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Abstract
The objective of this study was to distinguish leek seeds belonging to the Starozagorski kamush variety and two breeding 
lines based on the selected fluorescence spectroscopic data. The classification models were developed for three classes of 
Starozagorski kamush vs. breeding line 4 vs. breeding line 39 and pairs of classes of Starozagorski kamush vs. breeding 
line 4, Starozagorski kamush vs. breeding line 39, and breeding line 4 vs. breeding line 39. The traditional machine learning 
algorithms, such as PART, Logistic, Naive Bayes, Random Forest, IBk, and Filtered Classifier were applied. All three classes 
were distinguished with an average accuracy of up to 93.33% for models built using IBk and Filtered Classifier. In the case 
of each model, Starozagorski kamush variety was completely different (accuracy of 100%, precision, and F-measure, MCC 
(Matthews correlation coefficient), and ROC (receiver operating characteristic) area of 1.000) from breeding lines, and the 
mixing of cases was observed between breeding line 4 and breeding line 39. The models built for pairs of leek seed classes 
distinguished Starozagorski kamush and breeding line 4 with an average accuracy reaching 100% (Logistic, Naive Bayes, 
Random Forest, IBk). The classification accuracy of Starozagorski kamush and breeding line 39 also reached 100% (Logistic, 
Naive Bayes, Random Forest, IBk), whereas breeding line 4 and breeding line 39 were classified with an average accuracy 
of up to 80% (Logistic, Naive Bayes, Random Forest, Filtered Classifier). The proposed approach combining fluorescence 
spectroscopy and machine learning may be used in practice to distinguish leek seed varieties and breeding lines.

Keywords Leek seed variety · Breeding lines · Fluorescence spectroscopy · Classification models · Machine learning 
algorithms

Introduction

Leek (Allium porrum L. or Allium ampeloprasum var. por-
rum) is a very important vegetable crop cultivated outdoors 
all over the world [1–3]. Leek is a biennial herb, related to 
onion and garlic. It is commonly cultivated as an annual crop 

[4]. The edible parts of leek are leaves and a bulb. The inflo-
rescence shoot can reach a height of 200 cm. The bicolor of 
the stem (white shaft with a milder flavor and green shaft 
with a spicy taste) is related to the presence of different 
amounts of essential oils [5]. Leek is rich in methyl furan, 
pentanol, glucosinolates, polysaccharides [6], folic acid, 
nicotinic acid, lutein, zeaxanthin, vegetable protein, fats, 
fiber, sulfide oil, minerals, e.g., calcium, zinc, phosphorus, 
potassium, magnesium, iron, copper, manganese, sodium, 
and vitamins such as A, B, C, E, and K [5]. As Allium spe-
cies, leek can be a rich source of secondary metabolites, 
e.g., polyphenolic compounds including flavonoids, phe-
nolic acids, and flavonoid polymers with health benefits. The 
health-promoting properties of the Allium species are associ-
ated with organosulfur compounds responsible for the char-
acteristic aroma, taste, and lachrymatory effects [3]. Leek 
can be characterized by anticancer, antifungal, and antibac-
terial effects [7]. The consumption of Allium vegetables can 
reduce the risk of colorectal cancer, prostate cancer, breast 
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cancer, and or stomach cancer [8]. Due to the presence of 
various bioactive substances, these vegetables have antioxi-
dant properties [9, 10]. Due to its nutrition and medicinal 
value, the leek is a culinary and medicinal vegetable [11]. 
Leek can impart the slight spiciness of a dish and improve 
its taste. It is a flavor enhancer used in meal preparations 
and ready-to-heat products. It can be used as a tissue-based 
system, such as cut leek, and a disrupted system, such as 
mixed puree-like systems or soups. Leek can be additive 
to bread, pasta, fermented sausages, and traditional Greek 
sausages. Dried leek can be added to salads, sauces, soups, 
meat dishes, and casseroles, and can be an alternative to 
fresh vegetables [12, 13].

Leek can be characterized by phenotypic and genetic 
diversity. Different cultivars vary in leaf type and color 
or stem thickness which can result in different plant mor-
phology and productivity [14]. The growth, yield, and seed 
characteristics of the leek can be affected by self- and cross-
pollination. The properties of leek seeds can also depend on 
the genotype [1]. Allium seeds are black, with rhomboidal or 
spheroidal shape [15]. Different seed cultivars can be char-
acterized by different properties. Seed quality depends on 
cultivar purity and distinctness, as well as seed physiological 
characteristics. Batch purity of high-quality seed cultivars 
can be essential in marketed species. There are various seed 
quality control methods useful for cultivar discrimination. 
Popular sensitive tests, e.g., DNA-based genotyping can be 
destructive, labor-intensive, complex, and expensive. There-
fore, a quality evaluation can be performed for only seeds 
randomly selected from a batch. Whereas spectroscopy is 
considered a non-destructive and high-throughput technique 
for seed evaluation [16], the combination of spectroscopy 
and chemometric methods may be a promising approach to 
seed cultivar classification [17]. Furthermore, the procedures 
combining spectroscopic data with machine learning meth-
ods were successfully used for seed quality classification 
[18].

