Skip to main content

Advertisement

Log in

Differential proteomic analysis of milk fat globule membrane proteins in human and bovine colostrum by iTRAQ-coupled LC-MS/MS

  • Short Communication
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Milk fat globule membrane (MFGM) proteins have important biological functions, such as anticancer properties, preventing Helicobacter pylori infection, and immune functions. However, the full range of colostrum MFGM proteins has not completely identified. In this study, extracted colostrum MFGM proteins were identified and quantified using the isobaric tags for relative and absolute quantitation proteomic method. A total of 411 human and bovine colostrum MFGM proteins were identified and quantified. These MFGM proteins were classified according to gene ontology annotation. The major biological processes involved were response to stimulus, representing 19 % of total proteins; establishment of localization (18 %); and cellular component organization (17 %). The most prevalent cellular components were intracellular representing 19 %, and intracellular part represented 18 %. The most prevalent molecular function was protein binding (46 %). Hierarchical clustering was used for the quantitative analysis of colostrum MFGM levels in humans and bovines. Furthermore, one-factor analysis of variance identified 26 differentially expressed proteins. The differentially expressed proteins were involved in three major pathways: calcium signaling pathway, phagosome, and FcγR-mediated phagocytosis. This study examined the expression changes and functional differences of colostrum MFGM proteins between humans and bovines to provide useful information and potential research directions for the dairy industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Gauthier SF, Pouliot Y, Maubois JL (2006) Growth factors from bovine milk and colostrum: composition, extraction and biological activities. Le Lait 86(2):99–125

    Article  CAS  Google Scholar 

  2. Yu Z, Palkovicova L, Drobna B, Petrik J, Kocan A, Trnovec T, Hertz-Picciotto I (2007) Comparison of organochlorine compound concentrations in colostrum and mature milk. Chemosphere 66(6):1012–1018. doi:10.1016/j.chemosphere.2006.07.043

    Article  CAS  Google Scholar 

  3. Quigley Iii JD, Drewry JJ (1998) Nutrient and immunity transfer from cow to calf pre- and postcalving. J Dairy Sci 81(10):2779–2790. doi:10.3168/jds.S0022-0302(98)75836-9

    Article  Google Scholar 

  4. Rasmussen JT (2009) Bioactivity of milk fat globule membrane proteins. Aust J Dairy Technol 64(1):63–67

    CAS  Google Scholar 

  5. Dewettinck K, Rombaut R, Thienpont N, Le TT, Messens K, Camp JV (2008) Nutritional and technological aspects of milk fat globule membrane material. Int Dairy J 18(5):436–457

    Article  CAS  Google Scholar 

  6. Christelle L, Valerie BB, Olivia M, Florence R, Philippe P, Jean-Michel B (2008) Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. J Agric Food Chem 56(13):5226–5236

    Article  Google Scholar 

  7. Peterson JA, Hamosh M, Scallan CD, Ceriani RL, Henderson TR, Mehta NR, Armand M, Hamosh P (1998) Milk fat globule glycoproteins in human milk and in gastric aspirates of mother’s milk-fed preterm infants. Pediatr Res 44(4):499–506

    Article  CAS  Google Scholar 

  8. Fortunato D, Giuffrida MG, Cavaletto M, Garoffo LP, Dellavalle G, Napolitano L, Giunta C, Fabris C, Bertino E, Coscia A (2003) Structural proteome of human colostral fat globule membrane proteins. Proteomics 3(6):897–905

    Article  CAS  Google Scholar 

  9. Riccio P (2004) The proteins of the milk fat globule membrane in the balance. Trends Food Sci Technol 15(9):458–461

    Article  CAS  Google Scholar 

  10. Inagaki M, Nagai S, Yabe T (2010) The bovine lactophorin C-terminal fragment and PAS6/7 were both potent in the inhibition of human rotavirus replication in cultured epithelial cells and the prevention of experimental gastroenteritis. Biosci Biotechnol Biochem 74(7):1386–1390

    Article  CAS  Google Scholar 

  11. Saeland E, Jong MAWPD, Nabatov AA, Kalay H, Geijtenbeek TBH, Kooyk YV (2009) MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells. Mol Immunol 46(11):2309–2316

    Article  CAS  Google Scholar 

  12. Ito O, Kamata SI, Hayashi M, Suzuki Y, Sakou T, Motoyoshi S (1992) Inhibitory effect of cream and milk fat globule membrane substances on hypercholesterolemia in the rat. Anim Sci Technol 63:1022–1027

