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Abstract The potential of proton transfer reaction mass

spectrometry (PTR-MS) as a tool for classification of milk

fats was evaluated in relation to quality and authentication

issues. Butters and butter oils were subjected to heat and

off-flavouring treatments in order to create sensorially

defective samples. The effect of the treatments was evalu-

ated by means of PTR-MS analysis, sensory analysis and

classical chemical analysis. Subsequently, partial least

square-discriminant analysis models (PLS-DA) were fitted

to predict the matrix (butter/butter oil) and the sensory

grades of the samples from their PTR-MS data. Using a 10-

fold cross-validation scheme, 84% of the samples were

successfully classified into butter and butter oil classes.

Regarding sensory quality, 89% of the samples were cor-

rectly classified. As the milk fats were fairly successfully

classified by the combination of PTR-MS and PLS-DA, this

combination seems a promising approach with potential

applications in quality control and control of regulations.

Keywords Butter � Butter oil � Headspace analysis �
Matrix � Sensory analysis � Volatile compounds

Introduction

Butter is a water-in-oil emulsion and essentially the fat of

the milk. It is usually made from sweet cream and it is

salted. However, it can also be made from acidulated or

bacteriologically soured cream, and saltless butters are

also available. The principal constituents of normal salted

butter are fat (80–82%), water (15.6–17.6%), salt (ca.

1.2%) as well as protein, calcium and phosphorus (ca.

1.2%). Butter also contains fat-soluble vitamins A, D and

E. Butter oil, anhydrous milk fat, can be manufactured

from either butter or from cream. For the manufacture

from butter, non-salted butter from sweet cream is nor-

mally used. Melted butter is passed through a centrifuge,

to concentrate the fat to 99.5% or greater. This oil is

heated again to 90–95 �C and vacuum cooled before

packaging. Milk fat is a complicated mixture of trigly-

cerides that contain numerous fatty acids of varying

carbon chain lengths and degrees of saturation. The pro-

portions of the various fatty acids present will also vary

depending on the conditions surrounding the production

of milk. Milk fats can be separated into various fractions

on the basis of their melting points. The technique con-

sists of melting the entire quantity of fat and then cooling

it down to a predetermined temperature. The triglycerides

with the higher melting point will then crystallize

and settle out (http://www.foodsci.uoguelph.ca/dairyedu/

butter.html).

The acceptance of a food strongly depends on the

impressions of its flavour. A constantly increasing number

of consumers attach greater importance to the quality of

foodstuffs in their diet, rather than to quantity. In view of

the wide variety of products marketed, the consumer

should be given clear information regarding product origin

and specific product quality characteristics. An authentic

S. M. van Ruth (&) � A. Koot � M. Rozijn �
M. Baltussen � R. Frankhuizen

RIKILT, Institute of Food Safety, P.O. Box 230, Wageningen

UR, 6700 AE Wageningen, The Netherlands

e-mail: saskia.vanruth@wur.nl

W. Akkermans

Biometris, P.O. Box 16, Wageningen UR,

6700 AA Wageningen, The Netherlands

N. Araghipour � A. Wisthaler � T. D. Märk

Institute of Ion Physics and Applied Physics,

Leopold-Franzens University, Technikerstr. 25,

6020 Innsbruck, Austria

123

Eur Food Res Technol (2008) 227:307–317

DOI 10.1007/s00217-007-0724-7

http://www.foodsci.uoguelph.ca/dairyedu/butter.html
http://www.foodsci.uoguelph.ca/dairyedu/butter.html


food is one, which conforms to the description that is

provided by the producer. The description may relate to the

process history of a product, its geographic origin or the

species or variety of ingredients [1]. Product labelling is

one of the issues that helps the consumer and the authori-

ties to undertake legal action, because an infringement of

the label could result in a charge in the court of justice.

Usually, the driving force behind adulteration is revenue

maximization, obtained either by using a low cost ingredient

to (partially) substitute a more expensive one or by (partially)

removal of the valued component in the hope that the adul-

terated product will be neither perceived nor detected by the

authorities and the consumer [2]. Traditional analytical

strategies to guarantee quality and to uncover adulteration

have relied on determination of the amount of marker com-

pound(s) in a suspect material and a subsequent comparison

of the value(s) obtained with those established for equivalent

material of known provenance [1].

