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Abstract
The production of high-quality wines requires the use of high-quality grapes. Tasting represents a widespread method for 
the determination of grape maturity and quality aspects such as the corresponding aroma profile. However, sensory analy-
sis always remains subjective and it is not possible to judge only aroma compounds because the overall impression is also 
influenced by main components (e.g. sugars and acids). In contrast, the use of near-infrared (NIR) spectroscopy allows the 
simultaneous determination of various compounds without being affected by personal preferences. In this study, grape mash 
samples were examined under comparable conditions to those in the mouth. Differences between grape mashes with varying 
phytosanitary status of the corresponding grapes as well as for different grape varieties were detected. The quantified concen-
trations of the detected aroma compounds were used to develop calibration models for determination by NIR spectroscopy. 
Using global calibration models, the single aroma compounds could be determined by NIR spectroscopy with accuracies 
reaching from R2

C = 0.365 to R2
C = 0.976. Separate calibration models for cultivation region and grape colour improved the 

prediction accuracy. Instrumental analysis cannot totally replace sensory evaluation, however, NIR spectroscopy has the 
potential to be used as an objective, additional method for the evaluation of grape aroma quality.
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Introduction

Wine aroma compounds are formed at different stages of 
wine production. Various compounds already occur in grape 
skins and flesh or can be formed by enzymatic and catalytic 
processes induced by the disruption of cell walls. While 
some compounds are precursors for aroma compounds 
formed during fermentation and ageing processes, others 
pass unmodified into the resulting wine during process-
ing and contribute to the resulting wine aroma [1]. Most 
grape varieties do not contain specific volatile compounds, 
which are mainly responsible for its typical aroma. Instead, 
the varying combinations and concentrations of the same 
compounds result in a characteristic varietal aroma [2]. 

Fermentation and ageing substantially affect characteristic 
wine taste and aroma, however, compounds originating from 
the grapes play an important role as well. Depending on, e.g. 
the phytosanitary status of the grapes, not only desired, but 
also undesired compounds can be transferred into the wine 
and thereby may influence its aroma considerably [3].

Grape tasting is a widespread method among winegrowers 
to determine grape maturity and harvesting time. Unpleas-
ant aroma can also partly be sensed, but the impression is 
subjective due to factors influencing individual perception of 
aroma compounds. Saliva and salivary composition as well 
as chewing and swallowing patterns play an important role 
in aroma release and perception [4]. Moreover, other grape 
compounds influence the overall impression of the taste, like 
the sugar/acid-ratio, which significantly affects the sensory 
acceptance of grapes [5, 6].

Nowadays, sophisticated analytical methods and instru-
mentation allow the precise and accurate determination 
of aroma compounds without being affected by personal 
impressions and preferences. The common determination 
method of aroma compounds is gas chromatography cou-
pled with mass spectrometric detection (GC–MS). The 

 *	 Christian Zörb 
	 Christian.Zoerb@uni-hohenheim.de

1	 State Research Institute for Viticulture and Pomiculture, 
Traubenplatz 5, 74189 Weinsberg, Germany

2	 Institute of Crop Science, Quality of Plant Products 
and Viticulture (340E), University of Hohenheim, 
Emil‑Wolff‑Straße 25, 70593 Stuttgart, Germany

http://orcid.org/0000-0002-4659-6116
http://orcid.org/0000-0001-5055-3496
http://orcid.org/0000-0003-0000-5138
http://crossmark.crossref.org/dialog/?doi=10.1007/s00217-022-04048-1&domain=pdf


2326	 European Food Research and Technology (2022) 248:2325–2337

1 3

high sensitivity of gas chromatography allows the simul-
taneous determination of compounds present in even very 
low concentrations, while mass spectrometry facilitates 
the identification of the detected compounds [7]. In case of 
aroma analysis, it has to be kept in mind that absolute con-
centrations of aroma compounds are determined. However, 
different aroma compounds show different odour and taste 
thresholds, so the contribution of single compounds to the 
overall aroma does not necessarily correlate with their 
concentrations. Some compounds may be precursors for 
off-odours and -flavours in wine, although their concentra-
tions lie below the odour and taste threshold in grapes [7, 
8]. Despite the high precision and accuracy of GC–MS 
analysis, various disadvantages have to be regarded, like 
the requirement of expensive analytical equipment and 
high-purity chemicals. Moreover, sample preparation, 
analysis and data evaluation are very time-consuming and 
require a trained user.

In contrast, NIR spectroscopy allows the simultaneous 
determination of various compounds with minimal to no 
sample preparation, while instrumentation is considerably 
cheaper and easier to use [9]. Due to the ongoing improve-
ment of spectrometers and chemometric methods, analysis 
becomes increasingly precise and large amounts of data can 
be processed. NIR spectroscopy has already been used suc-
cessfully for semi-quantitative determination of glycosylated 
aroma compounds in white grape juice [10] and in Tannat 
grapes [11]. Furthermore, the detection of smoke taint in 
grapes exposed to bushfires has been examined successfully 
[12]. Despite the low concentrations of aroma compounds 
(often present in a ppb range), high prediction accuracies 
were reached.

