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Abstract
Glycans participate in a vast number of recognition systems in diverse organisms in health and in disease. However, glycans 
cannot be sequenced because there is no sequencer technology that can fully characterize them. There is no “template” for 
replicating glycans as there are for amino acids and nucleic acids. Instead, glycans are synthesized by a complicated orches-
tration of multitudes of glycosyltransferases and glycosidases. Thus glycans can vary greatly in structure, but they are not 
genetically reproducible and are usually isolated in minute amounts. To characterize (sequence) the glycome (defined as the 
glycans in a particular organism, tissue, cell, or protein), glycosylation pathway prediction using in silico methods based on 
glycogene expression data, and glycosylation simulations have been attempted. Since many of the mammalian glycogenes 
have been identified and cloned, it has become possible to predict the glycan biosynthesis pathway in these systems. By then 
incorporating systems biology and bioprocessing technologies to these pathway models, given the right enzymatic param-
eters including enzyme and substrate concentrations and kinetic reaction parameters, it is possible to predict the potentially 
synthesized glycans in the pathway. This review presents information on the data resources that are currently available to 
enable in silico simulations of glycosylation and related pathways. Then some of the software tools that have been developed 
in the past to simulate and analyze glycosylation pathways will be described, followed by a summary and vision for the future 
developments and research directions in this area.
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Introduction

Glycans, also called polysaccharides or carbohydrates, are 
chains of variously linked monosaccharides biosynthesized 
by glycosyltransferases. They can occur as free oligosaccha-
rides or as parts of glycoproteins and glycolipids. They par-
ticipate in a vast number of recognition systems in diverse 
organisms in health (development, cell differentiation, 
inflammation, signaling, and immunomodulation) and in dis-
ease (infectious and non-infectious including neoplasia) [1]. 

They are known to be involved in virus infection, including 
influenza [2] and even SARS-CoV-2 [3], as they cover the 
spike protein of this latter virus. The reason why they are so 
involved in many biological processes is that they are found 
on the cell surface of practically every cell in the body. They 
are attached to proteins and lipids on the cell surface, and 
sometimes, they are secreted outside of the cell. They are 
also involved in the extracellular matrix as proteoglycans; 
well-known proteoglycans are heparan sulfate, chondroitin 
sulfate, and keratan sulfate [4].

Glycans cannot be sequenced as proteins or DNA due 
to the absence of a fully characterizing sequencer technol-
ogy and a replicating template. Instead, glycans are syn-
thesized by a complicated orchestration of hundreds of 
glycosyltransferases, glycosidases, and other enzymes such 
as epimerases and sulfotransferases (often collectively 
termed “glycogenes”) localized widely from the endo-
plasmic reticulum, through the Golgi apparatus, and out to 
the trans-Golgi network. For example, an N-glycan is first 
extended in the cytoplasmic side of the ER to form Man9 
with glucose-caps. It is then flipped to the lumenal side of 
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the ER and transferred to an asparagine residue of a protein. 
The glucose-caps and mannoses are then trimmed by glu-
cosidase I and II and mannosidase I (N-glycan precursor). 
When the proteins are transferred into the Golgi apparatus, 
the N-glycan precursor is further processed and modified by 
glycosyltransferases such as FucT, GalT, and SiaT (Fig. 1). 
The CAZy database encompasses more than 300 families of 
glycosidases and glycosyltransferases. Each of these enzyme 
families represents distinct modules with different substrate 
specificities and reaction conditions. Thus, glycans can vary 
greatly in structure. For example, bacterial glycans, such 
as those found on N-glycoproteins and lipopolysaccharides, 
are mainly found on the cell wall. They are involved in host-
interactions and pathogenesis. Plant glycans, such as cel-
lulose and pectin, play a key role in cell wall stabilization in 
terms of its strength and resistance to various environmental 
stresses. The differences in the functions and structures of 
glycans in each biological field are due to evolutionary and 
ecological factors, which have shaped the strategies of each 
organism to adapt to different environments. Therefore, it is 
crucial, when using software tools, to grasp these distinc-
tions for a precise assessment of tool applicability.