The increasing consumer awareness of food safety and

authenticity issues has led to the development and appli-

cation of new and sophisticated techniques. Specific

techniques used for authentication purposes are spectro-

scopic techniques, isotopic analysis, chromatography,

volatile analysis, polymerase chain reaction, enzyme-

linked assay and thermal analysis [3]. Certain methods,

such as near infrared spectroscopy and certain volatile

analysis techniques are based on the generation of a ‘‘fin-

gerprint’’ of foods. Normal variations in food composition

due to environmental and processing effects are accom-

modated by collecting fingerprints of a large number of

samples of a particular food. These are then used in a

classification procedure to segregate authentic from adul-

terated ingredients or products [1].

Proton transfer reaction mass spectrometry (PTR-MS) is

a promising technique for analysis of volatile compounds

and has been used to investigate different issues in food

science [4–6], including correlation with sensory data [7–

9]. Proton transfer reactions are used to induce chemical

ionization of the vapours to be analysed. The sample gas is

continuously introduced into a drift tube, where it is mixed

with H3O+ ions formed in a hollow cathode ion source.

Volatile compounds that have proton affinities higher than

water (>166.5 kcal/mol) are ionized by proton transfer

from H3O+, mass analysed in a quadrupole mass spec-

trometer and eventually detected as ion counts/s (cps) by a

secondary electron multiplier [10]. The outcome is a mass

resolved fingerprint of the total volatile profile of a sample.

PTR-MS is interesting for this fingerprinting approach as

(1) it requires no pre-treatment of the sample, (2) it allows

rapid measurements (typically < 1 min for a complete

mass spectrum) and (3) the technique is extremely sensitive

(ppt level).

The aim of the present study was to evaluate PTR-MS

for classification of milk fat samples in relation to quality

and authentication issues. Butters and butter oils were

subjected to two different heat treatments and an off-fla-

vouring treatment in order to create sensorially defective

samples. The effect of the treatments was evaluated by

classical methods, PTR-MS analysis and sensory analysis.

Subsequently, statistical models were fitted to predict the

matrix and the sensory grades of the samples from their

PTR-MS data.

Materials and methods

Materials

Seven types of commercial butters and nine types of

commercial butter oils (i.e. 16 milk fat samples) were

kindly provided by VIV Vreeland (Zelhem, The Nether-

lands). Table 1 and 2 specify the various samples. The

types were selected to cover a wide range of sample

material. They were produced from cow’s milk, except for

one type, which was goat butter from goat’s milk. The

sample types originated from Europe, Canada and New

Zealand. Some were mixtures of origins. The various butter

oils comprised two fractionated UK butter oils, a stearin

and olein fraction, as well as one deodorized butter oil. The

butter oils from Canada and New Zealand had been pro-

duced from the butter batch of the same origin.

After dividing the types of butter in sample portions,

four experimental conditions were created: untreated, heat

treatment 1, heat treatment 2, and off-flavouring treatment.

The untreated samples of all types of butter and butter oil

were analysed. The samples were randomly assigned to the

treatments, not all samples were subjected to each treat-

ment. The various treatments are specified for each sample

in Table 1 and 2.

For the two heat treatments and the off-flavouring pro-

cedure, aliquots of 250 g of butter or butter oil were spread

out in a layer (thickness 1.75 ± 0.25 cm, surface area

275 ± 25 cm2) on a porcelain plate. Ten samples under-

went heat treatment 1: they were placed at 30 �C for 16 h

and subsequently stored at 50�C for 3 hours, in absence of

light. Heat treatment 2 involved six samples, which were

stored in an oven at 24 �C for 14 days in the absence of

light. Five samples were off-flavoured with ethyl butyrate.

The porcelain plate with the sample material was placed in

a desiccator at room temperature for 7 days in the absence

of light. In the desiccator, a beaker containing 100 ml of

ethyl butyrate (Merck 800500, Darmstadt, Germany; 1 ml

ethyl butyrate/l water) was placed.
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Peroxide value

The pre-treatment of the samples consisted in melting 18 g

of butter (oil) in a stove at 50 �C, followed by filtration

over a water-separating filter. The peroxide value (POV)

of each sample was determined according to interna-

tional standard IDF 74A:1991. Calibration curves of

Fe(III)chloride were used to determine the peroxide con-

centrations in the samples and ranged from 5 to 20 lg Fe3+

to 1–15 Fe3+. Two replicates of each sample were analysed.

Free fatty acids

The pre-treatment of the samples consisted in melting 18 g

of butter (oil) in a stove at 50 �C, followed by filtration

over a water-separating filter. The FFA value of each

sample was determined according to international standard

IDF 6B:1989.

PTR-MS analysis

For headspace analysis, 5 g of butter (oil) was placed in a

glass flask (100 ml) at 20 �C for 45 min to allow equili-

bration. Two replicates of each sample were analysed. The

headspace of the samples was analysed at 20 �C by PTR-

MS, according to the method described by Lindinger et al.

