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Abstract: Topological T-duality is a transformation taking a gerbe on a principal torus
bundle to a gerbe on a principal dual-torus bundle. We give a new geometric construction
of T-dualization, which allows the duality to be extended in the following two directions.
First, bundles of groups other than tori, even bundles of some nonabelian groups, can
be dualized. Second, bundles whose duals are families of noncommutative groups (in
the sense of noncommutative geometry) can be treated, though in this case the base
space of the bundles is best viewed as a topological stack. Some methods developed for
the construction may be of independent interest. These are a Pontryagin type duality
that interchanges commutative principal bundles with gerbes, a nonabelian Takai type
duality for groupoids, and the computation of certain equivariant Brauer groups.
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1. Introduction

A principal torus bundle with U (1)-gerbe and a principal dual-torus bundle! with U (1)-
gerbe are said to be topologically T-dual when there is an isomorphism between the
twisted K-theory groups of the two bundles, where the “twisting” of the K-groups is
determined by the gerbes on the two bundles.

The original motivation for the study of T-duality comes from theoretical physics,
where it describes several phenomena and is by now a fundamental concept. For example
T-duality provides a duality between type Ila and type IIb string theory and a duality on
type I string theory (see e.g. [Pol]), and it provides an interpretation of a certain sector
of mirror symmetry on Calabi-Yau manifolds (see [SYZ]).

There have been several approaches to constructing T-dual pairs, each with their
particular successes. For example Bunke, Rumpf and Schick ([BRS]) have given a
description using algebraic topology methods which realizes the duality functorially.
This method is very successful for cases in which T-duals exist as commutative spaces,
and has recently been extended ([BSST]) to abelian groups other than tori. In complex
algebraic geometry, T-duality is effected by the Fourier-Mukai transform; in that context
duals to certain toric fibrations with singular fibers (so they are not principal bundles) can
be constructed (e.g. [DP,BBP]). Mathai and Rosenberg have constructed T-dual pairs
using C*-algebra methods, and with these methods arrived at the remarkable discovery
that in certain situations one side of the duality must be a family of noncommutative tori
(IMR]).

In this paper we propose yet another construction of T-dual pairs, which can be
thought of as a construction of the geometric duality that underlies the C*-algebra
duality of the Mathai-Rosenberg approach. To validate the introduction of yet another
T-duality construction, let us immediately list some of the new results which it affords.
Any of the following language which is not standard will be reviewed in the body of the

paper.

e Duality for groups other than tori can be treated, even groups which are not abelian.
More precisely, if N is a closed normal subgroup of a Lie group G, then the dual of
any G/N-bundle P — X with U (1)-gerbe can be constructed as long as the gerbe
is “equivariant” with respect to the translation action of G on the G/N-bundle. The
dual is found to be an N-gerbe over X, with a U (1)-gerbe on it. The precise sense
in which it is a duality is given by what we call nonabelian Takai duality for grou-
poids, which essentially gives a way of returning from the dual side to something
canonically Morita equivalent to its predual. A twisted K-theory isomorphism is
not necessary for there to be a nonabelian Takai duality between the two objects,
though we show that there is nonetheless a K -isomorphism whenever G is a simply
connected solvable Lie group.

Al If a torus is written V /A, where V is a real vector space and A a full rank lattice, then its dual is the torus
A :=Hom(A, U(1)).
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e Duality can be treated for torus bundles (or more generally G/N bundles, as above)

whose base is a topological stack rather than a topological space. Such a generaliza-
tion is found to be crucial for the understanding of duals which are noncommutative
(in the sense of noncommutative geometry).

We find new structure in noncommutative T-duals. For example in the case of princi-
pal T-bundles, where T = V /A ~ R"/Z" is a torus, we find that a noncommutative
T-dual is in fact a deformation of a A-gerbe over the base space X. The A-gerbe
will be given explicitly, as will be the 2-cocycle giving the deformation, and when
we restrict the A-gerbe to a point m € X, so that we are looking at what in the
classical case would be a single dual-torus fiber, the (deformed) A-gerbe is pre-
sented by a groupoid with twisting 2-cocycle, whose associated twisted groupoid
algebra is a noncommutative torus. Thus the twisted C*-algebra corresponding to a
groupoid presentation of the deformed A-gerbe is a family of noncommutative tori,
which matches the result of the Mathai-Rosenberg approach, but we now have an
understanding of the “global” structure of this object, which one might say is that
of a A-gerbe fibred in noncommutative dual tori. Another benefit to our setup is
that a cohomological classification of noncommutative duals is available, given by
groupoid (or stack) cohomology.

Groupoid presentations are compatible with extra geometric structure such as smooth,
complex or symplectic structure. This will allow, in particular, for the connection
between topological T-duality and the complex T-duality of [DP] and [BBP] to be
made precise. We will begin an investigation of this and possible applications to non-
commutative homological mirror symmetry in a forthcoming paper with Jonathan
Block [BD].

Let us now give a brief outline of our T-dualization construction. For the outline to

be intelligible, the reader should be familiar with groupoids and gerbes or else should
browse Sects. (2)—(4) and (7).

Let N be a closed normal subgroup of a locally compact group G, let P — X be a

principal G/N-bundle over a space X, and suppose we are given a Cech 2-cocycle o on
P with coefficients in the sheaf of U (1)-valued functions. It is a classic fact that o deter-
mines a U (1)-gerbe on P, and that such gerbes are classified by the Cech cohomology
class of o, written [o] € H 2(p;U(1)).Soo represents the gerbe data. (The case which
has been studied in the pastis G >~ R" and N =~ Z", so that P is a torus bundle.) Given
this data (P, [o]) of a principal G/N-bundle P with U (1)-gerbe, we construct a T-dual
according to the following prescription:

1.

Choose a lift of [0] € H?(P;U(1)) to a 2-cocycle [6] € HZ(P;U(1)) in
G-equivariant Cech cohomology (see Sect. (6)). If no lift exists there is no T-dual
in our framework.

From the lift 6, define a new gerbe as follows. By definition, & will be realized as
a G-equivariant 2-cocycle in the groupoid cohomology of some groupoid presenta-
tion G(P) of P (see Example (3)). Because ¢ is G-equivariant, it can be interpreted
as a 2-cocycle on the crossed product groupoid G x G(P) for the translation action
of G on G(P) (see Example (2)). Thus ¢ determines a U (1)-gerbe on the groupoid
G x G(P).

The crossed product groupoid G x G(P) is shown to present an N-gerbe over X, so
o is interpreted as the data for a U (1)-gerbe on this N-gerbe. This U (1)-gerbe on an
N-gerbe can be viewed as the T-dual (there will be ample motivation for this). We
construct a canonical induction procedure, nonabelian Takai duality (see Sect. (13)),
that recovers the data (P, 6) from this T-dual.
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4. In the special case that N is abelian and ¢ has a vanishing “Mackey obstruction”,
we construct a “Pontryagin dual” of the U (1)-gerbe over the N-gerbe of Step (3).
This dual objectis a principal G/N dual_pyndle with U (1)-gerbe, where G /N4 =
N := Hom(N; U(1)) is the Pontryagin dual.? Thus in this special case we arrive at
a classical T-dual, which is a principal G/N%*%_bundle with U (1)-gerbe, and the
other cases in which we cannot proceed past Step (3) are interpreted as noncommu-
tative and nonabelian versions of classical T-duality.

The above steps are Morita invariant in the appropriate sense and can be translated into
statements about stacks. Furthermore, they produce a unique dual object (up to Morita
equivalence or isomorphism) once a lift & has been chosen. It should be noted, however,
that neither uniqueness nor existence are intrinsic features of a T-dualization whose input
datais only (P, [o]). In fact, the different possible T-duals are parameterized by the fiber
over [o] of the forgetting map I-Vlé(P; Uu()) — I-Vlz(P; U (1)), which is in general nei-
ther injective nor surjective. In some cases the forgetful map is injective. For example
this is true 1-dimensional tori, and consequently T-duals of gerbes over principal circle
bundles are unique.

At the core of our construction is the concept of dualizing by taking a crossed product
for a group action. This concept was first applied by Jonathan Rosenberg and Mathai
Varghese, albeit in a quite different setting than ours. We have included an Appendix
which makes precise the connection between our approach and the approach presented
in their paper [MR]. The role of Pontryagin duality in T-duality may have been first
noticed by Arinkin and Beilinson, and some notes to this effect can be found in Arin-
kin’s appendix in [DP], (though this is in the very different setting of complex T-duality).
The idea from Arinkin’s appendix has recently been expanded upon in the topological
setting in [BSST]. Our version of Pontryagin duality almost certainly coincides with
these, though we arrived at it from a somewhat different perspective.

2. Groupoids and G-Groupoids

Let us fix notation and conventions for groupoids. A set theoretic groupoid is a small
category G with all arrows invertible, written as follows:

G = (G == Go).

Here G is the set of arrows, G is the set of units (or objects), s is the source map, and
r is the range map. The n-tuples of composable arrows will be denoted G,,. Throughout
the paper y’s will be used to denote arrows in a groupoid unless otherwise noted.

A topological groupoid is one whose arrows G and objects Gy are topological spaces
and for which the structure maps (source, range, multiplication, and inversion) are con-
tinuous.

A left Haar system on a groupoid (see [Ren]) is, roughly speaking, a continuous fam-
ily of measures on the range fibers of the groupoid that is invariant under left groupoid
multiplication. It is shown in [Ren] that for every groupoid admitting a left Haar system,
the source and range maps are open maps.

In this paper, a groupoid will mean a topological groupoid whose space of arrows
is locally compact Hausdorff. Also each groupoid will be implicitly equipped with
a left Haar system. These extra conditions are needed so that groupoid C*-algebras can

2 For example when N ~ 7", N is the n-torus which is (by definition) dual to R" /Z".
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be defined. Furthermore, all groupoids will be assumed second countable, that is, the
space of arrows will be assumed second countable. Second countability of a groupoid
ensures that the groupoid algebra is well behaved. For example, second countability
implies that the groupoid algebra is separable and thus well-suited for K -theory; second
countability is invoked in [Ren] when showing that every representation of a groupoid
algebra comes from a representation of the groupoid [Ren]; and the condition is used
in [MRW] when showing that Morita equivalence of groupoids implies strong Morita
equivalence of the associated groupoid algebras.

On the other hand, several results presented here do not involve groupoid algebras in
any way. It will hopefully be clear in these situations that the Haar measure and second
countability hypotheses, and in some cases local compactness, are unnecessary.

Topological groups and topological spaces are groupoids, and they will be assumed
here to satisfy the same implicit hypotheses as groupoids. Thus spaces and groups are
always second countable, locally compact Hausdorff, and equipped with a left Haar
system of measures.

A group G can act on a groupoid, forming what is called a G-groupoid.

Definition 2.1. A (left) G-groupoid is a groupoid G with a (continuous) left G-action
on its space of arrows that commutes with all structure maps and whose Haar system is
left G-invariant.

3. Modules and Morita Equivalence for Groupoids

Let G be a groupoid. A left G-module is a space P with a continuous map P 5 Gy
called the moment map and a continuous “action”

Gxg, P— P; (y,p)— yp.

Here G1 xg, P :={ (y, p) | sy = ep } is the fibred product and by “action” we mean
that 1 (y2p) = (v1y2) p-

A right module is defined similarly, and one can convert a left module P to a right
module PP by setting

pry=y 'p:i veg.peP>
A G-action is called free if (yp = y'p) = (y = y’) and is called proper if the map

Gxg, P— PxP; (y,p) (yp,p)

is proper. A G-module is called principal if the G action is both free and proper, and is
called locally trivial when the quotient map P — G\ P admits local sections.

Note that when G = (G = =) is a group, a locally trivial principal G-module P
is exactly a principal G-bundle over the quotient space G\ P. For this reason principal
modules are sometimes called principal bundles. We are reserving the term principal
bundle for something else (see Example (3)).

Now we come to the important notion of groupoid Morita equivalence.

Definition 3.1. Two groupoids G and 'H are said to be Morita equivalent when there
exists a Morita equivalence (G-H)-bimodule. This is a space P with commuting left
G-module and right H-module structures that are both principal, and satisfying the
following extra conditions:
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e The quotient space G\ P (with its quotient topology) is homeomorphic to Ho in a way
that identifies the right moment map P — Ho with the quotient map P — G\ P.

e The quotient space P /H (with its quotient topology) is homeomorphic to Gy in a way
that identifies the left moment map P — G with the quotient map P — P /H.

In the literature on groupoids one finds several other ways to express Morita equivalence,
but they are all equivalent (see for example [BX]).

Morita equivalence bimodules give rise to equivalences of module categories. To see
this, let E be aright G-module and P a Morita (G-H)-bimodule. Then G acts on E x g, P
by

y - (e, p):=(ey~ " yp)

and one checks that the right H-module structure on P induces one on E % P =
G\(E xg, P). The assignment E — E % P induces the desired equivalence of mod-
ule categories. The inverse is given by P°P; in fact the properties of Morita bimodules
ensure an isomorphism of (G-G)-bimodules, P x P°P >~ G, and this in turn induces an
isomorphism ((E * P) x P°P) >~ E.If E is principal then so is E * P, and if furthermore,
both E and P are locally trivial, then so is E % P.

