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Abstract
Braeburn variety was subjected to the process of osmotic dehydration in sucrose solution with addition of chokeberry juice 
concentrate. After drying by two different methods (convective- and freeze-drying), apples were stored in three different 
temperatures (25, 35 and 45 °C) for a period of 12 months. The aim of the study was to determine selected physical and 
chemical changes after storage time in each group and to show benefits of the pre-treatment use. Mass changes, water content, 
water activity and total colour difference ΔE, as well as anthocyanins and polyphenols content in stored dried apples were 
marked. It was considered that different storage conditions were statistically significant and influenced on level of changes. 
Storage in medium temperature (35 °C) proved to be the best efficient in terms of the lowermost values of water activity, 
small mass changes, as well as the smallest colour changes. Addition of chokeberry juice concentrate resulted in a significant 
increase of polyphenol content in dried apples. Although they were stored for a long time at different conditions, polyphenol 
compounds were still substantial amounts in the apple samples.
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Introduction

Osmotic dehydration of fruits and vegetables is achieved by 
placing the plant tissue in a hypertonic solution with a simul-
taneous countercurrent diffusion of solutes from the osmotic 
solution into the tissues as well as water from the fruit to 
surrounding environment solution. The process affects the 
lower water content in the product and enables the enrich-
ment of bio-compounds. The product obtained by osmotic 
process is more stable during storage due to low water activ-
ity imparted by water loss and solute gain (longer shelf life). 
Another advantage is the fact that sophisticated equipment is 
not required to carry out the dehydration [1]. Osmotic dehy-
dration is one of the least energy-intensive processes that 
lead to the extend of shelf life of food, which is also attrac-
tive from the sustainable economic developments’ point of 
view [2]. Osmotic dehydration reduces water activity and 

water content of the product, which involves the inhibition of 
microbial growth. However, it does not affect the total pres-
ervation of the products, which require a final consolidation 
through the use of various drying methods [3, 4].

Dehydrated products might be used as food additives or 
for direct consumption. These products have many advan-
tages, such as the ease of transportation, storage, prepara-
tion. Dried fruit produced by the use of the osmotic pre-
treatment immediately before consumption or for further 
processing may be rehydrated [5].

In recent years, consumers’ awareness about “healthy 
snacks” has significantly increased and, therefore, food 
industry looks for interesting solutions for the food. Com-
mercially, there is a need to create new products as well as 
innovations—to find answer to the question: how to reduce 
the cost of production. The answer may be to use the fruit as 
a snack in the form of dry fruit, which was previously osmo-
dehydrated. The products are an alternative to high-calorie 
products, often lacking of nutritional value, such as sweets, 
traditional crisps and others. Osmotic dehydration enables 
to obtain new, attractive products e.g. bio-snacks. It might 
be seasonal fruits such as strawberries, apples in the form 
of fruit chips [6].
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Apples are one of the most important raw materials in 
the Polish processing. For 12 years, Poland has been the 
first in Europe and the third in the world in the production 
of apples. The harvest in 2015 was approx. 3.5 million 
t (tonnes) and 1.9 million t subjected to the processing, 
700 thousand t for the consumption in the country and 
800 thousand t for export [7]. The main product made of 
apples in Poland is concentrated apple juice. The share of 
apples used in the production of apple juice in the total 
supply of the apples for processing is estimated in recent 
years about 90%. Participation does not show an upward 
trend, due to the increasing production of NFC juice (not 
from concentrate). However, the dried apple production 
has increased from approx. 0.3 thousand t in 2012 to 0.5 
thousand t in 2015. The increase in production of dried 
apple reflects growing demand in the country and the 
increasing number of companies using manufacturing 
technologies enabling to receive product with high qual-
ity [8].

Dried fruits are rich in nutrients and they are source 
of energy. Consumers appreciate the presence of fiber, 
vitamins, as well as health properties of the product [9]. 
In the case of apples, the flavour is combined with a high 
nutritional value and health benefits. The dietary fibre, 
which is present in these fruits, may reduce the occur-
rence of many lifestyle diseases such as diabetes, ath-
erosclerosis, cancer, cardiovascular [6]. Apples in their 
composition contain approx. 2–3% fibre, including the 
half of soluble dietary fibre (pectin) and the content of 
acids and sugars affect the attractiveness of the fruit. 
Very important compounds responsible for the biologi-
cal value of the apples are polyphenolic compounds [10]. 
Apples are one of the main sources of flavonoids in the 
diet, including at least 2 g of total polyphenols per kg 
fresh weight or approx. 400 mg in one apple. The main 
groups of polyphenols in apples are flavonoids, includ-
ing quercetin, (−) epicatechin, (+) catechin, procyanidin 
and anthocyanins; dihydrochalcones such as phloretin and 
phloridzin derivatives and other phenolic compounds, 
such as chlorogenic acid [7]. Even after convective drying 
apples are the source of bioactive compounds and show 
antioxidant activity [11]. Unfortunately, some of these 
compounds may be degraded during food processing and 
storage. Therefore, it is necessary to find preservation 
methods that would allow fruit to retain the nutrients that 
are likely to be beneficial for health to the greatest pos-
sible extent [12].

