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Abstract
The constant increase in the demand for safe and high-quality food has generated the need to develop efficient methods to 
evaluate food composition, vitamin C being one of the main quality indicators. However, its heterogeneity and susceptibility 
to degradation makes the analysis of vitamin C difficult by conventional techniques, but as a result of technological advances, 
vibrational spectroscopy techniques have been developed that are more efficient, economical, fast, and non-destructive. This 
review focuses on main findings on the evaluation of vitamin C in foods by using vibrational spectroscopic techniques. First, 
the fundamentals of ultraviolet–visible, infrared and Raman spectroscopy are detailed. Also, chemometric methods, whose 
use is essential for a correct processing and evaluation of the spectral information, are described. The use and importance 
of vibrational spectroscopy in the evaluation of vitamin C through qualitative characterization and quantitative analysis is 
reported. Finally, some limitations of the techniques and potential solutions are described, as well as future trends related to 
the utilization of vibrational spectroscopic techniques.
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Introduction

Over the years, the demand for high-quality food has 
increased substantially [1]. Consumers require products with 
minimal risk for disposal to negative health effects. There 
is a global need to improve food safety and quality [2] since 
in many countries economic profit is emphasized ahead of 
nutritious products that meet strict quality and safety stand-
ards [3].

The food industry is of utmost significance as it is one 
of the most important economic axes in the world [2]. To 
meet the challenges, scientists and specialists of the food 

sector are designing, developing, and improving technolo-
gies to enable trustworthy, fast, and economically feasible 
analysis of the quality of food. Most important traditional 
detection techniques used in food analysis have included 
high performance liquid chromatography (HPLC), mass 
spectroscopy (MS), lateral flow strip (LFS), Southern Blot 
(SB) and enzyme-linked immunosorbent assay (ELISA) [4, 
5]. Although these techniques often give accurate results, 
they are complex, costly, require chemical reagents, are 
time-consuming, and, above all, destructive (i.e., they alter 
the physical, chemical and/or nutritional characteristics of 
the food), which makes accurate measurement of labile 
food components like vitamin C difficult. Due to continuous 
technological advancement especially in the area of com-
putational and data processing, other techniques have been 
developed that do not require prior sample preparation and 
are more efficient and non-destructive [6, 7]. These include 
computer vision (CV) and vibrational spectroscopies, 
encompassing infrared (IR), near (NIR), mid (MIR) and far 
infrared (FIR) spectroscopy, Raman spectroscopy, ultravio-
let–visible (UV–Vis) spectroscopy, and hyperspectral imag-
ing (HSI) [8, 9]. When vibrational spectroscopy techniques 
are combined with chemometric methods, they become more 
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useful [9]. This combination can be successfully utilized 
for the simultaneous qualitative and quantitative evaluation 
of different characteristics [3] and/or compounds in fruits, 
vegetables, cereals, and legumes [7] to measure and monitor 
their quality [10].

Monitoring the level of vitamin C is fundamental as it is 
an indicator of the quality of a food product. It is essential to 
control the concentration of vitamin C during food process-
ing, storage and transport, especially in stages that include 
high temperatures [11, 12]. However, due to the heterogene-
ity of vitamin C in complex food matrices and its suscepti-
bility to rapid degradation, use of non-destructive techniques 
is essential for its detection and accurate quantification [13]. 
This review focuses on compiling and analyzing the main 
findings related to evaluation of vitamin C in foods by vibra-
tional spectroscopic (UV–Vis, IR, and Raman) techniques 
including their limitations and future trends.

Fundamentals of vibrational spectroscopy

IR spectroscopy was discovered between the 1940s and 
1950s with the aim of identifying the structure of organic 
compounds. At present, there is more knowledge about 
the technique, which, with respect to the electromagnetic 
spectrum, includes the wavelength range from 780 to 
100,000 nm. IR spectroscopy is divided into subregions 
called the NIR spectral regions with a wavelength range of 
714–2500 nm, 2500–25,000 nm in the MIR spectral region 
and 25,000–100,000 nm in the FIR spectral region [6]. 
These ranges are not definitively set and their values are 
based on what has been suggested by various scientific stud-
ies [14]. IR spectroscopy examines the relationship between 
light transmitted into samples and absorbed radiation, yield-
ing data on the molecular structure of foods [15], specifically 
on the C–O, C–N, C–C, C–H, O–H, N–H, and N–O chemi-
cal bonds [10].