There is also a notion of G-equivariant Morita equivalence of G-groupoids. This
is given by a Morita equivalence (G-H)-bimodule P with compatible G-action. The
compatibility is expressed by saying that the map

G xg, P xyyyH—P; (y,p,n)— ypn

satisfies, for g € G,

glypn) = g()g(p)gm). (D

4. Some Relevant Examples of Groupoids and Morita Equivalences

Here are some groupoids and Morita equivalences which will be used throughout the
paper.

Example 1. Cech groupoids and refinement. If 1 := {Uj}ie; is an open cover of a topo-
logical space X then the Cech groupoid of the cover, which we denote Gy, is defined as
follows:

gu — (H Ulj . HUI) [S : Ulj — U/

Ix] i Uij Ui

This groupoid is Morita equivalent to the unit groupoid X = X. Indeed, Gy is a
Morita equivalence bimodule. It is a right G module in the obvious way. As for the
left (X = X)-module structure, the moment map Gy — X is “glue the cover together”
and the X-action is the trivial one X xx Gg — Go.

More generally, let G be any groupoid and suppose il := {U;};es is a locally finite
cover of Gy. Define a new groupoid

Gy = (H gij = HU,‘), where Qij = rilU,' N SilUj .

IxI 1
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st gl 57U S v
rii Gl s rlu; S v
We will call such a groupoid a refinement of G and write y'/ for y € G'/. A groupoid

is always Morita equivalent to its refinements. A Morita equivalence (G-Gs()-bimodule
P is defined as follows:
P = HS_IU,'.
I

For a left G-module structure on P, let the moment map be r : P — Gp and, writing ni
forn € 5! U; C P, define the action by

The source and range maps are [ [ s*/ and [] 7"/, where [

(v.n) > n' yeG neP
For the right Gg-module structure, the moment map is n' + sn € U; and the right
action is (n*, ) — (ny)’.
Of course a Cech groupoid is exactly a refinement of a unit groupoid. In order to keep
within our class of second countable groupoids, we restrict to countable covers of Gy.

Example 2. Crossed product groupoids. From a G-groupoid G one can form the crossed
product groupoid

G X G:=(GxG =Gy

whose source and range maps are s(g,y) = s(g~'y) and r(g,y) = ry, and for
which a composed pair looks like:

(g, v)o(g g7y = (g vv).

Now suppose two G-groupoids G and H are equivariantly Morita equivalent via a
bimodule P with moment maps by : P — G and b, : P — Hy. Then G x P has the
structure of a Morita (G X G)-(G x H)-bimodule. The left G x G action is

€.y p) =g vep). (g v)eGxG, (g.p)eGxP,

with moment map (g’, p) — by(p). The right G x H-module structure is

1

&.p-@& =g pegmn @ mMeGxH,
with moment map (g’, p) — b,(g'"! p).

Example 3. Generalized principal bundles. Let G be a groupoid, G a locally compact
group, and p : G — G ahomomorphism of groupoids. The generalized principal bundle
associated to p is the groupoid

G xpG:=(Gx G =G xGp)
whose source and range maps are
s:(gy)> (go(y),sy) and r:(g,y) > (g, 1Y)

and for which a composed pair looks like

(g, 71) o (go(y1), v2) = (&, v172).
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The reason G %, G is called a generalized principal bundle is that when G = g {U;}
is the Cech groupoid of Example (1), G x » G is G-equivariantly Morita equivalent to
a principal bundle on X. Indeed, in this case p is the same thing as a G-valued Cech
1-cochain on the cover, and the homomorphism property p(y1y2) = p(y1)p(y2) trans-
lates to p being closed. Thus p gives transition functions for the principal G-bundle on
X,

P(p)=]]GxUs/~ (g,ueUs)~ (ep(y),u € Up),

where y = u € Uyp C G. Let m denote the bundle map P(p) — X, then there are
isomorphisms

he : G x Uy —> 71U,

which satisfy hglha (g,u) = (gp(y), u), and the maps h, give a G-equivariant iso-
morphism of groupoids between G i, G and the Cech groupoid G(m~"Uqs)) by send-
ing (¢,7) € G x Uyp C G xpGtohy(g,y) € n 'Uap C G({m~'Uy,)). Finally,

G ({7 ~'U,)}) is G-equivariantly Morita equivalent to the unit groupoid P(p) = P(p).

To see the importance of keeping track of G-equivariance, note for instance that
when G is abelian G %, G and G x o G are isomorphic (and therefore Morita equiv-
alent), whereas these two groupoids with their natural G-groupoid structures are not
equivariantly equivalent.

Example 4. Isotropy subgroups. Let G be a locally compact group and N a closed sub-
group. Then G acts on the homogeneous space G/N by left translation and one can
form the crossed product groupoid G x G/N = G/N. There is a Morita equivalence

(G x G/N = G/N) ~ (N = ).

The bimodule implementing the equivalence is G, with N acting on the right by trans-
lation and G x G/N acting on the left by (g, ghN) - h := gh.

Example 5. Nonabelian groupoid extensions. Let G be a groupoid and B — Gy a bundle
of not necessarily abelian groups over Gp. Suppose we have two continuous functions

G2 xgy B~ B (y1,v2.p) = o(y1,y2)p and
Gxg, B— B; (v.p) > t()(p),
such that o (y1, y»2) is an element of the fiber of B over ryj, t(y) is an isomorphism
from the fiber over sy to the fiber over ry, and the following equations are satisfied:
t(y1) o t(y2) = ad(o(y1, y2)) o T(¥172), 2)
(t(yD) e o (y2, ¥3))o (y1, y2v3) = o (y1. ¥2)o (y172, ¥3), 3)
where ad(p)(q) := pgp~' for elements p, g € B that both lie in the same fiber over
Go. We will write y (p) := 7(y)(p). The pair (o, 7) can be thought of as a 2-cocycle in
“nonabelian cohomology” with values in B, and when B is a bundle of abelian groups,

T is simply an action and o a 2-cocycle as in Sect. (6).
From the data (o, 7) we form an extension of G by B, which is the groupoid

B %% G := (B Xp.g,.r 91 = Go)

with source, range and multiplication maps
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1. s(p,y):=sy r(p,y):=ry,
2. (p1,yD) o (p2, ¥2) = (P1v1(p2)o (¥1, ¥2), Y172)-

The next example combines Examples (3), (4), and (5).

Example 6. Let p : G — G be a continuous function. Define

S0, v2) = p(y)p(re(iv) ™', (n,v) € G2

Suppose 8p takes values in a closed normal subgroup N of G, and write p for the com-

position G L2656 /N, which is a homomorphism. Associated to p we construct
two groupoids.

1. (G x (G/N x; G). This is the crossed product groupoid of G acting by translation
on the generalized principal bundle G/N x; G. This means that for (g,7, y)’s €
(G x (G/N x; G), the source, range and multiplication maps are
(@) s(g.1,7) = (g "tp(y), sy),

(b) r(g.t,y) = ry),
© (81,1, 71) 0 (82,87 1o, y2) = (8182, 1, V172

2. (N %% G). In the notation of Example (2) this is the extension determined by the
pair (o, T) := (8p, ad(p)) and the constant bundle B := Gy x N. Note that as an
N-valued groupoid 2-cocycle §p is not necessarily a coboundary. Explicitly, the
source, range and multiplication are
(@ s(n,y)=sy,

(®) r(n,y)=ry,
(©) (n1,y1) 0 (n2,y2) = (n1y1(n2)8p(y1, v2), y172),
where y (n) := p(y)np(y) .

Proposition 4.1. The two groupoids H := G X (G/N x; G) and K := (N X% G) of
Example (6) are Morita equivalent.

Proof. The equivalence bimodule is P = G x G, endowed with the following structures:

1. Moment maps: P 3 (g,y) — (go(y)"L,ry) e Hoand P 5 (g, y) — sy € Ko.
2. H-action: H x4, P 3 ((g1,1, 1), (82, ¥2)) = (8182, Y1Y2) € P, whenever

t=g1820(2) 'y~ € G/N.
3. K-action: P xxc, K 3 ((g. 7). (. ¥2)) = (gnp(»2). n1y2) € P.

Direct checks show that these definitions make P a Morita equivalence bimodule. O

Summary of notation. For convenience, let us summarize the notation that has been
developed in these examples.

e (G x G) denotes a crossed product groupoid. It is in some sense a quotient of G
by G.

e (G %, G) denotes a principal bundle over G.
(G %? G) denotes an extension of G by G. We will see that this corresponds to a
presentation of a G-gerbe over G.
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5. Groupoid Algebras, K-Theory, and Strong Morita Equivalence

Let G be a groupoid. The continuous compactly supported functions G; — C form an
associative algebra, denoted C.(G), for the following multiplication called groupoid
convolution:

axb(y) = / a(y)b(y2) “)
YiV2=Yy

fora,b € C.(G) and y’s € G. Integration is with respect to the fixed left Haar system
of measures. This algebra has an involution,

ara*(y)=aly=h

(the overline denotes complex conjugation), and can be completed in a canonical way to
a C*-algebra (see [Ren]) which we simply refer to as the groupoid algebra and denote
C*(G) or C*(G1 = Go).

The groupoid algebra is a common generalization of the continuous functions on a
topological space, to which this reduces when G is the unit groupoid, and of the convo-
lution C*-algebra of a locally compact group, to which this reduces when the unit space
is a point. Indeed, by definition of the groupoid algebra we have C*(X = X) = C(X)
and C*(G = %) = C*(G) when X is a locally compact Hausdorff space and G is a
locally compact Hausdorff group.

As is probably common, we will define the K-theory of G, denoted K (G), to be the
C*-algebra K-theory of its groupoid algebra. Here are the facts we need about groupoid
algebras and K -theory:

Proposition 5.1. 1. [MRW] A Morita equivalence of groupoids gives rise to a (strong)
Morita equivalence of the associated groupoid algebras.

2. A Morita equivalence between G-groupoids G and H gives rise to a Morita equiva-
lence between the crossed product C*-algebras G x C*(G) and G x C*(H).

3. Groupoid K -theory is invariant under Morita equivalence.

Proof. The first statement is the main theorem of [MRW]. The second statement follows
from the first after noting that the definitions of G x C*(G) and C*(G X G) coincide and
that G x G is Morita equivalent to G x H (see Example (2)). The last statement now
follows from the Morita invariance of C*-algebra K -theory. O

Let G and H be Morita equivalent groupoids. It is useful to know thatin [MRW]a C*(G)-
C*(H)-bimodule is constructed directly from a G-H-Morita equivalence bimodule P.
The C*-algebra bimodule is a completion of C.(P) and has the actions induced from
the translation actions of G and H on P. We present a generalization of this in Lemma
(A4).

6. Equivariant Groupoid Cohomology
In this section we define equivariant groupoid cohomology for G-groupoids. Equivariant
2-cocycles will give rise to what we call equivariant gerbes.

Let H be a groupoid and B 2 ‘Ho a left H-module each of whose fibers over Hy is
an abelian group, that is a (not necesssarily locally trivial) bundle of groups over Hj.
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Then one defines the groupoid cohomology with B coefficients, denoted H*(H; B),
as the cohomology of the complex (C*(H; B), §), where

C*(H; B) := {continuous maps f : Hx — B | b(f(hy,...,hy)) =rhy}
and for f € CK(H; B),

Sf(his o i) =y - fha, b))+ D (=D f o hikis )
i=l...k

+H(=DF f(hy, o ).

As is common, we tacitly restrict to the quasi-isomorphic subcomplex
{(f € C*| f(h1, ..., hx) = 0if some h; is a unit},

except for 0-cochains which have no such restriction. When the H-module is B =
Ho x A, where A is an abelian group, we write A for the cohomology coefficients.

When H is the Cech groupoid of a locally finite cover of a topological space X and
B is the étale space of a sheaf of abelian groups on X, then C* is identical to the Cech
complex of the cover with coefficients in the sheaf of sections of B, so this recovers
Cech cohomology of the given cover. On the other hand, when 7 is a group this recovers
continuous group cohomology.

If 'H is a G-groupoid then C*(H; B) becomes a complex of left G-modules by

g- flhi, ... hy) = f(g  hi,....g7 ) f e C*(H: B),
and one can form the double complex
K% = (CP(G; C1(H; B)).d, ),

where d denotes the groupoid cohomology differential for G = *. The G-equivariant
cohomology of H with values in B, denoted H(*; (H; B), is the cohomology of the total
complex

0t(K)" := (@ psgen K9, D = d + (—=1)P85).

As one would hope, there is a chain map from the complex tot(K) computing equi-
variant cohomology to the chain complex associated to the crossed product groupoid:

Proposition 6.1. The map
F:totK* — C*(G x H; B), ®)
defined to be the sum of the maps

CP(G; CY(H; B)) Iry CP*(G x H; B)

Frg(©) (g1, v1), (g2, gflyz), cos (8pgs (8182 .-gp+q_1)*17/p+q))
=c(g1, ..., 8p> Vp+ls e )/p+q)

for c € CP(G; C9(H; B)), g's € G, and (y1, ..., Vp+rqg) € Hpsq, is a morphism of
chain complexes.

