order to see this we assume that µ(Oz′) = 0 (which
implies, of course, that z �= z′). If v ∈ R∞ is fixed for the moment, and if Sv = {n ∈
Z

d : σ 3Mnv ∈ Oz}, then we can replace the coordinates of σ 3Mmv in QM by those of
z′ for every m ∈ Sv , and we can do so independently at every m ∈ Sv . The resulting
points v′ will always lie in R∞. An elementary entropy argument shows that we could
increase the entropy of µ under the Z

d -action n → σ 3Mn by making all these points v′
equally likely, which would violate the maximality of the entropy of µ (a more formal
argument should be given in terms of conditional measures).

Exactly the same kind of argument as in the preceding paragraph allows us to con-
clude that the cylinder sets Oz′′ with z′′

n ∈ F and

z′′
n = 2d − 1 for every n ∈ QM with ‖n‖max = M,

all have equal measure. A slight modification of the proof of the first part of this theorem
now shows that h((ξg)∗µ) = h(λX f (d)

), i.e., that (ξg)∗µ = λX f (d)
. ��
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5.2. Properties of the maps ξg, g ∈ Ĩd .

5.2.1. The ‘group structure’ of R∞ In (3.4) we saw that σR∞ and α f (d) have the same
topological entropy. If µ is a shift-invariant measure of maximal entropy on R∞,
then the dynamical system (R∞, µ, σR∞) has a Bernoulli factor of full entropy (cf.
[23]). As (X f (d) , λX f (d)

, α f (d) ) is Bernoulli by [20], the full entropy Bernoulli factor
of (R∞, µ, σR∞) is measurably conjugate to (X f (d) , λX f (d)

, α f (d) ). In particular, there
exists a µ-a.e. defined measurable map φ : R∞ −→ X f (d) with φ∗µ = λX f (d)

and
φ ◦ σR∞ = α f (d) ◦ φ µ-a.e.

What distinguishes the maps ξg, g ∈ Ĩd , from these abstract factor maps φ : R∞ −→
X f (d) is that the ξg are not only continuous and surjective, but that they also reflect the
somewhat elusive group structure of R∞ in the following sense.

It is well known that the set RE of recurrent sandpile configurations on a finite set
E ⊂ Z

d in (4.3) is a group (cf. [8–10]). However, the group operation does not extend
in any immediate way to the infinite sandpile model R∞.

Fix g ∈ Ĩd and suppose that v, v′ ∈ R∞, and that w = v + v′ ∈ �4d−1 (with coordi-
nate-wise addition). Proposition 5.7 shows that there exists, for every M ≥ 1, an element
w(M) ∈ �∞(Zd , Z) satisfying conditions (1)–(4) there. Since w − w(M) ∈ ( f (d)) for
every M ≥ 1, ξg(w

(M)) = ξg(w) for every M ≥ 1. Exactly as in the proof of the lemma
we observe that any coordinate-wise limit w̃ ∈ R∞ of the sequence (w(M), M ≥ 1)

still satisfies that ξg(w̃) = ξg(w) = ξg(v) + ξg(v
′).

The ‘sum’ w̃ of v and v′ is, of course, not uniquely defined, but any two versions of
this sum are identified under ξg .

Moreover, if ∼ is the equivalence relation on R∞ defined by v ∼ v′ if and only if
v − v′ ∈ ker(ξId ) = Kd (cf. (3.31)), then R∞/∼ is a compact abelian group isomorphic
to X̃ f (d) = X f (d)/X Id (cf. Lemma 3.8): if [v] is the equivalence class of v ∈ R∞, then

the map θd ◦ ξId : R∞ −→ X̃ f (d) in (3.36) sends [v] to θd ◦ ξId (v) and maps the group

operation [v] ⊕ [v′] := [v + v′] on R∞/∼ to that on X̃ f (d) .

5.2.2. The problem of injectivity In Subsect. 5.2.1 we saw that R∞ has a natural group
structure modulo elements in the kernel of ξg . Another problem which depends on the
intersection of Rd with the cosets of ker ξId is the question of ‘pulling back’ to R∞
dynamical properties of α f (d) , such as uniqueness or the Bernoulli property of the mea-
sure of maximal entropy of R∞.