The aim of this research was to evaluate chemical and 
physical changes in apple tissue, using osmotic dehydra-
tion in chokeberry solution as pre-treatment before dry-
ing. The changes were marked in control and OD-samples 
before and after storage.

Materials and methods

Sample preparation

Fresh apples of the Braeburn variety were purchased from 
university cultivation (WULS). The fruits were stored at 
4–5 °C and relative humidity of 85–90% in a refrigerator 
until use (2 weeks). Before each experiment, the apples were 
washed, peeled manually and cut into cylinders (10 mm in 
diameter and 10 mm in height). The samples were dipped in 
a solution of 1% citric acid for 10 min to prevent enzymatic 
browning.

Pre‑treatment procedure

Fresh apples were dehydrated by osmotic dehydration 
(OD) at 40 °C in a water bath (Water Bath Shaker Type 357 
ELPAN, Poland) with continuous shaking (1 Hz amplitude). 
The temperature of water bath was constant. The samples 
were placed into glass jars. The ratio of raw material weight 
to osmotic solution was maintained at 1:4 as it had previ-
ously been reported that the dilution of osmotic solution was 
negligible at this raw material to osmotic solution ratio [13]. 
Apple samples were dipped into  60oBrix solution mixtures 
of sucrose and chokeberry juice concentrate (CJC) (1:1) 
for 120 min. Afterwards samples were removed from the 
osmotic solution and blotted with absorbent paper to remove 
osmotic liquid from their surface. Two technological repeti-
tions were performed for each treatment.

Drying

After osmotic pre-treatment, apple samples were dried by 
a convective or a freeze-drying equipment (Christ Gamma 
1–16 LSC, Germany). Convective drying of pre-treated sam-
ples was carried out at a temperature of 70 ± 1 °C and air 
velocity of 1.5 ± 0.1 m/s. The dryer was loaded with 0.1 kg 
(1.11 kg·m− 2) of material which was spread on perforated 
shelf in a single layer. The air flow ran parallel to the screens 
and the drying process continued until constant mass was 
reached (approximately 7 h). Freeze-drying was performed 
with total pressure and temperature in a vacuum chamber 
equal to 100 Pa and 25 °C, respectively. Average freeze-
drying time was approximately 24 h. Two technological rep-
etitions were performed for each drying. Control samples 
were dried by two methods without osmotic pretreatment.

Storage

The dried apple samples were packed in plastic polyeth-
ylene bags (BOPA/PE 15/40 FF) using vacuum packing 
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machine (PP-5.4 TEPRO, Poland) with 25% content of air 
inside. The weight of the dried apple inside the pack of sin-
gle stored package was approximately 2.0 g. Four pieces of 
dried apples were packed into one package. Then they were 
stored in darkness at 25, 35 and 45 °C at 50–60% air humid-
ity for 12 months. The mass changes, water content, water 
activity and colour parameters analysis of each of the dried 
products were studied.

Analytical methods

Mass changes

Dried apples were weighted at the beginning of the storage 
process as well as after 12 months. Mass changes of stored 
dried apples were showed as percentage values. Two repeti-
tions were performed.

Water content

Water content was measured for two samples by means of 
drying method. The weighted material placed in a weigh-
ing glass was dried in a convective dryer (SUP-65 WG 
WAMED, Poland) at the temperature of 70 °C for 24 h, 
then in a vacuum dryer (HORYZONT SPT 200, Poland) at 
60 °C for 2 h. The convective- and freeze-dried material was 
weighed on an analytical scale after drying at the beginning 
of storage and 12 months afterwards with the accuracy of 
0.001 g.

Water activity

Water activity was measured using an AquaLab CX-2 (Deca-
gon Devices Inc., USA) apparatus, in accordance with the 
manufacturer instruction. The temperature of water activity 
determination was constant (25 °C). Each measurement was 
conducted in 3 repetitions.