[11]. A constant drift voltage of 600 V and a pressure of

2.1 ± 0.1 mbar were maintained in the reaction chamber.

The headspace was drawn from the sample flask at a rate of

50 ml/min, 32 ml/min of which was led through a heated

transfer line into the high sensitivity PTR-MS for on-line

analysis. Data were collected for the mass range m/z 20–

150 using a dwell time of 0.5 s.mass�1. The instrument

was operated at a standard E/N (ratio of electric field

strength across the drift tube, E, to buffer gas density, N) of

138 Td (1 Td = 10�17 cm2 V molecule�1). Inlet and drift

chamber temperatures were 60 �C. Each sample was

analysed for at least 5 full mass scans. The headspace

concentrations of the compounds during the cycles #2, #3

and #4 were calculated as described by Hansel et al. [12]

and background and mass discrimination corrections were

applied. Headspace concentrations were subsequently

averaged over the three mass scans for further statistical

analysis. Preliminary experiments were carried out in

which some of the butter and butter oil samples were

analysed for seven cycles. The data did not show consistent

changes in headspace concentrations (especially no

decrease) after the first cycle. Therefore, cycles #2, #3 and

#4 were selected for calculations. Equilibrium conditions

were unlikely to exist during the measurements, because of

Table 1 Peroxide values, free

fatty acid concentrations and

sensory quality grades of treated

and untreated butter samples of

different origins

+ is good quality butter, � is

poor quality butter

Sample Peroxide

value

(mEq/kg)

Free fatty acid

concentration

(% w/w)

Sensory quality

Score Comments

Untreated

Canada 0.050 0.308 +

Ireland 0.081 0.283 � Gone off, acidic

NL1 0.071 0.162 +

NL2 0.200 0.166 +

NL goat butter 0.038 0.079 � Yeast

New Zealand 0.099 0.127 +

Portugal 0.039 0.142 +

Heat treatment 1

NL1 0.129 0.158 +

NL2 0.199 0.126 � Salty

New Zealand 0.269 0.130 +

Portugal 0.040 0.134 � Cheesy, H2S, rancid

Heat treatment 2

Canada 0.251 0.304 +

NL1 0.240 0.170 +

Portugal 0.120 0.771 � Cheesy, packaging material

Off-flavour treatment

NL goat butter 0.121 0.130 � Cheesy, soapy, strong, ethyl butyrate flavour

Repeatability 0.011 0.009
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flow rates and glassware dimensions. However, no effect of

resistance to mass transfer of the volatiles from butter (oil)

into the headspace was observed. This may be due to the

relative low concentrations present in the headspace. The

effect of mass transfer over the product/air interface is

expected especially for volatile compounds with high air/

product partition coefficients. As butter (oil) has a fairly

hydrophobic nature, and most volatile compounds are

hydrophobic as well, the headspace concentrations were

relatively low as expected.

Sensory analysis

The 37 butter and butter oil samples were examined for

their odour/flavour properties by a professional sensory

laboratory that specializes in butter (oil) evaluations for

control of EU regulations (COKZ, Leusden, The Nether-

lands). The samples were assessed and graded for their

odour and flavour qualities by three assessors at 18 �C.

Good quality samples had to meet the criterion ‘‘good

quality and specific for the particular product’’. Reference

samples of good quality material were provided before the

evaluation of the samples. If samples did not comply,

defects were described according to defects listed in EU

regulation 213/2001, Annex VII, Tables 1 and 2. Samples

were considered of poor sensory quality if at least two out

of the three assessors detected defects.

Statistical analysis

The data of pairs of replicate PTR-MS analyses were

subjected to principal component analysis (PCA) followed

by Varimax rotation in order to investigate relationships

between samples and masses. Spectral PTR-MS data were

also subjected to analysis of variance (ANOVA) to

determine significant differences between samples.

Table 2 Peroxide values, free

fatty acid concentrations and

sensory quality grades of treated

and untreated butter oil samples

of different origins

+ is good quality butter oil, � is

poor quality butter oil

Sample Peroxide

value

(mEq/kg)

Free fatty acid

concentration

(% w/w)

