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Abstract
This paper develops a new approach to fraud detection in honey. Specifically, we examine adulterating honey with sugar and 
use hyperspectral imaging and machine learning techniques to detect adulteration. The main contributions of this paper are 
introducing a new feature smoothing technique to conform to the classification model used to detect the adulterated samples 
and the perpetration of an adulterated honey data set using hyperspectral imaging, which has been made available online 
for the first time. Above 95% accuracy was achieved for binary adulteration detection and multi-class classification between 
different adulterant concentrations. The system developed in this paper can be used to prevent honey fraud as a reliable, low 
cost, data-driven solution.
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Introduction

Honey fraud is a major global problem, with honey being the 
third most adulterated food product [4, 6, 18, 31]. Adultera-
tion of any food product has severe implications for human 
health, and it is vital to detect any adulteration of food prod-
ucts [2].

There are existing measures to detect overall quality in 
premium honey types, such as New Zealand (NZ) Manuka 
honey [7]. Hyperspectral imaging has recently been devel-
oped to detect the botanical origins and quality of pure 
honey [23, 26, 27, 29]. This approach has not yet been thor-
oughly investigated for detecting adulterated honey.

Existing quality assurance techniques

Most honey botanical origins are classified using chemi-
cal measures or, more traditionally, honey experts taste and 
smell the honey. The chemical measurements include pollen 

analysis and tests for particular components that make up 
certain honey [25].

Several metrics have been developed using chemical 
processes to identify the quality of Manuka honey. Manuka 
honey is a premium honey product, so the higher quality 
types refer to a purer Manuka honey [18]. Unique Manuka 
Factor (UMF) is one such measure. This measure displays a 
quality rating resulting from several different quality tests. 
The second rating system is methylglyoxal concentration 
(MGO) which is directly the concentration of an active 
ingredient in Manuka honey. The rating systems are owned 
by competing Manuka honey companies and are misleading 
to the consumer as they display vastly different numerical 
values to indicate quality [18]. The key thing for consumers 
to understand is that the higher the UMF or MGO rating, the 
higher quality of the honey will be, and they should expect 
to pay more for it.

Spectroscopy has been investigated as a potential 
approach to classifying honey quality, both for mislabelling 
and adulteration detection, with some success on speci-
fied honey types, including Manuka honey [3, 15, 17]. The 
wavelength ranges used in these works were visible and 
near-infrared, ranging from 400 to 2500 nm. Using mid-
infrared spectroscopy [15] determined that the peak wave-
lengths, between 1400 and 2000 nm, shifted when honey 
was adulterated.

 *	 Tessa Phillips 
	 tphi709@aucklanduni.ac.nz

	 Waleed Abdulla 
	 w.abdulla@auckland.ac.nz

1	 Electrical, Computer, and Software Engineering, The 
University of Auckland, Auckland 1010, New Zealand

http://orcid.org/0000-0003-2582-6055
http://crossmark.crossref.org/dialog/?doi=10.1007/s00217-022-04113-9&domain=pdf


260	 European Food Research and Technology (2023) 249:259–272

1 3

Several different types of sugar syrup were added to 
Manuka honey and captured using near-infrared spectros-
copy, and aquaphotomics [41]. This work uses spectral 
bands between 1300nm and 1800nm and shows that the 
Manuka honey differs from adulterated Manuka honey at a 
wavelength of 1460nm. This work shows promise in using 
spectral approaches to classify adulteration with many dif-
ferent adulterants. Only one type of Manuka honey was used 
in the experiment, so it is uncertain if this approach will 
work for all honey or even other Manuka honey brands.

Several papers have investigated the use of Fourier trans-
form infrared (FTIR) spectroscopy for detecting the adul-
teration of honey with cane sugar [12, 35]. These works 
evaluated adulteration between 0.5 and 25% cane sugar con-
centration. Only one type of honey was used in [12] which 
predicted the sugar concentration using statistical methods 
and artificial neural networks with an accuracy of 93.75%. 
The classification accuracy was below 80% when using 
three different honey types to classify adulteration [35]. 
These works show that it is possible to use spectroscopy 
with machine learning techniques to predict adulteration in 
honey; however, the ability to predict sugar concentration 
across a range of honey must be improved.

Hyperspectral imaging is a promising tool for food qual-
ity assurance and extends on spectroscopy, allowing spatial 
information to be used alongside spectral information [5]. 
Spatial information allows the image to indicate specific 
defects such as bruises on fruit in a particular location rather 
than just taking the spectrum at one point of the object [8]. 
Hyperspectral imaging has been used for many food qual-
ity applications, including meat, fish, fruit, vegetables, and 
grains [40]. Hyperspectral imaging has also been used to 
determine different properties of grapes [19, 32], and to pre-
dict properties of chocolate that indicate quality [9]. More 
recently, this technique has been applied to honey quality 
applications.

