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Abstract
The application of interdisciplinary non-invasive diagnostic methods combining fluorescence spectroscopy with multiple 
machine learning algorithms as tools for rapid application in tomato breeding programs is essential when crossing specific 
genotypes or parental samples to obtain representatives with better performance. Non-destructive distinguishing tomato 
species is of great importance for the preservation of product quality. This study aimed at combining fluorescence spectro-
scopic data and machine learning algorithms for distinguishing greenhouse tomatoes. The models for the discrimination 
of greenhouse tomato samples were built based on selected spectroscopic data using different machine learning algorithms 
from the groups of Meta, Functions, Bayes, Trees, Rules, and Lazy. The confusion matrices with accuracy for each sample, 
average accuracy, time taken to build the model, Kappa statistic, mean absolute error, root mean squared error and relative 
absolute error were determined. The greenhouse tomato samples were discriminated with an accuracy reaching 100% for the 
models built using Multi-Class Classifier (Meta), Logistic (Function), Bayes Net (Bayes), PART (Rules), and J48 (Trees). In 
the case of these algorithms, Kappa statistic was 1.0 and mean absolute error, root mean squared error and relative absolute 
error were equal to 0.
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Introduction

Tomato (Solanum lycopersicum L.) is a garden plant con-
sumed by millions of people worldwide every season. Since 
tomatoes are grown in moderately dry soil, production is 
very high and easy. 90% of farmers grow tomatoes on their 
farms [1]. Tomato, one of the most popular vegetables in 
people's daily life, has great economic importance for coun-
tries [2, 3]. According to the data from the Food and Agri-
culture Organization of the United Nations (FAO), tomato 

production is constantly increasing worldwide, and tomato 
production was 182 million tons in 2017. In 2019, the total 
production reached 243.6 million tons. The countries that 
play the most roles in this production are China, India, Tur-
key and the USA, respectively [4, 5]. Tomato has become 
one of the main food products in the world, due to its high 
daily consumption and its rich content of fiber, vitamins, 
minerals and antioxidants [6]. In addition to their rich nutri-
tional content, tomatoes provide protection against diseases 
such as hepatitis, hypertension, inflammation and cancer [7]. 
However, the nutrient content and composition data of toma-
toes differ according to the species, genetic and environmen-
tal factors [8]. Tomato types are available in a wide variety 
of sizes, colors and shapes. But in general, tomato varieties 
are expressed by four species, these are cherry, Italian, salad, 
and Santa Cruz. Among these species, cherry tomato cul-
tivation is more profitable than others [9]. In this context, 
studies are being developed to increase the productivity of 
cherry tomato cultivation [10].

Due to its high production and increasing demand, it has 
become important to distinguish, package and transport 
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tomato species. Tomatoes have a very sensitive structure to 
different production, transportation and packaging condi-
tions and if they are damaged, the quality of the product 
decreases. In addition, the fertilization and inoculation prac-
tices during the growing process, as well as the growing 
region, affect the yield and content of the tomato. In the 
presence of such different production and growing condi-
tions, nutritional security and successful discrimination of 
crops have gained importance today [3]. Providing both fast 
and contactless product discrimination can only be achieved 
with computerized systems today. Manual sorting of toma-
toes according to their physiological ripeness is difficult with 
human control. This process is time-consuming and expen-
sive, crops can be damaged by impact and erroneous sorting 
can occur. An automation system to be designed for this 
will both reduce the cost, increase the speed and accuracy 
of discrimination and increase the yield and productivity of 
the crop [11]. In addition, the development of smart agri-
cultural applications depending on computerized systems 
both enables the development of non-destructive methods 
and accelerates the economic growth of many countries [12].