It is clear that the map ξId (and hence all the maps ξg, g ∈ Ĩd ) must be noninjective
on R∞, since these maps are continuous, Rd is zero-dimensional, and the groups X f (d)

and X̄ f (d) are connected. The following lemma shows that some of the maps ξg, g ∈ Ĩd ,
are ‘more injective’ than others and is the reason for determining the ideal Id precisely
in Sect. 2.

Lemma 5.10. Let g ∈ Ĩd and h ∈ Rd. For every v,w ∈ R∞ with ξg(w) ∈ ξg(v) +
ker h(α), ξg·h(v) = ξg·h(w). It follows that

|{w ∈ R∞ : ξg·h(w) = ξg·h(v)}| = | ker h(α f (d) )| (5.15)

for every v ∈ R∞.
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Proof. If x = ξg(v), y ∈ ker h(α f (d) ) and w ∈ R∞ satisfies that ξg(w) = x + y (cf.
Theorem 5.1), then

ξg·h(w) = h(α)(ξg(w)) = h(α)(x + y) = h(α)(x) = ξg·h(v).

��

6. The Dissipative Sandpile Model

In this section we fix d ≥ 2 and γ > 2d, and consider the dissipative sandpile model
Rγ∞ ⊂ �γ described in Sect. 4 and investigated in [26,7,16].

6.1. The dissipative harmonic model. Consider the Laurent polynomial f (d,γ ) ∈ Rd
defined in (4.5) and the corresponding compact abelian group

X f (d,γ ) = ker f (d,γ )(α) = {x = (xn)n∈Zd ∈ T
Z

d : γ xn −
d∑

i=1

(xn+e(i) + xn−e(i) ) = 0

for every n ∈ Z
d}. (6.1)

We write αX f (d,γ )
for the shift-action (3.1) of Z

d on X f (d,γ ) ⊂ T
Z

d
.

Lemma 6.1. The shift-action α of Z
d on X f (d,γ ) is expansive, i.e., there exists an ε > 0

such that

sup
n∈Zd

|||xn − x ′
n||| > ε

for every x, x ′ ∈ X f (d,γ ) with x �= x ′.
The entropy of α f (d,γ ) is given by

htop(α f (d,γ ) )=hλX
f (d,γ )

(α f (d,γ ) )=
∫ 1

0
· · ·
∫ 1

0
log f (d,γ )(e2π i t1 , . . . , e2π i td ) dt1 · · · dtd ,

and the Haar measure λX f (d,γ )
is the unique shift-invariant measure of maximal entropy

on X f (d,γ ) .

Proof. Since f (d,γ ) has no zeros in

S
d =
{
(z1, . . . , zd) ∈ C

d : |zi | = 1 for i = 1, . . . , d
}

,

α f (d,γ ) is expansive by [21, Theorem 6.5]. The last two statements follow from [21,
Theorems 19.5, 20.8 and 20.15]. ��



756 K. Schmidt, E. Verbitskiy

6.2. The covering map ξ (γ ) : R(γ )∞ −→ X f (d,γ ) . Since α f (d,γ ) is expansive and has
completely positive entropy, the equation

f (d,γ ) · w = 1 (6.2)

has a unique solution w = w(d,γ ) ∈ �1(Zd), given by

w
(d,γ )
n =

∫ 1

0
· · ·
∫ 1

0

e−2π i〈n,t〉

γ − 2 ·∑d
i=1 cos(2π ti )

dt1 · · · dtd ,

where t = (t1, . . . , td) (cf. (2.5), [14] and [6]). Since w(d,γ ) ∈ �1(Zd), we can proceed
as in (3.15) and define a homomorphism ξ (γ ) : R(γ )∞ → X f (γ,d) by

ξ̄ (γ )(v)n = (w(d,γ ) · v)n =
∑

n∈Zd

vn−kw
(d,γ )

k

for every v ∈ R(γ )∞ , and by

ξ (γ ) = ρ ◦ ξ̄ (γ ).