Sensory quality

Score Comments

Untreated

Canada 0.075 0.264 +

Denmark 0.066 0.114 +

New Zealand 0.100 0.123 +

Poland 0.323 0.213 +

UK 0.086 0.257 +

UK stearin fraction 0.051 0.198 +

UK olein fraction 0.086 0.285 +

Deodorized mix 0.022 0.070 +

Mixture of origins 0.070 0.135 +

Heat treatment 1

Canada 0.134 0.262 +

Denmark 0.139 0.106 +

New Zealand 0.317 0.114 +

Poland 0.327 0.210 +

UK 0.149 0.254 +

Deodorized mix 0.105 0.068 +

Heat treatment 2

Canada 0.174 0.268 +

Denmark 0.224 0.114 +

Deodorized mix 0.124 0.072 +

Off-flavour treatment

New Zealand 0.348 0.129 � Off-flavour: strong, ethyl butyrate flavour

Poland 0.326 0.214 � Off-flavour: strong, ethyl butyrate flavour

UK 0.128 0.272 � Off-flavour: strong, ethyl butyrate flavour

Mixture of origins 0.212 0.138 � Off-flavour: ethyl butyrate flavour, rancid, strong

Repeatability 0.012 0.010
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The log transformed headspace concentrations measured

by PTR-MS were subjected to partial least square-discri-

minant analysis (PLS-DA) in order to estimate

classification models for the milk fat samples. These

models predicted either the matrix or the sensory quality by

the PTR-MS data, PLS-Toolbox, Matlab routines [13].

PLS-DA performs a principal component analysis-like

reduction on the predictor variables. The dimensions

extracted are composed such that they exhibit maximum

correlation with Y (class membership, e.g. good versus

poor sensory quality). After estimation of the classification

model, the performance of the fitted model was evaluated

by cross-validation. A leave-10%-out procedure was fol-

lowed. Of the samples, 10% were randomly removed from

the data set, and a model, built with the remaining samples

was used to classify these left out samples. The procedure

was repeated ten times to allow the use of all samples. The

number of components that is extracted is an important

parameter in a PLS model. Models were fitted for 1, 2 and

3 components (dimensions), each time, followed by the

cross validation described above. The most appropriate

number of components was selected.

Two methods were employed to assess the ‘‘confi-

dence’’ that can be attached to the solution found. First,

two random permutations of the class labels were per-

formed, after which the entire classification was repeated.

Classification results obtained with these distorted data

are expected to be less accurate than the results obtained

with the original data. If not, the model might fit merely

noise. Next, the random cross validation was repeated a

large number of times (100), which gave insight into the

repeatability of the randomly generated cross validation

results. This procedure was carried out both for the ori-

ginal data and with permuted data. For the permuted data,

a new permutation was generated in each of the 100

replications. The results were summarized as follows. One

of the PLS-DA outputs is a posterior probability p =

(p1 p2 ... pk) for membership in each of the k classes. The

probabilities are for membership in this class versus

membership not in this class, so that the C probabilities in

p do not have to sum up to 1. The sample is assigned to

the class with the highest posterior probability. Let pm be

the probability for this class, and let pm2 be the proba-

bility for the class with the second-largest posterior

probability. Then

C ¼ pt

pm þ pm2

(where pt = pm when the classification is correct, and pt =

pm2 when the classification is incorrect) is a quantity with

values between 0 and 0.5 for an incorrect classification, and

between 0.5 and 1 for a correct classification. The larger

the difference between pm and pm2, the closer the value of

C will be to either 1 (when the classification is correct) or

to 0 (when the classification is incorrect). So the value of C

can be used as an indication of the ‘‘confidence’’ in the

classification result.

Results and discussion

Classical Analysis: POV and FFA

The butter and butter oil samples were left untreated and

were subjected to heat treatment 1, heat treatment 2, and/or

the off-flavouring treatment. To evaluate the effects of the

treatment on the oxidation of the butter and butter oil

samples, POV and FFA concentrations were determined

(Tables 1, 2, respectively). No significant differences in

POV or FFA values were observed between the two

matrices (butter versus butter oil; ANOVA, P < 0.05).

When comparing the treatments, the POV values of the

untreated samples appeared significantly lower than their

heat treated or off-flavoured counterparts (ANOVA,

P < 0.0001). Peroxides are primary lipid oxidation prod-

ucts, and their concentrations are used as markers for lipid

oxidation. The increased values after treatment of the milk

fat samples show that some lipid oxidation occurred. For

Canadian Butter

1
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100

1000

25 35 45 55 65 75 85 95 105 115 125 135

Mass (m/z)

)s/stnuoc( ytisnetnI

Canadian Butter Oil

1

10

100

1000

25 35 45 55 65 75 85 95 105 115 125 135 145

Mass (m/z)

)s/stnuoc( ytisnetnI

Fig. 1 Proton transfer reaction mass spectra of the headspace of

Canadian butter and Canadian butter oil. Repeatability for individual

ions was 21.1 and 24.2% for butter and butter oil samples,

respectively

Eur Food Res Technol (2008) 227:307–317 311

123



the FFA values, no significant differences between treat-

ments were observed (P < 0.05).