Applications based on computer vision and artificial 
intelligence for automatic discrimination of agricultural 
products have increased recently. In this context, shape, 
color and texture features are frequently used for automatic 
differentiation from crops. In order to perform classifica-
tion according to these distinctive features with computers, 
various machine learning algorithms that learn these fea-
tures are used [12]. Nyalala et al. [6] performed an appli-
cation based on computer vision and machine learning 
methods for estimating tomato mass and volume. They 
made predictions with five different regression methods 
using 2D and 3D features obtained from depth images of 
tomatoes. As a result, the Radial Basis Function (RBF)-
Support vector machine (SVM) model provided the most 
successful prediction. El-Bendary et al. [13] proposed a 
study based on color features for the automatic classifica-
tion of tomato ripeness stages. They used Principal Com-
ponents Analysis (PCA) for feature extraction and SVM 
and Linear Discriminant Analysis (LDA) for classification. 
In that study, which was applied with tenfold cross-vali-
dation, up to 90.80% accuracy was achieved with SVM. 
Semary et al. [14] performed an application that classifies 
infected/uninfected tomato fruits according to their color 
and texture (Gray Level Co-occurrence Matrix (GLCM)) 
features. The authors used PCA for feature reduction and 
SVM for classification. At the end of that study, toma-
toes were classified as infected and uninfected with 92% 
accuracy depending on the external surface. Dhakshina 
Kumar et al. [15] developed a system based on texture 
(GLCM), shape and color characteristics to classify toma-
toes according to their maturity. They also segmented the 

defects in tomatoes with Gabor wavelet transform. Later, 
these defective regions were divided into three classes 
according to their color and geometrical characteristics. 
SVM was used in the classification stages. Ropelewska 
et al. [3] proposed a texture-based application for the dis-
crimination of tomatoes based on flesh and skin images. 
Images from six different tomato species were then con-
verted to R, G, B, L, a, b, X, Y, and Z color channels. Tex-
ture features extracted from different color channels were 
classified by various machine learning algorithms. Finally, 
Ireri et al. [16] classified tomatoes according to color, tex-
ture, and shape. LAB color space was preferred for color 
features and GLCM was preferred for texture properties. 
SVM with different kernel functions was used for grading 
recognition and RBF-SVM was used for defect detection.

The objective of this study was to combine fluorescence 
spectroscopic data and machine learning algorithms for 
distinguishing greenhouse tomato samples. According to 
the selected spectroscopic data, different machine learn-
ing algorithms from Meta, Functions, Bayes, Trees, Rules 
and Lazy groups distinguished greenhouse tomatoes with 
high success.

The salient contributions of this manuscript are sum-
marized below.

• Use of fluorescent spectroscopy data for distinguishing 
tomato cultivars,

• Using machine learning algorithms for classification,
• Distinguishing tomato species with high accuracy.

By applying an author-designed mobile fiber-optic 
configuration using the phenomenon of fluorescence of 
light, it is possible to create non-invasive methods for 
field evaluation of tomatoes. So far, there is no data on 
their characterization by the proposed method. The aim 
is to validate fluorescence spectroscopy in the proposed 
configuration as a non-invasive method for the evaluation 
of two different varieties of greenhouse tomatoes. As a 
result of the successfully applied research in this study, it 
is expected that the creation of an interdisciplinary method 
for tomato analysis will be initiated.

A literature survey was conducted to conduct similar 
research. It turned out that until now the described experi-
mental approach for tomato analysis has not been applied 
nationally and internationally. This gives us reason to 
claim that it is the first time that fluorescence spectroscopy 
in combination with machine learning has been applied 
to the analysis of tomatoes in field conditions. This study 
marks the beginning of these studies and will be of benefit 
to scientists who are developing their scientific directions 
in the field of optoelectronics or machine learning in the 
analysis of vegetable crops.
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Materials and methods

Experimental design

For processing from the fluorescence study, ten averaged 
graphs from two different varieties of greenhouse tomatoes 
are presented. Graphs are averaged after the 15th measure-
ment of each sample. There were over a thousand spectral 
data at different wavelengths for a single sample. The sam-
ples were measured on site at the farm where they were 
grown, as the fluorescence signal acquisition scheme is 
mobile. In this way, the effect of damaging the sample is 
avoided. The samples were measured immediately after 
recultivation. The mobile spectral installation (Fig. 1) for 
the study of fluorescence signals was designed specifically 
for the rapid analysis of plant biological samples.