UV–Vis spectroscopy covers a spectral range of 
200–780 nm, specifically, 200–380 nm in the UV range and 
380–780 nm in the Vis range [16]. The basis of UV–Vis 
spectroscopy begins with the projection of light onto the 
sample, which is absorbed by the excitation of the elec-
trons that form part of the chemical bonds in the molecules, 
decreasing the amount of transmitted light [9]. The princi-
ple of UV–Vis spectroscopy is based on the Lambert–Beer 
law, which indicates that the absorption spectrum (sequence 
of frequencies according to the absorbed light) depends on 
the concentration of the substance to be evaluated, i.e., the 
absorbed light is proportional to the sample thickness [6, 
17].

Raman spectroscopy can utilize wavelengths from 
approximately 2500–100,000 nm [8]. When the sample is 
illuminated with monochromatic light, a low proportion of 

the radiation interacts with the sample molecules, generating 
a scattered light, which has a different frequency compared 
to incident light. As the product of this inelastic collision, 
Raman spectrum is produced [18], which reflects the char-
acteristics of the sample and generates a "fingerprint" [4]. 
This is useful for obtaining information about the chemi-
cal bonds and/or the energy of the vibrational bands of the 
molecules of the organic matrix; therefore, it can be suc-
cessfully employed for qualitative and quantitative evalua-
tion of various compounds [8]. The physical mechanism of 
the technique was proposed by Smekal [19], but was later 
named Raman Effect by Raman and Krishnan [20]. A few 
decades later, Fleischmann et al. [21] used Raman spectros-
copy to study adsorption on rough silver electrodes, achiev-
ing improved signals for the Raman spectra. Subsequently, 
Jeanmaire et al. [22] published similar research, but they 
used rough gold, silver, and copper surfaces and obtained 
better results in terms of sensitivity, speed of analysis, and 
interference. This improved technique was named surface 
enhanced Raman spectroscopy (SERS) [4]. This spectros-
copy is simply based on the amplification of Raman signals 
from molecules located in an electric field (interacting with 
a magnetic or chemical field), which is generated due to the 
excitation of electrons of nanostructures of metals such as 
silver and gold [23, 24].

Chemometrics: spectrum data processing

There are some undesirable factors that interfere the analy-
sis of data, such as the effects of scattering, instrumental 
noise and sensitivity, and environmental conditions [2, 
8]. It is important to preprocess the information with the 
use of chemometrics using mathematical techniques and 
multivariate statistics [25]. For this purpose, a number of 
smoothing methods can be employed such as first and sec-
ond order derivative methods, orthogonal signal correction 
(OSC), Gaussian filter (GF), standard normal variant (SNV), 
Savitzky–Golay filter (SG), wavelet transform (WT), mul-
tiplicative signal correction (MSC), and net analyte signal 
(NAS) [10, 26]. Especially Fourier transform (FT) has been 
proven useful since it increases the sensitivity of various 
vibrational spectroscopy techniques, resulting in improved 
data acquisition [27].

Due to the complex food matrices, the spectral informa-
tion obtained is very large and much of it is not of inter-
est to the researcher. Therefore, other discrimination and 
modeling algorithms must also be applied to reduce the 
amount and complexity of the information. Some discri-
minant methods are hierarchical cluster analysis (HCA), 
particle swarm optimization (PSO), genetic algorithm 
(GA), partial least squares regression (PLSR), successive 
projections algorithm (SPA), artificial neural networks 
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(ANN), support vector machine (SVM), random frog algo-
rithm (RFA), linear, quadratic and partial least discrimi-
nant analysis (LDA, QDA, and PLSDA, respectively), soft 
independent modeling of class analogies (SIMCA), cluster 
analysis (CA), regularized discriminant analysis (RDA), 
principal component regression (PCR), and principal com-
ponent analysis (PCA) [1, 16, 28]. PCA is widely used 
to classify and make predictions from a database with-
out affecting its patterns and/or trends. As an example, 
Zilhadia et al. [29] were unable to determine by direct 
FT-NIR data analysis whether vitamin C gummies from 
the Ciputat market in Indonesia were made from bovine 
or porcine gelatin; however, by applying PCA to the tech-
nique, it was possible to conclude that the commercial 
gummies contained gelatin derived from cows.