Colour measure

Colour analysis of the dried apples surface was determined 
with the use of Minolta Chroma Meter CR-200 (Minolta 
Corp., Osaka, Japan). The measurement conditions were: 
D65 standard illuminate, 2° Standard Observer, measure-
ment diameter: 30 mm. The results were presented using 
the directly measured parameters: L* (lightness/darkness), 
a* (red/green), b* (yellow/blue). The measurements were 
made in 5 repetitions for every dried sample; the mean val-
ues are reported. Total colour difference (ΔE) was calculated 
according to the following formulas:

E = [(ΔL∗)2 + (Δa∗)2 + (Δb∗)2]1∕2

ΔL*, Δa*, Δb*—the change of L*, a* and b* parameter 
between dried apple samples before and after storage.

Chemical methods

Total polyphenol content

Determining the total polyphenol content was performed 
using the Folin–Ciocalteu’a method, as modified by Sin-
gleton and Rossi [14]. To obtain the extract for analysis, 
5 g of finely ground dried fruit material was weighed with 
accuracy of 0.0001 g. 50 cm3 of 70% methanol was added 
to the material and the mixture was shaken for 1 h. The 
solution was then filtered through a paper filter and the 
supernatant extract was collected into a flask. Samples were 
prepared by adding 1.5 cm3 of the supernatant extract and 
2.5 cm3 Folin–Ciocalteu reagent (POCH, Gliwice, Poland) 
to 30 cm3 of distilled water and then mixed for 3 min. with 
5 cm3 of sodium carbonate solution. Next, distilled water 
was added to obtain 50 cm3 of total volumetric flask. Control 
samples, containing no extract, were prepared analogously. 
The solutions were kept in darkness for 1 h. Afterwards, the 
absorbance was measured against the blank sample (with-
out extract) at 750 nm using a Heλios γ ThermoSpectronic 
(manufacturer: Thermo Spectronic, England). The determi-
nation was repeated twice for each extract. The results of 
total polyphenol content were expressed relative to milli-
grams of gallic acid per 100 g dry matter (mg GAE/100 g 
d.m.).

Total anthocyanin content

The total monomeric anthocyanins concentration was ana-
lyzed by the pH differential method. This is a rapid and sim-
ple spectrophotometric method based on the anthocyanin 
structural transformation which occurs with a change in pH 
(coloured at pH 1.0 and colourless at pH 4.5) [15].

To prepare extract of anthocyanins 2  g of apple was 
weighted into a falcon and 15 cm3 of reagent was added. The 
extraction reagent consisted 0.1 N hydrochloric acid and 80% 
ethanolic solution (15:85 v/v). The content was homogenized 
and shaken for 10 min with a speed equal to 2000 rpm. Mag-
nesium carbonate was added to improve a precipitation during 
centrifugation which was carried out for 10 min with a velocity 
of 6000 rpm. After centrifugation, the supernatant was col-
lected into a volumetric flask. This procedure was repeated 
thrice for the same portion of material. The volumetric flask 
was filled with reagent and extract used for anthocyanins 
determination. For anthocyanin content analysis 1.5 cm3 of 
extract was transferred into two glass tubes. 3.5 cm3 of buffer 
at pH 1.0 (0.025 M potassium chloride) was added into the 
first tube whereas the second tube consisted of buffer at 4.5 
(0.4 M sodium acetate). The content was stirred and left in 
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the darkness at room temperature. After 30 min of incubation, 
absorption was measured at 510 and 700 nm using a Heλios γ 
ThermoSpectronic (manufacturer: Thermo Spectronic, Eng-
land). The results of total anthocyanin content were expressed 
relative to milligrams of cyanidin per 100 g product (mg 
cyanidin/100 g).

Antioxidant activity determination

The antioxidant activity was determined spectrophotometri-
cally, based on the decrease of the solution absorbance as a 
result of scavenging of the 2,2-diphenyl-1-picrylhydrazyl 
(DPPH) (Sigma–Aldrich, USA) synthetic radical by the anti-
oxidants present in apple tissue, according to the method speci-
fied by Wu et al. [16]. Apple extracts in 80% ethanol in the 
range of 0.29–2.44 mg d.m./cm3 were prepared separately in 
each tube. Subsequently, the 2 cm3 of 100 µM DPPH solution 
was added to all samples. The content was stirred and the tubes 
were kept in the darkness for 30 min before the spectropho-
tometric measurement. The absorbance was read at 515 nm 
against 80% ethanol. The antioxidant potential of the apples 
tissue was determined in four independent replications and was 
expressed as DPPH50 parameter, which means a concentration 
of apple tissue in extract which allows to scavenge a 50% of 
DPPH radical (in mg d.m./cm3).