The mobile experimental installation used by fluores-
cence spectroscopy contains the following blocks:

• Laser diode (LED) with an emission radiation of 245 nm 
with a supply voltage in the range of 3 V. It is housed in a 
hermetically sealed TO39 metal housing. The emitter has 
a voltage drop of 1.9 to 2.4 V and a current consumption 
of 0.02A. The minimum value of their reverse voltage 
is—6 V.

• Forming optic, which is a hemispherical lens made of 
N-BAK2 glass. The post-LED forming optics can defined 
mainly for the refractive, dispersive and thermo-optical 

properties, as well as for the transparency in the UV 
range [240–280 nm].

• Quartz glass area 4  cm2. Its optical properties are to be 
transparent to visible light and to ultraviolet rays. This 
allows it to be free of inhomogeneities that scatter light. 
Its optical and thermal properties exceed those of other 
types of glass due to its purity. Light absorption in quartz 
glasses is weak.

• CMOS detec tor  wi th  photosens i t ive  a rea 
1.9968 × 1.9968 mm. Its sensitivity ranges from 200 to 
1100 nm. Its resolution is δλ = 5. The profile of the detec-
tor sensor projections along the X and Y axes is also 
designed for very small amounts of data, unlike widely 
used sensors.

The radiation is led from the LED through the forming 
optics block by means of a quartz fiber. The secondary radia-
tion from the illuminated sample (visible spectrum)—illu-
minated by the impacting UV radiation is coupled to the 
CMOS detector by means of light-guide optics. The quartz 
multimode fiber has a step index of refraction and a numeri-
cal aperture of 0.22. In the CMOS detector, the light signal 
is converted into an electrical–digital signal and, by means 
of a USB 2.0 wire, it is taken for analysis and downloading 
of the data to a laptop. The obtained fluorescence spectro-
scopic data were subjected to statistical analysis involving 
discriminant analysis to distinguish two different varieties 
of greenhouse tomato.

Fig. 1  Mobile experimental installation used by fluorescence spectroscopy
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Statistical analysis

The samples of greenhouse tomatoes were discriminated 
with the use of the WEKA machine learning application 
(Machine Learning Group, University of Waikato) [17–19]. 
The differences in spectroscopic data of greenhouse tomato 
1 and greenhouse tomato 2 varieties were analyzed. The 
flowchart presenting the applied procedure is shown in 
Fig. 2. After obtaining fluorescence spectroscopic data, 
the first step of the analysis included the attribute selection 
performed using the Ranker search method with the OneR 
Attribute Evaluator. The spectroscopic data with the highest 

power to discriminate the tomato samples were selected. The 
discriminative models were built based on selected features 
using a tenfold cross-validation mode. The machine learning 
algorithms from the Meta, Functions, Bayes, Trees, Rules 
and Lazy groups were used. In the case of each group, algo-
rithms providing the most satisfactory discrimination perfor-
mance metrics were selected. The results were determined 
as confusion matrices including an accuracy for each sam-
ple, average accuracy, time taken to build the model, Kappa 
statistic, mean absolute error, root mean squared error, and 
relative absolute error. These performance metrics were 
computed using the WEKA application.