Proof. This is a direct check. O
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It seems likely that this is a quasi-isomorphism, but we have not proved it. In Sect. (10)
it is shown that H (G x H; B) is always a summand of Hg (H; B), which is enough for
the present purposes.

Remark 6.2. These cohomology groups are not Morita invariant. For example, different
covers can have different Cech cohomology. One can form a Morita invariant cohomol-
ogy (that is, stack cohomology); it is the derived functors of B +— Homy(Ho, B) =
I'(Ho, B)™, which homological algebra tells us can be computed by using a resolution
of B by injective H-modules.’ However, the cocycles obtained via injective resolutions
are often not useful for describing geometric objects such as bundles and groupoid exten-
sions, so we will stick with the groupoid cohomology as defined above (which is the
approximation to these derived functors obtained by resolving Ho by H, and taking the
cohomology of Hom1(H,; B)). In Sect. (9) we will show how to compare the respective
groupoid cohomology groups of two groupoids which are Morita equivalent.

We will also encounter cocycles with values in a bundle of nonabelian groups B, defined
in degrees n = 0, 1, 2. The spaces of cochains are the same and a 0-cocycle is also
the same as in the abelian setting. In degree one we say p € C'(H; B) is closed when
sp(y1, v2) == p(hy)h - ,o(hz),o(hlhz)’1 = 1 and p and p’ are cohomologous when
p'(h)=h- o;(sh),o(h)ot_l (rh). A nonabelian 2-cocycle is a pair (o, 7) as in Example
(5).

7. Gerbes and Twisted Groupoids

In this section we describe various constructions that can be made with 2-cocycles and,
in particular, explain our slightly non-standard use of the term gerbe. We also describe
the construction of equivariant gerbes from equivariant cohomology.

Given a 2-cocycle o € zz(g; N), where N is an abelian group, we can form an
extension of G by N:

N %% G := (N x G1 = Go),
with multiplication

(n1, Y1) o (n2, y2) := (mn20 (y1, ¥2), V1¥2).

More generally, if B is a bundle of not necessarily abelian groups, and (o, 7) a
B-valued nonabelian 2-cocycle, then we can form the groupoid extension B x? G that
was described in Example (5). We will call such an extension a B-gerbe, or an N-gerbe
if B =Gy x N is a constant bundle of (not necessarily abelian) groups.

The term gerbe comes from Giraud’s stack theoretic interpretation of degree two
nonabelian cohomology ([Gir]). In the following few paragraphs (everything up to Def-
inition (7.2)) we will outline the stack theoretic terminology leading to Giraud’s gerbes.
The point of the outline is only to clear up terminology, and can be skipped. A nice
reference for topological stacks is [Met].

Let C be any category. A topological stack is a functor F : C — Top satisfying a
certain list of axioms. A morphism of stacks from (F : C — Top) to (F' : C' — Top)

3 There are enough injective H-modules for étale groupoids, but we do not know if this is true for general
groupoids.
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is a functor o : C — C’ (satisfying a couple of axioms) such that F = F’ o a. Such a
morphism is an equivalence of stacks when « is an equivalence of categories.

Given a groupoid G, define Pring to be the category whose objects are locally trivial
right principal G-modules and whose homs are the continuous G-equivariant maps. This
category has a natural functor to T op which sends a principal module P to the quotient
P /G, and in fact satisfies the axioms for a stack. This stack (which we denote Pring) is
called the stack associated to G. A stack which is equivalent to Pring is called presentable
and G is called a presentation of the stack.

The discussion following Definition (3.1) shows that a locally trivial right principal
G-H-bimodule P induces a functor %P : Pring — Priny. It is in fact a morphism
of stacks, and is an equivalence of stacks when P is also left principal (that is when
P is a Morita equivalence bimodule). Conversely, if there is an equivalence of stacks
Pring — Prinyy, then G and H are Morita equivalent. Thus any statement about grou-
poids which is Morita invariant is naturally a statement about presentable stacks. We
will only work with presentable stacks in this paper, and when stacks are mentioned at
all, it will only be as motivation for making Morita invariant constructions.

According to Giraud [Gir], a gerbe over a stack C’ is a stack C equipped with a mor-
phism of stacks « : C — C’ satisfying a couple of axioms. Now, the extension B x? G
has its natural quotient map to G (and this quotient map is a functor), and this determines
a morphism of stacks Prin g wog) — Pring which in fact makes Prin(p wog) into what
Giraud called a B-gerbe over the stack Pring (see also [Met] Definition 84). When G
is Morita equivalent to a space X, one usually calls this a gerbe over X. Thus we call
the groupoid B x? G a B-gerbe, although it is actually a presentation of a B-gerbe.
Hopefully this will not cause much confusion.

Remark 7.1. Every gerbe described so far has the property that N acts on N X G, mak-
ing it a trivial principal N-bundle over G;. Any groupoid presentation of a stack theoretic
N-gerbe will admit a principal N-action on its space of arrows, but not every one is a
trivializable principal bundle over G;. Those that are not trivializable do not admit the
2-cocycle description we have been using. The obstruction to all gerbes being trivializ-
able bundles is the degree one sheaf cohomology of the space G; with coefficients in the
sheaf of N-valued functions, H Sl heaf (G1; N). Since many groupoids admit a refinement

for which this obstruction vanishes (in particular Cech groupoids do), there are plenty
of situations in which one may assume the gerbe admits the above 2-cocycle description
(in particular, for gerbes on spaces this is fine). Nonetheless, we will encounter gerbes
which are not trivial bundles, such as the ones in Example (9).

Closely related to gerbes is the following notion:

Definition 7.2. Let G be a groupoid and let B — Gy be a bundle of groups. A B-twisted
groupoid is a pair (G, (0, 1)), where (0, T) is a B-valued (nonabelian) 2-cocycle over
G as in Example (5). When t is understood to be trivial, we simply write (G, o), and
when B is the constant bundle Gy x U (1) we simply call the pair a twisted groupoid.

In fact a B-twisted groupoid contains the exact same data as a B-gerbe. However, we
will encounter a type of duality which takes twisted groupoids to U (1)-gerbes and does
not extend to a “gerbe-gerbe” duality. Thus it is necessary to have both descriptions at
hand.

We would like to make C*-algebras out of twisted groupoids in order to define twisted
K-theory. Here is the definition.
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Definition 7.3. [Ren]. Given a twisted groupoid (G, o € Z*(G; U(1))), the associated
twisted groupoid algebra, denoted C*(G, o), is the C*-algebra completion of the com-
pactly supported functions on Gy, with o-twisted multiplication

axb(y) .= / a(ypb(y2)o (v, v2); a,b e Ce(Gr)
Yinr=y

and involution a — a*(y) = a(y Yo (y, y~1). Here functions are C-valued and the
overline denotes complex conjugation. Of course a groupoid algebra is exactly a twisted
groupoid algebra for o = 1.

Definition 7.4. The twisted K-theory of a twisted groupoid (G, o) is the K-theory of
C*(G, o).

Now suppose G is a locally compact group and H is a G-groupoid. By definition, a
U (1)-valued 2-cocycle in G-equivariant cohomology is of the form:

(0.1, B) € CUG: Z2(H; U (1)) x CH(G; C'(H; U (1)) x ZX(G; CO(H; U())).
(6)
and it satisfies the cocycle condition:
D(o, A, B) = 8o, 82" 'do, 8Bdr, dB) = (1,1,1, 1).

The first component, o, of the triple determines a twisted groupoid algebra C*(H; o).
Now the translation action of G on C*(H),

g-aly)==a(g'y): ge€G. heH aeC*(H:o)
is not an action on C*(H; o) because
g-(axsb) #(g-a)*, (g-b) fora,be C*(H;0), g €G.

The second and third components are “correction terms” that allow G to act on the
twisted groupoid algebra. Indeed, define a map

a: G — Aut(C*(H;0)) ag(a)(h) :=r(g, h)g-a(h).
Then we have
{ag(a*s b) = ay(a) *, ag(b)} <= {do =54},

so « does land in the automorphisms C*(H; o). However, this is still not a group homo-
morphism since in general oy, o g, # Qg g,. If We attempted to construct a crossed
product algebra G X, C*(H) it would not be associative. The failure of « to be homomor-
phic is corrected by the third component, 8. An interpretation of § is that it determines
a family over Hy of deformations of G as a noncommutative space from which « is
in some sense a homomorphism. We encode this “noncommutative G-action” in the
following twisted crossed product algebra:

G x5 C*(H; 0),
which is the algebra with multiplication

axb(g,h) = /hlhzzh a(g, h)b(g2, g7 'ha)x (g1, 1), (82, &1 'h2))
8182=8

where

x((g1, h1), (g2, gflhz)) =0 (hy1, ho)A(g1, h2)B(g1, &2, sha).
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Lemma 7.5. Let G x H be the crossed product groupoid associated to the G action on
‘H (as in Example (2)). Then x € Z2(G X H; U(1)). Consequently the multiplication
on

G Xyp C*(H;0)=C*"(G x H, x)
is associative.

Proof. x is the image of the cocycle (o, A, B) under the chain map of Eq. (5), thus it is
acocycle. O

Now it is clear how to interpret the data (o, A, 8) at groupoid level: it is the data needed
to extend the twisted groupoid (H, o) to a twisted crossed product groupoid (G x H, x).
The meaning of “extend” in this context is that (H, o) is a sub-(twisted groupoid):

(H,o)~ {1} x H,0) C (G X H, x),

which follows from the fact that x|y = o. Clearly in the groupoid interpretation the
U (1) coefficients can be replaced by an arbitrary system of coefficients.

Definition 7.6. The pair (H, (o, A, B)), where H is a G-groupoid and (o, ), ) €
ZZ(H, U(1)) will be called a twisted G-groupoid.

8. Pontryagin Duality for Generalized Principal Bundles

In this section we introduce an extension of Pontryagin duality, which has been a duality
on the category of abelian locally compact groups, to a correspondence of the form

{generalized principal G-bundles} <— {twisted a-gerbes}

for any abelian locally compact group G. In fact we extend this to a duality between
a U(1)-gerbe on a principal G-bundle (though only certain types of U (1)-gerbes are
allowed) and a U (1)-gerbe on a G-gerbe.

By construction, there will be a Fourier type isomorphism between the twisted grou-
poid algebras of a Pontryagin dual pair; consequently any invariant constructed from
twisted groupoid algebras (K-theory for example) will be unaffected by Pontryagin
duality.

This duality might be of independent interest, especially because it is not a Morita
equivalence and thus induces a nontrivial duality at stack level. The Pontryagin dual of
a U (1)-gerbe on a principal torus bundle will play a crucial role in the understanding of
T-duality.

Let us fix the following notation for the remainder of this section: G denotes an
abelian locally compact group, G = Hom(G, U (1)) denotes its Pontryagin dual group,
and for elements of G and G we use g’s and ¢'s respectively. Evaluation is often written
as a pairing (¢, g) = ¢(g). As usual y’s are elements of a groupoid G.

According to our groupoid notation, (G = G) denotes the group G thought of as
a topological space while (G = x*) denotes the group thought of as a group. Thus
by definition, the groupoid algebras C*(G = G) and C*(G = =) are functions on
G with pointwise multiplication in the first case and convolution multiplication in the
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second. Keeping this in mind, Fourier transform can be interpreted as an isomorphism
of groupoid algebras:
F:C*G = G) — C*G = %),
ar> Fla)(g) = / a(@)p(g™).

geG

We use the Plancherel measure so that the inverse transform is given by

F @) (g :=/ _a@)p(g)  aeC* (G =,

$eG
The group G acts on C*(G = G) by translation
gi-a(g) =a(gg) aeC*(G=G),
and the dual group acts by “dual translation” on C*(G = G) by
¢ *a(g) = (¢, g)a(g).
Under Fourier transform translation and dual translation are interchanged:

F(g-a)(d) = (b, 8) F(a)(p) =: g x F(a)(), R )
F@*a) ) = F@) g~ 'v) = ¢~ Fl@) @), forp, ¥ € G. ®)

Let us quickly check the first one:

Flg-a)(@) = / (1) (g7

81

— [ athoaes ™
8
6@ [ a@)&) = g+ F@O @)
8

With those basic rules of Fourier transform in mind, we are ready to prove:

Definition 8.1. Let G be a locally compact abelian group and G a groupoid. The
following data:

peZ'(G;G), feZG:G), andv e CHG; U(1)),
satisfying $v(y1, v2. v3) = (f (¥1, ¥2), p(y3) ") will be called Pontryagin duality data.

Given Pontryagin duality data (p, f, v), the following formulas define twisted groupoids:

1. The generalized principal bundle (G x, G) with twisting 2-cocycle:
o (g, D). (80 (YD), ¥2)) = v(1. ¥ (f (1. 72), 8) € Z2(G %, G U(D)).
2. The 6-gerbe (G %' G) with twisting 2-cocycle:

(1, 71)s (P2, 12)) == v(y¥1, 2) (92, p(¥1)) € Z2(G x/ G; U(1)).
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To verify this, simply check that the twistings are indeed 2-cocycles. so that the pairs
(G %, G, o"/yand (G x/ G; tP") are actually twisted groupoids.