Fluorescence spectroscopy in the food industry is widely 
used for quantitative analysis. It is sensitive and specific 
enough to detect even small concentrations of the com-
pounds [19, 20]. Through it, for example, changes in the 
structures of proteins, carbohydrates, and lipids in oils can 
be detected. This is useful for verifying the authenticity of 
food products [21, 22]. Advances in fiber-optic technology 
offer outstanding opportunities for the development of a 
wide range of highly sensitive fiber-optic sensors in many 
new application areas. Fiber-optic components are suc-
cessfully adapted to assemblies with micro-optic elements 
such as lenses, mirrors, prisms, gratings, and others [23, 
24]. Fluorescence spectroscopy in agricultural sciences is 
applied to the analysis of tomatoes [25] and cereals [26]. 
Their characterization through this technique is performed 
by grouping objects with similar characteristics to establish 

methods related to their classification. Until now, the prin-
ciples of modern optoelectronics have not been used to ana-
lyze leek planting material. In the last few years, the demand 
for high-quality varieties and hybrids of leeks has increased 
significantly. Therefore, it is important to use non-destruc-
tive methods for quality monitoring of leek planting material 
such as fluorescence spectroscopy [27].

The objective of this study was to distinguish leek seed 
cultivars using an innovative approach combining fluores-
cence spectroscopy and machine learning. The application 
of traditional machine learning algorithms from different 
groups for the development of models based on selected 
spectroscopic data to classify leek seed varieties and breed-
ing lines was a great novelty of the present study.

The contributions and prominent features of this manu-
script are indicated as follows:

• The application of non-destructive fluorescence spectros-
copy for distinguishing leek seed variety and breeding 
lines.

• Using traditional machine learning algorithms for the 
classification.

• The development of successful classification models for 
distinguishing leek seed samples.

• Obtaining high classification accuracies.

Materials and methods

Materials

The samples that are the subject of the study are Staro-
zagorski kamush, breeding line number 4 and breeding line 
number 39. Starozagorski kamush is a Bulgarian variety 
grown throughout the country. It is distinguished by its 
longer, thin and delicate cylindrical false stem reaching up 
to 70 cm in height. The leaves are narrow, long light green 
and upright. Breeding line 4 was created by the inbreeding 
method in a population of the variety Starozagorski 72. It is 
characterized by a longer false stem of 1.00 m. The leaves 
are narrow, long, light green and upright. Breeding line 39 
was created by breeding offspring of the Starozagorski 72 
variety with a longer false stem of 90.00 cm. The leaves are 
narrow, long, dark green and upright.

The seeds were produced at Maritsa Vegetable Crops 
Research Institute. After removing the leeks in the beginning 
of November, the cuttings are cleaned by variety, selecting 
plants typical of the variety. Then they are planted in the 
field in mid-November with the aim of good rooting. The 
cuttings are cut at a height of 25 cm and planted in fur-
rows according to the scheme 70/15 for one plant, or 70/30 
for three plants in a nest and completely covered with soil. 
During the growing season, the crop is fed, watered and the 



3219European Food Research and Technology (2023) 249:3217–3226 

1 3

phytosanitary status is monitored. Plants develop a single 
flower stalk. They bloom in July and ripen in September. 
The seeds are threshed with machines, after which the seeds 
are cleaned, washed and dried. Drying is carried out in dry-
ers at a temperature of 25–30°C. 20–30 kg/day of seeds are 
obtained per hectare.