A Hyperspectral imaging approach has been developed 
for detecting the botanical origins of honey [17, 23, 24, 26, 
27, 29]. In [27] the UMF grade of Manuka honey was pre-
dicted with 89% accuracy. The botanical origins of 21 dif-
ferent types of honey were predicted with 90% accuracy in 
[29]. These approaches used a hyperspectral imaging system 
to capture the data detailed in [21] and used a class embodi-
ment autoencoder (CEAE) and support vector machines 
(SVM) for classification. In [17] a classification accuracy 
of 90% was achieved when classifying the botanical ori-
gins of a small data set containing just 52 samples from five 
honey types.

Previous research has been done on hyperspectral imag-
ing to detect adulteration, although it is limited to a small 
data set and not publicly available [34]. This approach uses 
a classifier to calculate a percentage of pixels in the image 
as either sugar or honey. This approach indicates that the 

adulterated mixtures are not homogeneous, which most 
adequately adulterated honey would be.

The key advantage of using HSI over spectroscopy for 
this application is that many training examples can be cap-
tured in each hyperspectral image. This allows the use of 
machine learning models, which require large amounts of 
data to train. The disadvantage is that it is typically expen-
sive compared to spectroscopy; however, it is still much 
cheaper than chemical techniques, which require experts to 
analyse each sample.

Spectral imaging for detecting adulterated substances

The theory states that the spectrums should add if the sub-
stances used are in unique wavelengths in a mixture [33]. 
Honey and sugar will not be so simple to determine adul-
teration, as honey contains many natural sugars. However, 
there is an example of this theory that seems to apply quite 
well when detecting added sugar in wine [36]. Promising 
studies [16, 33] are detecting the addition of different kinds 
of sugar in fruit juices. The problem they face is similar to 
ours, where there are already sugars in the juice, and they 
must detect the concentration of added sugar for the dif-
ferent juices. The spectral wavelengths used to determine 
adulteration of juice were in the range of visible to near-
infrared [16]. The spectral responses showed that the pri-
mary response to the sugar adulteration happened at above 
2000 nm. However, some wavelengths showed responses to 
the adulteration at 430 nm, 664 nm, 1154 nm, 1462 nm, and 
1504 nm [16].

Aim and objectives

This work aims to develop a system to detect the concen-
tration of sugar syrup in an adulterated sugar and honey 
solution.

The following objectives provide the pathway for achiev-
ing this aim:

•	 Develop a strategy for adulterating honey that could 
resemble what is done in the real-world

•	 Capture a data set of adulterated honey using hyperspec-
tral imaging

•	 Analysis of the new data
•	 Develop a machine learning system to detect adulterated 

honey.

Our proposed solution is a machine learning and hyperspec-
tral imaging system to classify the adulteration concentration 
in honey samples. This solution comprises a new data set 
of adulterated honey samples captured with a hyperspectral 
camera and a machine learning model trained on this data. 
A classifier can be trained on this data set using machine 



261European Food Research and Technology (2023) 249:259–272	

1 3

learning to determine sugar concentration in honey. The 
idea for the model to be general to any honey type is valu-
able and can be deployed worldwide for different types of 
honey. The data-driven approach means that if new premium 
honey types are discovered, they can be easily added to the 
database making it more robust. Hyperspectral cameras 
are expensive; however, we can use spectroscopy [11], a 
lower cost option, for testing samples in a real-world setting. 
Hyperspectral imaging is advantageous over the spectros-
copy techniques, as it provides complete spectral and spatial 
information of an entire sample in one scan, which we can 
use to train a machine learning model [21]. A testing exam-
ple does not need many data points, meaning spectroscopy 
could easily capture a small number of spectral samples 
from a honey type for testing.

Materials and methods

This section details the methodologies we use to detect the 
level of adulteration in a hyperspectral capture of adulter-
ated honey. Figure 1 illustrates the procedure we follow for 
sample preparation and capturing.

Sample preparation and adulteration

The sample preparation follows the process defined in [21], 
with a few extra steps to adulterate the samples.

The adulterant we are working with is sugar syrup with 
a ratio of 57% sugar and 43% water. This ratio best mimics 
the consistency of most honey in our initial trials. Sugar 
syrup is the only adulterant used in this data set. In theory, 

this system can be applied to detect other adulterants with 
labelled data of adulterated honey mixtures, although further 
experimentation would be required to confirm this.

Samples of honey and sugar syrup are heated to 40 
degrees Celsius in an oven, so the honey sample becomes 
homogenous, as per previous work [21]. This temperature 
is hot enough to melt and mix the honey of all types but not 
hot enough to damage the active ingredients, particularly 
Manuka honey.

Samples of pure honey and adulterated mixtures at 
5%, 10%, 25%, 50% sugar syrup concentration are prepared. 
Seven grams of each mix is poured into a small petri dish 
and captured with the hyperspectral imaging system. The 
capture system uses a dome lighting system with halogen 
bulbs to ensure even broadband lighting over the samples 
[21]. The images of honey have been captured with a hyper-
spectral imager SOC-710 from Surface Optic. The hyper-
cubes captured are between 400and1000nm in wavelength 
with a 5nm increment and have a 520x696 spatial resolution. 
This wide range of wavelengths has been used in previous 
work in this application [20, 21]. This adulteration and cap-
ture process has been repeated a total of six times.