Theorem 8.2 (Pontryagin duality for groupoids). Let (G x, G, 0"y and (G x/ G; tP?)
be twisted groupoids constructed from Pontryagin duality data (p, f, v) as in Definition
(8.1). Then there is a Fourier type isomorphism between the associated twisted groupoid
algebras:

C*(G %, G o) L5 C*(G » G; o),

a F(a)(g,y) :=/ alg, e, veg.

geG

Also, the natural translation action of G on C*(G % ,G; o) is taken to the dual translation
analogous to Eq. (7):

F(g-a)@,y) =(¢.8)F(a)(@,y) =g+ TF(a)(¢,y).

Note, however, that G only acts by vector space automorphisms (as opposed to algebra
automorphisms) unless f = 1.

Proof. The fact that F is an isomorphism of Banach spaces follows because “fibrewise”
this is a classical Fourier transform. Thus verifying that F is a C*-isomorphism is a mat-
ter of seeing that F takes the multiplication on the first algebra into the multiplication
on the second. Let us check.

Set fiz = f(y1,72) € G, vip = v(y1,y2) € U(l), and p; = p(i) € G. The
multiplication on C*(G x, G; 0¥/ is by definition

axb(g,y) = / a(g, y1)b(gp1, v2)vi,2(f1,2, &)
YiV2=y
= / a(g, v1) fiax(p1-b)(g, y2)vi 2.
YiV2=y

Pointwise multiplication on G is transformed to convolution on 6, which we denote by
%. Group translation and dual group translation behave under the transform according
to Egs. (7) and (8). Using these rules, we have

Flaxb)(¢,y) = /M,H, F@) (@1, yDRF (fr2* (1 - 0) (g2, y2)vi,2

Yin2=y

= Jores F@O@LMF OGS ) 021 I

Yin=y

= AWH F @) (1. y)F )@, v2) (. p1)vi 2,

YiV2=Y

and this last line is exactly the multiplication on C *(G x/ G; t""). The statement about
G-actions is proved by the same computation as for Eq. (7). O

Definition 8.3. A pair of a twisted generalized principal G-bundle and twisted é-gerbe
as in Theorem (8.2) are said to be Pontryagin dual.
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This Pontryagin duality is independent of choice of cocycles p and f within their
cohomology classes, and furthermore, if we alter v by a closed 2-cochain (recall v itself
is not closed) we obtain a new Pontryagin dual pair. Here is the precise statement of
these facts; the proof is a simple computation.

Proposition 8.4. Suppose (G %, G; o'l and (G x/ G; V) are Pontryagin dual and
we are given o € C1(G; G) and,B € CYG; G) and ¢ € Z*(G; U(1)). Define

o = pdB and f' = fda.
Then (G %, G; a"/f/) and (6 s/’ g; rp/"/) are Pontryagin dual as well, where

Vi, = crovial{fiz, BGsy2)) Har, ph) !
U

Since Pontryagin duality is defined in terms of a Fourier isomorphism, we have the
following obvious Morita invariance property:

Proposition 8.5. Suppose we are given two sets of Pontryagin duality data (G, G,

0,v, f)and (G, G, p', V', ). Then

1. C*(Gx,G; o'1) is Morita equivalent to C*(G X G's V' 1" if and only if C* (@ xf
G; oP) is Morita equivalent to c*(c? SIS 0”/”/).

2. In particular, if G X, G is G-equivariantly Morita equivalent to G x,» G' and the
twisted groupoid (G X, G, o'l is Morita equivalent to (G Xy G, oV'1") (see The-
orem (9.1) for Morita equivalence of twisted groupoids), then all C*-algebras in (1)
are Morita equivalent. The same is true if the G- twisted groupoids (G, f) is Morita
equzvalent to (G, f ) and the twisted groupoid (G x/ G, oY) is Morita equivalent
to (G x/" G, o).

Note that we have not claimed that a Morita equivalence at the groupoid level pro-
duces a Morita equivalence of Pontryagin dual groupoids. Though there is often such a
correspondence, it is not clear that there is always one.

Here are a couple of important examples of Pontryagin duality:

Example 7. Pontryagin duality actually shows that any twisted groupoid algebra is a
C*-subalgebra of the (untwisted) groupoid algebra of a U (1)-gerbe. Using the notation
of Theorem (8.2),set p = v =1, G = 7Z, and G=U (1). Then the twisted groupoid
((Z x1 G), o) (this is a trivial Z-bundle with twisting of)is Pontryagin dual to the
gerbe (U (1) x/ G). Explicitly,

ol ((n, y1), (, 12)) = fr1, )",
for ((n, y1), (1, 12)) € (Z %1 G2, f € ZXHG; U1)).

But the functions in C*(U (1) x/ G) ~ C*(Z x1 G, o/) with support in {1} x| G clearly
form a C*-subalgebra identical to C*(G; f).

Example 8. Again in the notation of Theorem (8.2), the case v = f = 1 shows that a
generalized principal bundle G %, G is Pontryagin dual to the twisted groupoid (G %!
G, t”). (The latter object is the tr1V1a1 G- -gerbe on G, with twisting 7°.) One might won-
der if this duality can be expressed purely in terms of gerbes. The answer is that it cannot.
More precisely, this duality does not extend via the association

(twisted groupoids) <— (U (1)-gerbes)
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to a duality between U (1)-gerbes that is implemented by the Fourier 1s0m0rph1sm of
groupoid algebras. Indeed, the gerbe associated to the right side is U (1) x (G x1G) (here
7 = 7°), but the extension on the left side corresponding (in the sense of having a Fourier
isomorphic C*-algebra) to that gerbe is G X, (Z %1 G), where x (n, y) := p(y)", which
cannot be written as a U (1)-gerbe. The groupoid G x, (Z x1 G) actually corresponds
to the disjoint union of the tensor powers of the generalized principal bundle.

Pontryagin duality will be used to explain “classical” T-duality, in Sect. (12). Before
we get to T-duality, however, we need the tools to compare Morita equivalent twisted
groupoids, and we need to know some specific Morita equivalences. The development
of these tools is the subject of the next two sections.

9. Twisted Morita Equivalence

Let H and K be groupoids. A Morita (H-K)-bimodule P determines a way to com-
pare the groupoid cohomology of H with that of K. More specifically, there is a double
complex C"/ (P) associated to the bimodule such that the moment maps

Ho < P — Ky
induce augmentations by the groupoid cohomology complexes
C'(H; M) < C!*(P;: M) and C*(P; M) < C’/(K; M). 9)

We say groupoid cocycles ¢ € C"(H; M) and ¢’ € C"(K; M) are cohomologous
when their images in C(P; M) are cohomologous. We assume for simplicity that the
coefficients M are constant and have the trivial actions of H and .

The double complex is defined as follows:

CU(P) := (C(H;j x4, P x1co Kis M); 8, §%).

The differentials (87 : C'/ — CU*1yand (8X : €'/ — C™*1J) are given, for f € C¥,
by the formulas
ST f(ht, .. by, p K's)

=S p Ky 4 D0 D b poK's)
n=l1...j

+H(=1)I fhy, ... hj hjp,K's),
K FWs, pohy o his)

= f's, phiky, . ki) + D (D" f (s, po ks )

n=1...i

+(=DEF's, p ki, ... k).

Our main reason for comparing cohomology of Morita equivalent groupoids is the
following theorem. The first statement of the theorem is a classic statement about (stack
theoretic) gerbes, but we will reproduce it for convenience.



74 C. Daenzer

Theorem 9.1. Let P be a Morita equivalence (H-KC)-bimodule, let M be an Abelian
group acted upon trivially by the two groupoids, and suppose we are given 2-cocycles

Ve Z>(H; M) and x € Z*(K; M)

whose images  and ¥ in the double complex of the Morita equivalence are cohomolo-
gous. Then

1. The M-gerbes M xV H and M x* K are Morita equivalent.

2. Forany group homomorphism ¢ : M — N, the N-gerbes N x%°Y H and N x®°X I
are Morita equivalent.

3. Forany group homomorphism¢ : M — U (1), the twisted C*-algebras C*(H; ¢por)
and C*(IC; ¢ o x) are Morita equivalent.

For example when M = U (1) with H and /C acting trivially, the representations of M
are identified with the integers, (u — u"*) and the proposition implies that the “gerbes
of weight n”, C*(H; ") and C*(IC; x™), are Morita equivalent.

Proof. We begin by proving the statement about M-gerbes. The idea is that a cocycle
(u, v e €10 x €91 satisfying

D(, v Yy == (M, 8 us™, 6507 = (1,0, x ) e €20 x B x %2 (10)

provides exactly the data needed to form a Morita (M xy H) — (M X, K)-bimodule
structure on M x P. Indeed, define for m’s € M, h's € H,k's € K, and p's € P,

1. Left multiplication of M xy H: (m1, h) * (m2, p) := (mymau(h, p), hp),

2. Right multiplication of M x, K = KO (m1, p) x (ma, k) := (mymov(p, k), pk).

Then

5H/,L =1 < the left multiplication is homomorphic,

sk = X < the right multiplication is homomorphic,

sk nw= 8%y~ & the left and right multiplications commute.

For example the equality

Sv(p, k1, ka) 1= v(pky, ka)v(p, kika)v(p, k1)~ = 7 (p, ki, ka) =: x k1, ka)
holds if and only if

((m, p) * (my, k1)) * (m2, kp) = (mmymov(p, k1)v(pky, k2), pkiks)
= (m(mymax (k1, k2))v(p, k1k2), pkikz)
= (m, p) * ((m1, k1) * (m2, k2)).

Now we will check that the right action is principal and that the orbit space (M X
P)/(M x, K) is isomorphic to HO.

Suppose (m, p) * (m1,k;) = (m, p) * (ma, k2). Then k; = k» since the action
of K is principal, and then m| = m, is forced, so the action is principal. Next, the
equation (m, p) x (mv(p, b~ k) = (mm, pk) makes it clear that the orbit space
(M x P)/(M %, K) is the same as the orbit space P/IC, which is HO.

The situation is obviously symmetric, so the left action satisfies the analogous prop-
erties, and thus the first statement of the proposition is proved.
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The second statement now follows immediately because whenever Eq. (10) is satisfied
for the quadruple (u, v, ¥, x)in C(P; M), itis also satisfied for (pou, pov, o, pox)
in C(P; N). In other words ¢ o ¢ and ¢ o x are cohomologous.

The third statement of the theorem can be proved directly by exhibiting a C*-algebra
bimodule, but this will not be necessary because we already have a Morita C*(M x v H)-
C *(M xX [C)-bimodule, coming from Proposition (5.1) and the fact that M x¥ H and

M xX IC are Morita equivalent. We will manipulate this bimodule into a C*(H, ¢ o ¥)-
C*(K, ¢ o x)-bimodule.

Note that (M x1 H,o¥) is Pontryagin dual to (M x¥ H) and (M x1 K, o) is
Pontryagin dual to (M x* K), thus the associated C*-algebras are pairwise Fourier iso-
morphic. Then the Morita equivalence bimodule (which is a completion of C.(M x P),
where P is the H-K-bimodule) for C*(M x¥ H) and C*(M xX K) is taken via the
Fourier isomorphism to a Morita equivalence bimodule between C*(M x1 H,o¥)
and C *(M X1 IC, o%). ThlS Fourier transformed bimodule will be a completion X of
C.(M x P). Then for ¢ € M, evaluation at ¢ determines projections

evg : C*(M x1 H,oV) = C*(H,p o %),
evy 1 C*(M x1 K, 0%) — C*(K, ¢ o x),
and evy : Co(M x P) — C.(P),

that are compatible with the bimodule structure of X, so evy(X) is automatically
a Morita equivalence C*(H, ¢ o )-C*(K, ¢ o x)-bimodule. Thus X is actually a family
of Morita equivalences parameterized by ¢ € M, and in particular the third statement
of the theorem is true. O

Remark 9.2. Just as a Morita equivalence lets you compare cohomology, a G-equiva-
lence lets you compare G-equivariant cohomology. Indeed, all complexes involved will
have the commuting G-actions, and there will be an associated tricomplex which is co-
augmented by the complexes computing equivariant cohomology of the two groupoids.
Rather than using the tricomplex, however, one can map the equivariant complexes into
the complexes of the crossed product groupoids (as in Eq. (5)) and do the comparing
there. The result is the same but somewhat less tedious to compute.

10. Some Facts about Groupoid Cohomology

Now there is good motivation for wanting to know when groupoid cocycles are coho-
mologous. In this section we will collect some facts that help in that pursuit.

The Morita equivalences that come from actual groupoid homomorphisms have nice
properties with respect to cohomology. They are called essential equivalences.

Definition 10.1. [C]. Let ¢ : G — H be a morphism of topological groupoids (i.e. a
continuous functor). This morphism determines a right principal G-H-bimodule Py :=
Go X1, H1. If Py is a Morita equivalence bimodule (which follows if it is left principal)
then ¢ is called an essential equivalence.

Note that for any morphism ¢ the left moment map Py — Gp has a canonical section.

Proposition 10.2. Let G and H be topological groupoids, and suppose P is a Morita
equivalence G-H-bimodule with left and right moment maps Go Lpl Ho. Then:
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1. P is equivariantly isomorphic to Py for some essential equivalence ¢ : G — H if
and only if the left moment map £ : P — Go admits a continuous section.