To characterize (sequence) glycans, no next-generation 
sequencer exists, and so current technologies include mass 
spectrometry, liquid chromatography, and nuclear magnetic 
resonance. All these technologies require highly technical skills 
and sufficient amounts of samples to analyze. Therefore, other 
means of characterizing the glycome (defined as the glycans in a 
particular organism, tissue, cell, or protein) have been developed. 
This includes calculation algorithms to measure the physico-
chemical similarities of glycan structures, glycosylation pathway 
prediction based on glycogene expression data, and glycosyla-
tion simulation. In particular, many of the mammalian glyco-
genes have been identified, cloned, and their activities identi-
fied, so it has become possible to predict the glycan biosynthesis 
pathways in silico using these data. In the last decade, these 
in silico models have been rapidly improved by incorporating 

multiomics data (genomics, transcriptomics, and proteomics), 
systems biology, and bioprocessing technologies to these path-
way models. Furthermore, the addition of appropriate enzymatic 
parameters including enzyme and substrate concentrations and 
kinetic reaction parameters enable the prediction of the poten-
tially biosynthesized glycans that are involved in specific path-
ways such those involved in health and disease.

This article will present information on currently avail-
able data resources used for in silico simulations of gly-
cosylation and related pathways. These include Web tools 
and programming libraries for pathway modeling that have 
been made available for users to utilize and or expand them 
for their own experimental data. There are also databases 
that have accumulated various information relevant to gly-
cogenes. Then some of the software tools that have been 
developed to take a step further and perform simulations and 
analyze glycosylation pathways will be presented, followed 
by a summary and vision for the future developments and 
research directions in this area.

Data resources

There are several data resources that provide information 
on glycogenes. CAZy (Carbohydrate-Active enZymes) [5] 
is one of the oldest carbohydrate-related databases still run-
ning, having started circa 1998. It organizes information on 
carbohydrate enzymes involved in glycosylation, metabo-
lism, and transportation of glycans into six classes, each of 
which are subdivided into families, the numbers of which 
continue to grow, but at the time of this writing number as 
follows:

1.	 Glycoside hydrolases (GH), 185 families
2.	 Glycosyltransferases (GT), 116 families
3.	 Polysaccharide lyases (PL), 42 families
4.	 Carbohydrate esterases (CE), 20 families

Fig. 1   An example scheme 
of a biosynthetic pathway of 
a glycan being processed in 
the Golgi apparatus. Various 
glycosidases and glycosyltrans-
ferases (here, FucT, GalT, and 
SiaT, which transfer a fucose 
residue, a galactose residue, and 
a sialic acid residue, respec-
tively, from their corresponding 
nucleotide-sugar) remove or add 
monosaccharides to synthesize 
a glycan
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5.	 Auxiliary activities (AA), 16 families
6.	 Carbohydrate-binding modules (CBM), 98 families

CAZy enzymes (often called CAZymes) are classified 
based on their amino acid sequence similarities as there are 
correlations between sequence and protein folding similarities. 
Many of the families are then classified based on the three-
dimensional patterns of the protein structures. CAZy provides 
mutual links with KEGG, RCSB PDB, Expasy, and other 
databases. Many of the CAZymes are automatically populated 
based on the sequences registered into NCBI GenBank.

The GlycoGene Database (GGDB) [6] was originally 
developed under the Japanese government-funded Glyco-
gene Project (GG Project) in 2001. Over 180 genes of human 
glycosyltransferases and sulfotransferases were cloned and 
recorded into GGDB. Each entry page is manually curated 
and includes Gene ID, DNA sequences, tissue distribution 
of gene expression, substrate specificity, homologous genes, 
and external links to other databases such as GenBank and 
CAZy. The latest data in GGDB are now available in the 
ACGG-DB database (https://​acgg.​asia/​db/), which are inte-
grated into the GlyCosmos Glycoscience Portal [7].

KEGG is well-known as a Web resource for biological sys-
tems data including genomic, chemical, and health and dis-
ease information. It is a major provider of manually curated 
pathways, as well as databases for genes and genomes. It also 
includes a GLYCAN resource [8], which contains glycan struc-
tures that participate in the glycan-related pathways stored in 
KEGG, as well as glycogene information, often annotated 
with E.C. numbers. Most recently, disease-related informa-
tion related to glycogenes have been incorporated into KEGG.

