Skip to main content

Advertisement

Log in

Polyphenols, organic acids, and their relationships in red grapes of Vitis vinifera and Isabella (Vitis labrusca) under arid conditions

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Grape is one of the most valuable sources of polyphenols that act as radical scavengers and stress suppressors. This study discussed the polyphenolic and the organic acid composition regarding ecology and secondary metabolism of red grapes of two Vitis vinifera varieties (Sülün Kara and Tombak Kara) and a Vitis labrusca cultivar (Isabella) grown under arid conditions. Isabella, a grape adapted to high humidity, had notably higher flavonoids, particularly catechin. Vitis vinifera varieties contained higher phenolic acids than Isabella, except for syringic, p-coumaric, and gallic acids. Organic acids were divergent among the varieties and Isabella. Correlation analysis suggested some noteworthy relations among organic acids, such as the positive linear relationships of malic, tartaric, and ascorbic acids. Oxalic acid was negatively correlated to other organic acids except for succinic acid. High correlations among flavonoids suggested an enhanced stress defense metabolism caused by rain scarcity during the growing season. This study will be a helpful example of alterations in grape biochemical composition and relationships of secondary metabolites. The results also suggest that Isabella is an excellent genetic source of biochemically fortified berries under arid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The manuscript includes all relevant data.

References

  1. Güler E (2021) Biochemical and molecular characterization of vine (Vitis vinifera L.) genetic resources of Bolu region. Ph.D. thesis, Bolu Abant İzzet Baysal University

  2. FAOSTAT (2020) Database collections. Food and Agriculture Organization of the United Nation, Rome. http://www.fao.org/faostat/en/#data. Accessed 05 May 2022

  3. Keller, M. (2020). The science of grapevines. Academic press.

  4. Walker MA, Heinitz C, Riaz S, Uretsky J (2019) Grape taxonomy and germplasm. In: The grape genome. Springer, Cham, pp 25–38

    Chapter  Google Scholar 

  5. Creasy GL, Creasy LL (2018) Grapes. In: Crop production science in horticulture 2nd edn., Vol 16. CABI Head Office, Nosworthy Way, Wallingford, Oxfordshire, UK, p 295

  6. Jackson RS (2016) Wine tasting: a professional handbook. Academic Press

    Google Scholar 

  7. Raymond Eder ML, Reynoso C, Lauret SC, Rosa AL (2017) Isolation and identification of the indigenous yeast population during spontaneous fermentation of Isabella (Vitis labrusca L.) grape must. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00532

    Article  PubMed  PubMed Central  Google Scholar 

  8. Keskin N, Bilir Ekbic H, Kaya O, Keskin S (2021) Antioxidant activity and Biochemical Compounds of Vitis vinifera L(cv.‘Katıkara’) and Vitis labrusca L(cv‘Isabella’) grown in black sea coast of Turkey. Erwerbs-obstbau 63(1):115–122

    Article  CAS  Google Scholar 

  9. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2(5):270–278

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bat KB, Vodopivec BM, Eler K, Ogrinc N, Mulič I, Masuero D, Vrhovšek U (2018) Primary and secondary metabolites as a tool for differentiation of apple juice according to cultivar and geographical origin. LWT 90:238–245

    Article  CAS  Google Scholar 

  11. Rienth M, Vigneron N, Darriet P, Sweetman C, Burbidge C, Bonghi C, Castellarin SD (2021) Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario–a review. Front Plant Sci 12:643258

    Article  PubMed  PubMed Central  Google Scholar 

  12. Du Plessis K, Young PR, Eyéghé-Bickong HA, Vivier MA (2017) The transcriptional responses and metabolic consequences of acclimation to elevated light exposure in grapevine berries. Front Plant Sci 8:1261. https://doi.org/10.3389/fpls.2017.01261