Figure 2 shows an RGB image of the adulterated honey 
samples from two classes: Manuka and Clover. This figure 
shows that it is not apparent from an RGB image of the 
adulterated samples. The 50% and 25% adulterated samples 
look different to the 5% and 10% adulterated honey samples. 
However, the 5% and 10% adulterated samples are hard to 
differentiate between and look very similar to pure honey. 
This figure demonstrates that the human eye alone cannot 
determine if a honey sample is adulterated, and there is a 
need for a more scientific approach. Even replacing 5% of 

Fig. 1   Sample preparation process for one honey type in our database
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a premium honey type such as NZ Manuka honey with a 
cheaper substance will significantly reduce the cost of pro-
ducing the honey. The approach needs to be sensitive enough 
to detect a minimal amount of adulteration.

Preprocessing and calibration

Because a hyperspectral imaging system measures the inten-
sity of light reflected into the camera, the calibration process 
is crucial to obtaining consistent images. Calibration is per-
formed using a dynamic white reference technique further 
detailed in [22].

Segmentation is a key preprocessing step in our work, and 
a point of difference between the two groups working in this 
area [21, 34]. The approach we take is to use segmentation 
rather than directly using the entire hyperspectral images, 
as this enables training of machine learning techniques with 
more training examples. The segmentation approach divides 
the hyperspectral image into a five-by-five grid, meaning it 
obtains 25 training/testing examples from each image cap-
tured. The segments are then averaged, excluding outliers, 
representing the overall honey sample. Figure 3 clearly illus-
trates this process.

Normalisation is applied to the final data set before using 
any machine learning techniques. The normalisation tech-
nique is a simple standard scalar, which scales most data to 
fit between 0 and 1. This technique has been used in previous 
work on honey botanical origins classification with hyper-
spectral imaging [23].

Feature reduction and classification

We use the most promising techniques from the existing 
work on honey botanical origins classification and consider 
the theory of adulteration from related applications. Feature 
reduction can reduce overfitting, therefore, improving per-
formance by reducing the complexity of the problem [10].

Suitable benchmark classifiers, including the k-nearest 
neighbour (KNN) classifier and SVMs using a linear and 
radial basis function (RBF) kernel, have been considered. 
The feature reduction techniques used are: principal compo-
nent analysis (PCA), selecting the k best features based on 
feature ranking, and autoencoder techniques [26, 29].

We consider a new technique to smooth the features by 
summing together groups of several wavelengths. This tech-
nique is in line with the assumption that sugar concentration 
is best detected by taking the sum of a range of wavelengths 
rather than a single wavelength [33, 36].

Feature smoothing

It has been validated that sugar concentration is best detected 
by taking the sum of a range of wavelengths rather than a 
single wavelength [33, 36]. Accordingly, feature smooth-
ing is implemented before performing feature reduction and 
classification. Although this approach incurs data losses, it 
helps our classifiers to generalise by reducing complexity 
[10] in detecting sugar in a mixture of adulterated honey. 
Figure 4 shows this feature smoothing that we consider in 
this work. This smoothing works as a moving average across 
the original features.

The smoothing in our work uses a window size of 15, 
meaning that each new feature is the average of 15 original 
features. This window size was found empirically. Much 
larger sizes smooth the features too much and decrease clas-
sification accuracy, while smaller windows do not impact the 
classification accuracy.

Principal component analysis (PCA)

PCA is a standard method for feature extraction and reduc-
tion. The features are linearly combined, forming a set of 
orthogonal vectors. Only the high variance features are kept 
in this approach [39].

Fig. 2   Adulterated honey 
samples of Manuka and Clover 
types

Fig. 3   Segmentation process for our data set, showing how the image 
is split into a five-by-five grid to obtain 25 samples
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PCA has been a high-performing benchmark method in 
our previous work on honey botanical origins classification 
[26, 27, 29].

Autoencoders

Autoencoders are another form of feature reduction; they 
transform the input space, similar to PCA, into a smaller set 
of features representing the same information [1]. Autoen-
coders are neural networks with two networks; encoder and 
decoder. The input data passes through the encoder to deter-
mine the features; then, the features pass through the decoder 
to recreate the input data.

The CEAE is a type of such structure but additionally 
includes the classification labels in the training process 
through using a weighted secondary output [29]. In this 
work, we use a variational class embodiment autoencoder 
(VCEAE) which combines the variational autoencoder 
(VAE) with the CEAE. Figure 5 shows the VCEAE structure 
we use in this paper. This structure improved the generalisa-
tion performance on the honey botanical origins classifica-
tion [26].

K nearest neighbour classifier (KNN)

The KNN classifier is a standard machine learning classi-
fier. In this work, we use KNN with k = 5 , meaning that 
each example is classified based on the class labels of the 
five closest training examples. This method was used as a 
benchmark in our previous work on honey botanical origins 
classification [26, 27, 29]. KNN requires minimal param-
eter tuning, which is an advantage over more complicated 
classifiers.