Fluorescence spectroscopy

The study was performed with a fiber-optic spectrome-
ter, which allows the generation of fluorescent emission 
signals from 200 to 1200 nm. The apparatus is used for 
performing fluorescence spectroscopy of solid samples at 
a photosensitive area of 1.9968 × 1.9968 mm. The experi-
mental setup includes a laser diode (emission wavelength 
285 nm, optical power 16 mW, DC), portable spectrom-
eter model AvaSpec-ULS2048CL-EVO. The AvaSpec-
ULS2048CL-EVO spectrometer is designed for field 
measurements in the field. The device allows the detection 
of fluorescent emission signals in any environment regard-
less of its illumination. By tuning the spectrometer from 
AvaSoft8, the light signals from the working environment 
are eliminated and only the useful emission signal of the 
investigated sample remains. Because of this advantage, 
the AvaSpec-ULS2048CL-EVO has no requirement for 
an environment in which to conduct fluorescence meas-
urements with it, and no requirement for an illumination 
level. The sample is placed on a duralumin stand, which 
allows the reception of an emission signal from it below 
180° by a U-shaped optical fiber. This reduces aberrations 
and allows the generation of a better quality emission fluo-
rescent signal (Fig. 1). The resolution of the spectrometer 
can be in the range of 0.06–20 nm, and that of the setting 
used for our experiment is 0.06 nm. Since the fluorescence 
is often very weak and also in all directions, in order not 

to saturate the receiver, the useful fluorescence signal is 
measured in a direction that is below 180° to the excitation 
radiation. It is preferable to use a laser diode (LED) as a 
source in the circuit, as its spectral width is very small. 
The LED used in the experiment has a relatively wide 
spectral radiation width of about 30–40 nm and the angu-
lar distribution of its radiation is in a large angular range 
of ± 30°. The sensitivity of the spectrometer is in the range 
of 200 nm to 1200 nm. Its resolution is δλ = 5 nm. The 
spectral installation based on fluorescent signals will make 
it possible to record both the emission spectrum and the 
spectrum of the excitation source. The emission spectrum 
is the wavelength distribution of the emission measured for 
a constant excitation wavelength. The excitation spectrum 
is the dependence of the emission intensity measured for 
one wavelength on scanning on the excitation wavelength. 
This spectrum is represented as a dependence of the wave-
length of light on the light intensity incident on the photo-
detector in the spectrometer.

For the specific circuit, the photodetector is of the 
CMOS type model S9132. Its sensitivity is in the range 
of 200–1200 nm. Its resolution is δλ = 5 nm. S9132 was 
chosen because it can detect emission radiation from a 
sample of garlic with a very low loss of water content due 
to a false stem grown from a vegetative bud of very short 
length.

The laser radiation is removed from the source and 
falls on the sample. The samples represent 5 g of planting 
material from five different packets containing seeds of 
Starozagorski kamush, breeding line 4 and breeding line 
39 located on an area with a radius of 1 cm, which are at 
a distance of 2 cm from the optical fiber. After the sample 
fluoresces, the emission signal falls on a U-shaped opti-
cal fiber with a core diameter of 200 µm with a step index 
of refractive index and a numerical aperture of 0.22. The 
same U-shaped fiber was used to detect all emission sig-
nals from the planting material samples and lead the signal 
to the detector. It takes it to the detector. In the spectrom-
eter, the light signal is converted to electrical-digital via a 
USB 2.0 wire, downloaded to a computer with AvaSoft8 
software and exported to Excel. This allows analysis, pro-
cessing and visualization of the results of the study.

Five replicates of emission fluorescence signal detec-
tion were performed for each seed type: Starozagorski 
kamush, breeding line 4 and breeding line 39. There are 
five graphs each of Starozagorski kamush, breeding line 4 
and breeding line 39 (Fig. 2). A difference in the emission 
fluorescence signal of Starozagorski kamush and breed-
ing line 4 as well as breeding line 39 is clearly observed. 
The spectral wavelength shift and signal intensity level 
are due to a difference in the content of biologically active 
substances of a specific variety.Fig. 1  General view of the experimental installation used by fluores-

cence spectroscopy
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Leek seed classification

The leek seeds belonging to the variety Starozagorski 
kamush, breeding line 4 and breeding line 39 were classi-
fied using the WEKA application (Machine Learning Group, 
University of Waikato, Hamilton, New Zealand) [28–30] 
based on the fluorescence spectroscopic data. The classifi-
cation models were built for all three classes and the com-
parison of pairs, such as Starozagorski kamush vs. breed-
ing line 4, Starozagorski kamush vs. breeding line 39, and 
breeding line 4 vs. breeding line 39. The applied procedure 
is presented in Fig. 3.