2. Any morphism ¢ : G — H determines, via pullback, a chain morphism
¢* : C*(H) — C*(9).

3. The moment maps £ and p determine chain morphisms

C* Q) -5 tot(C**(P)) L= C*(H).

4. Any continuous section of £ : P — Gq determines a contraction of the coaug-
mented complex CK(G) — C**(P) for each k, and thus a quasi-inverse [ £*]! :
H*(tot(C(P)) — H*(G), and thus a homomorphism

[ o[ p*]: H*(H) - H*(G).
5. The two chain morphisms £* o ¢* and p* are homotopic; in particular
[¢*1=1€7"olp"]

Proof. The first statement is an easy exercise and the next two statements do not require
proof. The homotopy for the fourth statement is in the proof of Lemma 1 [C] and the
homotopy for the fifth statement is written on page (8) of [C]. O

Corollary 10.3. Suppose that ¢ : G — H is an essential equivalence, that M is a
locally compact abelian group viewed as a trivial module over both groupoids, and that
x € Z2(H; M) is a 2-cocycle. Then x and ¢* x satisfy the conditions of Theorem (9.1);

in particular M x* H is Morita equivalent to M %% G.

Proof. Use the notation of Proposition (10.2). The images of x and ¢* x in C**(P) are
£*o¢* x and p* x respectively, which are cohomologous by statement (5), and these are
precisely the conditions of Theorem (9.1). O

Corollary 10.4. If ¢ : G — H is an essential equivalence such that the right moment
map Py LS ‘Ho admits a section then [¢*] : H*(H) — H™(G) is an isomorphism.

Proof. This follows from Corollary (10.3) and Part (4) of Proposition (10.2). 0O

Corollaries (10.3) and (10.4) will be very useful because all of the Morita equivalenc-
es that have been introduced so far are essential equivalences, as the next proposition
shows. Before the proposition let us describe two more groupoids.

Example 9. Let p : G — G/N be a homomorphism and let G xg/n,, G1 denote the
fibred product (i.e. the space {(g, ) | g¢N = p(y) € G/N}). Define

G xXG/N,p G = (G xG/n,p 91 = Go)
with structure maps s(g, ) :=sy,r(g, y) :=ry,and (g1, y1)o(g2, ¥2) := (8182, V112).
Note that any lift of p to a continuous map p : G; — G determines an isomorphism of
groupoids
Nx%G— G xgnp G (n,y) > p(y), y).

When no such lift exists this fibred product groupoid is an example of an N -gerbe without
section.
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Example 10. The fibred product groupoid of Example (9) is equipped with a canonical
right module P := G x Gy, for which the induced groupoid is

G % (G xG/N,p G) =G x G xg/n,p G1) = G x Go)

with structure maps s(g, g’, y) = (gg’.sy),r(g. g, y) := (g, ry), and (g, g1, y1) ©
(881, 82, v2) = (g, 8182, V1v2). A lift p determines a homeomorphism

G X (Nx%G)—> Gx(GxgnpG), (gny) > (gnpy),y)

which implicitly defines the groupoid structure on G x N x%" G as the one making this
a groupoid isomorphism.

Proposition 10.5 (Essential equivalences). Let G be a groupoid, N a closed subgroup
of a locally compact group G, NG (N) its normalizer in G, and p : G — Ng(N)/N C
G /N a homomorphism. Then

1. The gluing morphism Gs; — G from a refinement Gy corresponding to a locally finite
cover L of Go (see Example (1)) is an essential equivalence.
2. The quotient morphism

X xN— (X/N = X/N), (x,n)— xN € X/N,

for X a free and proper right N-space, is an essential equivalence.
3. The inclusion

L:(GXG/Np9) > GXG/N XN, G, (8. ¥) > (8.eN,y)

is an essential equivalence and in particular if p lifts to a continuous map p : G — G
then

L1 (N % G) > Gx(G/N %,G),  (n,y) > (np(y).eN,y)

is an essential equivalence.
4. The quotient map

k:Gx(GxgnpG — G/Nx,G,  (g,8,7v)— (gN,y)

is an essential equivalence and in particular if p lifts to a continuous map p : G — G
then

K:Gx(Nx*G) - G/Nx,G, (g.ny) (gN,y)

is an essential equivalence.
5. If G is a Cech groupoid, N is normal in G, and

Q = (G/N x Go)/(t,ry) ~ (1p(y), sy)

is the principal G /N-bundle on X = Gy/G with transition functions given by p,
then the quotient

q:(G/Nx,G) — (0= 0)

is an essential equivalence.
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Furthermore, in all cases where there are obvious left G actions, these are essential
G-equivalences.

Proof. For the groupoids that were introduced in Sect. (4), simply check that the bimod-
ules determined by these morphisms are the same as the Morita equivalence bimodules
that were described there. The two new cases involving Examples (9) and (10) are very
similar and are left for the reader. The statement about G-equivariance is clear. O

Proposition 10.6. In the notation of Proposition (10.5), suppose that G — G /N admits
a continuous section (for example if N = {e}, or if N is a component of G or if G is
discrete), then the essential equivalences ¢ and « induce isomorphisms of groupoid
cohomology.

Proof. By Corollary (10.4), we only need to produce sections of the right moment maps,
and the section of 0 : G/N — G provides these. The case G = x illustrates the answer:
fort, G/N 3 gN +— (x,0(gN),eN) € {x} x G x eN =~ P, does the job, while for «
itisG/N 3 gN + (0(gN),gN) € G xg/vn G/N =~ P,. O

The following proposition is important because it implies that cocycles on crossed prod-
uct groupoids can be assumed to be in a special form.

Proposition 10.7. The groupoid cohomology H*(G x (G %, G); B)) is a direct sum-
mand of the equivariant cohomology H(,(G %, G; B).

Proof. We will show that the identity map on H*(G x (G %, G); B)) factors through
H(G %, G B).

The inclusion ¢ : G < G x (G %, G) sending y +— (p(y), e, ¥) induces a chain
map

¥ C*(G % (G %, G); By — C*(G; B)

which is a quasi-isomorphism by Proposition (10.6). The quotient G x (G x,G) — G
induces the chain map

q*:C*(G; B) — C*(G x (G x, G); B)
which is also a quasi-isomorphism, and in fact induces the quasi-inverse to ¢* since
*oq* =(qov)* =Id*.

Now the quotient G x, G — G induces a chain map C*(G) — C*(G %, G) and
thus a chain map

C*(G) = C*(G %, G) = ot C*(G, C*(G %, G)).
Note that the first map and the composition of both maps are chain morphisms, but the sec-
ondis not. Following this by the morphismtot C*(G, C*(G % ,G)) — C*(GX(G % ,0))
of Eq. (5) induces a sequence

C*(G) —> 10t C*(G; C*(G x, G)) —> C*(G % (G x, G))

whose composition is easily seen to equal ¢*. Finally, precomposing with ¢* provides
the promised factorization. O
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Remark 10.8. Whenever a group G acts freely and properly on a groupoid ‘H and H —
G\'H has local sections, then H, being a principal G-bundle, is equivariantly Morita
equivalent to G %, G for some p and G, where G is a refinement of the quotient groupoid
H/G = (H1/G = Hp/G). In particular there is a refinement of H that is equivari-
antly isomorphic to G x, G. Thus after a possible refinement the above proposition is a
statement about the cohomology of all free and proper G-groupoids with local sections.

For completeness we will include the following proposition, which might be attrib-
utable to Haefliger. It implies that one can work exclusively with essential equivalences
if desired.

Proposition 10.9. Let P be a G-H-Morita equivalence which is locally trivial as an
‘H-module, then the Morita equivalence can be factored in the form:

¢
G<«—Gy—H,
where Gy is a refinement of G and ¢ is an essential equivalence.

Proof. The left moment map for P admits local sections so there is a cover 4 of Gy such
that the refined Morita Gy-H-bimodule Py has a section for its left moment map. By
Proposition (10.2) Py >~ Py, for some essential equivalence ¢. O

11. Generalized Mackey-Rieffel Imprimitivity

In this section we show that a specific pair of twisted groupoids is Morita equivalent.
The two Morita equivalent twisted groupoids correspond, respectively, to a U (1)-gerbe
on a crossed product groupoid for a G-action on a generalized principal G/N-bundle,
and to a U (1)-gerbe over an N-gerbe. We also describe group actions on the groupoids
that make the Morita equivalence equivariant. The equivalence is a simple consequence
of the methods of Sect. (12)), but it deserves to be singled out because both twisted
groupoids appear in the statement of classical T-duality.

Theorem 11.1 (Generalized Mackey-Rieffel imprimitivity) Let G be a groupoid, G a
locally compact group, N < G a closed normal subgroup, and p : G — G/N a homo-
morphism that admits a continuous lift p : G — G. From the two groupoids of Example

(6):

I. H:=Gx(G/N %x;0),

2. K:=N x*g.

Then for any G-equivariant gerbe presented by a 2-cocycle (o, 1, B) as in Eq. (6), there
is a Morita equivalence of twisted groupoids

(H, ¥) ~ (K, x),
where ¥ € Z2(H; U(1)) and x € Z*(KC; U(1)) are given by

Vg1, 1), (82, &1 ' to(11), 12)) = o (t, y1, y2)r (g1, 1p(¥1), ¥2)
x B(g1, &2, tp(y1)p(¥2), 572), (11)
x((n1, 1), (n2, y2)) = o(eg/n, Y1, v2)r(nip(v1), p(y1)s v2)
X B(ni1p(y1), n2p(v2), p(y1)p(v2), sy2),
(12)

forg's € G,t € G/N,n'’s € N,and y's € G.
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Proof. For the sake of understanding, let us first see where ¥ comes from. Set

(g1, h1) = (81,4, 71), (82, h2) = (g2, g1 'tp(y1), ). Then a composed pair looks
like (g1, n1)(g2, h2) = (8182, h1g1h2), and ¢ = o (hy, g1h2)A (g1, g1h2) X B(&1, &2,
g182(sh2)). In other words, Y = F (o, A, ), the image of (o, A, §) under the chain map

F :10tC*(G, C*((G/N x5 G),U(1))) — C*(H; U(1))

of Eq. (5). So ¥ comes from extending a 2-cocycle from (G/N x5 G) to an equivariant
2-cocycle. Now x = (* o, where t : N x% G — G x G/N x; G is as in Proposition
(10.5) and the theorem follows immediately from the results in Sect. (10). O

Remark 11.2. In the hypotheses of the above theorem it is not necessary to have the lift
5. In the absence of such a lift, one simply replaces N x* G by G XG/N,p G as in
Example (9).

When G is abelian there is a canonical action of G on U (1) x¥ H (denoted &),
given by the formula

¢-0,8.1,7)=0(p,8).81y), G, (0,g1y)eUl)=VH. (13)

This action corresponds to the natural G-action on a crossed product algebra G x A. As
one expects, the above Morita equivalence takes this action to the same action, pulled
back via ¢.

Proposition 11.3. In the notation of Theorem (11.1) let G be an abelian group. Then
the canonical G-action, &, on U (1) x¥ H is transported under the Morita equivalence
(U) 3V H) ~UA) xX K) to

(@) (@) 0. n,y) = (p, np(y)).n.y), (0,n,y) € U) x* K.

Thus with these actions the Morita equivalence of Theorem (11.1) becomes a—equivari—
ant.

Proof. U(1) x P, is the Morita (U (1) x¥ H)-(U (1) xX K)-bimodule here. For ¢ € G
and (0, g,y) € U(1) x P, define an actionby ¢ - (0, g, y) = (6(¢, g), g, v). Then this
action, along with the actions & and (*& determines an equivariant Morita equivalence
(that is, Eq. (1) is satisfied for these actions). O

12. Classical T-Duality

Let us start with the definition. For us classical T-duality will refer to a T-duality
between a U (1)-gerbe on a generalized torus bundle and a U (1)-gerbe on a generalized
principal dual-torus bundle. If instead of a torus bundle we start with a G/N-bundle,
for N a closed subgroup of an abelian locally compact group G, then we still call this
classical T-duality since it is the same phenomenon. Thus “classical” means for us that
the groups involved are abelian and furthermore that the dual object does not involve
noncommutative geometry.

We are now ready to fully describe the T-dualization procedure. There will be several
remarks afterwards.
Classical T-duality. Suppose we are given the data of a generalized principal
G /N-bundle and G-equivariant twisting 2-cocycle whose C*°-component 8 € C%(G;
CY%G/N x5 G; U(1))) is trivial:

(G/N %G, (0,1, 1) € Zé(G/N x5 G, U))). (14)
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Then this is the initial data for a classically T-dualizable bundle, and the following steps
produce its T-dual.

Remark 12.1. Because G is abelian the restriction of A : G x G/N x G; — U(1) to

N x G/N x G does not depend on G/N. Indeed, forn € N, g € G,andt € G/N,
Mt y) =g, 1, )M 1, 1) = Mgn, 1, g, 1,1) T = hn, g7, ).

Furthermore, the cocycle conditions ensure that A |y« G/nxg; 18 homomorphlc in both

N and G. We write A for the induced homomorphism A : G — N.

