Skip to main content
Log in

Large Time Dynamics of a Classical System Subject to a Fast Varying Force

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the asymptotic behavior of solutions to a kinetic equation describing the evolution of particles subject to the sum of a fixed, confining, Hamiltonian, and a small, time-oscillating, perturbation. The equation also involves an interaction operator which acts as a relaxation in the energy variable. This paper aims at providing a classical counterpart to the derivation of rate equations from the atomic Bloch equations. In the present classical setting, the homogenization procedure leads to a diffusion equation in the energy variable, rather than a rate equation, and the presence of the relaxation operator regularizes the limit process, leading to finite diffusion coefficients. The key assumption is that the time-oscillatory perturbation should have well-defined long time averages: our procedure includes general “ergodic” behaviors, amongst which periodic, or quasi-periodic potentials only are a particular case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre R. (1999). Asymptotic behaviour of transport equations. Appl. Anal. 70(3–4): 405–430

    Article  MATH  MathSciNet  Google Scholar 

  2. Allaire G. (1992). Homogenization and two-scale convergence. SIAM J. Math. Anal. 23: 1482–1518

    Article  MATH  MathSciNet  Google Scholar 

  3. Bal G., Papanicolaou G. and Ryzhik L. (2002). Radiative transport limit for the random Schrödinger equation. Nonlinearity 15(2): 513–529

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bardos C., Dumas L. and Golse F. (1997). Diffusion approximation for billiards with totally accommodating scatterers. J. Stat. Phys. 86(1–2): 351–375

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, 5, Amsterdam: North-Holland, 1978

  6. Bidégaray B., Castella F. and Degond P. (2004). From Bloch model to the rate equations. Discrete Contin. Dyn. Syst. 11(1): 1–26

    Article  MATH  MathSciNet  Google Scholar 

  7. Bidégaray B., Castella F., Dumas E. and Gisclon M. (2004). From Bloch model to the rate equations II: the case of almost degenerate energy levels. Math. Models Methods Appl. Sci. 14(12): 1785–1817

    Article  MATH  MathSciNet  Google Scholar 

  8. Bunimovich, L.A., Chernov, N.I., Sinai, Ya.G.: Statistical properties of two-dimensional hyperbolic billiards. Usp. Mat. Nauk 46, no. 4, 43–92, (1991); translation in Russ. Math. Surv. 46(4), 47–106 (1991)

    Google Scholar 

  9. Castella F. (2001). From the von Neumann equation to the Quantum Boltzmann equation in a deterministic framework. J. Stat. Phys. 104(1/2): 387–447

    Article  MATH  MathSciNet  Google Scholar 

  10. Castella F. (2002). From the von Neumann equation to the Quantum Boltzmann equation II: identifying the Born series. J. Stat. Phys. 106(5/6): 1197–1220

    Article  MATH  MathSciNet  Google Scholar 

  11. Castella, F., Degond, P.: Convergence de l’équation de von Neumann vers l’équation de Boltzmann Quantique dans un cadre déterministe. C. R. Acad. Sci., t. 329, sér. I, 231–236 (1999)

  12. Castella F., Degond P. and Goudon T. (2006). Diffusion dynamics of classical systems driven by an oscillatory force. J. Stat. Phys. 124(2–4): 913–950

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Applied Mathematical Sciences, 106, New York: Springer-Verlag, 1994

  14. Erdös, L., Yau, H.T.: Linear Boltzmann equation as scaling limit of quantum Lorentz gas, Advances in Differential Equations and Mathematical Physics, Contemporary Mathematics 217, Providence, RI: Amer. Math. Soc., pp.135–155 (1998)

  15. Erdös L. and Yau H.T. (2000). Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation. Commun. Pure Appl. Math. 53: 667–735

    Article  MATH  Google Scholar 

  16. Frenod E. and Hamdache K. (1996). Homogenisation of transport kinetic equations with oscillating potentials. Proc. Roy. Soc. Edinburgh Sect. A 126(6): 1247–1275

    MATH  MathSciNet  Google Scholar 

  17. Goudon T. and Poupaud F. (2001). Approximation by homogeneization and diffusion of kinetic equations. Comm. P.D.E. 26: 537–570

    Article  MATH  MathSciNet  Google Scholar 

  18. Goudon T. and Poupaud F. (2004). Homogenization of transport equations: weak mean field approximation. SIAM J. Math Anal. 36: 856–881

    Article  MATH  MathSciNet  Google Scholar 

  19. Goudon T. and Poupaud F. (2007). Homogenization of transport equations: a simple PDE approach to the Kubo formula. Bull.Sci. Math. 131: 72–88

    Article  MATH  MathSciNet  Google Scholar 

  20. Keller J.B., Papanicolaou G. and Ryzhik L. (1996). Transport equations for elastic and other waves in random media. Wave Motion 24(4): 327–370

    Article  MATH  MathSciNet  Google Scholar 

  21. Lions, P.-L.: Mathematical topics in fluid mechanics, Vol. 2, Oxford: Oxford univ. Press, Oxford Science Publications 19, 1996–98

  22. Loeper G. and Vasseur A. (2004). Electric turbulence in a plasma subject to a strong magnetic field. Asymptot. Anal., 40(1): 51–65

    MATH  MathSciNet  Google Scholar 

  23. Loudon, R.: The quantum theory of light. Oxford Science Publications, Oxford: Oxford univ. Press, 1983

  24. Milnor, J.W.: Topology from the differentiable viewpoint. The University Press of Virginia, 1963

  25. Nguetseng G. (1989). A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20: 608–623

    Article  MATH  MathSciNet  Google Scholar 

  26. Perthame B. and Ryzhik L. (2004). The quantum scattering limit for a regularized Wigner equation. Math. Appl. Anal. 11: 447–464

    MATH  MathSciNet  Google Scholar 

  27. Poupaud F. and Vasseur A. (2003). Classical and quantum transport in random media. J. de Math. Pures et Appl 82(6): 711–748

    MATH  MathSciNet  Google Scholar 

  28. Sanders, J.A., Verhulst, F.: Averaging methods in nonlinear dynamical systems, Applied Mathematical Sciences, Vol. 59, Berlin-Heidelberg-Newyork: Springer-Verlag, 1985

  29. Spohn H. (1991)Large scale dynamics of interacting particles, Berlin-Heidelberg-Newyork: Springer

    MATH  Google Scholar 

  30. Taylor, G.I.: Diffusion by continuous movements, Proc. London Math. Soc., Ser., 2, 20, 196–211, 1923

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Castella.

Additional information

Communicated by J.L. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castella, F., Degond, P. & Goudon, T. Large Time Dynamics of a Classical System Subject to a Fast Varying Force. Commun. Math. Phys. 276, 23–49 (2007). https://doi.org/10.1007/s00220-007-0339-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0339-7

Keywords

Navigation