Finally, the robustness of the models must be analyzed 
using techniques such as the correlation coefficient (r), 
coefficient of determination (R2), root-mean-square error 
of validation (RMSEV), of calibration (RMSEC), and of 
prediction (RMSEP) [17]. In addition, the residual predic-
tion deviation (RPD) is used commonly; the value of the 
factor must be greater than 2.5 [10].

Hemrattrakun et al. [30] employed Vis–NIR spectros-
copy to evaluate vitamin C content, total soluble solids 
(TSS), and firmness of persimmon. They applied OSC 
and PLS as the preprocessing and discrimination tech-
nique, respectively, in addition to using RMSEC, RMSEP 
and RPD as accuracy models. The authors emphasized 
the importance of chemometrics in obtaining results of 
good quality in the quantification of vitamin C. In another 
investigation, Soltanizazemi et al. [31] analyzed the °Brix, 
titratable acidity, TSS, total anthocyanins, and acid ascor-
bic of mulberry juice. UV–IR spectroscopy was used, in 
addition to MSC and SNV as preprocessing methods, and 
PLS and GA-PLS as multivariate calibration methods. 
According to the r value (0.96–0.98) obtained when using 
GA-PLS, it was determined that it was better for the analy-
sis compared to the use of PLS (r: 0.88–0.95).

In another study, UV–Vis spectroscopy was used to ana-
lyze herperidin, rutin, and vitamin C in solution. In this 
case, although no preprocessing methods were employed, 
calibration methods (PLS, ANN, and multivariate curve 
resolution-alternating least squares) enabled successful 
quantification of each compound [32].

As mentioned, FT and PCA are widely used for data 
pretreatment and discrimination, respectively. Gedikoğlu 
et al. [33] employed FT and PCA with IR spectroscopy to 
evaluate polyphenol and flavonoid content and antioxidant 
activity in citrus fiber. In the study, citrus fiber was added 
to ground beef meatballs and its quality was evaluated 
during refrigeration for 7 days. The results demonstrated 
an overall R2 value of 0.96 and encouraged usage of FT 

and PCA -based spectroscopy in predicting lipid oxidation 
in meat products.

Spectroscopy in the analysis of vitamin C in food

Due to the increasing demand for quality of food products 
and the constant concern in public health [23], vibrational 
spectroscopy is mostly used in the on-line evaluation of vari-
ous compounds. This is to ensure the safety and high quality 
of a foodstuffs [3, 10, 26, 34] in sensory, physical, chemical, 
microbiological, and physiological terms [7]. Many of the 
compounds maintain food quality are antioxidants [3], and 
vitamin C is one of the most relevant antioxidant quality 
indicators. The nutrient is the main water-soluble antioxi-
dant, comprising approximately in average 65% of biologi-
cal antioxidant activity of many fruits and vegetables [11]. 
In addition, vitamin C is indispensable for life because it 
influences various physiological processes due to its antimi-
crobial, anti-inflammatory, and immunomodulatory proper-
ties [5]. Vitamin C deficit generates scurvy [13]. Vitamin C 
consists of l-ascorbic acid (LAA) and l-dehydroascorbic 
acid (LDAA), which are its reduced and oxidized form, 
respectively; therefore, for its quantification it is necessary 
to determine the sum of both [35]. LAA is easily oxidized 
to LDAA in the presence of oxygen and metals under condi-
tions of high temperature and pH [5].