For each dataset, attribute selection using the best first 
with the CFS (correlation-based feature selection) was 

carried out to choose spectroscopic data, the most useful to 
distinguish leek seed samples. The models were built based 
on selected data using a tenfold cross-validation mode and 
PART (group of Rules), Logistic (group of Functions), 
Naive Bayes (group of Bayes), Random Forest (group of 
Trees), IBk (group of Lazy), and Filtered Classifier (group 
of Meta) traditional machine learning algorithms. The fol-
lowing main parameters of the algorithms were used:

PART-confidenceFactor: 0.25; doNotCheckCapabilities: 
False; debug: False; batchSize: 100; unpruned: False; min-
NumObj: 2; numFolds: 3; useMDLcorrection: True; seed: 1,

Logistic-debug: False; doNotCheckCapabilities: False; 
batchSize: 100; useConjugateGradientDescent: False; ridge: 
1.0E-8,

Fig. 2  Difference in emission 
wavelength for Starozagorski 
kamush, breeding line 4 and 
breeding line 39

Leek seeds

- Starozagorski kamush variety

- breeding line 4 

- breeding line 39

Classification using traditional 

machine learning algorithms

- PART 

- Logistic 

- Naive Bayes 

- Random Forest 

- IBk 

- Filtered Classifier

Fluorescence spectroscopic data

at different wavelengths

Performance metrics of classification

- Accuracy

- Precision

- F-measure

- MCC (Matthews Correlation Coefficient)

- ROC (Receiver Operating Characteristic) Area 

- Kappa statistic

Decision making

Fig. 3  The procedure applied to classify leek seed variety and breeding lines based on fluorescence spectroscopic data using machine learning 
algorithms
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Naive Bayes-debug: False; doNotCheckCapabilities: False; 
batchSize: 100; displayModelInOldFormat: False; useSuper-
visedDiscretization: False; useKernelEstimator: False,

Random Forest-doNotCheckCapabilities: False; batchSize: 
100; breakTiesRandomly: False; debug: False; numIterations: 
100; numExecutionSlots: 1; seed: 1,

IBk-KNN: 1; doNotCheckCapabilities: False; batch-
Size: 100; nearestNeighbourSearchAlgorithm: LinearNN-
Search–distanceFunction: Euclidean Distance-R first-last; 
debug: False; meanSquared: False; windowSize: 0,

Filtered Classifier-batchSize: 100; classifier: J48-C 0.25-M 
2; doNotCheckCapabilities: False; debug: False; filter: Discre-
tize-R firs-last—precision 6; seed: 1.

The number of correctly and incorrectly classified cases, 
average accuracy, and the values of precision, F-measure, 
MCC (Matthews correlation coefficient), ROC (receiver oper-
ating characteristic) area, and Kappa statistic were determined 
[31–33] (Eqs. 1–8).

where TP: true positive; TN: true negative; FP: false posi-
tive; FN: false negative.

Results

This section discusses machine learning-based analysis of 
leek seed spectroscopic data. In this context, leek seeds of 
two breeding lines (4 and 36) and Starozagorski kamush 

(1)Accuracy =
(TP + TN)

TP + TN + FN + FP
,

(2)Precision =
TP

TP + FP
,

(3)Recall = TPR =
TP

TP + FN
,

(4)FPR =
FP

FP + TN
,

(5)F − measure =
2 ∗ precsion ∗ recall

(precision + recall)
,

(6)

MCC =
(TP ∗ TN − FP ∗ FN)

√

((TP + FP)(TP + FN)(TN + FP)(TN + FN))
,

(7)ROCarea = areaunderTPRvs.FPRcurve,

(8)

Kappa =

(TP+FP)(TP+FN)

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
+

(TN+FP)(TN+FN)

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

variety were distinguished by using six different machine 
learning algorithms. To examine the performance of several 
approaches for sorting leek seeds, the tables below include 
the confusion matrix, precision, Kappa statistic, ROC area, 
F-measure, MCC, and average accuracy metrics.

For distinguishing all three samples (two breeding lines 
and one variety), the performances of PART, Logistic, Naive 
Bayes, Random Forest, IBk, and Filtered Classifier machine 
learning algorithms are shown in Table 1. The average accu-
racy reached 93.33% in the case of a classification model 
built using the IBk and Filtered Classifier algorithms. The 
Kappa statistic was equal to 0.90. 10% of cases from breed-
ing line 4 were classified as breeding line 36, and 10% of 
cases belonging to breeding line 36 were classified as breed-
ing line 4. The model developed using IBk correctly clas-
sified all cases of Starozagorski kamush. For the Filtered 
Classifier, all leek seeds belonging to Starozagorski kamush 
and breeding line 39 were correctly classified, whereas 20% 
of cases from the actual class of breeding line 4 were incor-
rectly included in the predicted class breeding line 36. The 
great mixing of cases between classes was observed for the 
PART algorithm, which achieved an average accuracy of 
86.67% for distinguishing three different samples of leek 
seeds. When the confusion matrices for the classification 
conducted using PART were evaluated, it was noted that all 
of the Starozagorski kamush samples were accurately distin-
guished. However, the PART classifier incorrectly classifies 
10% of leek seeds from breeding line 4 as Starozagorski 
kamush and 20% of breeding line 4 as breeding line 39. 
In addition, the PART classifier incorrectly classifies 10% 
of leek seeds from breeding line 39 as breeding line 4. For 
the other machine learning algorithms, the Starozagorski 
kamush seeds were correctly distinguished from other 
classes and the mixing of cases occurred between breeding 
lines. The values of precision, F-measure, MCC, and ROC 
area were the highest for Starozagorski kamush and reached 
1.000 in the case of Logistic, Naive Bayes, Random Forest, 
IBk, and Filtered Classifier.