However, the above-mentioned studies only cover a very 
small range of grape aroma analysis, which leaves a large 
field for further research on NIR applications. Glycosylated 
compounds play an important role, however, they represent 
only a part of the overall grape aroma and do not have the 
same importance in all grape varieties. Smoke contamina-
tion in grapes affects various growing areas, such as Aus-
tralia, South Africa, Greece, Chile or USA. The detection 
of smoke contamination provides important information 
about the grapes, but smoke-derived volatile phenols also 
accumulate as glycosidic bound forms after absorption [12]. 
Moreover, previous studies on grape aroma compounds only 
focussed on the determination of absolute concentrations 
of aroma compounds without considering the influence of 
tasting. Due to various aspects (e.g. salivary composition), 
the perception during tasting differs from the composition 
and absolute concentrations of aroma compounds [4, 13]. 
Therefore, the conditions for analysis should be as similar 
as possible to those in the mouth to avoid the determina-
tion of compounds, which are not released during tasting. 
Moreover, artefacts may be formed (e.g. during sample 

preparation), which are not naturally present in grapes, such 
as monoterpene oxides.

The aims of the present work were to examine the aroma 
profiles of grape mash samples and to evaluate the poten-
tial of NIR spectroscopy for on-line determination of grape 
aroma compounds under tasting conditions. This should pro-
vide a method for objective evaluation of grape aroma upon 
receival at the winery and support the decision about the 
treatment of the grapes for an improved wine quality. As far 
as we know, this is the first approach of on-line determina-
tion of grape aroma compounds.

Materials and methods

Samples

Grape mash samples were provided by two wineries 
(Felsengartenkellerei Besigheim eG, Hessigheim/Ger-
many and Badischer Winzerkeller eG, Breisach/Germany) 
from the vintages 2017 and 2018 (Table 1). Samples were 
taken directly from the grape reception line to assure that 
the grape mash for reference analysis was identical to the 
grape mash analysed by the NIR sensor. The samples were 
filled into 500 mL-plastic bottles, which contained sodium 
azide (150–200 mg) for preservation (except the samples 
from 2017 from Badischer Winzerkeller eG). Samples were 
deep-frozen and stored at − 20 °C until analysis.

NIR measurements

Near-infrared spectra were collected using a X-Three V3 
sensor (Büchi NIR-Online, Walldorf/Germany) with an 
InGaAs detector (NIR range) and a Si detector (visible 
range). The sensor was integrated into the grape reception 
line. Spectra were acquired in diffuse reflectance mode in 
the wavelength range between 400 and 1700 nm (intervals 
of 5 nm). A number of 20 spectra per second were acquired 
during a total measurement time of 15 s. This resulted in a 
total amount of 300 spectra per measurement, which were 
averaged. The software SX-Center (Version 2.13.1000.453, 
Büchi NIR-Online, Walldorf/Germany) was used for data 
acquisition.

Reference analysis

Aroma profiles of the grape mash samples

To avoid changes in chemical composition before the begin-
ning of the measurement, every sample was thawed over-
night at ambient temperature and homogenised directly 
before analysis using a commercial hand blender (ESGE-
Zauberstab 2007-5, Unold AG, Hockenheim/Germany). 
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5 g of homogenised sample material were weighed into 
a 20-mL headspace vial (crimp top/clear/round bottom, 
neoLab Migge GmbH, Heidelberg/Germany) and covered 
with a cap (PTFE/Gray Butyl septum, Perkin Elmer, Rod-
gau/Germany). Ten minutes after homogenisation, the vial 
was gently shaken to avoid possible sedimentation. 10 µL 
of a solution of 2-heptanone (analytical grade, Frey & Lau 
GmbH, Henstedt-Ulzburg/Germany) in HPLC grade water 
(c = 25 mg/L) were added as internal standard. The cap was 
closed and the vial was placed into the headspace sampler 
for analysis.

Headspace GC–MS analysis has already been used in 
previous studies on aroma compounds in fresh fruits, such 
as strawberries and gooseberries [14, 15]. Good results 
were obtained in both studies, so for the analysis of fresh 
grapes mainly the same settings were chosen. Slight modi-
fications were done to keep the measurement conditions as 
close to reality as possible, but also regarding the techni-
cal possibilities. GC–MS analyses were conducted using a 
Turbomatrix 40 Trap Headspace Sampler, a Clarus 600 Gas 

Chromatograph and a Clarus 600C Mass Spectrometer (Per-
kin Elmer, Rodgau/Germany). Headspace parameters can 
be found in Table 2. An Elite-624 capillary column (30 m 
length, 0.25 mm inner diameter (i.d.), 1.4 µm film thickness; 
Perkin Elmer, Rodgau/Germany) and Helium (BIP grade; 
Tyczka Industrie-Gase GmbH, Mannheim/Germany) as car-
rier gas were used for analysis. Oven temperature was set at 
40 °C (held for 5 min), raised to 220 °C at 20 °C/min and 
held for 10 min. For mass spectrometry, the electron ionisa-
tion mode (EI+) was used (70 eV). Mass range was scanned 
between 40.00 and 200.00 m/z. The TurboMass software 
(Ver. 5.4.2) was used for data analysis. Identification of the 
compounds was carried out by comparing the retention times 
to reference substances and the mass spectra to reference 
substances and the NIST library (spectra library: NIST/
EPA/NIH Mass spectral library; search program: NIST MS 
search, Ver. 2.0). Quantification was based on 3-point cali-
bration curves of reference substances in HPLC grade water. 
Reference substances were provided by Frey & Lau (Frey & 
Lau GmbH, Henstedt-Ulzburg/Germany), Sigma-Aldrich 