Step 1. Pass from (G/N x;G, (o, A, 1)) to the crossed product groupoid G x (G/N x5

G), with twisting 2-cocycle ¢ := F (o, A, 1) of Eq. (11), and with canonical G-action
& of Eq. (13):

(G X (G/N x;G), ¥, &).

Step 2. Choose a lift p : G — G of p and pass from G x (G/N x; G) to the Morita

equivalent N-gerbe N x% G with twisting 2-cocycle (* and G-action (*§ of Proposition
(11.3):

(N %% G, oy, *&).

Step 3. Pass to the Pontryagin dual system. More precisely, pass to the twisted grou-

poid with G-action whose twisted groupoid algebra is G -equivariantly isomorphic to the
algebra of Step 2, when the chosen isomorphism is Fourier transform in the N-direction.
The result is an N-bundle, but not exactly of the form we have been considering. Here
is the Pontryagin dual system:

Groupoid: K := (ﬁ x g = N x Go).

Source and range: 5(¢. ) := (¢ 7). r(¢. ) i=$((y) L, ry) for (9. y) € K1
e Multiplication: (pA(y2) ™", y1)(¢, ¥2) := (@, Y172), Where & := A|yx(1}xg, (Which

is homomorphic in N ) viewed asamap A : G| — N.

o Twisting: T(@(A(12) "', v1). (@, 2)) —U(e Y1 J/z)k(p(n) Y2)(@, dp(y1, ¥2)).
e G-action: ¢ -a(¢’,y) = (¢, p(y))a(p~'¢', y) for¢’ € G and a € C.(Ky).

For aesthetic reasons, it is preferable to put this data in the same form as Eq. (14). To
do this first note that K is isomorphic to N <3 G via:

Nx3G— K, (@.9) > @rL1). 7).

Using this isomorphism to import the twisting and G-action on N 5 G from KC deter-
mines that N x; G must have:

o Twisting: 07 (¢, y1, y2) == 0 (e, V11V2))\(P(V1) Y DA(YDA(2)), 8p (1, v2)).
e G-action: ¢’ - a(¢, Y) = (¢, p(y))a(d' ¢, y) for ¢’ € Ganda € C.(N X3 G).

But this is again classical T-duality data, indeed it is what we write as:
(N x;G. (0", p. 1) € ZE(N x; G: U(D))).
Thus the classical T-dual pair is

(G/N x5 G, (0, 1)) < (N x; G, (6", p,1)). (15)
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Some properties of the duality.
(A) Taking C*-algebras everywhere, the dualizing process becomes:

Morita

C*(G/N x5 G;0) ~ G x; C*(G/N x5 G;0)  ~ C*N %% G; 1*y)
2 CH(N %5 GioY).

All algebras to the right of the “~~"" have canonically G -equivariantly isomorphic spectra.
For the passage from Step (1) to Step (2) this follows because it is a Morita equivalence
of twisted groupoids by Theorem (11.1), and by Proposition (11.3) this Morita equiv-
alence is G-equivariant. For the passage from Step (2) to Step (3) it follows because
Pontryagin dualization induces an equivariant isomorphism of twisted groupoid algebras
with G-action (Theorem (8.2)).

(B) The passages (1)—(2) and (2)—(3) induce isomorphisms in K -theory for any G,
since K -theory is invariant under Morita equivalence and isomorphism of C*-algebras.
Thus whenever G satisfies the Connes-Thom isomorphism (i.e. G satisfies K(A) =~
K (G x A) for every G-C*-algebra A) the duality of (15) incorporates an isomorphism
of twisted K-theory:

K*(G/N x5 G,0) =~ K**"G(N x; G,0V).

The class of groups satisfying the Connes-Thom isomorphism includes the (finite dimen-
sional) 1-connected solvable Lie groups.
(C) When G is a Cech groupoid for a space X, this duality can be viewed as a duality

(P — X, (0,1, D] € H5(P; U(1))) «— (PY — X, [(c", p, D] € HZ(PY; U(1))),

where P is a principal G/N-bundle and PV is a principal N-bundle. Indeed, the pair
(P, [(o, A)]) are the spectrum (with its G/ N -action) and G-equivariant Dixmier-Douady
invariant, respectively, of the G-algebra C*(G/N x;§; o), and it is enough to show that
the spectrum and equivariant Dixmier-Douady invariant of the dual, C* (ﬁ X5 G,0V),1s
independent of the groupoid presentation of (P, [(c, A)]). But since every procedure to
the right of the “~~” is an equivariant Morita equivalence of C*-algebras, the result will
follow as long as two different presentations give rise to objects which are equivariantly
Morita equivalent at Step (1). Butif (G/N x;G, (0, A, 1)) and (G/N X 5 g, )M, 1)
are G-equivariantly Morita equivalent groupoids with cohomologous cocycles then the
groupoids U(1) x¥ (G x G/N x5 G) and U(1) x ¥’ (G x G/N xp G') are Morita
equivalent as G groupoids, and from this the result follows immediately.

13. Nonabelian Takai Duality

In describing classical T-duality it was crucial that the group G be abelian because the
dual side was viewed as a G-space, and the procedure of T-dualizing was run in reverse
by taking a crossed product by the G-action. Since our goal is to describe an analogue of
T-duality that is valid for bundles of nonabelian groups, we need a method of returning
from the dual side to the original side that does not involve a Pontryagin dual group. A
solution is provided by what we call the nonabelian Takai duality for groupoids. In this
section we first review classical Takai duality, then we describe the nonabelian version.
The nonabelian Takai duality is constructed so that when applied to abelian groups it
reduces to what is essentially the Pontryagin dual of classical Takai duality.
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Recall that Takai duality for abelian groups is the passage
(G — C*-algebras) ~ G — C*-algebras)
(a, A) — (@, G xq A),

where & is the canonical G-action ag - a(g) = ¢(gla(g) for ¢ € G, g € G and
a € G x A. This is a duality in the sense that a second application produces a G-algebra
(@, G x o G X4 A), which is G-equivariantly Morita equivalent to the original (¢, A).

Now let («, H) be a G-groupoid. Takai duality applied (twice) to the associated
groupoid algebra is the passage

(a, C*(H)) —> (&, C*(G xq H))
— (& G x5 C*(G xq H)).

Comparing multiplications, one sees that the last algebra is identical to the groupoid
algebra of the twisted groupoid (G X,y (G X4 H), x) wWhere

X (@1, 81, V), (92, g2, v2)) = (1, &2)

and (triv) denotes the trivial action of G. Note that this duality cannot be expressed
purely in terms of groupoids since the dual group G only acts on the groupoid alge-
bra. However, taking the Fourier transform in the G-direction determines a Pontryagin
duality between (G X;-jy G X H, x) and the untwisted groupoid

G =(GxGxHi =G x Hy)
whose source, range and multiplication are

1. s(g, h,y):= (g, hlsy) r(g, h,y) = (gh ' ry),
2. (ghy' hi,y1) o (g, ha, hy ' ya) == (g, hiha, yi2),

for g’s, h's € G and y € H. This groupoid has the natural left translation action of G
for which it is equivariantly isomorphic to the generalized G-bundle

G x4 (G xXq¢ 'H),
where ¢ is the quotient homomorphism g : G X4 H — (G = *). The map is given by
G —> G 5y (G xo H),
(8. h,y) —> (gh™" h,y).

As was mentioned in the construction of generalized bundles, a generalized bundle
G %, G can be described as the induced groupoid of the right G-module P := G x Gy
with the obvious structure. In the current situation the right (G x4 H)-module is

P = (G x Ho > Ho),
where the moment map b is just the projection and the right action is
(&.ry) - (h, hy) := (g(q((h, hy),sy) = (gh,sy).
For convenience we will write down this groupoid structure,
G Xy (GXqgH)=P xy (G XxqH)

with source, range and multiplication
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L s(g hy) = (gh,h™lsy) r(g, h,y) = (g ry),
2. (g h1.yD) o (ght ha, hy'ya) i= (8. hiha, yiya)
for g’s,h's € Gand y € H.

The content of the previous paragraph is that up to a Pontryagin duality, a Takai
duality can be expressed purely in terms of groupoids. Given a G-groupoid («, H), one
forms the crossed product G X, H. There is a canonical G-action on the groupoid alge-
bra, but there is also a canonical right (G X, H)-module P, and the two canonical pieces
of data are essentially the same. Now to express the duality, one passes to the induced
groupoid P x (G X 'H). This induced groupoid is itself equipped with a natural G-action
coming from the left translation of G on P, and is G-equivariantly Morita equivalent to
the original G-groupoid (e, H). Thus the C*-algebra of this induced groupoid takes the
place of G x4 C*(G x4 H)) (and is isomorphic to it via Fourier transform).

This duality (¢, H) ~» (P, G x4 H) expresses essentially the same phenomena as
Takai duality, but while Takai duality applies only to abelian groups, this formulation
applies to arbitrary groups. Let us write this down formally.

Theorem 13.1 (Nonabelian Takai duality for groupoids). Let G be a locally compact
group and (o, H) a G-groupoid, then

1. G Xq H has a canonical right module P :== (G x Hy) — Ho).

2. The induced groupoid P X4 (G X 'H) is naturally a generalized principal G-bundle.

3. The G-groupoids (a, H) and (t, P x4 (G Xy H)) are equivariantly Morita equiv-
alent, where T denotes the left principal G-bundle action.

Proof. The first statement has already been explained, and the second is just the fact that
P x(GxqH)=G x4 (G xqH)

and the latter groupoid is manifestly a G-bundle. For the third statement, note that the
inclusion

H:{l}x{l}xH&(qu(GNaH))

is an essential equivalence.

After identifying the equivalence bimodule Py with the space {(g, g y)lge
G, y € 'Hi}, one verifies easily that the following G-actions make this an equivariant
Morita equivalence:

For (h,k,y) € (G x4 (G X H)), y € H,and (h,h~1,y) € Py, g € G acts by

g (hk,y)=(ghk,y); g-(hh™' y):=(gh. (g™ y): g-(¥) =gy
Note that ¢ itself is not an equivariant map. O

For our intended application to T-duality, it will be necessary to consider a nonab-
elian Takai duality for twisted groupoids, which we will prove here. In this context it not
possible to make a statement of equivariant Morita equivalence because in general the
twisted groupoid does not admit a G-action. Instead of G-equivariance, there is a Morita
equivalence that is compatible with “extending” to a twisted crossed product groupoid.

Theorem 13.2. (Nonabelian Takai duality for twisted groupoids). Let G be a group and
(o, H) a G-groupoid. Suppose we are given a 2-cocycle x € Z*(G xqH; U(1)). Define
o = x|y € Z>(H, U(1)). Then x can be viewed as a 2-cocycle on (G Xq (G Xy 'H))
which is constant in the first G variable, or as a 2-cocycle on G X1 (G X4 (G Xy H))
which is constant in the first two G-variables, and we have:
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1. The Morita equivalence (G X (G o H)) = H of Theorem (13.1) extends to a Morita
equivalence of U (1)-gerbes:

U(1) x* (G x4 (G xq H)) = U(1) x° H.

2. The Morita equivalence G X (G X4 (G Xy H)) =~ G X H induced from G-equi-
variance extends to a Morita equivalence of U (1)-gerbes:

U(1) x* (G X1 (G %q (G xq H))) = U(1) x* (G xo¢ H).
3. The first equivalence is a subequivalence of the second.

Proof. The first statement follows just as in the proof of the Morita equivalence of
G %4 (G Xy H) and H; this time the bimodule is U (1) x Py (using the notation from
the proof of Theorem (13.1)).

For the second statement, note that G x Py isthe G x; (G % (G Xy H))- G X H-
bimodule, the bimodule structure being given as in Example (2). Then U (1) x G x Py
is the desired Morita bimodule.

For the third statement, note that restricting to U(1) x {1} x Py C U(1) x G x Py
recovers the Morita equivalence of the first statement as a subequivalence of the second.

O

14. Nonabelian Noncommutative T-Duality

Remembering our convention to call a group nonabelian when it is not commutative
and reserve the word noncommutative for a noncommutative space in the sense of non-
commutative geometry, we define the following extensions to T-duality.

Definition 14.1. Let N be a closed normal subgroup of a locally compact group G.
There is a canonical equivalence between the data contained in:

e a G-equivariant U (1)-gerbe on a generalized G /N -bundle, and
e a U(l)-gerbe on an N-gerbe, with canonical right module.

The interpolation between the two objects is described below, and will be called non-
abelian noncommutative T-duality whenever the interpolating procedure induces an
isomorphism in K -theory.

Remark 14.2. Classical T-duality was a duality between gerbes on generalized principal
bundles. More precisely, for abelian groups G, the duality associated to a U (1)-extension
of a groupoid of the form G/N x, G, anew U (1)-extension of a groupoid of the form
N x5 5. G. Now we will instead use group01ds of the form G x N x* G or more generally
G G XG/N,p G, defined in Example (10). These are equivariantly Morita equivalent
to the old kind. The reason for this change is that while every gerbe on a classically
T-dualizable pair of bundles can be presented by an equivariant 2-cocycle on a groupoid
of the form G/N %, G, this is not the case in general. On the other hand, the following
fact will be proved in Sect. (15):

Every G-equivariant stack theoretic gerbe on a generalized principal G/ N -bun-
dle admits a presentation as a U (1)-extension of a groupoid of the form G X
G XG/N,p G.
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This is not necessarily obvious. In fact without the G-equivariance condition, not every
gerbe on a generalized G /N-bundle admits such a presentation; it is the G-equivariance
that forces this.

