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Abstract
Non-targeted analysis (NTA) is an increasingly popular technique for characterizing undefined chemical analytes. Generating 
quantitative NTA (qNTA) concentration estimates requires the use of training data from calibration “surrogates,” which can 
yield diminished predictive performance relative to targeted analysis. To evaluate performance differences between targeted 
and qNTA approaches, we defined new metrics that convey predictive accuracy, uncertainty (using 95% inverse confidence 
intervals), and reliability (the extent to which confidence intervals contain true values). We calculated and examined these 
newly defined metrics across five quantitative approaches applied to a mixture of 29 per- and polyfluoroalkyl substances 
(PFAS). The quantitative approaches spanned a traditional targeted design using chemical-specific calibration curves to a 
generalizable qNTA design using bootstrap-sampled calibration values from “global” chemical surrogates. As expected, 
the targeted approaches performed best, with major benefits realized from matched calibration curves and internal standard 
correction. In comparison to the benchmark targeted approach, the most generalizable qNTA approach (using “global” sur-
rogates) showed a decrease in accuracy by a factor of ~4, an increase in uncertainty by a factor of ~1000, and a decrease in 
reliability by ~5%, on average. Using “expert-selected” surrogates (n = 3) instead of “global” surrogates (n = 25) for qNTA 
yielded improvements in predictive accuracy (by ~1.5×) and uncertainty (by ~70×) but at the cost of further-reduced reli-
ability (by ~5%). Overall, our results illustrate the utility of qNTA approaches for a subclass of emerging contaminants and 
present a framework on which to develop new approaches for more complex use cases.
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Introduction 

Fully assessing environmental exposures requires identify-
ing and quantifying many unique chemical species [1, 2]. 
Targeted analytical methods, often based on mass spectrom-
etry, have long been the gold standard for quantifying known 
analytes. These targeted methods, however, cannot charac-
terize unexpected or unknown chemicals that are present in 
consumer products, environmental samples, and biological 
matrices [3, 4]. Non-targeted analysis (NTA) approaches, 
based on high-resolution mass spectrometry (HRMS), are 
therefore increasingly used to examine samples more holis-
tically with respect to contaminants-of-emerging concern 
(CECs) [5–7].

The large number of molecular features observed in NTA-
HRMS studies has driven an initial focus on identifying novel 
compounds; considerably less focus has been placed on quan-
tifying these compounds in support of risk-based evaluations 
[8]. In a best case scenario, an initial provisional quantification 
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could be performed on identified priority analytes, with post 
hoc targeted quantitation conducted after acquiring reference 
standards. It is impractical, however, to acquire reference 
standards and develop targeted methods for the hundreds or 
thousands of chemicals observed in any given NTA experi-
ment. Given this daunting challenge, a need exists for quantita-
tive NTA (qNTA) strategies that can yield defensible quantita-
tive estimates to support provisional decisions in the absence 
of post hoc targeted evaluation.

In this proof-of-concept study, we first defined new per-
formance metrics which enable comparison of the accuracy, 
uncertainty, and reliability of targeted and qNTA approaches. 
Using these metrics, we assessed the performance of several 
targeted and qNTA approaches using a set of known per- and 
polyfluoroalkyl substances (PFAS). PFAS are a varied chemi-
cal class, containing historically well-characterized “legacy” 
chemicals, such as perfluorooctanoic acid (PFOA) and the 
related perfluorinated alkyl acids, as well as numerous emerg-
ing chemicals with limited extant information. Legacy PFAS 
are readily examined using widely available reference stand-
ards and validated methods (e.g., EPA Method 533 [9]) and 
have been a focus of multiple regulatory efforts. Emerging 
PFAS, on the other hand, are an expanding group of thousands 
of chemicals [10, 11] with new species frequently detected and 
identified via NTA experiments [7, 12, 13]. Recent literature 
has indicated emerging PFAS as a major component of total 
PFAS exposure [14, 15]. Since analytical standards and inter-
nal standards (IS) are not readily available for many of these 
chemical species, a clear need exists for defensible quantitative 
approaches that will support provisional risk evaluations.

Herein, we present (1) background information on the 
utilized targeted and qNTA approaches; (2) analytical 
steps for the collection of a PFAS test dataset; (3) methods 
for applying targeted and qNTA approaches to the PFAS 
dataset; (4) metrics for comparing accuracy, uncertainty, 
and reliability of quantitation approaches; and (5) a com-
parison of performance metrics across the targeted and 
qNTA approaches. The overall objectives of this work are 
to describe and compare the quantitative performance of 
targeted and qNTA approaches on a test set of PFAS and to 
investigate the factors influencing performance.