Table 1   Numbers of grape 
mash samples from different 
grape varieties taken from the 
vintages 2017 and 2018 at the 
two wineries

Felsengartenkellerei Besigheim eG Badischer Winzerkeller eG

2017 2018 2017 2018

Acolon 3 Kerner 3 Gewürztraminer 1 Dornfelder 1
Gewürztraminer 2 Lemberger 73 Grauburgunder 11 Grauburgunder 63
Grauburgunder 3 Muskateller 1 Riesling 1 Müller-Thurgau 26
Hegel 4 Riesling 36 Spätburgunder 36 Spätburgunder 93
Kerner 2 Schwarzriesling 19 Weißburgunder 34 Weißburgunder 16
Lemberger 14 Spätburgunder 12 Variety unknown 10
Mariafeld 15 Trollinger 53
Müller-Thurgau 3 Variety unknown 6
Muskat-Trollinger 7
Portugieser 1
Riesling 70
Samtrot 6
Schwarzriesling 45
Silvaner 1
Spätburgunder 13
Traminer 1
Trollinger 58
Weißburgunder 3

Table 2   Headspace parameters 
used for analysis

a Equivalent to a column flow of 2.5 mL/min (40 °C)

Temperature (°C) Timing (min) Option PPC (psi)

Oven 37 Thermo 5.0 Operating mode Trap Column 20.0a

Needle 50 Dry purge 5.0 Dry purge Yes Vial 25.0
Transfer 200 Desorb 2.5 Outlet split Yes Desorb 20.0
Trap Hi 280 Trap hold 10.0
Trap Lo 40 GC cycle 25.0
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(Merck KGaA, Darmstadt/Germany), Alfa Aesar (Thermo 
Fisher GmbH, Kandel/Germany) and VWR (VWR Inter-
national GmbH, Darmstadt/Germany) with a purity of at 
least 95%.

Effect of saliva on the concentration of aroma compounds

To ensure reproducibility, an artificial saliva solution was 
used instead of human saliva. A basic solution was pre-
pared according to DIN 53160-1:2010-10. The concentra-
tions of the enzymes were selected according to a solution 
used during examinations in the dental area [16]. 300 µL 
of Lysozyme (Lallzyme Lyso, 22,800 u/mg, Lallemand 
Inc., Vienna/Austria) solution (5 mg dissolved in 1 mL of 
HPLC grade water) and 84 µL of α-Amylase (BAN 480L, 
480 KNU-B/g, Novozymes Switzerland AG, Dittingen/Swit-
zerland) were added to 25 mL of the basic solution and used 
for measurement. The mixture of basic solution and enzymes 
was freshly prepared daily.

Grape mash samples were prepared as described above, 
except 2 mL of artificial saliva solution were added before 
shaking the vial.

Additional analyses on the effect of artificial saliva solution

The effect of the used artificial saliva solution was examined 
more precisely in two additional approaches to consider fur-
ther aspects, which may influence the perception of aroma 
compounds.

In a first approach, four different grape mash samples 
were measured before and after addition of varying solu-
tions (water, artificial saliva solution without enzymes and 
artificial saliva solution with enzymes) to verify the effect of 
enzyme addition. Samples were prepared as described above 
with addition of the different solutions.

In a second approach, four different grape mash samples 
were examined after various contact times with artificial 
saliva solution (2 min, 30 min, 2 h, 4 h, 24 h). Samples were 
prepared as described above and stored at room temperature 
for the different times before measurement.

Chemometrics and data analysis

A principal component analysis (PCA) was carried out for 
the reference data using Origin 2020 software (Version 
9.7.0.185, OriginLab Corporation, Northampton/USA) 
to evaluate the influence of artificial saliva solution. Dis-
criminant analysis was performed using XLStat (Version 
2021.2.2.1132, Addinsoft, Paris/France).

Spectral data and reference data were processed using the 
software SX-Plus (Version 2.13.1000.453, Büchi Labortech-
nik GmbH, Essen/Germany). The used regression method 
was XLS regression, which combines partial least squares 

(PLS) regression with the first derivative. Calibration models 
were calculated without spectral pre-treatment, after normal-
isation by standard normal variate transformation (SNVT) 
and after normalisation by multiplicative scatter correction 
(MSC). The maximum number of latent variables (LV) cal-
culated was 15. First, a global calibration model based on 
all samples was calculated for each compound. Second, the 
dataset was divided into subsets per origin, grape colour and 
both aspects (totally eight subsets per compound). There-
after, from each subset separate models for both vintages 
were developed. Calibration models were only calculated 
for datasets containing 30 or more samples. Validation was 
carried out by segmented cross-validation (S = 5) due to the 
different sizes of the datasets. The overall smallest standard 
error of cross-validation (SECV) was determined to select 
the spectral pre-treatment and the number of LVs for each 
model. Model performance was judged by the coefficients 
of determination of the calibration (R2

C) and the cross-val-
idation (R2

CV), the standard error of calibration (SEC) and 
the SECV.

Results

Aroma profiles of the grape mash samples

In the grape mash samples, 36 aroma compounds were iden-
tified (Table 3).