Statistical analysis

The statistical software Statgraphics Plus ver. 5.1 (StatPoint) 
and Excel 2016 (Microsoft) were used for data analysis. The 
influence of osmotic pre-treatment on achieved values was 
evaluated by t test to compare the means of the two samples 
(control and after osmotic dehydration). The test has been con-
structed to determine whether the difference between the two 
means equals 0.0 versus the alternative hypothesis that the 
difference does not equal 0.0. In the case when the computed 
P value had been less than 0.05, we rejected the null hypoth-
esis. Pearson’s correlation coefficient between water activity 
and water content was calculated. The influence of storage 
conditions (drying method, storage temperature) on dependent 
variables: mass changes, the water content, water activity and 
colour values, was evaluated by means of a two factorial analy-
sis of variance (ANOVA) at a significance level α = 0.05. In 
the case of significant impact factor post-hoc Tukey’s test was 
performed. Homogenous groups were marked on the Figures 
(a—method of drying, A—storage temperature).

Results and discussion

Mass changes

The storage result of dried apple samples at constant tem-
peratures of 25, 35 and 45 °C during 12 months was satisfac-
tory. The changes in the mass of apples were small. It was 
noted that the samples stored at room temperature (25 °C) 
were characterized by a slight increase in mass (2–4%) 
what could be caused from the absorption of moisture from 
the air. Meanwhile, in the cases of the samples stored in 
higher temperatures decrease in mass between 1 to 5% was 
observed (Fig. 1). The highest storage temperature (45 °C) 
resulted in the highest values of weight loss compared to 
those stored at lower temperatures. This probably resulted 
from the evaporation of some water from the product. The 
convective dried samples had higher weight losses compared 
to those obtained by freeze-drying (Fig. 1). Statistical analy-
sis of two-samples comparison (dried apples stored at these 
same conditions, before and after pre-treatment) showed no 
significant difference between the means of the two samples 
at the 95.0% confidence level (P value = 0.448—no reason 
to reject the null hypothesis that compared means are equal). 
Despite low mass changes, two-factor analysis of variance 
showed a significant difference between the achieved values 
of the mass changes. The differences regarded all of the fac-
tors: drying method and storage temperature (Table 1).

Water content

Water content in fresh apple variety Braeburn in this 
research was approximately 86.5% and it was similar to 
Piasecka et al. [12] research. As a result of freeze-drying, the 
water content of the dried material was reduced to the value 
of 1.6%, while in the case of convective-drying the achieved 
value was of about 3.2%. The use of osmotic pre-treatment 

Fig. 1  Influence of osmo-drying methods and storage conditions on 
mass changes of dried apples.  25 °C Freeze-drying,  25 °C Con-
vection drying,  35 °C Freeze-drying,  35 °C Convection drying, 

 45 °C Freeze-drying,  45 °C Convection drying
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allowed to receive even less value of water content after 
convection (approx. 2.4%) and comparable value after 
freeze-drying (approx. 2%). However, statistical analysis 
did not confirm significant impact of osmotic dehydration 
on achieved values of the water content (P value = 0.589). 
Cichowska and Kowalska [17] in previous research reported 
that kind of osmotic agent used as pre-treatment before dry-
ing and storage had significant influence on this parameter 
in contrast to temperature of the process. Klewicki et al. 
[18] also observed a lower water content in the freeze-dried 
apples (approx. 0.4%), compared to apples received by con-
vection (approx. 7.6%).

Surprisingly, drying method had no significant effect on 
the water content in dried fruits, but the effect of storage 
temperature was observed (Table 2). Mostly in the scientific 
papers, significant influence of drying method was reported. 
For example Cichowska and Kowalska [17] also observed 

that storage time had no significant effect on moisture con-
tent. Room conditions proved to be the least efficient. In this 
case, the samples showed the highest water content (approx. 
5–6%), regardless of the pretreatment in the solution of con-
centrated chokeberry juice (Fig. 2). Dried samples which 
were stored at 25 °C in both group—control and after pre-
treatment—contained three times more water comparing to 
these samples which were stored at another temperatures. 
Storage during 12 months resulted in changes of water con-
tent in the samples. Freeze-dried samples stored at the low-
est temperature had considerable increase of values (till 6%), 
whilst convective dried samples had less significant increase 
of values (comparing to the output value before storage). It 
was noticed that freeze-dried samples, which were stored 
at medium temperature did not show changes in water con-
tent. However, convective dried samples and stored in the 
same condition behaved differently—after storage they had 
decrease in water content. The lowest water content was 
noticed in osmotic treated samples, which were stored at 
45 °C—achieved a value below 1%. In Rizzolo et al. [19] 
studies water content prior to storage in the apples was at 
1.6% and also decreased as a result of storage.