Background

Empirical response factors

Electrospray ionization mass spectrometry (ESI–MS) is a 
premier technique for chemical analysis due to its sensitivity 
and specificity. Quantitation relies on the defined relationship 
between the concentration of an analyte and the measured 
instrument response of that analyte at the known concen-
tration. In experimental terms, the quotient of a measured 

chemical signal (e.g., ion abundance, which may be quanti-
fied as the integrated peak area of a compound) and a known 
concentration is termed a “response factor” (RF) and is equiva-
lent to the slope of an ideal (i.e., errorless) linear calibration 
curve. Response factors can vary widely between chemicals 
but are expected to be fairly stable for any specific chemical 
within the linear dynamic range of the instrumentation and 
method. Errors affecting RF stability may be systematic or 
random and stem from small changes in matrix effects, elution 
time, solvent composition, peak shape, and instrument sensi-
tivity. Calibration curves using multi-point dilutions, replicate 
injections, and internal standard correction are often used to 
quantify and account for these sources of error in targeted stud-
ies, as described below.

Calibration curves for targeted quantification

General structure and use

For traditional chemical quantification, a calibration curve 
is constructed which relates a sample’s chemical concentra-
tion (X axis) to an observed ion abundance associated with 
that chemical (Y axis). Mathematically, this curve is not used 
in its standard form (estimating ion abundance at a specific 
concentration) but is instead used for “inverse estimation” 
(estimating concentration at a specific ion abundance). The 
inverse estimation yields the concentration of a chemical (with 
inverse confidence limits) in a new sample given an observed 
ion abundance. When an internal standard (generally stable 
isotope-labeled) is available, the observed ion abundance of a 
target compound can be divided by that of the internal standard 
to obtain a normalized ion abundance (often referred to as a 
“response ratio”). Normalization using an internal standard 
corrects for experimental variance, as changes affecting the 
analyte of interest should equally affect the internal standard. 
Proper internal standard adjustment yields improved accuracy 
and precision for inverse predictions.

Modeling approaches

Traditional linear calibration curves are constrained within 
the linear dynamic range of a chemical, instrument, and 
method. However, depending on the ranges of concen-
trations and ion abundances observed, the relationship 
between ion abundance and concentration may not be 
linear. Furthermore, liquid chromatography mass spec-
trometry (LC–MS) calibration curves frequently exhibit 
heteroscedastic errors since the absolute variance of ion 
abundance measurements generally increases with rising 
concentration even as relative variance remains consist-
ent. Mathematical models can account for non-ideal cali-
bration behavior. For example, polynomial models can fit 
non-linear behavior, weighted regression can account for 
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heteroscedasticity, and logarithmic transformation can 
account for either or both. Log transformation can further 
allow calibrant concentrations to be more equally spaced 
on the X axis, thus ensuring more uniform influence of 
individual data points on calibration curve parameter esti-
mates (i.e., slope and intercept). A more complete discus-
sion of the benefits of different mathematical treatments 
of calibration data can be found in Groff et al. 2022 [16]. 
Both weighted quadratic models and linear models of log-
transformed data were considered for the current work, 
with log-linear models ultimately selected for use due to 
their mathematically convenient properties for inverse 
estimation.

Quantitative non‑targeted analysis approaches

Quantitative NTA approaches rely on calibration data from 
surrogate analytes to estimate concentrations of detected 
analytes. For any detected analyte, one or more surrogates 
may be selected based on an expectation of RF similarity 
between the surrogate(s) and the analyte. Suitable surro-
gates may be chosen based on multiple criteria, including 
chemical structure similarity, chemical class assignment, or 
chromatographic elution time [17–19]. Surrogate selection 
methods are influenced by the information available about 
the analytes of interest. If a chemical structure is known 
with reasonable certainty, the chemical’s ionization effi-
ciency (directly related to its RF) may be predicted [20, 21] 
and used as the basis for concentration estimation [16, 22]. 
Still, even model-based ionization efficiency estimates must 
be calibrated to the experimental platform using data from 
representative surrogates.

Modeling techniques now exist to estimate the uncer-
tainty associated with qNTA predictions, as described in 
detail below (see “Quantitative non-targeted analysis” sec-
tion). While uncertainty is present in nearly all quantita-
tive analytical estimates (including those based on targeted 
measurements), additional uncertainty surrounds qNTA 
predictions given the necessary use of surrogate calibration 
data. Understanding the sources and magnitude of numeri-
cal uncertainty for qNTA estimates is a focal point of this 
investigation.