Most of the detected aroma compounds result from vari-
ous metabolic pathways of grapevines and were already 
reported being present in grapes and wine [17–19]. The 
majority of grape berry volatiles is formed from fatty 
acids in different processes. The C6- and C9-aldehyds and 
their corresponding alcohols result from the lipoxygenase 
pathway and are described having a “fresh” or “green” 
odour, such as hexanal, 2-hexenal and 1-hexanol. During 
β-oxidation of fatty acids, a large number of esters is formed, 
which contribute to the aroma of many fruits including grape 
berries. Terpenoids affect the flavour profiles of most fruits 
and are synthesized either from acetyl-CoA and pyruvate in 
the berry cytoplasm (mevalonate pathway) or can be formed 
in the plastids (DOXP pathway) [20]. Another important 
source of volatiles are amino acids, from which a large num-
ber of different compounds is formed by degradation [21].

Differences between the aroma profiles of the grape mash 
samples were detected according to two aspects. First, some 
compounds were only detected in specific grape varieties. 
This is particularly noticeable for the terpenoids β-myrcene, 
limonene, ocimene and linalool. Regarding these four com-
pounds, further differences between grape varieties become 
obvious. All four terpenoids occur in the varieties Muskatel-
ler and Muskat-Trollinger, which show the highest amounts 
of β-myrcene and linalool among all measured samples 
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with significantly higher concentrations for Muskateller 
grapes. Moreover, β-myrcene was detected in all samples 
of Kerner and Gewürztraminer, in most Riesling samples 
and in few Lemberger samples. Differences also occur in 
the concentrations of the other compounds. Linalool does 
not occur in Gewürztraminer samples, while low concentra-
tions (14.1–19.0 µg kg) were measured in Kerner grapes and 
medium concentrations (14.4–79.7 µg/kg) in most Riesling 
samples and individual Lemberger samples. Limonene was 

detected in few Riesling and Gewürztraminer samples, while 
ocimene occurs partly in Riesling and Lemberger grapes. 
According to their concentrations of 12 monoterpenoids, 
white grape varieties can be divided into three sensory dif-
ferent aroma types: the “Muscat type” (e.g. Muskateller), the 
“Riesling type” (e.g. Riesling, Müller-Thurgau, Kerner) and 
the “Silvaner-” or “Pinot blanc type” (e.g. Silvaner, Pinot 
blanc) [22]. Based on the determined concentrations of the 
four terpenoids in the analysed samples, the belonging of the 

Table 3   Aroma compounds 
identified in grape mash 
samples

a Not quantified because no standard was available
b Concentration range (mg/kg)

Compound Retention 
time (min)

m/z qualitative m/z quanti-
tative

Concentration 
range (µg/kg)

Acetaldehyde 1.87 44 44 522.9–25,283.1
Pentanea 2.37 43 43 –
Ethanol 2.57 45 45 86.6–1648.0b

Methyl acetate 3.30 43, 74 74 6.6–14,298.9
Isobutanal (2-methyl-1-propanal) 4.12 43, 72 72 1.5–310.7
1-Propanol 4.78 42, 59 59 55.7–2394.8
Diacetyl (2,3-butanedione) 5.37 43, 86 86 17.9–479.8
Ethyl actetate 5.60 43, 61 61 25.6–33,712.9
Isobutanol (2-methyl-1-propanol) 6.63 43, 74 74 76.7–9439.6
3-Methylbutanal 6.85 44, 58, 71 58 1.1–46.8
Acetic acid 6.94 43, 45, 60 60 0.8–1002.6b

2-Methylbutanal 7.01 41, 57 57 0.9–52.8
1-Butanol 7.39 41, 43, 56 56 8.6–167.6
1-Penten-3-one 7.58 55, 84 55 0.6–42.8
1-Penten-3-ol 7.68 57 57 5.7–215.8
Pentanal 7.72 44, 57, 58 57 2.7–114.5
Propyl acetate 7.82 43, 61, 73 61 0.4–23.9
2,4,5-Trimethyl-1,3-dioxolana 7.89 43, 55, 72 55 –
Ethyl isobutanoate 8.53 43, 71 71 0.2–13.4
3-Methylbutanol 8.63 42, 55, 70 55 24.2–1280.3
2-Methylbutanol 8.68 41, 57, 70 57 19.8–833.0
Isobutyl acetate 8.81 43, 56, 73 56 0.3–68.6
Ethyl butanoate 9.23 43, 71, 88 71 0.2–4.8
Hexanal 9.42 41, 44, 56 56 293.1–12,641.7
3-Methylbutyl acetate 10.20 43, 55, 70 70 0.1–25.5
2-Methylbutyl acetate 10.26 43, 55, 70 70 0.3–11.2
2-Hexenal 10.34 41, 55, 57, 69 55 198.2–5782.2
1-Hexanol 10.41 43, 56, 69 56 61.6–1706.9
2-Heptanon (internal reference) 10.62 43, 58 58 50
Methyl hexanoate 10.75 43, 74, 87 74 0.1–4.1
β-Myrcene 11.27 41, 69, 93 93 0.1–2.4
2-Pentylfuran 11.37 53, 81, 82 81 0.1–3.9
Ethyl hexanoate 11.51 43, 60, 88, 99 88 0.1–8.0
Hexyl acetate 11.66 43, 55, 56, 61 56 0.2–9.1
Limonene 11.78 67, 68, 93 93 0.1–8.7
Ocimenea 11.86 77, 79, 91, 93 93 –
Linalool 12.67 41, 55, 71, 93 93 6.7–842.2
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grape varieties to the various aroma types already becomes 
roughly apparent, especially for “Muscat type” samples 
(Fig. 1).