Water activity

At room temperature, osmo-dehydrated food remains stable 
up to 6 months and even 1 year. At low water activity level, 
the chemical reactions as well as growth of toxin producing 
microorganisms are ceased [20]. The water activity is an 
important parameter that affects the microbial safety and 
is highly important for the shelf life of osmo-dehydrated 
products. It is defined as the available moisture content of a 
food product [3]. Different microbes need various levels of 
water activity for their growth. Proliferation of microorgan-
ism ceased when the water activity is ≤ 0.5. However, it was 
presumed that microbiological safety was ensured when the 
water activity values were ≤ 0.6 [21].

Table 1  The influence of drying method by freeze- (FD) and convec-
tive-drying (CD) and storage conditions on mass changes of dried 
apples

Statistical differences between factors; a Tukey test of main effects 
was performed
*A statistically significant difference. Means within columns with 
a different lowercase letter superscript are significantly different 
(P < 0.05)

Factor P value Contrast +/− limits Difference

Drying method
 FDb 0.003* FD–CD 0.9525 − 1.5747*
 CDa

Storage temperature (°C)
 25C 0.000* 25–35 1.4155 4.9562*
 35B 25–45 1.4155 7.2846*
 45A 35–45 1.4155 2.3285*

Table 2  The influence of drying method by freeze- (FD) and con-
vective-drying (CD) and storage conditions on water content of dried 
apples

Statistical differences between factors; a Tukey test of main effects 
was performed
*A statistically significant difference. Means within columns with 
a different lowercase letter superscript are significantly different 
(P < 0.05)

Factor P value Contrast +/− limits Difference

Drying method
 FDa 0.416 FD–CD 0.0047 − 0.0019
 CDa

Storage temperature (°C)
 25B 0.000* 25–35 0.0070 0.0361*
 35A 25–45 0.0070 0.0429*
 45A 35–45 0.0070 0.0068

Fig. 2  Influence of osmo-drying methods and storage conditions on 
water content of dried apples.  25 °C Freeze-drying,  25 °C Con-
vection drying,  35 °C Freeze-drying,  35 °C Convection drying, 

 45 °C Freeze-drying,  45 °C Convection drying
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Dried samples stored during 12 months in all analyzed 
conditions preserved microbiological stability. The water 
activity values of the samples did not exceed the value of 
0.350 (Fig. 3). At the start of the storage control samples 
exhibited water activity of 0.132 and 0.246 (in the case of 
using freeze- and convective drying, respectively). After 
osmotic dehydration and drying process, achieved values 
were higher: 0.180 and 0.270, respectively. Similar to previ-
ous parameter (water content), in dried apple samples stored 
at 25 °C increase values of water activity during storage was 
observed. Moreover, those values were about twice higher 
compared to achieved during storage in another conditions 
(Fig. 3). Storage at higher temperatures resulted in decrease 
of water activity values in almost all cases. Only freeze-dried 
apples from control group had minor increase of value at 
45 °C and at medium temperature did not show changes in 
water activity. Medium storage temperature (35 °C) condi-
tions proved to be the best efficient. In this case, the samples 
showed the lowermost water activity. Slightly lower values 

of the parameter were achieved with the use of freeze dry-
ing method, compared with the convection drying. Klewicki 
et al. [18] also confirmed in their research that freeze-dried 
apples and pre-dehydrated ones had lower values of water 
activity in comparison to convective samples.

Statistical analysis confirmed the significance of the two 
variable factors (Table 3). However, the process of osmotic 
dehydration was not significant on achieved values of water 
activity (P value = 0.870). Since the computed P value was 
not less than 0.05, we could not reject the null hypothesis. 
In addition, Cichowska and Kowalska [17] reported insig-
nificant influence temperature and kind of osmotic agent on 
achieved values. Whereas Ciurzyńska et al. [22] observed 
significant effect of time, temperature and a type of the 
osmotic substance on water activity.

Pearson’s correlation coefficient between water activity 
and water content was calculated separately for convective 
and freeze-dried samples. In both cases, strong linear rela-
tionship between the variables was stated. The correlation 
coefficient was 0.96 for dried apples, which were obtained 
by convective and 0.86 for freeze-dried samples. The sig-
nificant relationship between the variables proves the fact 
that changes of water activity depend primarily on changes 
of water content. It is worth mentioning that apples contain 
sugars (fructose, sucrose etc.), so during long storage some 
of them could crystallized thus increased the water activ-
ity [23]. This same relationships observed Cichowska and 
Kowalska [17].