Procedure for nonabelian T-dualization. The initial data for nonabelian T-duality will be
a G/N-bundle with equivariant 2-cocycle:

(G x N %% G (0,1, 8) € ZL(G x N x° G; U(1))). (16)

The nonabelian T-dual is obtained in the following two steps:

Step 1. Pass to the crossed product groupoid, together with its canonical right module
P of Theorem (13.1) and the 2-cocycle ¥ which is the image of (o, A, 8) in Z2(G X
G x N x% G, U)):

(G x (G x N x% G), v, P).
Step 2. Pass to the Morita equivalent system:
(N %% G, ¢, & P),
where ¢ is the essential equivalence (see Proposition (10.5)):

t: (Nx%G) > Gx(Gx N x*Q)
(n,y) = (np(y),e.n,y).
Some properties of the duality. (A) If p : G — G/N does not admit a lift to a map to

G, then the same T-dualization procedure works with N %% G replaced by G x IN.p G
(see Example (9)).

(B) What we are describing is indeed a duality, in the sense that we can recover the
initial system (16) by inducing the groupoid via its canonical module P. This fact is the
content of twisted nonabelian Takai duality for groupoids, Theorem (13.2).

(C) There is an isomorphism of twisted K -theory

K*(GxN x% G;0) >~ K**'"G(G x (GxN %% @), ¥) =~ K**+"MG(N %% G: )

whenever G satisfies the Connes-Thom isomorphism theorem, in particular whenever
G is a (finite dimensional) 1-connected solvable Lie group.

(D) This construction is Morita invariant in the appropriate sense. That is, if we
choose two representatives for the same generalized principal bundle with equivariant
gerbe, the two resulting dualized objects present the same N-gerbe with equivariant
gerbe. This is proved in Sect. (15).

(E) The dual can be interpreted as a family of noncommutative groups. Indeed,
suppose that in the above situation G is a Cech groupoid of a locally finite cover of
a space X. Let us look at the fiber of the dual over a point m € X. This fiber cor-
responds to N x %P (Glm), where G|, is the restriction of G to the chosen point. G|,
is a pair groupoid which is a finite set of points (there is one arrow for each double
intersection U; N U; that contains m and one object for each element of the cover that
contains m). Any inclusion of the trivial groupoid (* = %) — G|, induces an essen-
tial equivalence ¢ : (N = %) — N %% (G |») which induces an isomorphism ¢* in
cohomology by Corollary (10.4). So the twisted groupoids ((N %% G)|m, (*Y) ) and
(N = %, ¢*(1*¥|,,)) are equivalent. In particular, C*(N %% G|,,; 1*v) is Morita equiv-
alent to C*(N; ¢* (")), and the latter is a standard presentation of a noncommutative
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(and nonabelian, if desired) dual group! For example if N >~ Z" we get noncommutative
n-dimensional tori. So the T-duality applied to G/N-bundles produces N-gerbes that
are fibred in what should be interpreted as noncommutative versions of the dual group
(G/N)V!

15. The Equivariant Brauer Group

In this section we will describe the elements of the G-equivariant Brauer group of a
principal “G/N-stack”. First recall that the Brauer group Br(X) of a space X is the
set of isomorphism classes of stable separable continuous trace C*-algebras with spec-
trum X. The famous Dixmier-Douady classification says that each such algebra is iso-
morphic to the algebra IH(X; E) of sections that vanish at infinity of a bundle E of
compact operators. Since such bundles can be described by transition functions with
values in Aut K ~ PU (h), there is an isomorphism H!(X; Aut K) ~ Br(X). Since
H'(X: AutK) ~ H?*(X; U(1)), Br(X) can also be taken to classify U (1)-gerbes on X.

If X is a G-space, one can talk about the equivariant Brauer group Brg (X), which can
be most simply defined as the equivalence classes of G-equivariant bundles of compact
operators under the equivalence of isomorphism and outer equivalence of actions. We
intend to show that this group also corresponds to G-equivariant gerbes on X.

Generalizing the case of spaces X, one can consider the Brauer group of a presentable
topological stack & (that is, a stack X which is equivalent to Pring for some groupoid
G, as in Sect. (7)). So let X be a presentable topological stack. Then a vector bundle on
X is a vector bundle on a groupoid G presenting X'. A vector bundle on a groupoid G is a
(left) G-module E — Gy which is a vector bundle on Gy and such that G acts linearly (in
the sense that the action morphism s*E — r*E is a morphism of vector bundles over
the space G1). An H-G-Morita equivalence bimodule P makes P x E — Hj a vector
bundle on H. In exactly the same way, one has the notion of a bundle of algebras on a
stack, in particular one has bundles of compact operators on a stack.

Finally, the stack with G / N -action associated to generalized principal bundle G/N %,
G is what should be called a principal G/N-stack. This data can be presented in at least
two ways, for example as a stack over Pring,n,

Pring — Pring/y,
or as a stack over Pring,
Pring/nx,g —> Pring .

Now define the G-equivariant Brauer group Brg (Pring,y x,g) to be the isomorphism
classes G-equivariant bundles of compact operators on Pring,y x,g. We will show that
whenever G is contractible to a set of points,

Brg (Pring/y x,¢) ~ H' (G x¢/n G: AutK).

Of course if Gy isn’t contractible we can refine G so that it is, thus we will always make
that assumption.

So suppose E is a bundle on Pring,y x,g. It may initially be presented as a mod-
ule over any groupoid H which is equivariantly Morita equivalent to (G/N x, G),
for example if G is a Cech groupoid one could imagine that E is a bundle on the
actual space Q >~ (G/N x Gp)/(G/N x, G). We would like E to be presented on the
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groupoid G X (G Xg/n,p G), (as in Example (10)), so choose a Morita equivalence

((G % G xg/nN,p G)-H)-bimodule P, and replace E by E := P % E. Remember that no
data is lost here because PP x P x E >~ E.

Just for the sake of not having too many G’s, assume that p admits a lift to G so that
there is an isomorphism

(G % G xG/n.p G) = (G x N x* @)

as in Example (10). The general case when there is no lift works in the exact same way.

If E is G-equivariant then so is E.Letus suppose this is the case, meaning precisely
that E is a (G x N %% G)-module, and E has a G-action which is equivariant with
respect to the translation action of G on (G x N x% G).

Keep in mind that in particular E is a bundle over the objects G x G of the groupoid.
Then the restriction of E to {e} x Go C G x Gp, denoted Ey, is trivializable since Gy is
contractible. So assume that Eg = Gy x K. But then the whole of E is trivializable since
itis a G-equivariant bundle over a space with free G-action. For example a trivialization
is given by:

GxEy—E (g8 gt

So assume that E = G x Gy x K.

Note that being a G-equivariant (G x N x% G)-module is the same as being a
G % (G x (N x% @))-module. Since E is trivial as a bundle, it is classified by the action
of G x (G x N %% @), and this is given by a homomorphism

7:Gx(GxN x*G) - AutK
such that the groupoid action is
(G % (G x N x* G)) xgxg, E — E,
(81, 82,7, ), (g7 ' ganp(y), sy, ) = (g2, 1y, (81, 82,1, ¥)K)
for (g7 g2np(y). sy. k) € E.
Two such actions, given by 7 and 7w/, are outer equivalent if and only if 7 and 7’ are
cohomologous, and this shows that
Brg (Pring/y,g) ~ H'(G x G x N x* G Aut K).
But the results of Sect. (10) imply that the inclusion
IINX®YG > GXxGXNXPG  (n,y) (np(y),e.n,y)
induces a quasi-isomorphism with quasi-inverse the quotient map
g:GXxGxNx¥G—Nx*G,
therefore we have:

Proposition 15.1. Let N be a closed normal subgroup of a locally compact group G, let
G be a groupoid with Gy contractible, and let p : G — G /N be a homomorphism. Then

Brg (Pring/n x,g) ~ H'(G x G x N x* G; AutK) ~ H'(N x* G; Aut K).

More generally, N %% G can be replaced by G XG/N.p G
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The meaning of the isomorphism on the right is that 7 can be taken constant in its
two G variables. In fact, one can construct such a 7 directly; simply note that the whole
situation is determined by the module structure of Eo, and that it is precisely t(N x% G)
that preserves this subspace. An example of this construction is carried out in the proof
of Theorem (A.1).

Now let us explain the relationship between gerbes and bundles of compact operators.

If N is a discrete group then there is a connecting homomorphism which is an iso-
morphism,

HY'(N %% G; Aut K) ~ H>(N x% G; U(1)).

If N is not discrete then there is the possibility that only a Borel connecting homo-
morphism can be chosen. Rather than tread into the territory of Borel cohomology
for groupoids, we point out that for any groupoid H, the U (1)-gerbe associated to
7w e ZV'(H; Aut K) is just

U) xauk.x H,

the groupoid constructed in Example (9). Itis a U (1)-gerbe on H. To make that last fact
more clear, note that as a space, the arrows of this groupoid form a possibly nontrivial
U (1)-bundle over ‘H; and any global section of the bundle determines an isomorphism

U(h) Xauk.n H=U() %" H,

as was pointed out in Example (9), and the latter object is clearly a U (1) gerbe.

At the C*-algebra level there is also a relationship between gerbes and bundles of
compact operators. It is shown in Lemma (A.5) that a global section of the U (1)-bundle
(U(h) Xaut k.7 H1) = H; induces a Morita equivalence

c*. o) " P B,
where E () is the trivial bundle Hy x K with H-module structure given by . Inde-
pendent of the existence of a global section, there is a Morita equivalence

I (H; Fund(U(h) xawk.x 1) "% T (05 EGr),
where Fund(U () X au k.= H) denotes the associated line bundle to the U (1)-bundle
(viewed as a bundle of (rank 1) C*-algebras) (U () X auc k.7 H1) — Hi.

So in this section we saw that nonabelian noncommutative T-duality as presented
in Sect. (14) can be used to describe a dual to a G-equivariant gerbe presented on any
groupoid H such that H describes a principal “G /N -stack’; this being because any such
gerbe could also be presented on (G x N x% G), as it was in Sect. (14). (Except for the
situation in which p and possibly 7 do not admit lifts to G or U () respectively, but we
also saw how to modify the setup in these situations.)

Finally, as promised:

Corollary 15.2. Nonabelian T-duality is Morita invariant.

Proof. This is easy because we may assume that any gerbe on a generalized principal
bundle is presented on a groupoid of the form G x N x° G and that the gerbe is defined
via a cocycle which is constant in G. But then if two such presentations are given, corre-
spondingto 7 € Z!(N %% G; AutK)and 7’ € Z/(N x%" G’ Aut K) it is clear that the
gerbes U () X aut k.7 G XN %% G and U () X aut Ko GXN x%°" G are G-equivariantly
Morita equivalent if and only if U(§) Xau k. x N %% G and U (h) XAut K. N x%" g’
are Morita equivalent. 0O
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16. Conclusion

A natural direction for future study here is to consider the case when both sides of the
duality are fibred in noncommutative groups (in the sense of noncommutative geome-
try). Interestingly, a completely new phenomenon arises in this context: the gerbe data,
the 2-cocycles that is, become noncompactly supported distributions and it is necessary
to multiply them. We have manufactured examples in which this can be done, that is
when the singular support of the distributions do not intersect, but our present methods
do not provide a general method for describing a T-dual pair with both sides families of
noncommutative groups.

Another direction to look is the case of groupoids for which the G /N-action is only
free on a dense set. This corresponds to singularities in the fibers of a bundle of groups.
The groupoid approach to T-duality seems well suited for this. On the other hand for
some other types of singularities in fibers, notably singularities which destroy the pos-
sibility of a global G/N-action, the groupoid approach will not apply at all. It will be
interesting to see if this problem can be fixed.

A third direction these methods can take is to consider complex structures on the
groupoids and make the connection between topological T-duality and the T-duality of
complex geometry (as in [DP]). We have initiated this project in [BD].

Lastly, it will of course be very nice to find some physically motivated examples of
nonabelian T-duality.

A. Connection with the Mathai-Rosenberg Approach

The goal of this section is to describe the connection between our approach and the
Mathai-Rosenberg approach to T-duality.

Let us begin with a summary of the approach of Mathai and Rosenberg [MR]. One
begins with the data of a principal torus bundle P — X over a space X and a coho-
mology class H € H3(P;Z) called the H-flux. The procedure for T-dualizing is as
follows:

1. Pass from the data (P, H) to a C*-algebra A(P, H). To do this one traces H through
the isomorphisms

H3*(P;Z) ~ H*(P; U(1)) ~ H'(P:; Aut(K)) (17)

(here K = K(§) is the algebra of compact operators on a fixed separable
Hilbert space ) to get an Aut(K)-valued Cech 1-cocycle. This cocycle gives tran-
sition functions for a bundle of compact operators over P, and A(P, H) is the
C*-algebra of continuous sections of this bundle which vanish at infinity. Accord-
ing to the Dixmier-Douady classification, one can recover the torus bundle P and
the H-flux from the A(P, H).