Support vector machines (SVMs)

SVMs perform well in situations, where the data are of high 
dimensionality or has non-linear complexities [13, 14, 37, 
38]. SVMs work by first transforming the feature space using 
a kernel function and then splitting the data by a hyperplane 
to minimise the risk of misclassifications. We investigated 
different SVM structures for Manuka honey classification 
[27, 29] with varied success. We consider these structures 
further in this experiment using linear and RBF kernel 
SVMS.

Data analysis

As this is a new database and the first publicly available 
database for adulterated honey mixtures, it is essential to 

Fig. 4   Feature smoothing method. The input features are averaged in 
groups of five in this example to form the new features

Fig. 5   Variational class embodi-
ment autoencoder architecture, 
with four fully connected 
encoder and decoder layers
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analyse the data to identify trends and evaluate the suitability 
of the data for the adulteration detection task. The data has 
been made available online [30].

Full data set analysis

The data set comprises 12 different honey products from 
seven brands with 11 different botanical origins labels. 
Each type of honey has been captured with six independ-
ent samples. Half of the samples are from Manuka honey, a 
premium NZ honey type, and the other half are from other 
NZ honey. Table 1 shows the makeup of the data set from 
these different kinds of honey. In creating the data set, we 
sampled and captured images of all the honey at each sugar 
concentration; however, some mixtures were of low quality, 
and we could not include the images in the final data set. 
Table 1 represents the number of training and testing exam-
ples available. Each sample contains 25 examples following 
segmentation. The 0% adulteration examples relate to sam-
ples of pure unadulterated honey. These are kinds of honey 
that have previously been captured for a botanical origins 
data set [28] and come from reputable sources. These pure 
honey samples are guaranteed pure honey of the botanical 
origin displayed on their label.

The mean spectral response of the different concentra-
tions is given in Fig. 6, showing the general trend for how 
added sugar affects the spectral response of honey. Figure 6 
shows that in the mid-range of wavelengths, the response 
is distinct depending on the concentration. The spectral 
responses follow a similar pattern across all concentrations, 
indicating that the overall shape of the spectral response is 
dominated by the honey, not the sugar syrup.

It is important to determine which features can give us 
more information about the concentration of the adulter-
ated honey. Analysis of variance (ANOVA) calculates the 
F-score for each wavelength feature using the concentrations 

as the classes. Figure 7a shows ANOVA calculated F-scores. 
Another technique for analysing relevant features is the chi2 
statistic. Figure 7b shows the chi2 results for all wavelengths.

Intra honey‑type analysis

The variation within the different adulterated honey types 
is essential. This section displays the average spectral 
responses for each honey type at different concentrations. A 
few of the honey types do not contain samples from all con-
centrations due to quality control of our data, where some 
concentrations were contaminated or incorrectly captured.

Figure 8 shows the mean spectra for each honey type sep-
arately. The adulterated spectra are closely related in some 

Table 1   Overall makeup of the 
adulterated honey data set from 
each brand and botanical origins 
label of honey

Brand Class Adulteration concentration

0% 5% 10% 25% 50% Sum

C1 Clover 150 150 300 300 300 1200
C10 MultiFloral 150 150 150 450

ManukaUMF5 150 150 150 150 600
ManukaUMF15 150 150 150 150 600
ManukaUMF20 150 150 150 150 600

C4 ManukaUMF10 150 150 150 125 575
C5 ManukaBlend 150 150 150 450
C7 BorageField 150 150 150 150 150 750

Kamahi 150 150 150 150 150 750
Rewarewa 150 150 150 450

C8 ManukaBlend 150 150 150 150 150 750
C9 Manuka 150 300 300 300 300 1350

Fig. 6   Mean spectral response for all honey types at different concen-
trations of adulteration with sugar syrup
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honey types. This finding could indicate a high level of sugar 
naturally occurring in these kinds of honey. Detecting the 
adulterant generally across all types of honey is not straight-
forward as honey shares some attributes with the diluted 
sugar solutions.

Some types of honey are very similar across all adultera-
tion concentrations, such as Rewarewa honey and Manuka 
UMF15+ and UMF20+. Figure 8 shows these spectral 
responses are, on average, very similar for these honey types. 
Other types of honey have apparent differences between the 
different adulteration concentrations, such as Borage Field, 
Manuka, and Manukablend, where higher classification 
accuracy is expected.

Experiment design

This section describes how the experiments are designed to 
classify adulterated honey.

We evaluate the classification accuracy in two different 
scenarios:

•	 Binary classification between pure honey and all concen-
trations of adulterated honey.

•	 Classification of adulteration % into categories of 0% , 
5% , 10% , 25% , and 50%.

These two scenarios represent a realistic real-world need, 
which is to, most importantly, be able to detect if a honey 
sample is fraudulent. Once adulteration is detected, estimat-
ing how much adulterant is used would become crucial.

Our concentration detection is limited to a classification 
problem with four possible adulteration concentrations due 
to the data being heavily skewed toward these four concen-
trations. This data skew was by design when we created the 
data set, as we aim to evaluate how well the classifiers could 
detect different ranges of concentrations. Once it is proven 

to be possible to classify between these four classes, future 
work can capture more data and train a regression algorithm 
to predict the sugar concentration.