Proposition 6.2. The map ξ (γ ) has the following properties:

(a) ξ (γ )(R(γ )∞ ) = X f (d,γ );

(b) For v, v′ ∈ R(γ )∞ , ξ (γ )(v) = ξ (γ )(v′) if and only if

v′ = v + f (d,γ ) · h (6.3)

for some h ∈ �∞(Zd , Z);
(c) ξ (γ )(v) �= ξ (γ )(v) for all v, v ∈ R(γ )∞ with v − v′ ∈ Rd.

Furthermore, the topological entropies of the shift-actions α f (d,γ ) on X f (d,γ ) and σR(γ )∞
on R(γ )∞ coincide.

Proof. The proofs are completely analogous to (but simpler than) those of the corre-
sponding results in the critical case. ��
Corollary 6.3. For every v ∈ �∞(Zd , Z) there exists a h ∈ �∞(Zd , Z) such that w =
v + f (d,γ ) · h ∈ R(γ )∞ .

Proof. This follows from Proposition 6.2 (a)–(b). ��
Remark 6.4. The element w in Corollary 6.3 can be constructed explicitly by using the
method described in the proofs of Lemma 3.5, Theorem 4.1 and Subsect. 5.2.1.

In [16], two elements v, v′ ∈ �∞(Zd , Z) are called equivalent (denoted by v ∼ v′)
if they satisfy (6.3) for some h ∈ �∞(Zd , Z).5 We write [v] ⊂ �∞(Zd , Z) for the
equivalence class of v in this relation. The following theorem summarizes the results of
[16].

5 Definition 3.2 in [16, p. 404] contains a misprint: the requirement that h ∈ �∞(Zd , Z) is omitted, although
it is used subsequently.
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Theorem 6.5. The quotient R(γ )∞ /∼ is a compact space. Moreover, (R(γ )∞ /∼,⊕) is a
compact abelian group, where

[y] ⊕ [ỹ] = [y + ỹ].
Furthermore, there exists a shift-invariant measure of maximal entropy on R(γ )∞ , denoted
by µ, such that

µ
({

y ∈ R(γ )∞ : [y] ∩ R(γ )∞ is a singleton
})

= 1. (6.4)

Proof. The first two statements are the results of [16, Prop. 3.2 and Th. 3.1]. Further-
more, the main result of [16], Theorem 3.2, states that, if µV is the uniform measure on

πV

(
R(γ )

Q(N )

)
, where V ⊂ Z

d is a rectangle, then the set of limit points of sequences

µV , V ↗ Z
d , is a singleton. Denote by µ this unique limit point. We claim that µ is a

shift-invariant measure on R(γ )∞ , which moreover, has maximal entropy.
The invariance follows immediately from the uniqueness of the weak limit point.

Denote by σ the Z
d -shift action on R(γ )∞ . For every Borel set A ⊆ R(γ )∞ , every n ∈ Z

d ,
and any sequence of rectangles Ek ↗ Z

d :

µ(σ n A) = lim
k→∞ µEk (σ

n A) = lim
k→∞ µEk +n(A) = µ(A).

Using the methods of [28, Chap. 8] (see also the proof of Theorem 5.9 above), one can
show that

hµ(σR(γ )∞
) = lim

E→Zd
− 1

|E |
∑

yE ∈R(γ )
E

µ([yE ]) log µ([yE ]) = lim
E→Zd

1

|E | log |R(γ )

E |

= htop(σR(γ )∞
),

where σR(γ )∞
is the restriction of σ to R(γ )∞ . Finally, (6.4) is the result of [16, Prop. 3.3].

��
We are now able to extend the results of [16] further.

Theorem 6.6. Let d ≥ 2, γ > 2d, and let R(γ )∞ be the dissipative sandpile model (4.4).

(i) The set C =
{

y ∈ R(γ )∞ : [y] ∩ R(γ )∞ is a singleton
}

is a dense Gδ-subset of R(γ )∞ ;

(ii) The group (R(γ )∞ /∼,⊕) is isomorphic to X f (d,γ ) ;

(iii) The subshift R(γ )∞ admits a unique measure µ of maximal entropy.
(iv) The shift action of Z

d on (R(γ )∞ , µ) is Bernoulli.