Change in colours

Under the influence of the technological processes applied 
the change in the appearance of the samples of dried apples 
occurred. The samples immersed in sucrose contain-
ing chokeberry juice concentrate were darker, due to the 
dark colour of the solution. As a result of convective tis-
sue shrinkage, a decrease in their lightness were observed. 
Freeze-drying allowed to maintain the appearance similar 
to that of the raw material in terms of colour and shape. 
However, under the influence of a long period of storage, 
the change of colour was observed. Control and osmotic 
dehydrated samples were compared with the colour of dried 
fruit obtained by sublimation and convection, respectively, 
before storage. In control group, higher storage temperature 
resulted more changes of colour. Freeze-dried samples were 
characterized of higher ΔE comparing to convective dried 
samples (Fig. 4). Opposite situation was observed in the case 
of osmo-dehydrated group. Freeze-dried samples better kept 
colour during storage. As a result of convective drying tissue 
contraction at higher temperature was followed by a fruit, 
and darkening of colour. It is assumed that enzymatic and 
non-enzymatic reactions are responsible for the degradation 
[24]. Statistical analysis did not confirm influence of drying 

Fig. 3  Influence of osmo-drying methods and storage conditions on 
water activity of dried apples.  25 °C Freeze-drying,  25 °C Con-
vection drying,  35 °C Freeze-drying,  35 °C Convection drying, 

 45 °C Freeze-drying,  45 °C Convection drying

Table 3  The influence of drying method by freeze- (FD) and convec-
tive-drying (CD) and storage conditions on water activity of dried 
apples

Statistical differences between factors; a Tukey test of main effects 
was performed
*A statistically significant difference. Means within columns with 
a different lowercase letter superscript are significantly different 
(P < 0.05)

Factor P-value Contrast +/− limits Difference

Drying method
 FDa 0.000* FD–CD 0.0088 0.0204*
 CDb

Storage temperature (°C)
 25C 0.000* 25–35 0.0131 0.1959*
 35A 25–45 0.0131 0.1598*
 45B 35–45 0.0131 − 0.0361*
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method and classified values into one homogenous group 
(Table 4). There was also no significant difference between 
storage at temperatures 25 and 35 °C.

The most value of total colour difference in the case of 
untreated by osmosis (control samples) freeze-dried fruit 
stored at 45 °C was observed. Probably, it was related to 
the growth of water content after storage. Colour change 
of dried samples was due to Maillard reaction, enzymatic 
browning and ascorbic acid oxidation [25].

Total polyphenol content

Osmotic dehydration, drying method and storage temper-
ature had significant effect on the changes in polyphenol 
content (P < 0.005). In fresh and osmodehydrated apple 
it equalled to 242 ± 5 and 590 ± 14 mg GAE /100 g d.m., 
respectively. After freeze and convective drying, polyphe-
nol content in apple decreased by approximately 6 and 
60%, respectively (Table 5). This behaviour agree with 
those reported in other products. Total polyphenol content 

significantly decreased after the convective drying, e.g. in 
garlic [26] and jujubes [27]. Wojdyło et al. [28] reported a 
5% loss of total polyphenol content in freeze-dried straw-
berries of Kent variety, but for Elsanta polyphenol its value 
was comparable to that of the fresh fruits. Addition of the 
chokeberry juice to the sucrose solution during osmotic pre-
treatment resulted in a significantly higher content of poly-
phenol compounds, amounted to 245 ± 15 mg GAE/g d.m. 
in osmo-convective dried sample and 598 ± 14 mg GAE/g 
d.m. in osmo-freeze dried sample (Table 5). The degradation 
of polyphenol compounds during convective drying can also 
be affected by cellular destruction, which is due to high tem-
perature and long drying time [29]. The freeze-drying has 
some advantages, such as morphological preservation and 
biochemical properties in compared to other drying meth-
ods [30]. These advantages have resulted from oxygen-poor 
atmosphere and low temperature during this drying [30, 
31].The highest quality of dried products can be obtained 
using freeze-drying, but this process is relatively expensive 
and slow [32–35]. After 12 months of storage at 25, 35 and 
45 °C, polyphenol content in osmo-convective dried apple 
decreased by approximately 48, 59 and 72%, respectively.