Only free terpenoids could be measured, because no 
hydrolysis was carried out before analysis. Because terpe-
noids in grapes occur in free and glycosidic bound forms 
with varying ratios for every compound, no conclusion can 
be drawn about the total concentrations of the single sub-
stances. Furthermore, the whole concentration of the free 
terpenoids could probably not be determined either due to 
the low temperature and short equilibration time during the 
measurement. This might explain why no terpenoids were 
detected in grape varieties belonging to a certain aroma type 
(e.g. Müller–Thurgau).

Moreover, the phytosanitary status of the grapes sub-
stantially influences the concentration of various aroma 
compounds. For almost half of the determined aroma 
compounds (especially higher alcohols and various esters) 
higher concentrations were measured in grape mashes with 
increased concentrations of ergosterol, glycerol, gluconic 
acid and acetic acid. In earlier studies, increased concentra-
tions of these four compounds were identified as indicators 
for deficient phytosanitary status of grapes due to the pres-
ence of grape rot [23, 24]. It has been shown that higher 
concentrations of phytosterols affect the intracellular avail-
ability of acetyl-CoA, which leads to increasing formation 
of higher alcohols such as isobutanol, 3-methylbutanol and 
the corresponding acetate esters [25]. Most of the grape 
varieties analysed for aroma compounds included samples 

with differing phytosanitary status, so a direct comparison 
was possible. The only exceptions are the samples from the 
varieties Hegel (four samples) and Portugieser (one sample), 
which all showed high concentrations of grape rot indicators. 
Therefore, it cannot be concluded, whether high concentra-
tions of the above-mentioned aroma compounds in these 
samples result from the phytosanitary status of the grapes 
or from the varietal aroma itself.

Effect of artificial saliva solution on the concentration 
of aroma compounds

Volatile aroma compounds can be released from glycosidic 
forms by salivary enzymes, which significantly influences 
the aroma perception [13]. Grape mash samples were meas-
ured with and without addition of artificial saliva solution. 
Results are shown in Fig. 2.

No significant differences were detected between grape 
mash samples with and without addition of artificial saliva 
solution. Outliers on the right side of the x-axis belong to 
samples with conspicuous phytosanitary status and outliers 
on the upper y-axis belong to the samples from the variety 
Muskat–Trollinger (with and without addition of artificial 
saliva).

Further examinations focussed on the four terpenoids 
β-myrcene, limonene, ocimene and linalool, which are 
released from their glycosidic bound forms by enzymatic 
hydrolysis [1]. In the first approach, samples were meas-
ured after addition of different solutions. Slight differences 

Fig. 1   Discriminant analysis 
based on terpenoid contents of 
grape mash samples (n = 60) 
grouped according to aroma 
type
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were detected between grape mash samples with various 
additives, but to the same degree for all four terpenoids. 
The results were consistent for grape mash samples from 
different grape varieties (data not shown). Terpenoids are 
mainly located in grape skins [26], therefore differences 
between the grape mash samples probably result from vary-
ing ratios of grape skins, seeds and juice caused by different 
berry sizes. In the second approach regarding the effect of 
artificial saliva solution on terpenoid concentrations, grape 
mash samples were measured after various contact times of 
artificial saliva solution. Slight differences occurred for the 
concentrations of various compounds. Aldehydes showed a 
continuous increase in concentration with prolonged con-
tact time, while the concentrations of terpenoids varied. The 
results were consistent for samples with and without addi-
tion of artificial saliva solution (data not shown). Therefore, 
it can be concluded that addition of the used artificial saliva 
solution had no measurable effect on the concentrations of 
aroma compounds. However, salivary enzymes can release 
aroma compounds from glycosidic bound forms and thus 
noticeably influence aroma perception, so further research 
on the optimum conditions of simulated grape tasting is 
required.

Calibration models of selected aroma compounds

The results from the GC–MS measurements were related 
to the NIR spectra of the corresponding samples. This way, 

NIR calibration models were developed for rapid and easy 
determination of the single aroma compounds.

Spectral properties

A characteristic NIR spectrum is shown in Fig. 3. In the vis-
ible range, absorption maxima occurred around 520 nm and 
around 680 nm, which have been reported referring to antho-
cyanins (540 nm) and to chlorophyll (680 nm) [27]. Due to 
the high water content of grapes and its high absorption of 
near-infrared radiation, water bands dominate the spectrum. 
The NIR range of the spectrum shows absorption maxima 
around 980 nm, 1200 nm and 1440 nm. Water-related bands 
have been reported at 975 nm, 1200 nm and 1470 nm [28, 
29]. Similar spectral properties have been observed during 
earlier analysis of red grape homogenates [30, 31].

Regarding the single aroma compounds, various absorp-
tion maxima can be observed, however, they cannot be 
related only to aroma compounds because main compo-
nents of grapes (water, sugar, acids) often show the same 
functional groups. Moreover, it is unlikely that compounds 
occurring in such a low concentration have a direct impact 
on the spectra. A main component of the sample, which 
directly influences the spectrum, may correlate with an 
aroma compounds, so an indirect correlation is probable. 
However, it requires detailed further research to verify such 
indirect correlations and to determine how much of the spec-
tral variance thereby can be explained.

