Skip to main content
Log in

Simple, sensitive, colorimetric detection of pyrophosphate via the analyte-triggered decomposition of metal–organic frameworks regulating their adaptive multi-color Tyndall effect

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes initially the application of the Tyndall effect (TE) of metal–organic framework (MOF) materials as a colorimetric signaling strategy for the sensitive detection of pyrophosphate ion (PPi). The used MOF NH2-MIL-101(Fe) was prepared with Fe3+ ions and fluorescent ligands of 2-amino terephthalic acid (NH2-BDC). The fluorescence of NH2-BDC in MOF is quenched due to the ligand-to-metal charge transfer effect, while the NH2-MIL-101(Fe) suspension shows a strong TE. In the presence of PPi analyte, the MOFs will undergo decomposition because of the competitive binding of Fe3+ by PPi over NH2-BDC, resulting in a significant decrease in the TE signal and fluorescence restoration from the released ligands. The results demonstrate that the new method only requires a laser pointer pen (for TE creation) and a smartphone (for portable quantitative readout) to detect PPi in a linear concentration range of 1.25–800 μM, with a detection limit of ~210 nM (3σ) which is ~38 times lower than that obtained from traditional fluorescence with a spectrophotometer (linear concentration range, 50–800 µM; detection limit, 8.15 µM). Moreover, the acceptable recovery of PPi in several real samples (i.e., pond water, black tea, and human serum and urine) ranges from 97.66 to 119.15%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stetten MR. Metabolism of inorganic pyrophosphate. J Biol Chem. 1964;239:3576–83. https://doi.org/10.1016/s0021-9258(18)97761-6.

    Article  CAS  PubMed  Google Scholar 

  2. Lee S, Yuen KK, Jolliffe KA, Yoon J. Fluorescent and colorimetric chemosensors for pyrophosphate. Chem Soc Rev. 2015;44:1749–62. https://doi.org/10.1039/c4cs00353e.

    Article  CAS  PubMed  Google Scholar 

  3. Chen CY, Tan YZ, Hsieh PH, Wang CM, Shibata H, Maejima K, et al. Metal-free colorimetric detection of pyrophosphate ions by inhibitive nanozymatic carbon dots. ACS Sens. 2020;5:1314–24. https://doi.org/10.1021/acssensors.9b02486.

    Article  CAS  PubMed  Google Scholar 

  4. Dong C, Ma X, Qiu N, Zhang Y, Wu A. An ultra-sensitive colorimetric sensor based on smartphone for pyrophosphate determination. Sens Actuators B: Chem. 2021;329:129066. https://doi.org/10.1016/j.snb.2020.129066.

    Article  CAS  Google Scholar 

  5. Anbu S, Paul A, Stasiuk GJ, Pombeiro AJL. Recent developments in molecular sensor designs for inorganic pyrophosphate detection and biological imaging. Coordin Chem. 2021;431:213744. https://doi.org/10.1016/j.ccr.2020.213744.

    Article  CAS  Google Scholar 

  6. Kim S, Han J, Chung H, Choi YK, Hashkavayi AB, Zhou Y, et al. Pyrophosphate-enhanced oxidase activity of cerium oxide nanoparticles for colorimetric detection of nucleic acids. Sensors. 2021;21:7567. https://doi.org/10.3390/s21227567.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu SQ, He M, Yu HP, Wang XY, Tan XL, Lu B, et al. Bioluminescent method for detecting telomerase activity. Clin Chem. 2002;48:1016–20. https://doi.org/10.1093/clinchem/48.7.1016.

    Article  CAS  PubMed  Google Scholar 

  8. Cowart RE, Swope S, Loh TT, Chasteen ND, Bates GW. The exchange of Fe3+ between pyrophosphate and transferrin. Probing the nature of an intermediate complex with stopped flow kinetics, rapid multimixing, and electron paramagnetic resonance spectroscopy. J Biol Chem. 1986;261:4607–14. https://doi.org/10.1016/s0021-9258(17)38545-9.

    Article  CAS  PubMed  Google Scholar 

  9. Greenfield TJ, Julve M, Doyle RP. Exploring the biological, catalytic, and magnetic properties of transition metal coordination complexes incorporating pyrophosphate. Coordin Chem. 2019;384:37–64. https://doi.org/10.1016/j.ccr.2018.12.011.