Results and discussion

The greenhouse tomato samples were completely correctly 
discriminated for the models developed based on fluores-
cence spectroscopic data using the following algorithms: 
Multi-Class Classifier from the group of Meta, Logistic 
(group of Function), Bayes Net (group of Bayes), PART 
(group of Rules), and J48 (group of Trees) (Table 1). The 
average accuracy, as well as accuracies for both greenhouse 
tomato 1 and greenhouse tomato 2 equal to 100%, were 
obtained. It meant that all cases belonging to the actual class 
of greenhouse tomato 1 were correctly classified as green-
house tomato 1 and all cases from the class of greenhouse 
tomato 2 were correctly included in the predicted class of 
greenhouse tomato 2. The values of Kappa statistic equal to 
1.0 and mean absolute error, root mean squared error and 
relative absolute error equal to 0 also indicate a completely 
correct classification. In the case of Bayes Net, time taken 
to build the model of 0.02 s was the shortest. Also, models 
built using other algorithms were characterized by the short 
time to build them, the longest for Logistic equal to 0.24 s.

For some algorithms from different groups, greenhouse 
tomato samples were distinguished with an average accuracy 

Greenhouse 
tomato 1 

Greenhouse 
tomato 2 

Model development  
using machine learning algorithms 

Fluorescence spectroscopic measurements  

Fluorescence spectroscopic data selection  

Performance metric determination 
and decision making 

Fig. 2  The flowchart of the stages of distinguishing greenhouse 
tomato samples using fluorescence spectroscopic data and machine 
learning algorithms

Table 1  The results of discrimination of greenhouse tomatoes for models built based on fluorescence spectroscopic data using selected algo-
rithms providing an average accuracy of 100%

Algorithm Time taken 
to build 
model (s)

Predicted class (%) Actual class Average 
accuracy (%)

Kappa 
statistic

Mean abso-
lute error

Root mean 
squared error

Relative 
absolute 
error (%)Green-

house 
tomato 1

Green-
house 
tomato 2

Meta.Mult-
classclas-
sifier 

Functions.
Logistic

Bayes.Bayes-
Net

Rules.PART 
Trees.J48

0.10
0.24
0.02
0.03
0.03

100 0 Greenhouse 
tomato 1

100 1.0 0 0 0

0 100 Greenhouse 
tomato 2
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of 95% (Table 2). The cases of greenhouse tomato 1 were 
classified with an accuracy of 100%. Whereas greenhouse 
tomato 2 samples were correctly discriminated in 90% and 
the remaining 10% were incorrectly classified as greenhouse 
tomato 1. These results were obtained for LDA and QDA 
(Quadratic Discriminant Analysis) from the group of Func-
tions, Naive Bayes from the group of Bayes, Hoeffding Tree 
from the group of Trees, Filtered Classifier, Logit Boost and 
Random Committee from the group of Meta, and LWL from 
the group of Lazy. The high value of Kappa statistic of 0.9 
was observed and low values of errors including the mean 
absolute error of 0.05, root mean squared error of 0.22 and 
the relative absolute error of 10% were found. The time 
taken to build the model was in the range of 0.00 s (Naive 
Bayes, LWL) to 6.42 s (QDA).

Slightly lower accuracies of discrimination of greenhouse 
tomato samples were determined for the models developed 
using other machine learning algorithms. For example, an 
average accuracy of 90% was obtained for JRip from the 
group of Rules and 85% for FLDA (Fisher Linear Discri-
minant Analysis) from the group of Functions (Table 3). In 
the case of a model built using the JRip algorithm, both 
classes were correctly discriminated with an accuracy of 
90%. Whereas for the model developed using FLDA, the 
samples were correctly distinguished from each other in 80% 
for greenhouse tomato 1 and 90% for greenhouse tomato 2. 
In the case of using the FLDA algorithm, the value of Kappa 
statistic of 0.7 was the lowest and mean absolute error of 
0.15, root mean squared error of 0.39, and relative absolute 
error of 30% were the highest.