In the field of bioprocessing, Chinese Hamster Ovary 
(CHO) cells provide a standard platform for production of 
protein therapeutics because of their human-like glycosyla-
tion. Thus, CHOGlycoNET [9] was developed as a com-
prehensive network encompassing glycosylation reactions 
that account for all experimentally observed glycans found 
in recombinant proteins and both intracellular, membrane, 
and secreted host cell proteins within two major CHO cell 
lineages, namely CHO–S and CHO–K1. This is the largest 
dataset of CHO cell glyco-profiles comprising 200 datasets 
sourced from seven different laboratories; it serves as the 
basis for uncovering potential latent reactions that could 
become active under a variety of genetic glycoengineering 
and metabolic perturbation scenarios, for a range of recom-
binant glycoproteins and CHO cell host cell proteins.

Software and tools

Many software tools have been developed in the past, even 
when there were few datasets readily available for ana-
lyzing glycogenes. Here, we describe software tools for 

glycan biosynthesis analysis and for in silico simulation 
for the prediction of glycomes.

Glycan biosynthesis prediction

Glycologue (https://​glyco​logue.​org/) is a Web portal 
for glycosylation prediction tools for N- and O-glycans, 
human-milk oligosaccharides and gangliosides [10–12]. 
Users can simulate the glycosylation pathway by choos-
ing a starting glycan structure and selecting glycosyltrans-
ferases from a predefined list. This list has been manually 
curated and includes the reaction pattern representing the 
substrate specificity of the given glycogene. The model 
then calculates the glycosylation pathway using the 
selected enzymes. It is also possible to calculate a minimal 
set of glycosyltransferases to biosynthesize the starting 
glycan structure. Using this model, the authors were able 
to predict a highly heterogeneous set of structures when 
all O-glycan-related enzymes (25 glycosyltransferase and 
sulfotransferase enzymes) were allowed to act, including 
many clinically important epitopes such as Sialyl-Lewis X. 
Moreover, in silico knockout experiments were performed, 
and they were able to achieve 98% coverage of glycans 
predicted for specific knockout cell lines.

GlycoVis is a visualization tool designed to illustrate 
the distribution of N-glycans within a reaction network, 
along with the potential pathways for reactions associated 
with each glycan [13]. The enzyme substrate specificities 
have been structured into a matrix of relationships. Upon 
inputting glycan distribution data, the program generates a 
pathway map that represents various glycans using distinct 
colors to indicate their relative abundance levels. Addition-
ally, it identifies and traces all feasible reaction routes lead-
ing to each glycan on the map. To demonstrate GlycoVis’s 
utility, it was applied to illustrate the glycoform distribution 
in Chinese Hamster Ovary (CHO) cell-derived tissue plas-
minogen activator (TPA), as well as human and mouse IgG.

Glycan Pathway Predictor (GPP) [14] is a Web tool to pre-
dict N-glycosylation pathways, given a starting glycan and 
a selected list of glycogenes; the computation is based on a 
mathematical model proposed earlier [15, 16]. It is available 
on the RINGS (https://​rings.​glyco​info.​org) resource [17]. A 
total of 19 glycosyltransferases are available by default, and 
users can also limit the size of the predicted pathway by speci-
fying the maximum mass of glycans to predict. For example, 
Fig. 2 shows a snapshot of the results of predicting the biosyn-
thetic pathway using just two genes iGnT and b4GalT starting 
from a single tetra-antennary N-glycan structure. The figure 
shows 19 glycans and 30 reactions that could potentially take 
place. This model does not take cellular localization into con-
sideration, but constraints on the substrate specificity of each 
gene can be made to emulate such information.

https://acgg.asia/db/
https://glycologue.org/
https://rings.glycoinfo.org
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UniCorn [18] is a database developed from the results of 
utilizing GPP to predict the glycosylation pathway of N-gly-
cans (> 15 monosaccharide residues) using 45 human gly-
cosyltransferases. Enzyme specificities were extracted from 
KEGG, CFG, CAZy, GGDB, and BRENDA [19]. As a result, 
more than 1.1 million theoretical structures and 4.7 million 
synthetic reactions were generated and stored in UniCorn, 
which was made available in UniCarbKB [20]. Similarly to 
Fig. 2, a tremendous amount of glycans can be potentially 
biosynthesized from a handful of glycans, but in reality, 
based on information deposited in glycan structure databases, 
only a few thousand have actually been identified. Therefore, 
more research into the cellular localization and structure of 
the Golgi apparatus, where most of the glycogenes reside, 
need to be made to better model these pathways.