    Article  CAS  Google Scholar 

  10. Tsui FWL. Genetics and mechanisms of crystal deposition in calcium pyrophosphate deposition disease. Curr Rheumatol Rep. 2011;14:155–60. https://doi.org/10.1007/s11926-011-0230-6.

    Article  CAS  Google Scholar 

  11. Nonaka A, Horie S, James TD, Kubo Y. Pyrophosphate-induced reorganization of a reporter–receptor assembly via boronate esterification; a new strategy for the turn-on fluorescent detection of multi-phosphates in aqueous solution. Org Biomol Chem. 2008;6:3621–5. https://doi.org/10.1039/b808027e.

    Article  CAS  PubMed  Google Scholar 

  12. Yang Y, Chen P, Liu Y, Cai Z, Wang X, Me Y, et al. A colorimetric indicator-displacement assay based on stable Cu2+ selective carbon dots for fluorescence turn-on detection of pyrophosphate anions in urine. Spectrochim Acta A. 2021;251:119479. https://doi.org/10.1016/j.saa.2021.119479.

    Article  CAS  Google Scholar 

  13. Harrington CT, Lin EI, Olson MT, Eshleman JR. Fundamentals of pyrosequencing. Arch Pathol Lab. 2013;137:1296–303. https://doi.org/10.5858/arpa.2012-0463-RA.

    Article  CAS  Google Scholar 

  14. Wongkongkatep J, Ojida A, Hamachi I. Fluorescence sensing of inorganic phosphate and pyrophosphate using small molecular sensors and their applications. Topics Curr Chem. 2017;375:30. https://doi.org/10.1007/s41061-017-0120-0.

    Article  CAS  Google Scholar 

  15. An X, Tan Q, Pan S, Liu H, Hu X. A turn-on luminescence probe based on amino-functionalized metal-organic frameworks for the selective detections of Cu2+, Pb2+ and pyrophosphate. Spectrochim Acta A. 2021;247:119073. https://doi.org/10.1016/j.saa.2020.119073.

    Article  CAS  Google Scholar 

  16. Lanne ABM, Goode A, Prattley C, Kumari D, Drasbek MR, Williams P, et al. Molecular recognition of lipopolysaccharide by the lantibiotic nisin. BBA-Biomembranes. 2019;1861:83–92. https://doi.org/10.1016/j.bbamem.2018.10.006.

    Article  CAS  PubMed  Google Scholar 

  17. Yu Q, Peng Y, Cao Q, Ma J, Shi Z, Jia Q. Pyridinaldehyde modified luminescence metal-organic framework for highly sensitive and selective fluorescence detection of pyrophosphate. Sens Actuators B: Chem. 2022;365:131949. https://doi.org/10.1016/j.snb.2022.131949.

    Article  CAS  Google Scholar 

  18. Jin H, Chen J, Zhang J, Sheng L. Impact of phosphates on heat-induced egg white gel properties: texture, water state, micro-rheology and microstructure. Food Hydrocolloids. 2021;110:106200. https://doi.org/10.1016/j.foodhyd.2020.106200.

    Article  CAS  Google Scholar 

  19. Lin Z, Luo S, Xu D, Liu S, Wu N, Yao W, et al. Silica-polydopamine hybrids as light-induced oxidase mimics for colorimetric detection of pyrophosphate. The Analyst. 2020;145:424–33. https://doi.org/10.1039/c9an01813a.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Xu H, Zhu X, Dong Y, Wu H, Chen Y, Chi Y. Highly sensitive electrochemiluminescent sensing platform based on graphite carbon nitride nanosheets for detection of pyrophosphate ion in the synovial fluid. Sens Actuators B: Chem. 2016;236:8–15. https://doi.org/10.1016/j.snb.2016.05.056.

    Article  CAS  Google Scholar 

  21. Sronsri C, Sittipol W, U-yen K. Optimization of biodiesel production using magnesium pyrophosphate. Chem Eng Sci. 2020;226:115884. https://doi.org/10.1016/j.ces.2020.115884.