The results of distinguishing Starozagorski kamush and 
breeding line 4 are presented in Table 2. The completely cor-
rect classification with accuracies of 100%, Kappa statistic 
of 1.00 and precision, F-measure, MCC, and ROC area of 
1.000 was obtained for models built using Logistic, Naive 
Bayes, Random Forest, and IBk. The average accuracy equal 
to 85% was the lowest for a model built using PART. 10% of 
cases belonging to Starozagorski kamush were incorrectly 
classified as breeding line 4 and 20% from breeding line 4 
were incorrectly classified as Starozagorski kamush.

Slightly higher accuracies were obtained for the clas-
sification of leek seeds Starozagorski kamush and breeding 
line 39 (Table 3). For the models developed using Logistic, 
Naive Bayes, Random Forest, and IBk, both classes were 
completely correctly distinguished in 100%. Whereas the 
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lowest average accuracy of 90% was observed for a model 
built using Filtered Classifier. In the case of this model, 
both classes were correctly classified in 90%, and 10% 
belonging to each class were incorrectly classified as the 
second class. The Kappa statistic was equal to 0.80. The 
values of precision of 0.900, F-measure of 0.900, MCC of 

0.800, and ROC area of 0.900 were determined for both 
classes.

The least correct classification and the greatest mixing 
of cases were found for the distinguishing breeding line 4 
and breeding line 39 (Table 4). An average accuracy reach-
ing 80% and the Kappa statistic equal to 0.60 were found 

Table 2  The classification of leek seeds Starozagorski kamush and breeding line 4

MCC Matthews correlation coefficient, ROC area receiver operating characteristic area

Algorithm Predicted class (%) Actual class Average 
accuracy 
(%)

Precision F-measure MCC ROC area Kappa statistic

Staro-
zagorski 
kamush

Breeding line 4

Rules. PART 90 10 Starozagorski 
kamush

85 0.818 0.857 0.704 0.850 0.70

20 80 Breeding line 4 0.889 0.842 0.704 0.850
Functions. Logistic 100 0 Starozagorski 

kamush
100 1.000 1.000 1.000 1.000 1.00

0 100 Breeding line 4 1.000 1.000 1.000 1.000
Bayes. Naive Bayes 100 0 Starozagorski 

kamush
100 1.000 1.000 1.000 1.000 1.00

0 100 Breeding line 4 1.000 1.000 1.000 1.000
Trees. Random 

Forest
100 0 Starozagorski 

kamush
100 1.000 1.000 1.000 1.000 1.00

0 100 Breeding line 4 1.000 1.000 1.000 1.000
Lazy. IBk 100 0 Starozagorski 

kamush
100 1.000 1.000 1.000 1.000 1.00

0 100 Breeding line 4 1.000 1.000 1.000 1.000
Meta. Filtered Clas-

sifier
90 10 Starozagorski 

kamush
90 0.900 0.900 0.800 0.900 0.80

10 90 Breeding line 4 0.900 0.900 0.800 0.900

Table 3  The distinguishing leek seeds Starozagorski kamush and breeding line 39

MCC Matthews correlation coefficient, ROC area receiver operating characteristic area

Algorithm Predicted class (%) Actual class Average 
accuracy 
(%)

Precision F-measure MCC ROC area Kappa statistic

Staro-
zagorski 
kamush

Breed-
ing line 
39

Rules. PART 100 0 Starozagorski kamush 95 0.909 0.952 0.905 0.950 0.90
10 90 Breeding line 39 1.000 0.947 0.905 0.950

Functions. Logistic 100 0 Starozagorski kamush 100 1.000 1.000 1.000 1.000 1.00
0 100 Breeding line 39 1.000 1.000 1.000 1.000

Bayes. Naive Bayes 100 0 Starozagorski kamush 100 1.000 1.000 1.000 1.000 1.00
0 100 Breeding line 39 1.000 1.000 1.000 1.000

Trees. Random Forest 100 0 Starozagorski kamush 100 1.000 1.000 1.000 1.000 1.00
0 100 Breeding line 39 1.000 1.000 1.000 1.000