The feature reduction techniques adopted are PCA and 
the VCEAE. For PCA, we use the first 20 principal com-
ponents. The network parameters for the VCEAE are kept 
consistent with what was used in previous work for honey 
botanical origins classification, detailed in Sect. 2.3.3. The 
VCEAE structure is a six hidden layer encoder and decoder 
network with layers [128(input), 128, 110, 92, 74, 56, 38, 
20(output)], and the reverse for the decoder. There are 20 
features in the latent space, and it has a classification weight 
of 0.4. We used 50 epochs with a batch size of 32 and a 
learning rate of 0.001. The rectified linear unit (ReLU) acti-
vation function was used throughout the entire network, 
aside from the classification output, which used sigmoid. 
We used dropout for all our network layers with a dropout 
rate of 0.0005. These parameters align with what was used 
for honey botanical origins classification, where the VCEAE 
had the best generalisation performance [26].

In addition to these feature reduction techniques, we also 
apply the feature smoothing method detailed in Sect. 2.3.1 
with a window size of 15.

The classifiers we consider are the KNN classifier with 
k = 5 , RBF and linear SVMs, where � and C are tuned 
parameters on the cross-validation set using seven values 
on a log scale between 10−3 and 103

In this work, we deal with unbalanced data sets for the 
binary classification case, so it is important to measure accu-
racy and understand how each class is performing. We use 
the F1 score for this measure, which calculates a balanced 
average between recall and precision. The F1 scores are then 
averaged with a macro average technique that weights each 
class equally, not based on the class size. The F1 score can 
be calculated by Eq. 3, where precision is defined by equa-
tion 1, and recall is defined by Eq. 2. True positive refers to 

Fig. 7   ANOVA F-score and chi2 statistics calculated for each wavelength using the adulteration concentration as the classification label
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the positive examples from each class that were correctly 
classified, whereas false positive is the negative examples 
incorrectly classified as positive. False-negative are the 
examples that were classified as negative but are positive. 
This metric is calculated per class and then averaged after 
the final F1 score calculation in Eq. 3. The F1 score metric, 
along with standard accuracy, is a useful tool to evaluate the 
performance of a classifier and ensure it is not biased toward 
the larger class:

(1)Precision =
True positive

True positive + False positive

(2)Recall =
True positive

True positive + False negative

Fig. 8   Mean spectral response of each honey type at different adulteration concentrations
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Results

This section discusses the results of feature smoothing, fea-
ture reduction, and classification of the adulteration con-
centrations. There are two classification approaches in this 
paper; binary and multi-class classifications, as described 
in Sect. 2.6.

Binary classification results

This section details the results of binary classification 
between adulterated and non-adulterated honey. Table 2 
refers to a classifier trained to generally classify adulterated 
vs non-adulterated honey. The training and testing set con-
sists of all the different concentrations of sugar adulteration 
we have captured as adulterated honey and the pure honey 
captured as non-adulterated. The classifiers used have been 
used in previous work on honey botanical origins classifi-
cation. As detailed in Sect. 2.3, we use a feature smooth-
ing approach, along with feature reduction and classifica-
tion. The feature reduction techniques we use are PCA and 
VCEAE and the original features. The classifiers used are a 

(3)F1 =
2 ∗ (Recall ∗ Precision)

Recall + Precision

KNN classifier, a linear SVM, and an RBF SVM. The SVM 
classifiers have been tuned to this particular problem.

Table 2 shows the results of binary classification between 
non-adulterated honey and all concentrations of adulterated 
honey. Acc is the performance accuracy between zero and 
one. Std is the standard deviation of the cross-validation 
results. F1 refers to the average F1 score for all classes cal-
culated by Eq. 3. The results show that even classical tech-
niques such as KNN can perform well. The best classifiers 
achieve above 97% accuracy on this problem, making them 
a valuable addition to fraud protection measures already in 
place for honey adulteration. A quick and reliable method 
of detecting adulterated honey, even at low percentages, is 
beneficial for exporting and importing honey products with 
reliable quality assurance.

The results from Table 2 show that there is some improve-
ment from reducing the number of features and using sup-
port vector machine classifiers. However, the KNN classifier 
with the smoothed features can perform very well. The linear 
SVM using the VCEAE feature reduction technique was the 
best performing classifier. These more complex classifiers 
significantly impacted when classifying honey botanical 
origins, but the improvement is only small for this adultera-
tion classification problem. For the next set of results, we 
consider using only the best classifier, the linear SVM with 
the VCEAE. In general, the feature smoothing technique 
improved the results for most classifiers. When comparing 
the same classifiers and feature reduction techniques with 

Table 2   Results of binary 
classification experiments 
between non-adulterated and 
adulterated honey samples

Acc is the classification accuracy between zero and one, Std is the standard deviation, and F1 is the F1 
score