VirtualGlycome (https://​virtu​algly​come.​org) is a Web 
portal developed by Neelamegham et al. to provide soft-
ware tools and experimental resources for glycan structure 
analysis. Currently, five software tools are provided: Draw-
Glycan-SNFG [21], GNAT [22], and GlycoPAT [23], among 
others. GNAT, in particular, is a free open-source MATLAB 
toolbox for predicting glycosylation networks. It provides 
various functionality, including network prediction, similar 
to GPP, to reconstruct glycosylation networks given a set of 
reactions and/or products and a list of enzymes; prediction 
of networks from mass spectrometry data; and dynamic and 
steady-state simulations of reaction networks. While this 
software has not been updated in a while, it is still available 
for download, and the author is reachable for questions.

GlycoMME (Glycosylation Markov Model Evaluator) 
[24] is a toolkit for analyzing the effect of glycoengineer-
ing on the theoretical N-glycosylation biosynthesis. They 
facilitated N-glycosylation as a Markov model to quantify 
the specificity of isozymes and the interactions of glycosyl-
transferases, which helps users to predict the N-glycosylation 
process.

GlycoCompare [25] is a computational approach for the 
rapid and scalable analysis of comparing multiple glyco-
profiles. It calculates the glycan intermediates, which are 
used as interpretable functional units, to address the hidden 
interdependencies between glycomics samples. The authors 
demonstrated the GlycoCompare method using recombinant 
erythropoietin (EPO) N-glycosylation, human milk oligosac-
charides (HMOs), mucin-type O-glycans, gangliosides, and 
site-specific compositional data.

More recently, Glycowork [26] has been released as an 
open-source Python package for glycan-related data analysis 

and machine learning algorithms. It provides ~ 50,000 glycan 
sequences with ~ 35,000 species-related, ~ 14,000 tissues-
related, and ~ 1,000 disease-related annotations. It also pro-
vides over 550,000 glycan-protein binding data. Those data 
are used in the deep learning model. NSequonPred, which 
is one of the trained models in Glycowork, helps users to 
predict whether the given N-sequon is glycosylated. The lat-
est version of the Glycowork framework has enriched the 
motif annotation and expanded the model for the multiple 
glycomics expression data sets [27].

Table  1 summarizes the glycan biosynthetic tools 
described here. The “Applications” column in this table 
indicates the biological applications that have been illus-
trated iusing these tools. Many of these have studied human 
milk oligosaccharides (HMO), their biosynthetic pathways, 
and relevant enzymes. Glycologue in particular has recently 
published work on HMOs to predict important enzymes in 
their biosynthesis [11] as well as on a study of glycoside 
hydrolases to conversely study the potential pathogens asso-
ciated in human gut [28]. Others have shown that their tools 
are able to predict glycosylation pathways given glycomics 
profiles, usually from mass spectrometry experiments; these 
have been indicated as “MS.”

Most tools have focused on the more well-studied glycan 
types, but recently, there has also been a report on a theoreti-
cal model for glycosaminoglycan biosynthesis [29]. While 
this has not been implemented in any tool, it can potentially 
be incorporated into any of the pathway modeling tools 
incorporating kinetic parameters. Machine learning has also 
been used for predicting protein glycosylation [30] but has 
yet been implemented as a tool for practical use.

In silico simulations of glycosylation

In the field of glycoengineering, several attempts have been 
made to simulate glycosylation. As mentioned earlier, math-
ematical models have been proposed and further used to pre-
dict glycomes, comparing gene expression profiles and mass 
spectrometry glycomics datasets for validation [31, 32]. 
However, these models were based on Michaelis–Menten 
kinetics to model the reaction equations; many of the param-
eters for these reaction equations are often unknown, cre-
ating a bottleneck in simulating these models accurately. 
Various models have been proposed to emulate the Golgi 
apparatus, where the majority of glycogenes reside [30, 33]. 
Parameter estimation methods and sensitivity analysis tools 
have been applied to fill in these gaps, but validation has 
always been an issue.