    Article  CAS  Google Scholar 

  22. Ito M, Fujii N, Wittwer C, Sasaki A, Tanaka M, Bittner T, et al. Hydrophilic interaction liquid chromatography–tandem mass spectrometry for the quantitative analysis of mammalian-derived inositol poly/pyrophosphates. J Chromatogr A. 2018;1573:87–97. https://doi.org/10.1016/j.chroma.2018.08.061.

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen VL, Darman M, Ireland A, Fitzpatrick M. A high performance liquid chromatography fluorescence method for the analysis of both pyridoxal-5-phosphate and thiamine pyrophosphate in whole blood. Clin Chim Acta. 2020;506:129–34. https://doi.org/10.1016/j.cca.2020.03.026.

    Article  CAS  PubMed  Google Scholar 

  24. Li F, Liu Y, Li Z, Li Q, Liu X, Cui H. Cu(II)-regulated on-site assembly of highly chemiluminescent multifunctionalized carbon nanotubes for inorganic pyrophosphatase activity determination. ACS Appl Mater Interfaces. 2020;12:2903–9. https://doi.org/10.1021/acsami.9b20259.

    Article  CAS  PubMed  Google Scholar 

  25. Xu W, Shao C, Pang J, Jiang Y, Han Y, Wang J. Electrochemical method of pyrophosphate determination by quinone reduction. Electrochim Acta. 2019;300:171–6. https://doi.org/10.1016/j.electacta.2019.01.096.

    Article  CAS  Google Scholar 

  26. Xu HR, Li K, Jiao SY, Li LL, Pan SL, Yu XQ. Tetraphenylethene based zinc complexes as fluorescent chemosensors for pyrophosphate sensing. Chinese Chem Lett. 2015;26:877–80. https://doi.org/10.1016/j.cclet.2015.05.037.

    Article  CAS  Google Scholar 

  27. Wang ZX, Yu XH, Li F, Kong FY, Lv W-X, Fan DH, et al. Preparation of boron-doped carbon dots for fluorometric determination of Pb(II), Cu(II) and pyrophosphate ions. Microchim Acta. 2017;184:4775–83. https://doi.org/10.1007/s00604-017-2526-3.

    Article  CAS  Google Scholar 

  28. Li N, Zhu YD, Liu T, Liu SG, Lin SM, Shi Y, et al. Turn-on fluorescence detection of pyrophosphate anion based on DNA-attached cobalt oxyhydroxide. New J Chem. 2017;41:1993–6. https://doi.org/10.1039/c6nj03491h.

    Article  CAS  Google Scholar 

  29. Zhu W, Huang X, Guo Z, Wu X, Yu H, Tian H. A novel NIR fluorescent turn-on sensor for the detection of pyrophosphate anion in complete water system. Chem Commun. 2012;48:1784–6. https://doi.org/10.1039/c2cc16902a.

    Article  CAS  Google Scholar 

  30. Selva Sharma A, Suresh Nair S, Varghese AW, Usha A, Varghese RE, Joseph R, et al. Dual-emissive carbon dots: exploring their fluorescence properties for sensitive turn-off-on recognition of ferric and pyrophosphate ions and its application in fluorometric detection of the loop-mediated isothermal amplification reaction. Langmuir. 2023;39:5779–92. https://doi.org/10.1021/acs.langmuir.3c00041.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang WJ, Liu SG, Han L, Luo HQ, Li NB. A ratiometric fluorescent and colorimetric dual-signal sensing platform based on N-doped carbon dots for selective and sensitive detection of copper(II) and pyrophosphate ion. Sens Actuators B: Chem. 2019;283:215–21. https://doi.org/10.1016/j.snb.2018.12.012.

    Article  CAS  Google Scholar 

  32. Das A, De S, Das G. Naphthyl-functionalized ninhydrin-derived receptor for ‘CHEF’-based sequential sensing of Al(III) and PPi: prospective chemosensing applications under physiological conditions. J Photoch Photobio A. 2021;418:113422. https://doi.org/10.1016/j.jphotochem.2021.113442.