There are multiple conventional techniques for vitamin 
C assessment, including titrimetry, voltammetry, fluorom-
etry, electrochemistry, potentiometry, chemiluminescence, 
capillary electrophoresis, and chromatography [12, 36–38], 
but these methods have drawbacks especially because of 
instability, lack of accuracy, and the use of chemical rea-
gents. Vitamin C can be determined more efficiently and 
non-destructively by spectroscopy, which has first utilized 
for vitamin C measurement in 1937 by Williams and Rog-
ers [39]. Da Silva et al. [40] compared two methods for the 
quantification of vitamin C in industrialized fruit juices, 
concluding that by UV–Vis spectroscopy error values were 
less than 5% and by titrimetry over 15%. In the evaluation 
of vitamin C in several fruits by titrimetry and UV–Vis 
spectroscopy, Elgailani et al. [41] concluded that there was 
no significant difference between the techniques, but they 
recommend spectroscopy due to the ease and speed of the 
technique. Likewise, no significant difference was estab-
lished in the quantification of vitamin C in orange juice by 
voltammetric method and UV–Vis spectroscopy [42]. In 
addition, UV–Vis and FT-IR spectroscopy were compared 
with fluorometry in the computational assessment of vitamin 
B9, vitamin C and vitamin K3 and their interactions with 
β-lactoglobulin [43]. Without significant difference, all spec-
troscopic techniques suggested that the interaction between 
nutrients and β-lactoglobulin caused conformational changes 
in the protein.
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To date, by employing UV–Vis spectroscopy, vitamin C 
has been quantified in many types of food products such as 
orange, lemon, mandarin, grapefruit, kiwi, red bell pepper, 
green bell pepper, cauliflower, parsley, Brussels sprouts, 
kale, cabbage, orange and peach juices, apple, peach, as 
well as in banana/pear, apple/carrot and currant/cherry/
apple cocktails [44]. Vitamin C content was also evaluated 
in tangerine, grape, orange, lemon, apples [41], in apple and 
carrot purees, and in apple puree whey [35]. Using UV–Vis 
spectroscopy with HPLC, vitamin C was evaluated in forti-
fied cereal, dry cereal, freeze-dried Brussels sprouts, whole 
milk powder, low-calorie cranberry juice cocktail, adult and 
children's nutritional formula powder, freeze-dried green 
beans, fresh pasteurized orange juice, slurried spinach, 
chips, pineapple, broccoli, potatoes, cassava chips, plantain 
chips, dried oregano, parsley [45], raw and boiled green 
leafy vegetables [46], oranges, grapefruit, pink grapefruit, 
apples, and pineapples [47]. Using UV spectroscopy with 
HPLC, vitamin C was also evaluated in fruit cream pow-
der, multivitamin syrup, infant milk powder, multivegetable 
juice, grapefruit and orange juices, banana, kiwi, broccoli, 

tomato, cauliflower, cucumber, and parsley leaves [48]. 
The vitamin C content of jujube [49], tomatoes [50], and 
mango [51, 52] was measured by NIR spectroscopy. FT-
NIR spectroscopy was also used to evaluate the vitamin C 
content of pomegranate [53]. Cimpoiu et al. [54] employed 
Raman spectroscopy to identify and separate vitamin C in 
a solution.

Vibrational spectroscopy can be also employed to evalu-
ate possible adulteration. Mohammadian et al. [55] detected 
the authenticity of lime juices by assessing their vitamin C 
content by employing FT-IR spectroscopy. To evaluate the 
quality of Kakadu plum, its vitamin C content is usually 
taken as an indicator. Recently, an investigation analyzed 
the efficiency of attenuated total reflectance (ATR)-MIR 
spectroscopy to discriminate Kakadu plum powder with 
synthetic ascorbic acid. Using the second derivative and 
PLS as a chemometric analysis, Cozzolino et al. [56] were 
able to identify the adulteration of the product with an R2 
value of 0.85.

UV–Vis (Table 1) and IR (Table 2) spectroscopies are the 
vibrational spectroscopic methods that are the most widely 

Table 1  Quantification of vitamin C by UV–Vis spectroscopy

Food Equipment Results Reference

Gelatin with 30, 40 and 50% 
moringa leaf flour

Not specified 1.83, 6.74 years 10.85 mg/L [59]

Apple UV–visible spectrophotometer model PD303UV (APEL CO., 
LTD, Japan)

15 (mg/L) [41]
Tangerine 15
Orange 13
Lemon 12
Grapes 9
Black currant UV–Vis spectrophotometer of double beam model Shimadzu 

1800 (Shimadzu, Japan)
446.83 (mg/100 g) [60]

Guava 181.79
Lemon 56.40
Melon 44.73
Karanda 44.68
Mulberry 41.8
Mango 36.41
Wax apple 18.89
Watermelon 9.79
Gooseberry 8.29
Pomegranate 8.22
Grapes 5.58
Lemon juice Spectrophotometer model UV-1601 (Shimadzu, Japan) 91.21 (mg/100 g) [61]
Orange 76.62
Apple 35.83
Lemon 29.10
Orange juice 21.75
Grapes 21.70
Grape juice 19.59
Apple juice 12.20
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employed for vitamin C analysis because they are generally 
regarded as the best techniques for the purpose [57]. Yang 
and Irudayaraj [57] compared different spectroscopic tech-
niques for the evaluation of vitamin C in liquid and powder 
mixtures; the R2 values for FT-IR attenuated total reflec-
tance, FT-NIR, NIR, FT-IR photoacoustic, and FT-Raman 
spectroscopy were 0.999, 0.992, 0.988, 0.966, and 0.950, 
respectively. In another study, the results of vitamin C quan-
tification in Kakadu plum powder were compared. It was 
observed that MIR spectroscopy (R2: 0.93, RPD: 4.1) was 
better than NIR spectroscopy (R2: 0.91, RPD: 4), but cou-
pling it with FT (FT-NIR) also yielded efficient models [58].