In the case of samples which were osmotically dehy-
drated before freeze drying, a significant decrease in the total 
amount of polyphenol compounds was observed. After stor-
age at 25, 35 or 45 °C, osmo-freeze died sample contained 
approximately 40, 47 and 75% less polyphenols than before 
storage, respectively.

Dehydrating apples in chokeberry juice concentrate 
enriched them in polyphenols. Despite the fact the samples 
were stored for a long time (12 months) in different condi-
tions, substantial amounts of polyphenol compounds were 
still present, especially in osmo-freeze dried samples. How-
ever, low selectivity of the Folin–Ciocalteu’s method should 
be taken into account here; factors, for example, the presence 
of ascorbic acid could influence the result [36].

Polyphenol compounds play an important protective 
function in the fruit [37]. Piasecka et al. [12] determined 
the stability of polyphenol compounds and ascorbic acid 
in osmotically dehydrated fruit, which were subsequently 
convectively or freeze-dried, and stored for 12 months. In 
the research apples, cherries and blackcurrants were dehy-
drated in the following osmotic solutions: apple juice and 
sour cherry juice, fructooligosaccharide concentrate, treha-
lose solution, sucrose and inverted sugar.

The authors [12] observed that the content of polyphe-
nol compounds in fresh apples was approx. 188 mg/100 g. 
Other results were obtained by Sacchetti et al. [38]. They 
observed that polyphenol content was in the range of 
221–530 mg/100 g depending on the apple variety. Different 
drying processes had impact on the concentration of poly-
phenol compounds in apple tissue [39]. In the case of con-
vectively dried material, a gradual decrease in total phenolic 

Fig. 4  Influence of osmo-drying methods and storage conditions on 
total colour difference of dried apples.  25  °C Freeze-drying,  
25 °C Convection drying,  35 °C Freeze-drying,  35 °C Convec-
tion drying,  45 °C Freeze-drying,  45 °C Convection drying

Table 4  The influence of drying method by freeze- (FD) and convec-
tive-drying (CD) and storage conditions on total colour difference ΔE 
of dried apples after storage

Statistical differences between factors; a Tukey test of main effects 
was performed
*A statistically significant difference. Means within columns with 
a different lowercase letter superscript are significantly different 
(P < 0.05)

Factor P value Contrast +/− limits Difference

Drying method
 FDa 0.479 FD–CD 3.3755 − 1.1667
 CDa

Storage temperature (°C)
 25A 0.007* 25–35 0.0162 − 1.6450
 35A 25–45 0.0162 − 6.7784*
 45B 35–45 0.0162 − 5.1334*
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content was observed during storage. In freeze-dried apples 
which were beforehand osmo-dehydrated in sucrose, poly-
phenol contents were also relatively stable. They changed 
only by 27% in 12 months. In the case of freeze-dried apples, 
the HPLC analysis showed that the main polyphenol com-
pound was chlorogenic acid [12]. They showed that higher 
fluctuations in polyphenol contents occurred in apples osmo-
dehydrated in sour cherry concentrate prior to freeze-drying. 
The initial levels were higher (783 mg epicatechin equivalent 
(ECE)/100 g) than those of fruits soaked in sucrose (441 mg 
ECE/100 g) as a result of the diffusion of polyphenol from 
the osmotic solution into fruit tissue. After 12 months stor-
age, 61% of initial polyphenol remained in the product. In 
the research presented by Piasecka et al. [12] polyphenols 
in freeze-dried fruits were much more stable than in convec-
tively dried materials. Blackcurrants retained almost 80% of 
polyphenols after 12 months of storage, sour cherries about 
70% and apples 60–70%.

Anthocyanins content

The analysis has shown that storage affects the concen-
tration of anthocyanins in apple tissue. Generally, results 
indicated that storage contributed to a decrease of the total 
content of anthocyanins in apple tissue and the size of the 
decrease did not depend on storage temperature (Table 5). 
In the study, anthocyanin content in fresh, convective- and 
freeze-dried apple without OD was 0 mg of cyanidin/100 g. 
Osmotic dehydration combined with lyophilization or air 

drying caused an increase in the concentration of the above-
mentioned substances. After 12 months storage at 45 °C, a 
substantial decrease in the concentration of anthocyanins 
was observed for osmo-convective dried apple (from 98 ± 6 
to 4 ± 1 mg of cyanidin/100 g) and osmo-freeze dried apple 
(from 309 ± 34 to 26 ± 2 mg of cyanidin/100 g). The loss in 
anthocyanins amounted to above 90%, regardless of the dry-
ing method. The destruction of dyes increases with increas-
ing temperature of storage. There occurs the conversion from 
red anthocyanin cation to colorless or yellow chalcones, and 
then brown polymers [40]. Czapski and Walkowiak-Tomc-
zak [41] were noted analogous results were obtained in the 
research. Researchers demonstrated the effect of heating on 
the stability of chokeberry anthocyanins. In addition, Ścibisz 
et al. [40] observed a similar dependency in blueberries. It 
was found that with increasing temperature and time, the 
parameters L* and b* values increased as well.