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gambetta JM, Romat V, Schmidtke LM, Holzapfel BP (2021) Secondary metabolites coordinately protect grapes from excessive light and sunburn damage during development. Biomolecules 12(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rodriguez Delgado MA, Malovana S, Perez JP, Borges T, Montelongo FG (2001) Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J Chromatogr A 912(2):249–257

    Article  CAS  PubMed  Google Scholar 

  15. Bevilacqua AE, Califano AN (1989) Determination of organic acids in dairy products by high performance liquid chromatography. J Food Sci 54(4):1076–1076

    Article  CAS  Google Scholar 

  16. Cemeroğlu B (2007) Gıda analizleri Gıda Teknolojisi Derneği Yayınları 34:168–171

    Google Scholar 

  17. Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J (2017) Package “corrplot.” Statistician 56(316):e24

    Google Scholar 

  18. Chandrasekara A, Shahidi F (2018) Herbal beverages: Bioactive compounds and their role in disease risk reduction-A review. J Tradit Complement Med 8(4):451–458

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thuengtung, S., & Ogawa, Y. (2019). Effects of interactions between antioxidant phytochemicals and coexisting food components on their digestibility.

  20. Rashmi HB, Negi PS (2020) Phenolic acids from vegetables: a review on processing stability and health benefits. Food Res Int 136:109298

    Article  CAS  PubMed  Google Scholar 

  21. Lafay S, Gil-Izquierdo A (2008) Bioavailability of phenolic acids. Phytochem Rev 7(2):301–311

    Article  CAS  Google Scholar 

  22. Matheyambath, A. C., Padmanabhan, P., & Paliyath, G. (2016). Encyclopedia of food and health.

  23. Mane C, Souquet JM, Ollé D, Verries C, Veran F, Mazerolles G, Fulcrand H (2007) Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: application to the characterization of champagne grape varieties. J Agric Food Chem 55(18):7224–7233

    Article  CAS  PubMed  Google Scholar 

  24. Iglesias-Carres L, Mas-Capdevila A, Sancho-Pardo L, Bravo FI, Mulero M, Muguerza B, Arola-Arnal A (2018) Optimized extraction by response surface methodology used for the characterization and quantification of phenolic compounds in whole red grapes (Vitis vinifera). Nutrients 10(12):1931

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kupe M (2020) Some ampelographic and biochemical characteristics of local grape accessions from Turkey. Genetika 52(2):513–525

    Article  Google Scholar 

  26. Kupe M, Karatas N, Unal MS, Ercisli S, Baron M, Sochor J (2021) Nutraceutical and functional properties of peel, pulp, and seed extracts of six’ köhnü’grape clones. Horticulturae 7(10):346

    Article  Google Scholar 

  27. Alonso R, Berli FJ, Fontana A, Piccoli P, Bottini R (2016) Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid. Plant Physiol Biochem 109:84–90

    Article  CAS  PubMed  Google Scholar 

  28. Bontpart T, Marlin T, Vialet S, Guiraud JL, Pinasseau L, Meudec E, Terrier N (2016) Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine. J Exp Bot 67(11):3537–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tunnicliffe JM, Cowan T, Shearer J (2015) Chlorogenic acid in whole body and tissue-specific glucose regulation. Coff Health Dis Prevent. https://doi.org/10.1016/B978-0-12-409517-5.00086-3

    Article  Google Scholar 

  30. Liang N, Kitts DD (2015) Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  31. Awwad S, Issa R, Alnsour L, Albals D, Al-Momani I (2021) Quantification of caffeine and chlorogenic acid in green and roasted coffee samples using HPLC-DAD and evaluation of the effect of degree of roasting on their levels. Molecules 26(24):7502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blancquaert EH, Oberholster A, Ricardo-da-Silva JM, Deloire AJ (2019) Grape flavonoid evolution and composition under altered light and temperature conditions in Cabernet Sauvignon (Vitis vinifera L.). Front Plant Sci 10:1062

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rauf A, Imran M, Abu-Izneid T, Patel S, Pan X, Naz S, Suleria HAR (2019) Proanthocyanidins: a comprehensive review. Biomed Pharmacother 116:108999