Nevertheless, we have been developing the GlycoSim tool 
(https://​glyco​sim.​rings.​glyco​info.​org) [34] to provide a means 
for non-computational scientists to access these models and 
use them with their own data. GlycoSim uses the same func-
tionality as the GPP tool to predict the glycosylation pathway 

Fig. 2   An example of the resulting page from running the Glycan 
Pathway Predictor (GPP) tool in RINGS. All the potentially biosyn-
thesized glycans using just two genes, iGnT and b4GalT, from a sin-
gle tetra-antennary N-glycan structure are shown, indicating the com-
plexity of glycan biosynthesis

◂

https://virtualglycome.org
https://glycosim.rings.glycoinfo.org


	 Akune‑Taylor Y. et al.

given a substrate(s) and list of predefined glycogenes, but it 
also provides more flexibility in specifying substrate by using 
user-defined enzyme specificities. Figure 3 is a screenshot of 
the GlycoSim pathway prediction module, where step 1 for 
inputting enzyme specificities can be manually edited based 
on the LiCoRR rules [35]. Based on the predicted pathway 
(shown in the bottom of Fig. 3), a mathematical model is gen-
erated, where further parameters can be specified. We are also 
developing a database of predicted parameters for the reac-
tion equations in these models. GlycoSim also has modules for 
parameter estimation of the missing parameters and sensitiv-
ity analysis of the parameters to determine the more sensitive 
parameters in the model. Such information can aid in determin-
ing the most important parameters in the model.

A large variety of parameter estimation methods are avail-
able in many software libraries, and optimization functionality 
is often used on top of the estimated parameters. In our work, 
we have previously attempted parameter estimation using the 
Particle Swarm and Simulated Annealing methods of COPASI 
[36] on glycomics and gene expression data from three types of 
mouse stem cells [37]. First, by using a normalized dataset of 
gene expression data for mouse ES cells, the N- and O-glycan 
biosynthesis pathways were predicted, and a mathematical 
model was generated using Systems Biology Markup Language 
(SBML) [38]. Then the model was imported into COPASI to 
test several parameter estimation methods. The estimated ranges 
were set initially to a very large range and, after repeated estima-
tions, narrowed down to ranges to include the resulting values 
that were often estimated. This process was repeated 3–4 times. 
As a result, while the estimation process took an order of mag-
nitude longer, Simulated Annealing was found to consistently 
produce stable values compared to Particle Swarm. The residual 
sum of squares (RSS) was used to estimate how well the model 
could reproduce the experimental results, and we found that 
when the RSS value was less than 1.0 × 10−10, the simulation 
results were quite close to the experimental data. The ES model 
was then tested on the other stem cell data from mouse, namely 

ExE and EB cells, using the estimated parameters from ES cells, 
where we could also obtain RSS values within 1.0 × 10−9 for 
O-glycans and 1.0 × 10−6 for N-glycans, indicating that we were 
successfully able to estimate these parameters well for O-gly-
cans, but it was not as close for N-glycans. We found that in the 
glycomics data, there was a structure whose abundance could 
not be identified, thus resulting in a lower RSS value for the lat-
ter. However, conversely, we can claim that using RSS appears 
to be an effective method for scoring the fitness of a parameter 
set. In order to make this data available to the public, we are 
currently developing a database of these estimated parameters 
for others to test as well.

However, to avoid this missing parameter issue altogether, 
Boolean networks, Bayesian inference, Markov chain modeling, 
and other statistical methods have also been employed by others 
to mathematically calculate the parameters to reproduce glycan 
distributions without requiring kinetic information [25, 39, 40]. 
Flux analysis and multivariate data analysis are methods that 
attempt to capture bioprocesses more mechanistically, com-
pared to the enzymatic methods which require many parameters 
[41, 42]. Moreover, a modeling framework based on genome 
reconstruction but using reaction flux flow stoichiometry, dis-
cretized variable state parameters, and mass balances has been 
developed, called DReaM-zyP, for discretized reaction network 
modeling using fuzzy parameters. This framework has been 
packaged into a tool called Glyco-Mapper which includes all 
CHO N-glycosylation genes, nucleotide sugar synthesis, trans-
porter, and glycosylation-relevant metabolism genes [43]. It 
was shown to be able to model and predict many of the well-
known CHO-engineered glycoforms published in the literature.