    Article  CAS  Google Scholar 

  33. Dai Y, Liu Z, Bai Y, Chen Z, Qin J, Feng F. A novel highly fluorescent S, N, O co-doped carbon dots for biosensing and bioimaging of copper ions in live cells. RSC Adv. 2018;8:42246–52. https://doi.org/10.1039/c8ra09298b.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kong C, Liu Q, Li W, Chen Z. Single particle-based colorimetric assay of pyrophosphate ions and pyrophosphatase with dark-field microscope. Sens Actuators B: Chem. 2019;299:126999. https://doi.org/10.1016/j.snb.2019.126999.

    Article  CAS  Google Scholar 

  35. Shi D, Sun Y, Lin L, Shi C, Wang G, Zhang X. Naked-eye sensitive detection of alkaline phosphatase (ALP) and pyrophosphate (PPi) based on a horseradish peroxidase catalytic colorimetric system with Cu(II). Analyst. 2016;141:5549–54. https://doi.org/10.1039/c6an01124a.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Tian X, Qi W, Zhao M, Lai J, Wu D, Hu L, et al. One-pot synthesis of luminol–gallium nanoassemblies and their peroxidase-mimetic activity for colorimetric detection of pyrophosphate. New J Chem. 2020;44:21176–82. https://doi.org/10.1039/d0nj02628j.

    Article  CAS  Google Scholar 

  37. Inoue K, Aikawa S, Fukushima Y. Colorimetric detection of pyrophosphate in aqueous solution by pyrogallol red-based Zn2+ complex in the presence of poly(diallyldimethylammonium chloride). Polym Bull. 2018;76:1641–9. https://doi.org/10.1007/s00289-018-2461-4.

    Article  CAS  Google Scholar 

  38. Zhang S, Qiao M, Liu T, Ding L, Fang Y. Construction of naphthalimide-based fluorescent amphiphilic aggregates and sensitive detection of persulfate and pyrophosphate anions. Sens Actuators B: Chem. 2022;365:131931. https://doi.org/10.1016/j.snb.2022.131931.

    Article  CAS  Google Scholar 

  39. Luo L, Chen Y, Zhang L, Li Y, Li H, Zhang H, et al. SERS assay for pyrophosphate based on its competitive binding to Cu(II) ion on silver nanoparticles modified with cysteine and rhodamine 6G. Microchim Acta. 2016;184:595–601. https://doi.org/10.1007/s00604-016-2044-8.

    Article  CAS  Google Scholar 

  40. Cao HT, Zhao T, Liu MQ, Guo LZ, He YQ, Zhang K, et al. Ratiometric optical detection of pyrophosphate based on aggregation-caused dual-signal response of gold nanoclusters. Luminescence. 2023;38:1458–64. https://doi.org/10.1002/bio.4527.

    Article  CAS  PubMed  Google Scholar 

  41. Jin L, Zhao C, Wang X, Zhang Q, Jiang Y, Shen J. Metal-free auxiliary pyrophosphate detection based on near-infrared carbon dots. Spectrochim Acta A. 2023;295:122580. https://doi.org/10.1016/j.saa.2023.122580.

    Article  CAS  Google Scholar 

  42. Gao Y, Jiao Y, Zhang H, Lu W, Liu Y, Han H, et al. One-step synthesis of a dual-emitting carbon dot-based ratiometric fluorescent probe for the visual assay of Pb2+ and PPi and development of a paper sensor. J Mater Chem B. 2019;7:5502–9. https://doi.org/10.1039/c9tb01203f.

    Article  CAS  PubMed  Google Scholar 

  43. Hou L, Huang Y, Lin T, Ye F, Zhao S. A FRET ratiometric fluorescence biosensor for the selective determination of pyrophosphate ion and pyrophosphatase activity based on difunctional Cu-MOF nanozyme. Biosens Bioelectron. 2022;10:100101. https://doi.org/10.1016/j.biosx.2021.100101.

    Article  CAS  Google Scholar 

  44. Li H, Ren J, Xu X, Ning L, Tong R, Song Y, et al. A dual-responsive luminescent metal-organic framework as a recyclable luminescent probe for the highly effective detection of pyrophosphate and nitrofurantoin. Analyst. 2019;144:4513–9. https://doi.org/10.1039/c9an00718k.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Helal A, Arafat ME, Rahman MM. Pyridinyl conjugate of UiO-66-NH2 as chemosensor for the sequential detection of iron and pyrophosphate ion in aqueous media. Chemosensors. 2020;8:122. https://doi.org/10.3390/chemosensors8040122.