Current challenges and opportunities

Despite the many benefits of using vibrational spectroscopy, 
it also has its limitations. First and foremost, traditional 
vibrational spectroscopy equipment has a relatively high 
cost. However, thanks to technological advances, handheld/
portable spectrometers are available. These have all the 
components of benchtop spectrometers, but at a smaller size 
and lower cost [14]. In addition, they are fast, lightweight, 
compact and rugged with ease of use on site [68–72]. Thus, 
miniaturized spectrometers enable rapid, real-time monitor-
ing of food quality and safety at any point in the food supply 
chain [73, 74]. Portable NIR spectrometer was used to assess 
the quality of mango cv. Tommy Atkins [75], oranges [76], 
tomato paste [77], oregano [78], green tea [79], and ground 
meat [80]. With portable FTIR spectrometer, the quality of 
butter [81], milk powder [82], and pistachio was evaluated 
[83]. Portable Raman spectrometers were used to evaluate 

Table 2  Quantification of vitamin C by IR spectroscopy

dw dry weight

Food Equipment Method Results References

Fresh tomatoes Portable/handheld NIR spectrometer model Neospectra (Si-ware 
Systems, Egypt)

NIR RMSEV: 3.78 (mg/100 g) [62]
RMSEP: 4.09

Valencia Orange Spectrometer model Spectrum 100 N (Perkin-Elmer Corp., USA) MIR RMSEV: 103.4 (mg/L) [63]
RMSEC: 89.7
RMSEP: 75.1

NIR RMSEV: 107.2
RMSEC: 89.3
RMSEP: 94.9

Newton tomatoes Spectrometer NIR model EPP 2000 (Stellarnet, Inc. USA) NIR RMSEV: 1.087 (mg/100 g) [50]
RPD: 1.701

Kakadu plum powder Spectrophotometer model Bruker Alpha (Bruker Optics, Germany) MIR R2: 0.93 [56]
RMSEV: 18.1 g/1 kg dw
RPD: 4.1

NIR R2: 0.91
SEV: 18.4 mg/1 kg dw
RPD: 4

Cultivars of Fragaria 
x ananassa Duch

GX FTIR spectrophotometer  (PerkinElmer®, USA) MIR RMSEC: 21.14 (mg/100 g) [64]
RMSEP: 22.11

Acerola Frontier FT-IR/NIR Spectrum 100 N spectrometer  (PerkinElmer®, 
USA)

NIR RMSEP: 166.27 mg/100 g [65]
R2: 0.99

Apple Scanning monochromator model 6500 (FOSS NIRSystems Inc., 
USA)

NIR RMSEC: 3.4 (mg/100 g) [66]
RMSEP: 4.9
RPD: 2

Cashew apple FT-NIR spectrometer model Spectrum 100 N  (PerkinElmer®, USA) NIR R2: 0.84 [67]
RMSEC: 4.61 (mg/100 g)
RMSEP: 4.8

Guava nectar NIR R2: 0.86
RMSEC: 6.41
RMSEP: 7.44
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the quality of vegetable juice (NIR-excited Raman) [84], 
tomato [85], and Parmesan cheese [86]. A portable Vis spec-
trometer was used to evaluate the quality of apples [87], 
and a portable SERS spectrometer was used to evaluate the 
quality of cabbage and apples [88].