Future outlook

In this brief review, we have introduced databases and soft-
ware tools to enable the in silico prediction of glycosyla-
tion, mainly for mammalian cells. Many databases in the 

Table 1   A summary of the selected software and tools described for glycan biosynthetic pathway predictions

Name Glycan type Function Application type

Glycologue N-, O-, HMO, gangliosides Pathway prediction Web tool
GlycoVis N- Glycan distribution and pathway prediction Windows-based soft-

ware tool (available by 
request)

Glycan Pathway Predictor (GPP) N- Pathway prediction Web tool
UniCorn N- Glycosylation pathway database Currently closed due 

to inaccessibility of 
UniCarbKB

GNAT N-, O- Pathway prediction MATLAB (MathWorks)
GlyCompare N-, O-, HMO, glycolipids Pathway prediction and comparison Python library
GlycoMME N- Pathway prediction based on glycomics data MATLAB (MathWorks)
GlycoWork “network” module Any linkage defined glycan data Pathway prediction Python library
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glycosciences have incorporated glycogene information to 
enable researchers better accessibility to such information. 
However, a centralized resource for such parameters is still 
a major need for the community. While more generalized 
databases for such parameters, such as BRENDA, exist, the 
substrate specificities are hard to define. The LiCoRR reac-
tion rules based on LinearCode format, and the correspond-
ing LiCoRRice format for IUPAC format, are considered 
the standards for such substrate specificities. We expect that 
databases providing such specificity information will be cru-
cial to advance research in in silico glycosylation analysis.

Another issue is the lack of information on the localiza-
tion of glycogenes especially at the compartmental level 
within the Golgi apparatus. Various models have been pro-
posed in an attempt to simulate the Golgi, but research into 
the structure of the Golgi itself is still underway. Thus, the 
majority of the models presented in Table 1 have not con-
sidered multi-compartment models and are simply predic-
tions of pathways disregarding localization. If localization 

is taken into consideration, it is currently only possible to 
estimate where specific enzymes reside within the Golgi 
apparatus. Therefore, while there are multi-compartment 
models developed and shown to be relevant for bioprocess-
ing specific glycosylation patterns [33, 44], they are not 
available freely for expanded use by the community. Fur-
ther research in click-chemistry [45] and cryo-EM [46] 
are making headway to identify enzyme localization at the 
subcellular level, but the transfer of any new insights into 
the informatics side still requires much effort. Resources 
to store bioimaging data and 3D structures of glycoconju-
gates exist, but they are often not annotated sufficiently to 
identify the glycan-related components involved.

Moreover, this Trends has mainly focused on mammalian 
systems, but much research has also progressed in under-
standing glycosylation in bacteria [47] and plants [48] as 
well. However, the database integration and in silico tools for 
these systems are yet to be fully developed. Many of the tools 
and databases described here have started to accumulate 

Fig. 3   A snapshot of the results of performing biosynthetic pathway 
prediction in GlycoSim. Enzyme specificities can be modified to add 
or remove constraints to each enzyme. The predicted pathway is then 

stored as a mathematical model such that simulations can be per-
formed on them
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such data, but a user-friendly interface and infrastructure to 
enable plant and microbiologists to access and supplement 
these databases still needs to be constructed. Such devel-
opments would enable a better understanding of the roles 
of glycans in microbiomes and the environmental sciences. 
With the advancement of more high-throughput technolo-
gies and corresponding submission of high-quality data into 
databases and repositories, data-driven models can become 
more effective, especially with the remarkable development 
of large language models and AI technology.

In summary, there is much work to do in terms of bioinfor-
matics, systems biology, microbiology, genome informatics, 
plant biology, etc. to better integrate the data produced and 
to develop user-friendly tools that allow researchers to access 
and analyze their data from a bird’s eye view. The GlySpace 
Alliance [49], Glycoinformatics Consortium (https://​glic.​glyco​
info.​org), and Systems Glycobiology Consortium (https://​sysgl​
yco.​org) are efforts to enable interactions between these het-
erogeneous fields aimed towards the same goal. The GlySpace 
Alliance consists of major glycan-based Web portals in the 
USA, Japan and Europe, where glycans, glycoproteins, and 
related metadata are shared freely. This alliance forms a basic 
informatics infrastructure for the glycosciences. The Glyco-
informatics Consortium, or GLIC, is a group of glycoinfor-
maticians who have developed databases and software for the 
glycosciences. Webinars and hackathons are held to enable 
interaction between glycoscience researchers and bioinforma-
ticians, in an attempt to create synergy and more efficiently 
produce useful tools and data resources. Finally, the Systems 
Glycobiology Consortium, or SysGlyco, is a group of glyco-
biologists and informaticians interested in developing systems 
biology tools for the glycosciences. Many of the products of 
this consortium were presented in this review. These groups 
are currently unfunded and number few, but time will tell when 
the fruits of their labor will contribute to the glycosciences and 
the life and environmental sciences as a whole.
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