    Article  CAS  Google Scholar 

  46. Yu H, Long D. Highly chemiluminescent metal-organic framework of type MIL-101(Cr) for detection of hydrogen peroxide and pyrophosphate ions. Microchim Acta. 2016;183:3151–7. https://doi.org/10.1007/s00604-016-1963-8.

    Article  CAS  Google Scholar 

  47. Ma J, Wang S, Wang T, Ma J, Wang Z. Ratiometric fluorescence assay for pyrophosphate based on sulfur nanodots decorated metal-organic frameworks. Chemistry. 2023;29:e202300366. https://doi.org/10.1002/chem.202300366.

    Article  CAS  PubMed  Google Scholar 

  48. Xiao W, Deng Z, Huang J, Huang Z, Zhuang M, Yuan Y, et al. Highly sensitive colorimetric detection of a variety of analytes via the Tyndall effect. Anal Chem. 2019;91:15114–22. https://doi.org/10.1021/acs.analchem.9b03824.

    Article  CAS  PubMed  Google Scholar 

  49. Huang J, Mo X, Fu H, Sun Y, Gao Q, Chen X, et al. Tyndall-effect-enhanced supersensitive naked-eye determination of mercury (II) ions with silver nanoparticles. Sens Actuators B: Chem. 2021;344:130218. https://doi.org/10.1016/j.snb.2021.130218.

    Article  CAS  Google Scholar 

  50. Zorainy MY, Gar Alalm M, Kaliaguine S, Boffito DC. Revisiting the MIL-101 metal-organic framework: design, synthesis, modifications, advances, and recent applications. J Mater Chem A. 2021;9:22159–217. https://doi.org/10.1039/d1ta06238g.

    Article  CAS  Google Scholar 

  51. Li S, Hu X, Chen Q, Zhang X, Chai H, Huang Y. Introducing bifunctional metal-organic frameworks to the construction of a novel ratiometric fluorescence sensor for screening acid phosphatase activity. Biosens Bioelectron. 2019;137:133–9. https://doi.org/10.1016/j.bios.2019.05.010.

    Article  CAS  PubMed  Google Scholar 

  52. Hu H, Zhang H, Chen Y, Ou H. Enhanced photocatalysis using metal-organic framework MIL-101(Fe) for organophosphate degradation in water. Environ Sci Pollut R. 2019;26:24720–32. https://doi.org/10.1007/s11356-019-05649-2.

    Article  CAS  Google Scholar 

  53. Wang X, Yun Y, Sun W, Lu Z, Tao X. A high-performance fluorescence immunoassay based on pyrophosphate-induced MOFs NH2-MIL-88B(Fe) hydrolysis for chloramphenicol detection. Sens Actuators B: Chem. 2022;353:1131143. https://doi.org/10.1016/j.snb.2021.131143.

    Article  CAS  Google Scholar 

  54. Xie D, Ma Y, Gu Y, Zhou H, Zhang H, Wang G, et al. Bifunctional NH2-MIL-88(Fe) metal-organic framework nanooctahedra for highly sensitive detection and efficient removal of arsenate in aqueous media. J Mater Chem A. 2017;5:23794–804. https://doi.org/10.1039/c7ta07934f.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Central Government-Guided Local Science and Technology Development Project (No. GuikeZY20198006), the Guangxi Scholarship Fund of Guangxi Education Department (No. Guijiaoren-2019-5), the National Natural Science Foundation of China (Nos. 21874032 and 21765007), and the Guangxi Science Fund for Distinguished Young Scholars (No. 2018GXNSFFA281002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinfang Nie or Yun Zhang.

Ethics declarations

Ethics approval and consent to participate

All the human serum and urine samples in this study were collected from the Affiliated Hospital of Guilin University of Technology with a protocol approved by the Review Board and Ethical Committee of Guilin University of Technology.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 565 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Yan, Y., Zhang, L. et al. Simple, sensitive, colorimetric detection of pyrophosphate via the analyte-triggered decomposition of metal–organic frameworks regulating their adaptive multi-color Tyndall effect. Anal Bioanal Chem 416, 1821–1832 (2024). https://doi.org/10.1007/s00216-024-05200-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05200-4

Keywords

Navigation