    Article  CAS  PubMed  Google Scholar 

  34. Chira K, Zeng L, Le Floch A, Péchamat L, Jourdes M, Teissedre PL (2015) Compositional and sensory characterization of grape proanthocyanidins and oak wood ellagitannin. Tetrahedron 71(20):2999–3006

    Article  CAS  Google Scholar 

  35. Muñoz-Robredo P, Robledo P, Manríquez D, Molina R, Defilippi BG (2011) Characterization of sugars and organic acids in commercial varieties of table grapes. Chilean J Agricult Res 71(3):452

    Article  Google Scholar 

  36. Gutiérrez-Gamboa G, Verdugo-Vásquez N, Díaz-Gálvez I (2019) Influence of type of management and climatic conditions on productive behavior, oenological potential, and soil characteristics of a ’Cabernet Sauvignon’vineyard. Agronomy 9(2):64

    Article  Google Scholar 

  37. Soyer Y, Koca N, Karadeniz F (2003) Organic acid profile of Turkish white grapes and grape juices. J Food Compos Anal 16(5):629–636

    Article  CAS  Google Scholar 

  38. Gokturk Baydar N (2006) Organic acid, tocopherol, and phenolic compositions of some Turkish grape cultivars. Chem Nat Compd 42(2):156–159

    Article  CAS  Google Scholar 

  39. Rizzon LA, Miele A (2012) Analytical characteristics and discrimination of Brazilian commercial grape juice, nectar, and beverage. Food Sci Technol 32:93–97

    Article  Google Scholar 

  40. dos Santos Lima M, Silani IDSV, Toaldo IM, Corrêa LC, Biasoto ACT, Pereira GE, Ninow JL (2014) Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil. Food Chem 161:94–103

    Article  Google Scholar 

  41. Shiraishi M, Fujishima H, Chijiwa H (2010) Evaluation of table grape genetic resources for sugar, organic acid, and amino acid composition of berries. Euphytica 174(1):1–13

    Article  CAS  Google Scholar 

  42. Sweetman C, Sadras VO, Hancock RD, Soole KL, Ford C (2014) Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J Exp Bot 65(20):5975–5988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Cramer GR (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10(1):1–33

    Article  Google Scholar 

  44. Pilati S, Bagagli G, Sonego P, Moretto M, Brazzale D, Castorina G, Moser C (2017) Abscisic acid is a major regulator of grape berry ripening onset: new insights into ABA signaling network. Front Plant Sci 8:1093

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pavloušek P, Kumšta M (2011) Profiling of primary metabolites in grapes of interspecific grapevine varieties: sugars and organic acids. Czech J Food Sci 29(4):361–372

    Article  Google Scholar 

  46. Yinshan G, Zaozhu N, Kai S, Jia Z, Zhihua R, Yuhui Z, Xiuwu G (2017) Composition and content analysis of sugars and organic acids for 45 grape cultivars from northeast region of China. Pak J Bot 49(1):155–160

    Google Scholar 

  47. Liu HF, Wu BH, Fan PG, Li SH, Li LS (2006) Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J Sci Food Agric 86(10):1526–1536

    Article  CAS  Google Scholar 

  48. Kobayashi K, Hattori T, Honda Y, Kirimura K (2014) Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA. J Ind Microbiol Biotechnol 41(5):749–756

    Article  CAS  PubMed  Google Scholar 

  49. Hancock RD, Viola R (2005) Biosynthesis and catabolism of L-ascorbic acid in plants. Crit Rev Plant Sci 24(3):167–188

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrah Güler.

Ethics declarations

Conflict of interest

The author declares no known individual or financial conflict of interest.

Compliance with Ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güler, E. Polyphenols, organic acids, and their relationships in red grapes of Vitis vinifera and Isabella (Vitis labrusca) under arid conditions. Eur Food Res Technol 249, 913–921 (2023). https://doi.org/10.1007/s00217-022-04183-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04183-9

Keywords

Navigation