Smoothing Features Classifier Cross validation Training Set Testing Set

Acc Std F1 Acc F1 Acc F1

None All KNN 0.998 0.001 0.998 0.999 1.000 0.963 0.900
LinearSVM 0.964 0.006 0.918 0.959 0.910 0.921 0.810
RBFSVM 0.973 0.002 0.942 0.977 0.950 0.961 0.910

PCA KNN 0.998 0.001 0.996 0.999 1.000 0.961 0.900
LinearSVM 0.819 0.048 0.660 0.870 0.710 0.876 0.600
RBFSVM 0.968 0.004 0.934 0.972 0.940 0.958 0.900

VCEAE KNN 1.000 0.000 1.000 1.000 1.000 0.969 0.920
LinearSVM 0.999 0.001 1.000 1.000 1.000 0.976 0.940
RBFSVM 0.998 0.002 0.998 0.999 1.000 0.971 0.930

Sliding Window All KNN 0.999 0.001 0.998 1.000 1.000 0.967 0.920
LinearSVM 0.918 0.055 0.842 0.903 0.830 0.903 0.790
RBFSVM 0.963 0.002 0.924 0.967 0.930 0.960 0.910

PCA KNN 0.999 0.001 1.000 1.000 1.000 0.966 0.910
LinearSVM 0.892 0.024 0.764 0.870 0.720 0.879 0.670
RBFSVM 0.962 0.005 0.922 0.966 0.930 0.959 0.910

VCEAE KNN 1.000 0.001 1.000 1.000 1.000 0.946 0.870
LinearSVM 0.999 0.001 1.000 0.998 1.000 0.957 0.890
RBFSVM 0.996 0.003 0.992 0.996 0.990 0.960 0.900
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and without the feature smoothing, the classification systems 
with the smoothing performed better in both accuracy and 
F1 score in most cases. However, the feature smoothing did 
not improve the results for our best classifier and feature 
reduction combination.

We also consider training a classifier on binary classifi-
cation between each concentration of adulterant and non-
adulterated honey. The results of this are shown in Table 3. 
These results are useful to get a picture of how the different 
concentrations of honey are misclassified. The results in 
Table 3 are obtained using a linear SVM classifier with the 
VCEAE feature reduction method.

The results in Table 3 show that, as expected, the lower 
the sugar concentration, the harder it is to classify the adul-
terated honey. The best testing accuracy on 5% honey was 
87%, with an F1 score of 0.850. The best accuracy for the 
50% and 25% adulterated honey was 100% with an F1 score 

of one. This accuracy shows that most misclassification is 
happening for the very low concentrations of adulteration.

Multi‑class classification results

We also perform multi-class classification between all 
adulteration concentrations; 0%, 5%, 10%, 25%, 50%. This 
problem relates to a real-world scenario, where we want to 
understand how much sugar is added to adulterated honey. 
Table 4 shows the results of multi-class classification using 
our set of benchmark feature reduction techniques and clas-
sifiers, as well as the new feature smoothing technique.

The results in Table 4 show that it is possible to achieve 
over 95% accuracy in this classification. The best classifier is 
the KNN with all features, and the feature smoothing method 
improves it slightly. The multi-class classification results are 
consistent with the binary classification results regarding the 

Table 3   Binary classification 
between pure honey (0% 
adulteration) and each 
concentration of adulteration 
(5%, 10%, 25%, 50%)

Acc is the classification accuracy between zero and one, Std is the standard deviation, and F1 is the F1 
score

Problem Cross validation Training set Testing set

Acc Std F1 Acc F1 Acc F1

5% vs 0% 0.998 0.005 0.998 1.000 1.000 0.870 0.850
10% vs 0% 1.000 0.001 1.000 0.999 1.000 0.954 0.950
25% vs 0% 1.000 0.000 1.000 1.000 1.000 1.000 1.000
50% vs 0% 0.999 0.002 0.998 1.000 1.000 1.000 1.000

Table 4   Results of multi-class 
classification experiments of 
adulteration concentration

Acc is the classification accuracy between zero and one, Std is the standard deviation, and F1 is the F1 
score

Smoothing Features Classifier Cross validation Training set Testing set

Acc Std F1 Acc F1 Acc F1

None All KNN 0.991 0.003 0.990 0.996 1.000 0.950 0.940
LinearSVM 0.727 0.010 0.730 0.748 0.750 0.644 0.640
RBFSVM 0.956 0.006 0.956 0.969 0.970 0.899 0.880

PCA KNN 0.991 0.003 0.992 0.995 1.000 0.948 0.940
LinearSVM 0.501 0.009 0.486 0.507 0.490 0.474 0.440
RBFSVM 0.944 0.003 0.946 0.959 0.960 0.891 0.880

VCEAE KNN 0.996 0.001 0.998 0.999 1.000 0.945 0.930
LinearSVM 0.995 0.002 0.996 0.999 1.000 0.946 0.930
RBFSVM 0.993 0.002 0.992 0.998 1.000 0.946 0.930

Sliding Window All KNN 0.995 0.002 0.994 0.999 1.000 0.951 0.940
LinearSVM 0.638 0.008 0.634 0.657 0.650 0.574 0.560
RBFSVM 0.932 0.005 0.932 0.945 0.950 0.885 0.870