Lazy. IBk 100 0 Starozagorski kamush 100 1.000 1.000 1.000 1.000 1.00
0 100 Breeding line 39 1.000 1.000 1.000 1.000

Meta. Filtered Classifier 90 10 Starozagorski kamush 90 0.900 0.900 0.800 0.900 0.80
10 90 Breeding line 39 0.900 0.900 0.800 0.900
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for models developed by Logistic, Naive Bayes, Random 
Forest, and Filtered Classifier. The highest accuracy for 
individual classes was equal to 90% for breeding line 4 in 
the case of Naive Bayes and Random Forest, whereas leek 
seeds belonging to breeding line 39 were correctly classi-
fied in 70% for these algorithms. The remaining cases were 
incorrectly included in other classes. The model built using 
IBk was characterized by the lowest average accuracy of 
70%. Both breeding lines were correctly classified in 70%. 
The Kappa statistic was 0.40 and the precision of 0.700, 
F-measure of 0.700, MCC of 0.800, and ROC area of 0.700 
for both classes were observed.

The performed study revealed the usefulness of fluores-
cence spectroscopic data for distinguishing leek seed vari-
eties and breeding lines using machine learning models. 
Spectroscopic techniques are effective in seed research and 
can be used in various aspects. For example, da Silva Medei-
ros et al. [34] applied near-infrared spectroscopy (NIRS) 
to discriminate Brassica seed species with correctness of 
94.9%. The usefulness of near-infrared (NIR) spectroscopy 
for sexing papaya seeds with an F-score value equal to 0.81 
was also confirmed [35]. Furthermore, NIR spectroscopy 
proved to be an effective technique for the assessment of 
insect infestation and protein content of maize seeds [36] 
and the quantification of phenolic content and total flavo-
noids in raw peanut seeds [37]. Terahertz spectroscopy was 
used for the recognition of transgenic cotton seeds [38] and 
the identification of the adulteration of rice seeds [39]. In 
view of the promising literature data, various spectroscopic 
techniques can be used in future studies in various directions 
of leek seed quality assessment.

Conclusions

The performed study involved a novel approach combin-
ing fluorescence spectroscopy and traditional machine 
learning algorithms to distinguish leek seed varieties and 
breeding lines. The applied procedure was innovative on 
the background of available literature for the assessment of 
leek seed quality. Machine learning models built based on 
spectroscopic data allowed for the classification of three 
seed types with an accuracy reaching 93.33%. The most 
effective algorithms were IBk and Filtered Classifier. Each 
model distinguished Starozagorski kamush variety with 
breeding lines 39 and 4 with the highest accuracy, whereas 
the greatest mixing of leek seeds was found between 
breeding lines. Future studies can involve also other spec-
troscopic techniques in leek seed studies or various direc-
tions of seed quality assessment including the discrimina-
tion of species, varieties, and breeding lines, as well as the 
estimation of the content of chemical compounds in seeds.
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request from the corresponding author.
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Table 4  The classification of leek seeds belonging to breeding line 4 and breeding line 39

MCC Matthews correlation coefficient, ROC area receiver operating characteristic area

Algorithm Predicted class (%) Actual class Average 
accuracy 
(%)

Precision F-measure MCC ROC area Kappa statistic

Breed-
ing line 
4

Breeding 
line 39

Rules. PART 70 30 Breeding line 4 75 0.778 0.737 0.503 0.775 0.50
20 80 Breeding line 39 0.727 0.762 0.503 0.775

Functions. Logistic 80 20 Breeding line 4 80 0.800 0.800 0.600 0.820 0.60
20 80 Breeding line 39 0.800 0.800 0.600 0.860

Bayes. Naive Bayes 90 10 Breeding line 4 80 0.750 0.818 0.612 0.880 0.60
30 70 Breeding line 39 0.875 0.778 0.612 0.880

Trees. Random Forest 90 10 Breeding line 4 80 0.750 0.818 0.612 0.880 0.60
30 70 Breeding line 39 0.875 0.778 0.612 0.880

Lazy. IBk 70 30 Breeding line 4 70 0.700 0.700 0.400 0.700 0.40
30 70 Breeding line 39 0.700 0.700 0.400 0.700

Meta. Filtered Classifier 80 20 Breeding line 4 80 0.800 0.800 0.600 0.830 0.60
20 80 Breeding line 39 0.800 0.800 0.600 0.830
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adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
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References

 1. De Clercq H, Peusens D, Roldan-Ruiz I, Van Bockstaele E (2003) 
Causal relationships between inbreeding, seed characteristics 
and plant performance in leek (Allium porrum L.). Euphytica 
134:103–115