2. Next, writing the torus as a vector space modulo full rank lattice, T = V /A, one
tries to lift the action of V on P to an action of V on A(P, H). Assuming one exists,
choose an action o : V — Aut(A(P, H)) lifting the principal bundle action. If no
action exists, the data is not T-dualizable.

3. Now the T-dual of A = A(P, H) is simply the crossed product algebra,
V x4 A, (or perhaps the T-dual is the spectrum and Dixmier-Douady invariant
(PY, HY) of this algebra, if V X, A is of continuous trace) and the problem of
producing a T-dual object is reduced to understanding this crossed product algebra.



A Groupoid Approach to Noncommutative T-Duality 91

4. There are two scenarios for describing the crossed product, depending on whether
a certain obstruction class, called the Mackey obstruction M («), vanishes. When
M () = 0 the crossed product algebra is isomorphic to one of the form A(PY, HY)
for PV — X a principal dual-torus bundle and HY € H3(P", Z). The transition
functions for PV are obtained from the so-called Phillips-Raeburn obstruction of
the action and there exist explicit formulas for H" in terms of the data (P, H, o).
This understanding of the crossed product is a result of work by Mackey, Packer,
Phillips, Raeburn, Rosenberg, Wassermann, Williams and others (in the subject of
crossed products of continuous trace algebras) which is referenced in [MR].

When M («) # 0, the crossed product algebra was shown in [MR] to be a continuous
field of stable noncommutative (dual) tori over X.

We claim that the Mathai-Rosenberg setup corresponds to our approach applied to Cech
groupoids and the groups (G, N) = (V, A). More precisely, we have the following
theorem.

Theorem A.l. Let Q — X be a principal torus bundle trivialized over a good cover of
X, let G denote the Cech groupoid for this cover and let p : G — V /A be transition
functions presenting Q. Then

1. Forany H € H3(Q;Z) such that A = A(Q; H) admits a V-action, there is a
Morita equivalence

Morita
~

A C*(V x A x% G; o),

for some o € Z*(V x A x% G; U (1)) that is constant in V. If V acts by translation
onC*(VxA x% G: o) then the equivalence is V -equivariant.
2. [o]is the image of H under the composite map

H*(Q;Z) — H*(Q; U(1)) — H*(V x A x* G U(1)).
3. LetoV := Ol Axing € Z?(A %% G; U(1)). Then for the chosen action of V, there
is a V-equivariant Morita equivalence:

Morita Morita

VXA ROV KCV xAx®G o) R CHA X G oY),

where V acts by the canonical dual action on the left two algebras and on the right-
most algebraby ¢ -a(r, y) := (¢, ho(y))a(r, y) forp € V and (v, y) € A% G.

The theorem will follow from the next two lemmas concerning bundles of C*-algebras.

Definition A.2. Let G be a groupoid. A (left) G-C*-algebra A is a bundle of
C*-algebras A — Go which is a (left) G-module, such that G acts by C*-algebra
isomorphisms. The groupoid algebra of sections of A, written I'*(G; r*A), is the
C*-completion of TI'.(G;r*A) (= the compactly supported sections of the pullback
bundle r* A) with multiplication and involution given by

ab(g) :=/ a(gngr - (b(g2)) a*(g) =g (a(g™"")
8182=8

forg's € Ganda, b € I'.(G; r* A), andwhere the last “* ” on the right is the C*-algebra
involution in the fiber.
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Remark A.3. This definition is a synonym for the groupoid crossed product algebra
G x I'h(Go; A), as defined in [Ren2].

Lemma A 4. Let G and 'H be groupoids and (gof— pA Ho) a (G-H)-Morita equiva-
lence bimodule. Then for any H-C*-algebra A L Ho, there is a Morita equivalence

Morita
~

I'*(G; r*(P % A)) T'*(H; r*A)

where, as in Sect. (3),
Px A= (P %, . A/H) = (P Xp 12 AD/(p.a) ~ (ph™' b -a)).

Proof. We will construct a Morita equivalence bimodule for essential equivalences. If
this case is true then the lemma is true because any Morita equivalence factors into essen-

tial equivalences, and if G ?—1 K (iz) ‘H is such a factorization then, setting P = P(le *Py,,
we will have

Morita
~

*(H; r* A) T*(; (P A % TG 1 Py % (P A))

Morita
~

T'*(G; r*(P % A)).
So in the notation of the statement of the lemma, assume
P =Py =G X . Ho,r H1

for ¢ : G — H an essential equivalence. Then £ is the projection Py — Go and p is
the projection 7t : Py — 'H; followed by the source map s : Hy — Ho. We use the
isomorphism Py s A >~ ¢* A := Gy X ¢ H, x A.

Now we will construct a Morita equivalence bimodule. Set

Ay :=T.(G;r* (¢ x A)) and B. := I'.(H; r*A).

The following structure defines an A.-B.-pre-Morita equivalence bimodule structure on
X, = I.(P; £*¢*A), which after completion produces the desired Morita equivalence.
Fix the notation:

gseG hseH, pseP,aseA., x'seX. and b's € B,

and as usual integration is with respect to the fixed Haar system.
The left pre-Hilbert module structure is given by the following data:

e Action: ax(p) = [, a(g)¢(g) - (x(g~"' p)).

o Inner product: 4(x1, x2)(g) == [, x1(gp)p(g) - x2(p)*.

The right pre-Hilbert module structure is given by the following data:
o Action: xb(p) := [, h - (x(ph))x M (ph) - b(h™").

e Inner product: (x1, x2)p(h) := fp 7rH(p)_1 - (x1(p)*x2(ph)).

Verification that this determines a Morita equivalence bimodule is routine. 0O
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Lemma A.5. Let G be a groupoid, o : Gy — U(1) a 2-cocycle, and T : G; — U(h)

a continuous map satisfying o(y1,v2) = T(yDT )T (1y2)~" =: 8T (y1, y2). Let
A(ad T') denote the G-C*-algebra (Gy x K) — Go with G-action given by:

s*A@dT) — r*A@dT) g-(sg, k) := (rg,adT(g)k).
Then
1. There is a Morita equivalence

Morita
~

Ir'“(G;r*A(adT)) C*(G; o).

2. WhenG =G isa Cech groupoid on a good cover of a space X, every QV-C*-algebra
of compact operators is isomorphic to A(ad T) for some T and

Morita

N(X; E@dT)) ~ ~" C*G; 0),

where E(adT) := Gy x K/(sy,k) ~ (ry,adT (y)k) is the bundle of compact
operators whose transition functions are ad T : G — Aut K.

Proof. The Morita equivalence in the second statement is proved as follows. First note
that E(ad T) = ( P(;’p )+ A(ad T), where Py is the bimodule of the essential equivalence

g i) Go/G = X, so an application of Lemma (A.4) implies that
MO (G r* Aad T)).

Now apply the Morita equivalence of the first statement to finish. The other part of state-
ment (2), that all bundles of compact operators on X are of the form E(ad T') for some
T, follows because the connecting homomorphism in nonabelian Cech cohomology,
HY(X; AutK) — H*(X; U(1)), is an isomorphism.

It remains to exhibit the Morita equivalence of statement (1). Set

Ao i =T.(G;r*A(dT)) and B, := C*(G; o).

Io(X; E(adT))

We claim that the space X, := C.(G1; b) of compactly supported h-valued maps admits
apre-Morita equivalence I"*(G; r* A(ad T'))-C*(G; o )-bimodule structure. Set the nota-
tional conventions:

gseG, dseA., x'seX. and b's € B,.

The unadorned bracket (, ) denotes the C-valued inner product on h and is taken to be
conjugate-linear in the first variable and linear in the second. The bra-ket notation will
be used for the K-valued inner product on f, so for v's € b, |vi){va]| is the compact
operator defined by |vy)(va2|(v) := (v2, V)vy.

The left pre-Hilbert module structure on X, is given by the following data:
o Action: ax(g) = [, . (g1, g2)a(gNT(g1)x(82).
o Tnner product: 4 (x1, x2)(8) := [, ,,—, o (&1, g2)x1(g)N(T (2)x2(g; M.
The right pre-Hilbert module structure on X, is given by the following data:
e Action: xb(g) := [, .._, 0(81.82)x(g1)b(82).
o Tnner product: (x1, x2)5(8) i= [y o, ¥1(87 ), x2(82))0 (g1, 82).
Verification that this structure gives a Morita equivalence is routine. O

Now let us proceed to the proof of the theorem.
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Proof. (Theorem). By the Dixmier-Douady classification we know that A is isomorphic
to the algebra of continuous sections of abundle E — Q of compact operators, so assume
A = Tp(Q; E). A V-action on A comes from an action by automorphisms of the bundle
of algebras. Now, noting that Q is isomorphic to the quotient (V/A X ,G)o/(V/AX,G)1,
pull back E to a bundle E over V/A x Go. Then E is a module for the groupoid
V x V/A x, G. Denote by Eg the restriction of Eto{eA} x Go C V/A x Go. Then Ey
is trivializable since Gy is contractible, so we assume Eg = Gy x K, and write (sy, k)
for a point in Eg C E, and [sy, k] for its image under the quotient ¢ : E — E. The
V x V/A %% G-module structure on E “restricts” to a A x% G-module structure on
Eo, via the inclusion

LAY G VK VAN, G (L y) > (Ap(y), eA,y).
The action on E( can be written as

()”s )’) : (SV, k) = (ry, 7'[()\., V)k)s

where 7 is a homomorphism A x% G — Aut K. (Note that there exists a lift of p to V
since Gy is contractible and V — V /A is a covering space, so §p makes sense.)
Then ¢ followed by the V action determines a map

VXEy—E (v,(sy,k)— (v,[sy,k]) = v-[sy, k]
This map factors through the quotient

V x Eg —> (V x Ep)/(A x* G)
= (V x Eo)/(v, (sy, k) ~ (v—24 = p(y), (ry, w(A, y)k)),

and induces an isomorphism of bundles
(V x Eg)/(A %% G) — E,

which is V-equivariant when the bundle on the left is equipped with the natural transla-
tion action.

So A(Q; E) is equivariantly isomorphic to I"(Q; (V x Eg)/(V x A x% G)).

Let o := 87 : (A %% G), — U(1) be an image of  under the composition of
the connecting homomorphism (which is an isomorphism due to the contractibility of
U (h)) and the pullback via the quotient map V x A x% G — A x% G,

HY(A %% G: AutK) — H*(A x% G, U(1)) > H*(V x A x% G, U(1)).

In other words, we have chosen a continuous map 7 : (A %% G) — U (h) such that
adT =mand 6T =o,and E >~ E(ad T). Now we know that A(Q; H) >~ IH(Q; E) =
I'h(Q; ad T)), and according to Lemma (A.5) there is a Morita equivalence:

Morita

C*(V x Ax%G o) ~" Iy(Q; E(ad T))

which is easily seen to be equivariant since 7" does not depend on V. So statement (1)
is proved, and statement (2) is obvious from the construction since IH(Q, E(ad T')) ~
A(Q, H) when H is the image of [o] = [6T].
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Statement (3) now follows as well. Indeed, since an equivariant Morita equivalence
induces an equivalence of the associated crossed product algebras, we have

Morita

VX C*VxAx®G o) ~°VxAW; H),

and the algebra on the left, being identical to C*(V x V x A x% G; o), is equivariantly
Morita equivalent to C*(A %% G; o) by Proposition (10.5). This completes the proof.
0

So that is the correspondence: Mathai-Rosenberg do A(Q; H) < V x A(Q; H),
whereas we do (V x A %% G;0) < (A %% G; V). In Sects. (12) and (14) the pre-
sentation is slightly different. The difference is that in this appendix we have assumed
that o is already given as a 2-cocyle on H := (V x A x® G) which is constant in
the V-direction, whereas in Sect. (14) we begin with an arbitrary o on H that has been
extended to an equivariant 2-cocyle (o, A, B). The two setups are essentially the same
because according to Sect. (10), the existence of the lift (o, A, 8) ensures that ¢ is co-
homologous to a 2-cocycle which is constant in the V direction. In Sect. (12) there is
the further difference that o is presented on V /A %, G rather than H, but we can easily
pull it back to a cocycle on H. The slightly messier presentation in Sects. (12) and (14)
appeals to the notion that the initial data is a gerbe on a principal bundle (with any grou-
poid presentation), and that we have found an action of V (that is a lift to an equivariant
cocycle) for which the gerbe is equivariant.

The Mackey obstruction in our setup is simply B := o/ 4 g, The methods devel-

oped in Sect. (10) make it clear that since G is a Cech groupoid, the restriction to a point
in the base space, G ~~ G|, identifies 8 with a 2-cocycle on A. When 8 is a coboun-
dary, we may assume that o only depends on one copy of A, and the Pontryagin duality
methods apply. Indeed, we may always assume that o is in the image of equivariant
cohomology, H‘z,(V x A x% G: U(1)), and then B really corresponds to the component
that obstructs classical dualization and Pontryagin dualization described in Sect. (12).
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