PCA KNN 0.995 0.002 0.994 0.999 1.000 0.950 0.940
LinearSVM 0.580 0.009 0.576 0.590 0.580 0.527 0.490
RBFSVM 0.930 0.006 0.930 0.944 0.940 0.883 0.870

VCEAE KNN 0.997 0.001 1.000 0.999 1.000 0.943 0.930
LinearSVM 0.996 0.002 0.998 0.998 1.000 0.940 0.930
RBFSVM 0.991 0.006 0.990 0.995 1.000 0.939 0.930



269European Food Research and Technology (2023) 249:259–272	

1 3

high-performing classifiers. However, the best classifier is 
different for this problem. The accuracy of the multi-class 
classifiers is slightly less than binary classification; the F1 
scores are higher than the binary case. This difference in 
F1 score is likely a result of minor class imbalance in the 
multi-class scenario.

Overall the results achieved above 95% using a feature 
smoothing method and a KNN classifier for binary and 
multi-class classification tests. The misclassifications should 
be investigated to analyse if a pattern or some aspect of the 
data is causing an adulterated sample to be classified as pure 
honey or vice versa.

Discussion

In this section, we discuss the impact of the results reported 
in Sect. 3 and perform further analysis to give insight into 
the misclassifications.

The main result of over 95% classification accuracy for 
binary and multi-class classification shows that hyperspec-
tral imaging and machine learning can accurately detect if 
honey is adulterated with sugar syrup. This system would be 
a valuable addition to the existing quality assurance meth-
ods used for honey. The performance evaluation is limited 
to honey in our data set. Detecting fraud with this level of 
accuracy in a known honey set is a valuable tool, and as this 
data set builds up over time, a more general fraud detection 
system can be developed.

The misclassifications in the binary classifier are occur-
ring mainly with the 5% and 10% adulterated honey sam-
ples. Evaluating the individual concentration classification 
shows that the misclassifications mainly impact C1 Clover 
honey. Table 5 shows the misclassification percentage of 
each honey type when using the best classifier and feature 

reduction techniques. This analysis is coresponding to the 
results shown in Tables 2, 3, and 4.

Overall we can see in Table 5 that some honey types 
are more often misclassified than others. One-third of the 
samples were misclassified for the C1 Clover honey type 
in the binary classification between 0 and 5% adulterated 
honey. This misclassification might be to do with the con-
stituents of clover honey compared to the other honey. It 
is typically quite a light coloured sweet honey, so perhaps 
the spectrum is not changed much when small amounts 
of sugar are added. The Manuka honey performed excep-
tionally well, with few misclassification percentages in 
the multi-class problem. This high performance could be 
because Manuka is very rich in flavoured and coloured 
honey, and adding sugar syrup does not mimic the con-
stituents of Manuka honey very well. This result is positive 
for our application as Manuka is the most expensive honey 
and has been the main target for fraud.

The other form of analysis is to analyse which classes 
are being misclassified. This is particularly important for 
the multi-class problem; however, we will analyse all the 
classification problems. Table 6 shows the confusion matri-
ces for all of the classification scenarios. For the binary 
classification problem in Table 6a, pure honey means the 
unadulterated honey samples. These unadulterated samples 
are referred to as 0% adulteration in Table 6b–f.

Table 6 shows that the misclassifications are commonly 
the case that the pure, 0% adulterated honey is being misclas-
sified as adulterated. In Table 6f, the multi-class case, these 
are mostly misclassified as 5% honey. Based on Table 6f, 
it is clear that the misclassifications occur between similar 
classes, which is positive for our results. A 25% adulterated 
honey is only confused with 10% and 50% adulterated honey.

In Tables 5 and 6, we can see that the majority of mis-
classification is happening on a small group of honey and 

Table 5   Table showing 
misclassification % for each 
honey type on each problem

The classification problems labeled 5%, 10%, 25%, and 50% refer to the binary classification between the % 
and pure honey

Brand Class Mislassification Percentage

Binary 5% 10% 25% 50% Multi

C1 Clover 12.50% 50.00% 32.00% 12.50%
C10 MultiFloral 5.33% 48.00% 1.33%

ManukaUMF5
ManukaUMF15
ManukaUMF20 8.00%

C4 ManukaUMF10 14.00%
C5 ManukaBlend
C7 BorageField 0.80% 2.00% 0.80%

Kamahi 2.40% 48.00% 6.00% 15.20%
Rewarewa

C8 ManukaBlend 0.80%
C9 Manuka
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are typically from nearby classes. This result indicates that 
generalising the classifiers to all types of honey is causing 
errors. The classifier can train a good solution for most of 
the data set, especially where there are many similar train-
ing examples, such as with Manuka honey. The solution to 
this problem is to add data from many more types of honey 
to have a broader representation of botanical origins labels. 
We saw high misclassification from Clover honey which 
has few samples, and particularly low misclassification for 
Manuka honey which has many samples from several dif-
ferent brands. As discussed in Sects. 1.1 and 1.1.1, previous 
work on adulteration has often focused on tiny data sets of 
honey or only one type of honey. This paper has solved some 
issues with classifying several honey types at once. Still, 

future work is needed to develop a more broadly representa-
tive database to classify all honey types accurately.