    CAS  Google Scholar 

  13. Spitsberg VL, Gorewit RC (1998) Solubilization and purification of xanthine oxidase from bovine milk fat globule membrane. Protein Expr Purif 13(2):229–234. doi:10.1006/prep.1998.0901

    Article  CAS  Google Scholar 

  14. Spitsberg VL, Gorewit RC (2002) Isolation, purification and characterization of fatty-acid-binding protein from milk fat globule membrane: effect of bovine growth hormone treatment. Pak J Nutr 1(1):43–48

    Article  Google Scholar 

  15. Wang X, Hirmo S, Willén R, Wadström T (2001) Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in a BAlb/cA mouse model. J Med Microbiol 50(5):430–435

    Article  CAS  Google Scholar 

  16. Mather IH (2000) A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J Dairy Sci 83(2):203–247

    Article  CAS  Google Scholar 

  17. D’Alessandro A, Scaloni A, Zolla L (2010) Human milk proteins: an interactomics and updated functional overview. J Proteome Res 9(7):3339–3373

    Article  Google Scholar 

  18. Reinhardt TA, Lippolis JD (2008) Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. J Dairy Sci 91(6):2307–2318

    Article  CAS  Google Scholar 

  19. Gu S, Chen J, Dobos KM, Bradbury EM, Belisle JT, Chen X (2004) Comprehensive proteomic profiling of the membrane constituents of a mycobacterium tuberculosis strain. Mol Cell Proteomics 2(12):1284–1296

    Article  Google Scholar 

  20. Lippolis JD, Peterson-Burch BD, Reinhardt TA (2006) Differential expression analysis of proteins from neutrophils in the periparturient period and neutrophils from dexamethasone-treated dairy cows. Vet Immunol Immunopathol 111(3–4):149–164

    Article  CAS  Google Scholar 

  21. Peirce MJ, Wait R, Begum S, Saklatvala J, Cope AP (2004) Expression profiling of lymphocyte plasma membrane proteins. Mol Cell Proteomics 3(1):56–65

    Article  CAS  Google Scholar 

  22. Charlwood J, Hanrahan S, Tyldesley R, Langridge J, Dwek M, Camilleri P (2002) Use of proteomic methodology for the characterization of human milk fat globular membrane proteins. Anal Biochem 301(2):314–324

    Article  CAS  Google Scholar 

  23. Sheng Q, Dai J, Wu Y, Tang H, Zeng R (2012) BuildSummary: using a group-based approach to improve the sensitivity of peptide/protein identification in shotgun proteomics. J Proteome Res 11(3):1494–1502

    Article  CAS  Google Scholar 

  24. Yang M, Cong M, Peng X, Wu J, Wu R, Liu B, Ye W, Yue X (2016) Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling. Food Funct 7(5):2438–2450

    Article  CAS  Google Scholar 

  25. Bianchi L, Puglia M, Landi C, Matteoni S, Perini D, Armini A, Verani M, Trombetta C, Soldani P, Roncada P (2009) Solubilization methods and reference 2-DE map of cow milk fat globules. J Proteomics 72(5):853–864

    Article  CAS  Google Scholar 

  26. Liao Y, Alvarado R, Phinney B, Lönnerdal B (2011) Proteomic characterization of human milk fat globule membrane proteins during a 12 month lactation period. J Proteome Res 10(8):3530–3541

    Article  CAS  Google Scholar 

  27. Hettinga K, Van VH, De VS, Boeren S, Van HT, Van AJ, Vervoort J (2011) The host defense proteome of human and bovine milk. PLoS One 6(4):1712

    Article  Google Scholar 

  28. Chiara DA, Simona A, Maria SA, Giovanni R, Luigi L, Andrea S (2008) A proteomic characterization of water buffalo milk fractions describing PTM of major species and the identification of minor components involved in nutrient delivery and defense against pathogens. Proteomics 8(17):3657–3666

    Article  Google Scholar 

  29. Bo LN (2003) Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 77(6):1537S–1543S

    Google Scholar 

  30. Reinhardt TA, Lippolis JD (2006) Bovine milk fat globule membrane proteome. J Dairy Res 73(4):406–416

    Article  CAS  Google Scholar 

  31. Affolter M, Grass L, Vanrobaeys F, Casado B, Kussmann M (2010) Qualitative and quantitative profiling of the bovine milk fat globule membrane proteome. J Proteomics 73(6):1079–1088