Fig. 2   Combined score plots of 
the first two principal compo-
nents of grape mash samples 
(n = 200) analysed for aroma 
compounds with (filled trian-
gles) and without (filled circles) 
addition of artificial saliva solu-
tion. The loadings of selected 
aroma compounds are included 
in the score plot
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Development of calibration models

Model accuracy was evaluated according to the correlation 
coefficients of calibration and cross-validation and by the 
residual predictive deviation (RPD), which is defined as 
the ratio of the standard deviation to the SECV. An RPD 
between 1.5 and 2.0 allows differentiation between high and 
low values. A rough quantitative estimation is possible for 
values between 2.0 and 2.5, while a value between 2.5 and 
3.0 or higher indicates high prediction accuracy [32].

Global calibration models

Results for global calibration models from the total sample 
set (n = 725) are shown in Table 4. All global calibration 
models gave the best results with 15 selected LVs. Spec-
tral pre-treatment had varying effects with normalisation by 
SNVT giving the best results in most cases.

The correlation coefficients ranged from 0.365 (calibra-
tion)/0.251 (cross-validation) for acetic acid to 0.976 (cali-
bration)/0.926 (cross-validation) for linalool. An RPD value 
of 1.5 or higher was obtained for 18 out of 31 compounds 
(58%). For the majority of the compounds, the RPD value 
lies between 1.5 and 1.9. Higher values are obtained for 
β-myrcene (2.0), propyl acetate (2.5), ethyl isobutanoate 
(2.7) and linalool (3.6).

The best results were obtained for models built from 
small amounts of data (n < 100), but larger datasets did not 
necessarily result in lower model performance, e.g. compar-
ing 1-hexanol (n = 725) and isobutanol (n = 366). However, 
smaller datasets are often more homogeneous regarding fac-
tors like cultivation region and grape colour. The datasets for 
β-myrcene and linalool mainly contain white samples from 

Hessigheim due to the varying presence of free terpenoids in 
different grape varieties while the datasets for propyl acetate, 
ethyl isobutanoate and 2-methylbutyl acetate mainly contain 
red samples from Hessigheim caused by the phytosanitary 
status of the grapes. Moreover, small datasets only cover a 
very narrow concentration range for some compounds.

Grape aroma is influenced by grape variety and growing 
conditions, such as climate, soil, water supply and nutrients 
supply [7]. A wide variation of conditions may probably 
limit the prediction accuracy of global calibration models, 
because all of these factors should be considered in the cali-
bration for obtaining more reliable results. Despite the grape 
variety, particular knowledge about further factors is often 
missing for the examined samples, so the sample set might 
not sufficiently cover the variability of all factors influencing 
grape aroma.

Cultivation region‑, grape colour‑ and vintage‑specific 
calibration models

Separate calibration models were calculated only for data-
sets containing 30 or more samples. Tables 5 and 6 show 
essential values for the separate calibration models with the 
lowest and highest model performance for cultivation region 
and grape colour and the RPD values of all separate calibra-
tion models.

Compared to the global models, separate calibration 
models resulted in higher coefficients of determination 
for calibration and cross-validation with few exceptions. 
Simultaneously, the SEC and SECV for most of the sepa-
rate models are lower, equal or just slightly higher than 
for the global models. On average, calibration models for 
samples from Breisach gave better results than for samples 

Fig. 3   NIR spectrum of a grape 
mash sample from the variety 
Acolon (averaged from 300 
spectra)
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from Hessigheim. Despite comparable vinification pro-
cesses, grapes grown in different regions may result in 
different wines due to varying soil characteristics or agro-
nomic factors. Although the direct effect of the soil on 
wine flavour is controversial, the effect of different ferti-
lizers has been proven [33]. Separate calibration models 
for red and white grape mashes also show higher predic-
tion accuracies than global models. Calibration models for 
white grape mash samples gave slightly better results than 
for red grape mash samples, which may result from the 
inclusion of less different grape varieties (9 white varieties 
vs. 11 red varieties, Table 1). The increase of prediction 

accuracy for separate calibration models shows a large 
variance between the single compounds, which probably 
depends on the differences between the composition of the 
dataset for global and separate calibration models.

Separation of the datasets by both cultivation region 
and grape colour further improved the results (Table 7).

The SEC and SECV decline again for the majority of 
the region- and grape colour-specific models. The RPD 
values further increase with only few exceptions. With 
the further specification of the models, more RPD values 
allow a semi-quantitative or quantitative determination of 
the aroma compounds. Region- and grape colour-specific 

Table 4   Results for XLS 
regression models of the 
selected aroma compounds

N, number of samples; LV, number of latent variables; R2
C, correlation coefficient of calibration; R2

CV, cor-
relation coefficient of cross validation; SEC,  standard error of calibration; SECV,  standard error of cross 
validation; SNVT, standard normal variate transformation; MSC, multiplicative scatter correction
a mg/kg