Compared to existing work on honey adulteration detec-
tion, we use the largest data set with the most variety of 
honey types. The accuracy of 97.6% for binary adulteration 
detection, as detailed in Table 2, and 95% for multi-class 
adulteration classification, as detailed in Table 4 is higher 
than any known existing work that uses multiple honey 
types. Higher accuracy of 99.2% for adulteration detection 
has been reported in [15], where near-infrared spectroscopy 
was used to detect adulteration in four different honey types. 
This work, however, used only 16 samples for four different 
concentrations and four honey types, and the test set did not 
use independent samples from the training set, so this result 
is not statistically valid.

Fourier transform infrared spectroscopy was used to 
detect the adulteration of honey with cane sugar in [12, 35]. 
This paper used only three types of honey that were adul-
terated to a concentration of cane sugar between 1% and 
25%. The average test accuracy in [35] was 92.5% when 
the model was trained on each honey type separately but 
dropped to 78.4% when the model was trained and tested 
on all three honey types simultaneously. Statistical methods 
of canonical variate analysis are used as the classification 
model. Our methods are superior to this approach, as we 
have trained our model across all honey types simultane-
ously and achieved over 95% for multi-class classification. 
This work was extended for one honey type (Clover) in [12] 
which achieved 93.95% using a neural network and linear 
discriminant analysis. The conclusion of this work stated 
that it needed to be extended to more honey types.

A single honey type (Manuka) was adulterated with five 
different types of sugar syrup (corn syrup, sucrose syrup, 
high fructose corn syrup, beet syrup, and rice syrup) and 
captured with near-infrared spectroscopy [41]. The honey 
was adulterated with all the adulterants at concentrations 
10% , 20% , 30% , 40% , and 50% . This work showed a clear 
difference in the spectrum between 1300 and 1800 nm that 
can be used to detect the adulteration of Manuka honey. This 
work was limited by only having one honey type. However, 
it has been demonstrated that spectral imaging can detect 
adulteration with many different adulterants.

Hyperspectral imaging was used to detect adulteration 
between sugar syrup and honey using a neural network 
with 95% accuracy in [34]. The approach used was differ-
ent to our method, as they did not use segmentation on the 
hyperspectral images. Instead, they used an entire hyper-
spectral image as a single training/testing example. The 
accuracy achieved is lower than our accuracy for binary 
classification, and the data set is much smaller than the 
one we provide. Multi-class classification is mentioned, 
but the results are not quantified and, therefore, cannot 
be compared.

Table 6   Confusion matrices for binary and multi-class classification 
problems using the VCEAE and linear SVM for binary problems, and 
the KNN classifier with smoothed features for multi-class classifica-
tion

(a) Binary

Pure Adulterated

Pure 143 32
Adulterated 1 1224

(b) 5% vs 0%

0% 5%

0% 125 50
5% 23 302

(c) 10% vs 0%

0% 10%

0% 147 28
10% 0 300

(d) 25% vs 0%

0% 25%

0% 175 0
25% 0 300

(e) 50% vs 0%

0% 50%

0% 175 0
50% 0 300

(f) Multi-class

0% 5% 10% 25% 50%

0% 129 45 1 0 0
5% 0 320 5 0 0
10% 0 2 284 14 0
25% 0 0 0 298 2
50% 0 0 0 0 300
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Conclusions

This paper has introduced new adulteration detection tech-
niques and a suitable adulterated database, where honey is 
adulterated with different percentages of sugar syrups. This 
database is the first to be made publicly available online. The 
process of capturing honey samples is also made available to 
the research community. We also introduced a new method 
of feature smoothing before applying standard feature extrac-
tion and classification techniques. The proposed smoothing 
feature method improved the classification accuracy across 
all classifiers and testing scenarios while reducing the 
complexity of the algorithms. This paper shows that using 
hyperspectral imaging; adulterated honey can be detected 
with above 95% accuracy for both binary and multi-class 
classification, as shown in Tables 2 and 4. This accuracy 
is higher than comparable work on adulteration detection 
in honey. As honey, especially Manuka, increases in value 
globally, honey fraud will become more common. Thus, we 
propose a quick, non-invasive, and reliable method to detect 
adulteration with sugar syrup. The main limitation of this 
work is that although the data set is the largest captured for 
honey adulteration, it is still far too small and only covers 
a minimal set of honey types at five different adulteration 
concentrations. Future work involves: extending the data 
set to a broader range of honey, evaluating and improving 
the generalisation to unknown honey types of the current 
data set, extending the data set to include other adulterants, 
such as rice sugar or cheaper honey, and extending the data 
set to cover more concentrations of adulteration particularly 
concentrations below 5% . Compared to the existing work 
on detecting sugar adulteration in honey with hyperspec-
tral imaging, this approach is more accurate and tested on a 
broader publicly available data set.
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