PTR-MS analysis

The 37 milk fat samples were subjected to PTR-MS anal-

ysis. Two replicate analyses were carried out on each

sample, and the resulting spectra were subsequently aver-

aged. As an example, the mass spectra of Canadian butter

and its butter oil counterpart are presented in Fig. 1. It is

obvious from the mass spectrum that removal of water

from butter has a considerable effect on the volatile profile

of the sample.

The average mass spectra of untreated, heat-treated

(average heat treatment 1 + 2) and off-flavoured samples

are shown in Fig. 2. In the untreated samples, the pre-

dominant ions were m/z 59 (631 counts/s), 45 (458 counts/

s), 87 (112 counts/s) and 73 (102 counts/s). They could

originate from acetone/propanal (m/z 59), acetaldehyde

(m/z 45), diacetyl (m/z 87) and various aldehydes and

ketones (m/z 73) [14, 15]. In order to compare the origins,

a PCA was carried out on the mass spectral data of the

untreated butter samples (plot not shown). The Irish butter

was separated from the other butters on the first dimension,

which explained 52% of the variance. This sample corre-

lated with high intensities of a large range of masses. The

other butters were separated on the second dimension

(explaining 18% of the variance). The Dutch butters had

high negative scores, which correlated with high intensities

of the ions m/z 83, 95, 107, 109 and 137. Mass m/z 83 has

been reported as major product ion of hexanal and mass m/

z 95 from dimethyl disulfide [14]. Mass m/z 107 has been

identified tentatively to originate from benzaldehyde and

o,p,m-xylene and mass m/z 109 from trans-2-octenal in

young Trentingana cheeses [16]. Mass m/z 137 has been

reported as the parent ion of many monoterpenes, including

limonene [17]. The butters from New Zealand, Canada and

Portugal had high positive scores on the second dimension,

which correlated with low ion intensities in general. The

compounds listed are potential candidates only and related

to volatile compounds, reported in the literature as being

present in dairy products and which would produce a signal

on the given mass. The differences between the origins are

only indicative; analyses of more products per country

would be required to classify the samples by their origin.

For the heat-treated samples, on average, the major ions

were m/z 45 (445 counts/s), 59 (185 counts/s), 87 (76

counts/s) and 43 (58 counts/s). Three of the masses (59, 45

and 87) occur in both situations, so the spectra of the

untreated and heat-treated samples showed similarities in

their predominant ions. The data of the untreated and heat-

treated samples were subjected to PCA and plots of the first

two dimensions are presented separately for butter and

butter oil in Fig. 3. The PCA shows that the untreated

group is the most widely spread, especially for butter oils.

The two heat treatments changed the spectra in the same

direction, with the more severe heat treatment 2 resulting in

more pronounced changes. Generally, the heat treatments

resulted in higher negative scores in the second dimension.

For the off-flavoured samples, however, highest inten-

sities were observed for the ions m/z 89 (2,064 counts/s),

Portb
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B
Fig. 3 Sample scores of the

first two dimensions of Principal

Component Analysis on the

mass spectral headspace data of

treated and untreated butter (a)

and butter oil (b): untreated

samples (solid line), heat

treatment 1 (dashed line), heat

treatment 2 (dotted line)
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Fig. 2 Average proton transfer reaction mass spectra of the head-

space of untreated, heat treated (average heat treatment 1 and 2) and

off-flavoured milk fat samples
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117 (1,414 counts/s), 43 (518 counts/s) and 59 (473 counts/

s). These results are in agreement with fragmentation

studies carried out previously [15], which reported the

major parent/fragment ions of ethyl butyrate: m/z 117, 89

and 43. Incidentally, mass 43 was also found above with

heat treatment 2. Mass m/z 43 is a fragment common to

many compounds.

The volatile composition of butter and butter oil has

been studied since the mid-1950s and an extensive list of

volatiles has been compiled. As of 1996, 287 volatile

compounds from 46 publications have been identified in

butter and butter oil [18]. Various authors reported par-

ticular volatile compounds to contribute to the butter

aroma, e.g. diacetyl, butanoic acid, hexanoic acid, hexanal,

acetaldehyde, dimethyl sulphide and c-decalactone [19], as

well as d-octalactone, decanoic acid, phenol, p-cresol,

indole and skatole [20]. Widder and Grosch [21] reported

that in particular (Z)-2-nonenal and (E)-2-nonenal cause

cardboard off-flavours in butter oil. However, most char-

acterization studies have typically relied on relatively

‘‘rigorous’’ isolation procedures (vacuum distillation, sol-

vent extractions, etc.) as opposed to headspace methods.