Compound N Spectral 
Pre-treat-
ment

LV R2
C R2

CV SEC (µg/kg) SECV (µg/kg) RPD

Acetaldehyde 725 SNVT 15 0.594 0.576 2379.7 2433.8 1.5
Ethanol 725 SNVT 15 0.491 0.470 163.6a 167.0a 1.4
Methyl acetate 611 SNVT 15 0.495 0.418 588.4 632.3 1.3
Isobutanal 537 none 15 0.571 0.549 32.5 33.3 1.5
1-Propanol 180 SNVT 15 0.538 0.466 259.1 279.3 1.4
Diacetyl 93 SNVT 15 0.740 0.690 49.6 54.3 1.8
Ethyl acetate 724 SNVT 15 0.481 0.449 1864.5 1922.7 1.3
Isobutanol 366 SNVT 15 0.533 0.501 806.4 834.1 1.4
3-Methylbutanal 366 SNVT 15 0.617 0.584 4.3 4.5 1.6
Acetic acid 534 SNVT 15 0.365 0.251 50.0a 54.7a 1.1
2-Methylbutanal 525 SNVT 15 0.565 0.536 4.1 4.2 1.5
1-Butanol 443 SNVT 15 0.593 0.576 15.6 15.9 1.5
1-Penten-3-one 393 SNVT 15 0.468 0.423 2.7 2.8 1.3
1-Penten-3-ol 551 SNVT 15 0.366 0.336 22.7 23.2 1.2
Pentanal 253 SNVT 15 0.515 0.417 7.9 8.6 1.3
Propyl acetate 58 none 15 0.950 0.845 1.0 1.7 2.5
Ethyl isobutanoate 47 none 15 0.932 0.849 0.6 0.9 2.7
3-Methylbutanol 707 SNVT 15 0.583 0.563 105.7 108.2 1.5
2-Methylbutanol 611 SNVT 15 0.596 0.572 65.6 67.5 1.5
Isobutyl acetate 172 MSC 15 0.696 0.593 3.6 4.1 1.6
Hexanal 725 SNVT 15 0.609 0.592 1344.7 1373.5 1.6
3-Methylbutyl acetate 421 SNVT 15 0.489 0.344 1.1 1.3 1.2
2-Methylbutyl acetate 62 MSC 15 0.896 0.682 0.4 0.7 1.9
2-Hexenal 725 SNVT 15 0.498 0.472 594.9 610.1 1.4
1-Hexanol 725 SNVT 15 0.609 0.591 145.7 149.0 1.6
Methyl hexanoate 271 SNVT 15 0.609 0.552 0.3 0.3 1.7
β-Myrcene 61 MSC 15 0.923 0.866 0.1 0.2 2.0
2-Pentylfuran 661 SNVT 15 0.601 0.584 0.4 0.4 1.8
Ethyl hexanoate 452 SNVT 15 0.469 0.360 0.5 0.6 1.2
Hexyl acetate 184 SNVT 15 0.619 0.532 0.6 0.7 1.4
Linalool 50 MSC 15 0.976 0.926 20.0 36.2 3.6
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calibration models consider both local geographical con-
ditions and less grape varieties, which may explain the 
improved the prediction accuracy.

Separate calibration models from the vintages 2017 and 
2018 showed no clear trend compared to the models from 
both vintages (data not shown).

Discussion

Aroma profiles of the grape mash samples

A large variety of aroma compounds was detected in the 
examined grape mash samples, from which the most had 
already been detected in grapes and wine. Depending on 
the grape variety and the phytosanitary status of the grapes, 
varying concentrations of different aroma compounds were 
determined. A study on the influence of sour rotten grapes 
on grape must and wine only showed a reduced taste inten-
sity after 1 year of storage for wines made from grapes with 
a high percentage of sour rot [34]. Various changes occurred 
in grape must composition, however, only the main com-
pounds were determined. In another study, analytical and 

Table 5   Lowest and highest model performances of calibration models separated by cultivation region or grape colour

a mg/kg

Region Compound R.2C R.2CV SEC (µg/kg) SECV (µg/kg) RPD

Hessigheim 1-Penten-3-ol 0.344 0.288 22.6 23.6 1.2
Linalool 0.976 0.926 20.0 36.2 3.6

Breisach 2-Pentylfuran 0.540 0.462 0.2 0.2 1.5
Isobutyl acetate 0.941 0.860 0.4 0.6 2.5

Grape colour Compound R2
C R2

CV SEC (µg/kg) SECV (µg/kg) RPD

Red Acetic acid 0.486 0.374 51.1a 56.5a 1.3
Ethyl isobutanoate 0.985 0.945 0.3 0.6 4.3

White 3-Methylbutyl acetate 0.552 0.465 0.3 0.3 1.3
Linalool 0.993 0.186 11.4 123.1 1.1

Table 6   RPD values of all calibration models separated by cultivation 
region or grape colour

a 2-Methylbutyl acetate (2.0), acetaldehyde (2.1), β-myrcene (2.5), 
ethyl isobutanoate (3.4), linalool (3.6), propyl acetate (3.8)
b 1-Hexanol (2.0), isobutanol (2.2), pentanal (2.2), 1-butanol (2.3), 
isobutyl acetate (2.5)
c 2-Pentylfuran (2.0), 2-methylbutyl acetate (2.3), ethyl isobutanoate 
(4.3), propyl acetate (4.4)
d Acetaldehyde (2.0)

Cultivation region/grape 
colour

RPD Number of compounds

Hessigheim < 1.5 10 out of 31 (32%)
< 2.0 15 out of 31 (48%)
≥ 2.0 6 out of 31 (19%)a