Santos et al. [89] used a handheld NIR spectrometer to 
predict the vitamin C content of clementine, lemon, tan-
gerine, orange, and lime; R2 values were determined to 
be between 0.766 and 0.864. Aykas et al. [77] employed 
a portable ATR-FTIR spectrometer to predict the vitamin 
C content of tomato paste. Compared with reference val-
ues, there was a high coefficient of cross-validation (0.85 
and 0.99). Similarly, Borba et al. [62] compared a portable 
NIR spectrometer with conventional techniques in measur-
ing vitamin C content of tomatoes; the validation coefficient 
obtained was 0.81. Akpolat et al. [90] obtained a validation 
coefficient of 0.79–0.91 in predicting the vitamin C content 
of fresh tomatoes. Beghi et al. [91] used a portable vis–NIR 
spectrometer to monitor the vitamin C content of Golden 
Delicious and Stark Red Delicious apples. In this case, the 
validation had a low R2 value of 0.50. Similarly, the correla-
tion coefficient between the evaluation with a portable NIR 
spectrometer and the reference values for vitamin C content 
in Kakadu plums and plum puree was 0.55 and 0.86, respec-
tively [92]. Even smartphone-based spectrometers have been 
developed as demonstrated in the studies of Kong et al. [93] 
and Aguirre et al. [94], whose equipment was successfully 
employed to assess the vitamin C content in a lemon bever-
age and orange juice, respectively.

The development of this miniaturized equipment is a 
great achievement in the field of spectroscopy, but there 
are some limitations that influence the results obtained. 
The size of the portable equipment limits the evaluation of 
high volume samples. When performing the evaluation in 
the field (in situ), there is a high risk of contamination and 
interference from environmental factors [74]. They also have 
somewhat higher detection limit and lower sensitivity com-
pared with conventional equipment. In a study predicting 
the quality of mushrooms of the genus Tuber, the accuracy 
of the benchtop NIR spectrometer was from 93.33–100%, 
and the values of three portable NIR spectrometers were 
83.33–100%. Similar results were shown when evaluating 
bioactive compounds from green tea [79].

Another disadvantage is that the construction of calibra-
tion models for each portable equipment requires consid-
erable cost and time [95]. One option is for models to be 
built on benchtop spectrometers (master or primary unit) 
and transferred to portable spectrometers (slave or second-
ary unit) [96] to avoid the whole calibration process. It has 
been reported that large spectral databases of various sam-
ples have been transferred from benchtop to portable spec-
trometers [74]. The transfer can also be made between equip-
ment of different makes/models [97, 98]. There are several 

chemometric or standardization techniques to achieve this 
and maintain model accuracy [99]. For example, Igne et al. 
[100] evaluated the quality of soybean with four benchtop 
NIR spectrometers of two different brands by employing 
eight calibration transfer techniques based on the removal 
of orthogonal signal. Zeng et al. [96] evaluated pigments 
in tea leaves with a laboratory Raman spectrometer and the 
calibration models were transferred to a portable Raman 
spectrometer with the direct standardization (DS) technique. 
For the evaluation of fresh cow milk, Melenteva et al. [101] 
transferred calibration models from a diode-array spectrom-
eter to a shortwave visible-NIR spectrometer with model 
transfer by slope and bias correction (SBC). To transfer the 
calibration model between three NIR spectrometers of differ-
ent brands to predict apple TSS, Hayes et al. [95] employed 
orthogonal projection (TOP), piecewise direct standardi-
zation (PDS), difference spectrum adjustment (DAS), and 
model updating (MU). Salguero-Chaparro et al. [102] used 
PDS, TOP, and SBC to transfer calibration models on olive 
quality assessment from a benchtop NIR monochromator 
to a portable NIR spectrometer. The disadvantage of the 
transfer is that, after a certain time, the model obtained loses 
accuracy. To avoid this, the models should be recalibrated 
gradually [102].

UV spectroscopy has degradative effects on bioactive 
compounds such as vitamin C. The use of IR spectroscopy 
is not recommended for foods with water content higher than 
80% [103] since water is a strong absorber whose hydrogen 
bonds interfere significantly in the IR region [104]. This 
is a serious limitation for many foods of plant origin that 
are significant sources of vitamin C, but also have a high 
proportion of water in their composition. This problem can 
be solved with a suitable preparation of the sample, but this 
demands time and is costly. Raman spectroscopy is a poten-
tial option in these cases because the weak Raman scattering 
has less interference with water, and it can be used in solid, 
semi-solid, and liquid samples quickly and economically; in 
addition, by omitting the sample preparation, the analysis 
would be non-destructive [8]. This has been demonstrated in 
several studies such as in the evaluation of milk; El-Abassy 
et al. [105] were able to successfully (R2: 0.92–0.99) deter-
mine milk fat content using Raman spectroscopy.