Headspace analysis provides a more representative view of

the volatiles that are available for olfactory perception.

More recently, Peterson and Reineccius determined the

volatile compounds, which are primarily responsible for

the aroma of fresh and heated sweet cream butter [22, 23]

using headspace analysis in combination with gas chro-

matography-olfactometry. A total of 20 odour active

compounds were detected in the headspace of fresh butter

and 19 in the headspace of heated butter. The major

compounds in terms of concentration were certain lactones,

hexanoic acid, butanoic acid, nonanal, hexanal and dime-

thyl sulphide for the fresh butter [22]. In the heated butter,

higher concentrations were determined for lactones,

2-heptanone, butanoic acid, nonanal, (E)-2-nonenal and

3-methylbutanoic acid [23]. When comparing the pre-

dominant ions determined in the present study with the

volatile compositions of butter and butter oil published,

fragmentation patterns need to be considered as well [15].

Although some information on the volatile composition of

the samples is available with PTR-MS analysis, the tech-

nique should be considered as a one-dimensional

technique. Its strengths do not lie in identification of vol-

atile compounds, but in rapid generation of fingerprints of

volatile profiles.

Sensory analysis

Following the classical and PTR-MS analysis, the 37

samples were sensorially assessed and graded by dairy

judges (Table 1, 2). Six of the 15 butter samples and 4 of

the 22 butter oils showed sensory defects. Some of the

samples were untreated (e.g. the Irish butter and the goat

butter) and others had been subjected to treatments. Sur-

prisingly, the sensory analysis of butter has not been a

subject of exhaustive study. The odour active compounds

have been identified [19–23], and several studies on the

sensory evaluation of butter with a focus on texture have

been published [24]. Jinjarak et al. [25] evaluated the

textural as well as odour/flavour characteristics of sweet

cream, and cultured and whey butter. The flavour of sweet

cream butter was characterized by the following flavour

attributes: diacetyl, artificial butter, nutty, acidic, sweet,

rancid, grassy and cardboard flavour. The effect of varying

fatty acid compositions on the texture as well as milky taste

and aftertaste has been published by Chen et al. [26].

The sensory quality of dairy products is governed by a

number of factors linked to their production. The chemical

and microbiological characteristics of the raw milk used also

play a major role. The characteristics of raw milk used are

dependent on factors linked to animal management. Many

studies on the effect of animal feeding on dairy product

sensory quality have been carried out over the last decade

[27–29]. Differences in flavour of dairy products could result

from differences in the fatty acid composition according to

the diets consumed. The unsaturated fatty acids are more

susceptible to oxidation. Kirstensen et al. [30] reported that

buttermilk from milk rich in unsaturated fatty acids, obtained

by manipulation of the cows’diet, was less oxidatively stable

during storage than buttermilk from milk comprising higher

Table 3 Number and (percentages) of predicted classification of milk fat samples into butter and butter oil classes by their PTR-MSpectral data

using a two-component PLS-DA model as well as the results of two permutation sets

PLS-DA classification Number of samples

Original data Permutation 1 Permutation 2

Butter Butter oil Butter Butter oil Butter Butter oil

Butter 13 (87%) 2 (13%) 3(20%) 12 (80%) 11 (73%) 4 (27%) 15

Butter oil 4 (18%) 18 (82%) 10(45%) 12 (55%) 16 (73%) 6 (27%) 22

The correctly classified samples are in bold. Out of 37 samples, 31 were correctly classified (84%)

Eur Food Res Technol (2008) 227:307–317 313

123



levels of saturated fatty acids. It appears that in particular,

unsaturated fatty acids may be degraded by microbial

enzymes in the rumen and produce compounds responsible

for dairy products aromas [31]. Apart from the characteris-

tics of the milk, processing and storage considerably affect

the sensory properties of butter and butter oil.

PLS-DA classification into matrix and sensory quality

groups using PTR-MS data

Matrix

PLS-DA was applied to the mass spectral data to classify

the samples into matrix groups (butter or butter oil), using

the mass spectra. A two-component model was fitted to

estimate the matrix of the samples. Rates of successful

classification are listed in the leftmost part of Table 3. Of

all samples, 84% were successfully classified into butter

and butter oil classes: 13 of the 15 butters (87%) and 18 of

the 22 butter oils (82%). The scores of the samples on the

first two PLS-dimensions are presented in Fig. 4 (top). The

six incorrectly classified samples are identified by a circle.