DPPH 50 assay

In dried apples after storage time the DPPH 50 were sig-
nificant changed. Antioxidant activity measured by DPPH 
50 radical scavenging decreased throughout the storage 
time for all the studied samples (Table 2). The DPPH 50 
equalled to 3.12 ± 0.08 mg d.m./cm3 in convective dried 
apple, 1.41 ± 0.14  mg d.m/cm3 in freeze-dried apple, 
2.14 ± 0.11 mg d.m./cm3 in osmo-convective dried sam-
ple and 0.67 ± 0.09  mg d.m./cm3 in osmo-freeze dried 
sample. Eim et al. [42] and Rodríguez et al. [43] observed 

Table 5  Changes of radical scavenging activity and phenolic content, anthocyanins content and DPPH 50 in dried and osmo-dehydrated apple 
during storage at 25, 35 and  45oC

Statistical differences between factors; a Tukey test of main effects was performed. Means within columns with a different letter superscript are 
significantly different (P < 0.05)

Products Storage tem-
perature (°C)

Polyphenol content (mg 
GAE/100 g d.m.)

Anthocyanins content 
(mg cyanidin/100 g)

DPPH50 (mg d.m./ml)

Convective dried apple before storage (1CD) 97 ± 2de 0 ± 0c 3.12 ± 0.08de
Osmo-convective dried apple before storage 245 ± 15c 98 ± 6b 2.14 ± 0.11bc
Convective dried apple 25 50 ± 5ef 0 ± 0c 4.39 ± 0.15 g

35 41 ± 6ef 0 ± 0c 4.17 ± 0.06 fg
45 24 ± 5f 0 ± 0c 4.25 ± 0.02 fg

Osmo-convective dried apple 25 144 ± 20d 21 ± 1c 4.25 ± 0.12 fg
35 118 ± 9d 8 ± 1c 3.66 ± 0.20efg
45 52 ± 10ef 4 ± 1c 3.56 ± 0.32defg

Freeze dried apple before storage 226 ± 5c 0 ± 0c 1.41 ± 0.14ab
Osmo-freeze dried apple before storage 598 ± 14a 309 ± 34a 0.67 ± 0.09a
Freeze-dried apple 25 155 ± 29d 0 ± 0c 3.59 ± 0.10efg

35 127 ± 14d 0 ± 0c 3.45 ± 0.20def
45 50 ± 12ef 0 ± 0c 4.21 ± 0.21 fg

Osmo-freeze dried apple 25 359 ± 4b 42 ± 9bc 2.64 ± 0.15cde
35 315 ± 9b 31 ± 3bc 2.75 ± 0.15 cd
45 150 ± 16d 26 ± 2c 3.31 ± 0.19de
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that convective drying may cause a decrease in antioxidant 
activity. The storage temperature had no significant effect on 
antioxidant activity after 12 months of storage. In general, 
DPPH is correlated with the amount of polyphenols present 
in plant tissue. Ismail et al. [44] studied the DPPH scaveng-
ing activity of cantaloupe extracts and found a good relation 
with total polyphenol content (r2 = 0.9228).

Conclusions

This study confirmed that dried apples after 12-months stor-
age in different conditions still remain microbiologically sta-
ble. However, long storage at 25 °C was not efficiently due 
to increase of water content as well as water activity. Drying 
method had no significant effect on the water content and 
total colour difference, whereas the effect of storage tem-
perature was observed. The best conditions for the storage 
of dried apples were at medium temperature (35 °C). In this 
case, the smallest mass and colour changes were noticed, 
and water activity after 12-months storage was the lower-
most. Osmotic dehydration as pre-treatment before drying 
did not reduce changes during storage, but had influence 
on chemical changes in apple tissue. Dehydrated samples 
in chokeberry juice concentrate had been enriched with 
polyphenols. Although they were stored for a long time at 
different conditions, polyphenol compounds were still sub-
stantial amounts in the apple samples. Freeze-drying was 
better method of drying in terms of higher values of phenolic 
as well as anthocyanins content before and after storage.
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