    Article  CAS  Google Scholar 

  32. Reinhardt TA, Sacco RE, Nonnecke BJ, Lippolis JD (2013) Bovine milk proteome: quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis. J Proteomics 82(8):141–154

    Article  CAS  Google Scholar 

  33. Yang Y, Bu D, Zhao X, Sun P, Wang J, Zhou L (2013) Proteomic analysis of cow, yak, buffalo, goat and camel milk whey proteins: quantitative differential expression patterns. J Proteome Res 12(4):1660–1667

    Article  CAS  Google Scholar 

  34. Yang Y, Nan Z, Zhao X, Zhang Y, Han R, Lu M, Zhao S, Li S, Guo T, Wang J (2015) Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis. J Proteomics 116c:34–43

    Article  Google Scholar 

  35. Klotman ME, Chang TL (2006) Defensins in innate antiviral immunity. Nat Rev Immunol 6(6):447–456

    Article  CAS  Google Scholar 

  36. Szyk A, Wu Z, Tucker K, Yang D, Lu W, Lubkowski J (2015) Crystal structures of human α-defensins HNP4, HD5, and HD6. Protein Sci 15(12):2749–2760

    Article  Google Scholar 

  37. Santamaria-Kisiel L, Rintala-Dempsey A, Shaw G (2006) Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 396(Part 2):201–214

    Article  CAS  Google Scholar 

  38. Waaler E (2009) ON the occurrence of a factor in human serum activating the specific agglutination of sheep blood corpuscles. Apmis 17(2):172–188

    Google Scholar 

  39. Su CK, Chiang BH (2003) Extraction of immunoglobulin-G from colostral whey by reverse micelles. J Dairy Sci 86(5):1639–1645

    Article  CAS  Google Scholar 

  40. Heng-Fu B, Xiu-Li Z, Xiao W, Ensslin MA, Vjola K, Wei H, Raymond AS, Shur BD, Xiao-Di T (2007) Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J Clin Investig 117(12):3673–3683

    Google Scholar 

  41. German JB, Dillard CJ (2006) Composition, structure and absorption of milk lipids: a source of energy, fat-soluble nutrients and bioactive molecules. Crit Rev Food Sci Nutr 46(1):57–92

    Article  CAS  Google Scholar 

  42. Koltai T (2014) Clusterin: a key player in cancer chemoresistance and its inhibition. Onco Targets Ther 7(2):447–456

    Article  Google Scholar 

  43. Nakajima S, Hsieh JC, Jurutka P, Galligan MA, Haussler CA, Whitfield GK, Haussler MR (1996) Examination of the potential functional role of conserved cysteine residues in the hormone binding domain of the human 1,25-dihydroxyvitamin D3 receptor. J Biol Chem 271(9):5143–5149

    Article  CAS  Google Scholar 

  44. Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405(6787):647–655

    Article  CAS  Google Scholar 

  45. Pafumi I, Favia A, Gambara G, Papacci F, Ziparo E, Palombi F, Filippini A (2015) Regulation of angiogenic functions by angiopoietins through calcium-dependent signaling pathways. Biomed Res Int 2015:965271. doi:10.1155/2015/965271

    Article  Google Scholar 

  46. Kim JO, Song DW, Kwon EJ, Hong SE, Song HK, Min CK (2015) miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PloS One 10(3):e0122509

    Article  Google Scholar 

  47. Steven G, Sergio G (2002) Phagocytosis and innate immunity. Curr Opin Immunol 14(1):136–145

    Article  Google Scholar 

  48. Chen Y, Jiang C, Min J, Yi G, Zhang X (2015) The role of Rab6 GTPase in the maturation of phagosome against Staphylococcus aureus. Int J Biochem Cell Biol 61:35–44

    Article  CAS  Google Scholar 

  49. Allen LA, Aderem A (1996) Mechanisms of phagocytosis. Curr Opin Immunol 8(1):36–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Twelfth Five Year National Science and Technology Plan Project, Grant (2013BAD18B03-02). I am also grateful for the help and advice of Prof. Xiqing Yue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiqing Yue.

Ethics declarations

Conflict of interest

No conflict of interest.

Compliance with ethics requirements

This paper does not contain any studies with human or animal subject.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Peng, X., Wu, J. et al. Differential proteomic analysis of milk fat globule membrane proteins in human and bovine colostrum by iTRAQ-coupled LC-MS/MS. Eur Food Res Technol 243, 901–912 (2017). https://doi.org/10.1007/s00217-016-2798-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2798-6

Keywords

Navigation