Proof. The first statement is proved in Proposition 4.4. Using the properties of ξγ :
R(γ )∞ → X f (d,γ ) (Lemma 6.2), the second statement is immediate. The same proof as

in Theorem 5.9 shows that htop(σR(γ )∞
) = htop(X f (d,γ ) ), and that ξ

(γ )∗ ν = λX f (d,γ )
for

every shift-invariant probability measure ν of maximal entropy on R(γ )∞ .
Since the restriction of the continuous map ξ (γ ) : R(γ )∞ −→ X f (d,γ ) to C is injective,

ξ (γ )(C) is a Borel subset of X f (d,γ ) with full Haar measure.
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If ν is a shift-invariant probability measure of maximal entropy on R(γ )∞ , then ξ
(γ )∗ ν =

λX f (d,γ )
. Hence ν(C) = 1, and the injectiveness of ξ (γ ) on C implies that ν = µ, where

µ is the measure appearing in Theorem 6.5. This proves (iii).
The Bernoulli property of the shift-action of Z

d on (R(γ )∞ , µ) follows from the corre-
sponding property of α f (d,γ ) on (X f (d,γ ) , λX f (d,γ )

) proved in [20], since the two systems
are measurably conjugate. ��

7. Conclusions and Final Remarks

(1) In [11], toppling invariants have been constructed for the abelian sandpile model in
finite volume. These are functions which are linear in height variables and are invari-
ant under the topplings. It is also obvious that the definition [11, Eq. (3.3)] cannot
be extended to the infinite volume. The underlying problem (non-summability of
the lattice potential function) is precisely the problem overcome by the introduction
of �1-homoclinic points {v = g ·w(d) : g ∈ Id}. The inevitable drawback is a larger
kernel ξg � f (d) · �∞(Zd , Z). Nevertheless, we are tempted to conjecture that for
d ≥ 2, the set {v ∈ R∞ : there exists ṽ ∈ R∞ : ṽ �= v and ξId (v) = ξId (ṽ)} has
measure 0 with respect to any measure of maximal entropy. As in the dissipative
case, this would imply that R∞ carries a unique measure of maximal entropy.

(2) In the present paper we did not address the properties of the infinite volume sandpile
dynamics, see e.g. [13]. We note that the sandpile dynamics takes a particularly
simple form in the image space, the harmonic model X f (d) or its factor group X̃ f (d) .
Namely, given any initial configuration v, suppose one grain of sand is added at site
n. For every g ∈ Ĩd = Id � ( f (d)),

ξg(v + δ(n)) = ξg(v) + ξg(δ
(n)) = ξg(v) + ρ(α−nz(g)),

where δ(n) = σ−nδ(0) (cf. Footnote 2) and z(g) = ρ(g∗ · w(d)) ∈ �
(1)
α (X f (d) ) is the

homoclinic point appearing in (3.14). It might be interesting to understand whether
any statistical properties of the harmonic model can be used to draw any conclusions
on the distribution of avalanches and other dynamically relevant notions in R∞.

Finally, as already mentioned in the Introduction, the group Gd = Rd/( f (d)) is the
appropriate infinite analogue of the groups of addition operators in finite volumes: on
the sandpile model, Gd can be viewed as the abelian group generated by the elementary
addition operators {an : n ∈ Z

d} satisfying the basic relations

a2d
n =

∏
k:‖k−n‖max=1

ak

for all n ∈ Z
d . These addition operators are well-defined on RE , E � Z

d , but for the
infinite volume limit R∞ these operators are not defined everywhere. Under the maps
ξg : R∞ −→ X f (d) , g ∈ Id , or ξId : R∞ −→ X̃ f (d) = X f (d)/X Id , the addition opera-

tor an is sent to addition of the homoclinic points ξg(δ
(n)) = ρ(g∗ · w(d)) = g(α)(x�)

(on X f (d)) and ξId (δ
(n)) (on X̃ f (d)), respectively. These additions are defined everywhere

on X f (d) and X̃ f (d) , and the isomorphism between X̃ f (d) and R∞/∼ implies that the

addition operators an, n ∈ Z
d , are defined everywhere on R∞/∼ (cf. Subsect. 5.2.1).
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