Breisach < 1.5 3 out of 21 (14%)
< 2.0 13 out of 21 (62%)
≥ 2.0 5 out of 21 (24%)b

Red grapes < 1.5 7 out of 29 (24%)
< 2.0 18 out of 29 (62%)
≥ 2.0  4 out of 29 (14%)c

White grapes < 1.5 9 out of 26 (35%)
< 2.0 16 out of 26 (62%)
≥ 2.0 1 out of 26 (4%)d

Table 7   Lowest and highest 
model performances of 
calibration models separated 
by cultivation region and grape 
colour

a The high SECV is probably caused by few samples with very high concentrations

Region Grape colour Compound R2
C R2

CV SEC (µg/kg) SECV (µg/kg) RPD

Hessigheim Red 1-Penten-3-ol 0.479 0.430 17.4 18.3 1.2
Propyl acetate 0.974 0.953 0.7 1.0 4.6

White 3-Methylbutyl acetate 0.599 0.471 0.2 0.3 1.3
Linalool 0.993 0.186 11.4 123.1a 1.1

Breisach Red 2-Pentylfuran 0.684 0.571 0.1 0.1 1.0
1-Penten-3-one 0.982 0.940 0.5 0.9 3.9

White 2-Hexenal 0.740 0.692 432.5 471.1 1.8
3-Methylbutyl acetate 0.975 0.915 0.1 0.1 5.0
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sensorial characteristics of the aroma of wines produced 
from sour rotten grapes were examined [3]. The results 
showed a significant effect of sour rot on the chemical and 
sensory profiles of the wines. Furthermore, a possible effect 
on the secondary metabolism of yeast was suggested. In our 
study, the addition of artificial saliva solution had no signifi-
cant effect on the concentrations of the aroma compounds. 
However, the used artificial saliva solution simulated only 
the effect of enzymes. The complexity of the human oral 
cavity leaves many further aspects to be considered [4, 35]. 
Moreover, large inter-individual differences can occur dur-
ing tasting depending on numerous factors, which influence 
sensory perception [13]. Therefore, simulation of conditions 
in the mouth to create a more objective method to judge 
sensory perception of aroma compounds is a very complex 
issue, which requires extensive further research. Evaluation 
of grape aroma quality by an objective method before win-
emaking can be advantageous to prevent possible negative 
effects on the resulting wine quality.

Calibration models of selected aroma compounds

The calibration models showed varying prediction accura-
cies for the single aroma compounds. Separate calibration 
models for cultivation region or grape colour improved the 
prediction accuracy compared to global models, probably by 
decreasing the number of factors influencing grape aroma 
compounds (e.g. soil). Separation by both aspects gave even 
better results. An improvement of the model accuracy for 
separate models compared to global models has also been 
observed in earlier on-line measurements of grape mash 
[23]. Examinations on aroma compounds have been done 
before for glycosylated compounds in homogenized Tan-
nat grapes [11]. Calibration models have been developed 
for groups and for single aroma compounds, from which 
two compounds were also present in our study (1-hexanol 
and linalool). The calibration models showed lower values 
for R2 (0.5320 for 1-hexanol and 0.5655 for linalool) and 
RPD (1.4 for 1-hexanol and 1.5 for linalool), while SECV 
was considerably better for both compounds (30.6 µg/kg for 
1-hexanol and 6.8 µg/kg for linalool). In the above-men-
tioned study, calibration models have been developed for a 
single grape variety, while the global calibration models of 
our study contained a larger number of red and white grape 
varieties. Detailed examinations are necessary to determine 
which factors need separate calibration models and which 
can be merged in a common model. For practical use, the 
number of calibration models needs to stay low, which may 
limit the prediction accuracy. A high prediction accuracy 
is not necessarily reliable for calibration models based on 
very few samples due to low model robustness. The pos-
sibility of drawing conclusions about the final wine aroma 
from the aroma of the grapes is limited [6]. However, a 

semi-quantitative determination of aroma compounds origi-
nating from the grapes enables a more objective judgement 
of the aroma quality of grapes. Furthermore, the detection 
of possible undesired aroma compounds or their precur-
sors can be helpful for the decision about the treatment of 
grapes before winemaking (e.g. warming of the grape mash) 
to improve wine quality.

Conclusion

Aroma compounds of winemaking grapes have been ana-
lysed under conditions similar to those in the mouth and NIR 
calibration models were developed to evaluate the potential 
of on-line measurement as an objective and rapid determina-
tion method. The grape mash samples showed differences in 
the presence and concentration of various aroma compounds 
for several grape varieties and regarding the phytosanitary 
status of the grapes, while the addition of artificial saliva 
solution caused no significant differences. The first approach 
for on-line determination of grape aroma compounds by NIR 
spectroscopy showed promising results for a large variety of 
compounds. However, large differences occurred between 
the prediction accuracies of the calibration models. Sepa-
rate calibration models by cultivation region and/or grape 
colour gave better results compared to global calibration 
models and allow at least semi-quantitative determination 
for most of the compounds. The datasets should be extended 
regarding different factors influencing grape aroma composi-
tion, however, it should also be evaluated for which of these 
factors separate calibration models are actually necessary. 
Instrumental analysis cannot totally replace sensory evalua-
tion, however, on-line NIR spectroscopy has the potential to 
be used as an objective additional method for the judgement 
of grape aroma quality.
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