All of these incorrectly classified samples are more or less

on the demarcation line between the two classes. The

classes seem to be distinguished mainly by the second

component. The variables (ions) can also be plotted in the

component space (Fig. 4, bottom). Ions showing higher

positive loadings in the second dimension, such as masses

117, 118 and 89, are associated with butter oils; those with

lower positive or negative loadings on the second dimen-

sion are associated with butter. Considering the extremely

wide range of sample material (origin, species, fraction-

ation, deodorization, etc.), it is surprising that the samples

could be so successfully classified. This may show the

robustness of the PTR-MS technique in combination with

PLS-DA. Ions, which are present in random concentrations

Fig. 4 Plot of the first two dimensions of PLS-DA on the mass

spectral headspace data of butters and butter oils classified by matrix

(butter/butter oil): scores (upper) and loadings plot (lower)

Table 4 Average number and (percentage) of incorrect classifications

over 100 replications of the cross validation for the prediction into

butter and butter oil classes by the PTR-MSpectral data, for the ori-

ginal data and for randomly permuted data sets

PLS-DA classification Number of samples

Original data Random permutations

Butter 2.06 (14%) 8.39 (56%) 15

Butter oil 4.42 (20%) 9.96 (45%) 22

Total 6.48 (18%) 18.35 (50%)

A two-component PLS-DA model was fitted for all classifications

Fig. 5 Results for 100 replications of the random cross validation of

the predicted classification of milk fat samples into butter and butter

oil classes by their PTR-MSpectral data using a two-component PLS-

DA model. For each of the 37 samples, a box shows the location of

the .25 and .75 quartiles of the quantity C (see text), the dotted lines
(whiskers) are the whiskers; they have a length of 1.5, * the

interquartile range (or shorter, if there are no more observations), and

the crosses are outliers, lying outside the whiskers. The data have

been sorted so that columns 1–15 are for class 1 samples (butter), and

columns 16–37 are for class 2 samples (butter oils)

314 Eur Food Res Technol (2008) 227:307–317

123



over butters and butter oils have only a marginal effect on

the fitting of the model. On the other hand, those ions that

can be used to discriminate butters from butter oils con-

tribute considerably to the model estimation. The

difference between the butters and butter oils lies mainly in

their water content. Lower water content will generally

result in lower air/product partition coefficients, as most

volatile compounds are hydrophobic. On the other hand,

the water is removed from the butter by heat treatments.

During the heat treatment, some compounds may be

formed. Furthermore, the butters also will have lost their

original structure, which again may affect volatile release.

The difference between butter and butter oils did not result

in consistent differences in sensory quality as assessed by

the sensory panel.

The two random permutations of the class labels resul-

ted in far worse classification results, as can be seen in the

middle and rightmost part of Table 3. The overall per-

centage of correct classifications dropped from over 80 to

around 50% (which is the percentage expected by chance

alone) and even below. This indicates that the model does

seem to fit in the systematic class differences and not

merely noise. However, there is quite a large variation

between the two permuted results (see also below). A total

of 100 replications of the entire estimation process were

performed, both for the original data and for permuted data,

to gain insight into the stability of the cross validation

results. For the original data, on average 13% of the butters

are misclassified per replication, and 20% of the butter oils

(see Table 4). With permuted data, these numbers were

much higher: 56 and 45%, respectively. Overall, there is

18% misclassification in the original data set, and 50%

with permuted data.

A plot of the quantity C is given in Fig. 5, for the ori-

ginal data only. This figure shows box plots of the

distribution of the 100 values for C obtained for each

sample (for the definition of C, see the paragraph on

‘‘Statistical analysis’’). For the ease of interpretation, the 15

butter samples are displayed first, then the 22 butter oils. It

can be seen in the figure that the butters in columns 3 and

10 are nearly always (that is, in nearly each of the 100

replication of the cross validation) incorrectly classified.

These are the heat-treated Portuguese butter, and the Dutch

off-flavoured goat butter. For the goat butter, the confi-

dence in the incorrect classification is always maximal,

resulting in a box plot of width virtually 0. The butter oils

in columns 31 and 32 are also very often misclassified, as

well as, to a lesser extent, the butter oil in column 29. All of

these samples were heat-treated samples (heat treatment 1

or 2). The additional volatile compounds due to the

Fig. 6 Plot of the first two dimensions of PLS-DA on the mass

spectral headspace data of butters and butter oils classified by their

sensory qualities: scores (upper) and loadings plot (lower)

Table 5 Number and (percentages) of predicted classification of butters and butter oils with good and poor sensory properties by their PTR-

MSpectral data using a two component PLS-DA model as well as the results of two permutation sets