 2. Appeltans S, Pieters JG, Mouazen AM (2021) Detection of leek 
rust disease under field conditions using hyperspectral proximal 
sensing and machine learning. Remote Sens 13:1341

 3. Bernaert N, Debonne E, De Leyn I, Van Droogenbroeck B, 
Van Bockstaele F (2022) Incorporation of leek powder (Allium 
ampeloprasum var. porrum) in wheat bread: technological impli-
cations, shelf life and sensory evaluation. LWT-Food Sci Technol 
153:112517

 4. Fattorusso E, Lanzotti V, Taglialatela-Scafati O, Di Rosa M, Ian-
aro A (2000) Cytotoxic saponins from bulbs of Allium porrum L. 
J Agric Food Chem 48:3455–4346

 5. Biernacka B, Dziki D, Kozłowska J, Kowalska I, Soluch A (2021) 
Dehydrated at different conditions and powdered leek as a con-
centrate of biologically active substances: antioxidant activity and 
phenolic compound profile. Materials 14:6127

 6. Sanchez-Salvador JL, Marques MP, Brito MSCA, Negro C, Monte 
MC, Manrique YA, Santos RJ, Blanco A (2022) Valorization 
of vegetable waste from leek, lettuce, and artichoke to produce 
highly concentrated lignocellulose micro- and nanofibril suspen-
sions. Nanomaterials 12:4499

 7. Baky MH, Shamma SN, Khalifa MR, Farag MA (2023) How does 
allium leafy parts metabolome differ in context to edible or ined-
ible taxa? case study in seven allium species as analyzed using 
ms-based metabolomics. Metabolites 13:18

 8. Kratchanova M, Nikolova M, Pavlova E, Yanakieva I, Kussovski 
V (2010) Composition and properties of biologically active pec-
tic polysaccharides from leek (Allium porrum). J Sci Food Agric 
90:2046–2051

 9. Golisz E, Wielewska I, Roman K, Kacprzak M (2022) Probabil-
istic model of drying process of leek. Appl Sci 12:11761

 10. Sałata A, Nurzyńska-Wierdak R, Kalisz A, Moreno-Ramón H 
(2022) Impacts of alexandrian clover living mulch on the yield, 
phenolic content, and antioxidant capacity of leek and shallot. 
Agronomy 12:2602

 11. Wang Y, Li X, Shen J, Lang H, Dong S, Zhang L, Fang H, Yu Y 
(2022) Uptake, translocation, and metabolism of thiamethoxam 
in soil by leek plants. Environ Res 211:113084

 12. Biernacka B, Dziki D, Gawlik-Dziki U (2022) Pasta enriched with 
dried and powdered leek: physicochemical properties and changes 
during cooking. Molecules 27:4495

 13. Delbaere SM, Bernaerts T, Vancoillie F, Buvé C, Hendrickx ME, 
Grauwet T, Van Loey AM (2022) Comparing the effect of several 
pretreatment steps, selected to steer (bio) chemical reactions, on 
the volatile profile of leek (Allium ampeloprasum var. porrum). 
LWT-Food Sci Technol 172:114205

 14. Melouk SAM, Hassan MA, Elwan MWM, El-Seifi SK, Habib ES, 
Yousef EAA (2023) Horticultural, chemical and genetic diver-
sity using SSR markers in Leek germplasm collection. Sci Hortic 
311:111782

 15. Vuković S, Popović-Djordjević JB, Kostić AŽ, Pantelić ND, 
Srećković N, Akram M, Laila U, Katanić Stanković JS (2023) 
Allium species in the balkan region—major metabolites. Antioxid 
Antimicrob Prop Hortic 9:408

 16. Reddy P, Panozzo J, Guthridge KM, Spangenberg GC, Rochfort SJ 
(2023) Single seed near-infrared hyperspectral imaging for clas-
sification of perennial ryegrass seed. Sensors 23:1820

 17. Shrestha S, Deleuran LCh, Gislum R (2016) Classification of dif-
ferent tomato seed cultivars by multispectral visible-near infrared 
spectroscopy and chemometrics. J Spectr Imaging 5:1–8

 18. Medeiros ADd, Silva LJd, Ribeiro JPO, Ferreira KC, Rosas JTF, 
Santos AA, Silva CBd (2020) Machine learning for seed quality 
classification: an advanced approach using merger data from ft-nir 
spectroscopy and x-ray imaging. Sensors 20:4319

 19. Qin J, Lu R (2008) Measurement of the optical properties of 
fruits and vegetables using spatially resolved hyperspectral dif-
fuse reflectance imaging technique. Postharvest Biol Technol 
49:355–365