Despite the potential of Raman scattering, it is weak, 
resulting in low analytical sensitivity [106] compared to 
other spectroscopy techniques such as NIR and MIR spec-
troscopy. To counteract this, enhancement of Raman spec-
troscopy can be utilized in form of SERS. Another disad-
vantage of the Raman spectrum is that it can only collect a 
small amount of information from the sample and, therefore, 
the results obtained are not complete [106]; the same is also 
true for IR spectroscopy [107]. The low sensitivity of Raman 
spectra was demonstrated by He et al. [108], who were una-
ble to discriminate the Raman spectra of three prohibited 
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food additives dissolved in ethanol. On the other hand, by 
employing gold-plated silicon as SERS substrate, the weak 
signal was improved, enabling successful distinguishment 
of the samples.

Considering the above, before performing any analysis in 
food, it is necessary to define which vibrational spectroscopy 
technique is going to be used, taking into account its advan-
tages and disadvantages in relation to the nature and compo-
sition of the sample. For example, many compounds cannot 
be detected based on IR spectrum; specifically, minerals are 
not active in the NIR region, but they are active in the Raman 
region [107]. It should be noted that, even if the most optimal 
vibrational spectroscopy technique is chosen, it is challenging 
to analyze multiple compounds simultaneously [24]. This can, 
however, be solved with correct data processing of the spec-
trum using chemometrics. Yang and Irudayaraj [57] concluded 
that infrared spectroscopy (NIR and IR-photoacoustic) is bet-
ter than Raman spectroscopy for the prediction of vitamin C 
content in some foods and pharmaceuticals. The authors also 
used FT-Raman spectroscopy and highlighted the importance 
of such a chemometric method for improving the sensitivity of 
the technique and reducing data acquisition time. In the same 
study, it was established that the O–H groups have a weak 
absorbance in the Raman spectrum, but a strong absorbance 
in the infrared region, with the opposite occurring with the 
non-polar C–C groups.

Finally, to enhance the robustness of the models generated 
with respect to vitamin C assessment, it is necessary to have 
a comprehensive database. This can be achieved by analyzing 
different foods or, if the focus is on a specific food, samples of 
different species and origins should be used [7, 28]. Relatively 
more robust models were obtained when evaluating vitamin 
C in three bell pepper cultivars at different growth stages by 
using Vis–NIR spectroscopy (average R2: 0.74 and RPD: 
2.2) compared to shortwave NIR spectroscopy (average R2: 
0.72 and RPD: 2.13) [109]. In addition, excellent results were 
obtained in the evaluation of vitamin C in two green-fleshed 
kiwifruit cultivars employing FT–NIR spectroscopy [110]; in 
eleven yellow-fleshed peach cultivars, in three white-fleshed 
peach cultivars, in four yellow-fleshed nectarine cultivars and 
in one white-fleshed nectarine cultivar using UV spectroscopy 
[111]; in four plum cultivars, using NIR, MIR and Raman 
spectroscopy [112]; and in apricot pastes of eight cultivars 
using FT-IR spectroscopy with attenuated total reflectance 
[113].

Vibrational spectroscopy techniques and chemometric 
methods will continue to evolve in parallel with other tech-
nological advances to address the above limitations. On the 
other hand, researchers should be informed and trained on the 
importance of using these techniques not only in the evaluation 
of vitamin C, but also in the evaluation of other compounds 
in different food matrices. If the use of spectroscopy expands 
further, this will increase the volume of the production 

of equipment and, consequently, lead to a significant cost 
reduction.

Conclusions

Vibrational spectroscopy and its recent advancements are 
attracting the attention of researchers around the world due 
to its possibilities in food quality assessment, the benefits 
including rapid, accurate and inexpensive non-destructive 
analysis. Specifically, the usage of UV–Vis, IR and Rah-
man spectroscopies has increased in the quantification of 
vitamin C as a quality indicator of various food products; 
the techniques are used together with chemometric preproc-
essing, discrimination, and modeling tools to, in addition 
to improving the efficiency of obtaining spectral data, help 
researchers in the subsequent data analysis and interpretation 
of the results. To avoid limitations of vibrational spectros-
copy techniques, it is necessary to define the appropriate 
technique according to its advantages and disadvantages 
with respect to its compatibility with the nature of the food 
sample.
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