PLS-DA classification Number of samples

Original data Permutation 1 Permutation 2

Good Poor Good Poor Good Poor

Good 27 (100%) 0 (0%) 24 (89%) 3 (11%) 7 (26%) 20 (74%) 27

Poor 4 (40%) 6 (60%) 6 (60%) 4 (40%) 2 (20%) 8 (80%) 10

The correctly classified samples are in bold. Out of 37 samples, 33 were correctly classified (89%)
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treatments resulted in mass spectral changes. Some of these

changes may complicate the assignment to classes, result-

ing in lower confidence in the classification into the butter

or butter oil class. The box plots for the permuted data (not

printed here) are much more centred around the value 0.5,

indicating that both correct and incorrect classifications

occur.

Sensory quality

The mass spectra generated by PTR-MS in the present

study were used to fit a two-component PLS-DA model

predicting the sensory grading (good or poor sensory

quality) of the dairy experts. The sample scores on the first

two dimensions are shown in the PLS-DA plot in Fig. 6.

Rates of correct classifications for good and poor sensory

quality samples are listed in Table 5. In total, 89% of the

samples were correctly classified, 27 out of the 27 good

quality samples (100%), and 6 out of the 10 poor quality

samples (60%). Poor quality samples scored relatively low

on the first dimension and high on the second dimension,

compared to the good quality samples. This time, the

incorrect classifications are not on the demarcation line, but

on the scores plot it can be seen that some of the poor

quality samples are located right among the good quality

samples.

In the two permutations presented (rightmost part of

Table 5), the correct classification rate does not drop as

dramatically as with the classification into butter and butter

oil. The 100 replications of the analysis (Table 6), how-

ever, reveal that this is just a ‘‘bad luck’’ result: for

permuted data, 46% is incorrectly classified, and for the

original data it is only 12%.

As could, perhaps, be expected from the scores plot

(Fig. 7, top), there are three poor quality samples rather

consistently predicted as good quality samples (samples 31,

33 and 37) and, to some extent, also sample 32. The

samples that were incorrectly classified were the Dutch

butter (NL2) and the Portuguese butter, which were sub-

jected to heat treatment 1. The Dutch goat butter was also

incorrectly classified. The latter was expected to be picked

up. The misclassification may be due to the relatively small

group of samples, which had a poor flavour not resulting

from the off-flavour treatment. The relatively small (non-

homogeneous) group and the cross validation involved may

have complicated the classification. A reasonable classifi-

cation based on sensory quality was obtained, although it is

desirable to reduce the number of false positive results. It

should be kept in mind, however, that for this classification

the results of the sensory panel were considered to be the

100% correct classification of the samples. Misclassifica-

tions may also be due to the sensory panel results. For

sensory analysis, as with other types of analyses, 5% error

is acceptable. This means that we cannot exclude one or

two errors in the 37 evaluations. This could also have

contributed to the ‘‘misclassifications’’. Especially, the

treated Portuguese butter did not show any abnormalities in

terms of POV or FFA values.

Conclusions

PTR-MS spectral data of milk fat samples were success-

fully used for classification of milk fat samples into both

their matrix groups and groups of sensory quality. PLS-DA

was shown as a useful statistical tool in classification

studies. PTR-MS seems to be a promising technique with

potential applications in quality control and control of

Table 6 Average number and (percentage) of incorrect classifica-

tions over 100 replications of the cross validation for the prediction

into good and poor sensory quality classes by the PTR-MSpectral

data, for the original data and for randomly permuted data sets

PLS-DA classification Number of

samples
Original data Random permutations

Good quality 0.59 (2%) 11.22 (42%) 27

Poor quality 3.99 (40%) 5.56 (57%) 10

Total 4.58 (12%) 16.78 (46%)

A two-component PLS-DA model was fitted for all classifications

Fig. 7 Results for 100 replications of the random cross validation of

the predicted classification of milk fat samples into good and poor

sensory quality classes by their PTR-MSpectral data using a two-

component PLS-DA model. For each of the 37 samples, a box shows

the location of the .25 and .75 quartiles of the quantity C (see text),

the dotted lines (whiskers) are the whiskers; they have length 1.5, *

the interquartile range (or shorter, if there are no more observations)

and the crosses are outliers, lying outside the whiskers. The data have

been sorted so that columns 1–27 are for class 1 samples (good

quality), and columns 28–37 are for class 2 samples (poor quality)
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regulations. Additional work, including the assessment of a

wider range of well-defined butters and butter oils, could

further assist in the evaluation of milk fat and shed more

light on potential applications of PTR-MS for control

purposes.
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