Table 2  The performance metrics of discrimination of greenhouse tomatoes for models developed based on fluorescence spectroscopic data 
using selected algorithms providing an average accuracy of 95%

Algorithm Time taken 
to build 
model (s)

Predicted class (%) Actual class Average 
accuracy (%)

Kappa 
statistic

Mean abso-
lute error

Root mean 
squared error

Relative 
absolute 
error (%)Green-

house 
tomato 1

Green-
house 
tomato 2

Functions.
LDA

Functions.
QDA

Bayes.Naive-
Bayes

Trees.Hoef-
fdingTree

Meta.Filtere-
dClassifier

Meta.Logit-
Boost

Meta.Ran-
domCom-
mittee

Lazy.LWL

3.24
6.42
0.00
0.03
0.01
0.02
0.02
0.00

100 0 Greenhouse 
tomato 1

95 0.9 0.05 0.22 10

10 90 Greenhouse 
tomato 2

Table 3  The results of discrimination of greenhouse tomatoes for models built based on fluorescence spectroscopic data using selected algo-
rithms providing an average accuracy of 90 and 85%

Algorithm Time taken to 
build model (s)

Predicted class (%) Actual class Average 
accuracy 
(%)

Kappa statistic Mean 
absolute 
error

Root mean 
squared 
error

Relative 
absolute 
error 
(%)

Green-
house 
tomato 1

Green-
house 
tomato 2

Rules.JRip 0.06 90 10 Greenhouse 
tomato 2

90 0.8 0.10 0.30 20

10 90 Greenhouse 
tomato 1

Functions.
FLDA

0.51 80 20 Greenhouse 
tomato 2

85 0.7 0.15 0.39 30

10 90 Greenhouse 
tomato 1
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The obtained results confirmed the effectiveness of the 
approach combining fluorescence spectroscopy and machine 
learning to distinguish greenhouse tomato varieties. The lit-
erature data also reported the usefulness of spectroscopy 
for the classification of tomatoes. Tomatoes belonging to 
different genotypes were classified using visible and short-
wave spectroscopy, least-squares support vector machines 
(LS-SVM), soft independent modeling of class analogy 
(SIMCA), discriminant analysis (DA) and discriminant 
partial least-squares (DPLS) [20]. Additionally, spectros-
copy was used to diagnose tomato diseases [21]. Further-
more, spectroscopy, i.e., spatially offset Raman spectros-
copy (SORS) or fluorescence spectroscopy can be used for 
the evaluation of tomato maturity and postharvest ripening 
during storage [22–25]. Further studies may focus on the 
use of deep learning to discriminate tomatoes with a high 
probability.

Conclusions

Fluorescent spectroscopic data have proven to be highly 
effective for distinguishing greenhouse tomatoes. Numer-
ous machine learning algorithms distinguished two differ-
ent tomato varieties with high accuracy according to these 
data. The most successful discrimination was achieved with 
the Multi-Class Classifier, Logistic, Bayes Net, PART and 
J48 models in the Meta, Functions, Bayes, Rules and Trees 
groups, and all greenhouse tomato species were correctly 
classified. With other learning algorithms, discrimination 
accuracies of 95%, 90% and 85% were obtained. These 
results are quite satisfactory in terms of successful non-
destructive and automatic discrimination of greenhouse 
tomato species. The performed research can be expanded 
to include more varieties and apply deep learning to dis-
criminant analysis. In addition, the variety of data can be 
increased by taking images of tomatoes with a camera and 
adding color features to the fluorescence spectroscopy data. 
The successful conduct of this research allows for the for-
mulation of interdisciplinary non-invasive diagnostic meth-
ods combining fluorescence spectroscopy with multiple 
machine learning algorithms as rapid application tools in 
tomato breeding programs. By monitoring the signal inten-
sity, it will be possible to monitor the stability of a breeding 
line and its common blacks with an established cultivar of 
the same species. This will allow the crossing of specific 
genotypes or parental samples, with the aim of obtaining 
representatives with better indicators.

Data availability The data that support the findings of this study are 
available from the corresponding author upon reasonable request.
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