 20. Valeur B, Santos B, Molecular M (2012) Fluorescence: principles 
and applications. Wiley-VCH, pp 13–19

 21. Bachmann L, Zezell DM, Ribeiro AdC, Gomes L, Ito AS (2006) 
Fluorescence spectroscopy of biological tissues. A Rev Appl 
Spectrosc Rev 41:575–590

 22. Hof M, Hutterer R, Fidler V (2005) Fluorescence spectroscopy in 
biology. Springer, Cham, pp 91–182

 23. Dakin J, Brown R (2006) Handbook of Optoelectronics. CRC 
Press, pp 74–253

 24. Mitchke F (2010) Fiber optics physics and technology Heidelberg. 
Springer, pp 47–103

 25. Hoffmann A, Noga G, Hunsche M (2015) Fluorescence indices 
for monitoring the ripening of tomatoes in pre- and postharvest 
phases. Sci Hortic 191:74–81

 26. Blecker C (2011) Fluorescence spectroscopy measurement for 
quality assessment of food systems—a review. Food Bioprocess 
Technol 4:364–386

 27. Hyde P, Mutschler EE, M, (2012) Doubled haploid onion (Allium 
cepa L.) lines and their impact on hybrid performance. HortSci-
ence 47:1690–1695

 28. Bouckaert RR, Frank E, Hall M, Kirkby R, Reutemann P, Seewald 
A, Scuse D (2016) WEKA manual for version 3-9-1. University 
of Waikato, Hamilton, New Zealand

 29. Frank E, Hall M, Witten I (2016) Online appendix for “data min-
ing: practical machine learning tools and techniques”, the WEKA 
workbench. Elsevier, Amsterdam, The Netherlands

 30. Witten IH, Frank E, Hal, MA, Pal CJ 2005 Practical machine 
learning tools and techniques: In proceedings of the data mining, 
Las Vegas, NV, USA, pp 20–23

 31. Ropelewska E, Szwejda-Grzybowska J (2021) A comparative 
analysis of the discrimination of pepper (Capsicum annuum L.) 
based on the cross-section and seed textures determined using 
image processing. J Food Process Eng 44:e13694

 32. Sabanci K, Aslan MF, Ropelewska E, Unlersen MF (2021) A 
convolutional neural network-based comparative study for pepper 
seed classification: analysis of selected deep features with support 
vector machine. J Food Process Eng 45:e13955

 33. Ropelewska E, Rady AM, Watson NJ (2023) Apricot stone classi-
fication using image analysis and machine learning. Sustainability 
15:9259

 34. da Silva Medeiros ML, Cruz-Tirado JP, Lima AF, de Souza Netto 
JM, Ribeiro APB, Bassegio D, Godoy HT, Barbin DF (2022) 
Assessment oil composition and species discrimination of Bras-
sicas seeds based on hyperspectral imaging and portable near 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


3226 European Food Research and Technology (2023) 249:3217–3226

1 3

infrared (NIR) spectroscopy tools and chemometrics. J Food 
Compos Anal 107:104403

 35. Silva Fernandes TF, de Oliveira Silva RV, de Freitas DLD, 
Sanches AG, da Silva M, Cunha Júnior LC, de Lima KG, de 
Almeida Teixeira GH (2022) Sex type determination in papaya 
seeds and leaves using near infrared spectroscopy combined with 
multivariate techniques and machine learning. Comput Electron 
Agric 193:106674

 36. Wang Z, Huang W, Li J, Liu S, Fan S (2023) Assessment of pro-
tein content and insect infestation of maize seeds based on on-
line near-infrared spectroscopy and machine learning. Comput 
Electron Agric 211:107969

 37. Haruna SA, Li H, Wei W, Geng W, Luo X, Zareef M, Yao-Say 
Solomon Adade S, Ivane NMA, Isa A, Chen Q (2023) Simulta-
neous quantification of total flavonoids and phenolic content in 
raw peanut seeds via NIR spectroscopy coupled with integrated 

algorithms. Spectrochim Acta Part A Mol Biomol Spectrosc 
285:121854

 38. Yi C, Tuo S, Zhang L, Xiao H (2022) Improved kernel entropy 
composition analysis method for transgenic cotton seeds recog-
nition based on terahertz spectroscopy. Chemom Intell Lab Syst 
225:104575

 39. Hou X, Jie Z, Wang J, Liu X, Ye N (2023) Application of terahertz 
spectroscopy combined with feature improvement algorithm for 
the identification of adulterated rice seeds. Infrared Phys Technol 
131:104694

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	The classification of leek seeds based on fluorescence spectroscopic data using machine learning
	Abstract
	Introduction
	Materials and methods
	Materials
	Fluorescence spectroscopy
	Leek seed classification

	Results
	Conclusions
	References