Methods

Five different experimental approaches (A1–A5) were 
compared in an effort to understand and quantify sources 
of error in qNTA applications. These approaches differed 
in their data acquisition, processing, and mathematical 
modeling procedures (Fig. 1). The first three approaches 
(A1–A3) all used calibration curves for inverse predic-
tion but differed in their data acquisition and processing 
procedures. Approaches 1 and 2 both used targeted data 
acquisition and processing, but only A1 used internal 
standard-normalized ion abundances. Approach 3 used 
non-targeted acquisition and processing without internal 
standard normalization. The last two approaches (A4 and 
A5) used bootstrap simulation to estimate population RF 
percentile values. Approach 4 used a subset of available 
surrogate chemicals, chosen based on expert chemical 
intuition, while A5 used all available surrogate chemicals 
as the population for the bootstrap simulation. Specific 

Fig. 1  Workflow of data acqui-
sition, processing, and analysis 
for comparison of performance 
metrics between targeted and 
qNTA approaches

Legacy PFAS (n=24)

Calibration curves in MeOH solvent

Targeted analysis workflow:
Xcalibur Quan

Data acquisition

Data processing

Data analysis

Traditional quantification with calibration curves
- Targeted workflow with IS normalization (A1)
- Targeted workflow without IS normalization (A2)
- NTA workflow without IS normalization (A3)

Comparison of traditional and qNTA approaches  
-
- Confidence Limit Fold Ranges (CLFRs), Confidence Quotients (CQs)
-

Accuracy 
Uncertainty 
Reliability Reliability Percentages (RPs) 

Emerging PFAS (n=5)

NTA workflow: 
Compound Discoverer

Quantitative non-targeted analysis (qNTA)
Bounded Response Factor method:
- Using three expert-selected surrogates (A4)
- Using all possible (“global”) surrogates (A5)

MS1
 analysis (ESI-)

Accuracy Quotients (AQs), Absolute Accuracy Quotients (AAQs) 
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methods used for each procedure are described in detail 
below.

Data acquisition

Samples were prepared from two mixed PFAS stock solu-
tions. The first consisted of 29 PFAS compounds prepared 
in 70:30  H2O:MeOH (methanol). Twenty of the PFAS had 
available matched stable isotope-labeled internal stand-
ards, which were prepared as a second internal standard 
stock. In brief, the PFAS compounds included a homolo-
gous series of perfluorinated carboxylic acids (C4–C14) 
and sulfonic acids (C4–C10) as well as a selection of 
fluorotelomer sulfonates, sulfonamides, and fluoroethers. 
Specific details on the 29 PFAS standards and 20 labeled 
internal standards are available in Table S1.

Ten milliliter standard samples were prepared from the 
PFAS stock to facilitate the creation of a nine-point cali-
bration curve with ~ twofold point spacing, ranging from 
0.98 to 250 ng/mL of each unlabeled PFAS. Each calibra-
tion point was prepared independently rather than from 
serial dilution. Each sample received spikes of the labeled 
internal standard mix at 50 ng/mL per sample. Double 
(analytical) blanks consisting of only water and metha-
nol were prepared to ascertain background noise; visual 
inspection revealed the blanks to be interference-free. 
All samples and blanks were evaporated under nitrogen 
stream for 15 min (until they contained < 400 µL volume) 
and then transferred to vials for analysis.

Sample analysis was performed on a Thermo Scien-
tific Vanquish ultra-performance liquid chromatograph 
(UPLC) and a Thermo Scientific Orbitrap Fusion. The 
ionization source was electrospray ionization (ESI) oper-
ating in negative mode. Full scan  (MS1) mass spectra 
were collected. Samples were run in a single batch with 
each sample having three sequential replicate injections. 
A 20-min linear mobile phase gradient was used for sepa-
ration, beginning with solvent A, 5% acetonitrile (ACN) 
v/v with 2.5 mM ammonium acetate in water, and end-
ing with solvent B, 95% v/v ACN, 2.5 mM ammonium 
acetate. Additional details on the instrumental method are 
provided in Supporting Information 1.0–2.0.

Data processing

Targeted analysis workflow (A1–A2)

The exact masses of compounds of interest and their 
expected elution times were entered as a quantitative method 
in the Thermo Xcalibur Quan software (Thermo Fisher Sci-
entific, Waltham, MA). Extracted ion chromatograms were 
generated from [M-H]− ions plus [M-CO2-H]− ions, when 

applicable. Mass tolerance was set to 6 ppm for peak inte-
gration. Lists of exact masses for integration and additional 
details are available in Supporting Information 3.0.

Non‑targeted analysis workflow (A3–A5)

Data were processed using Compound Discoverer (Thermo 
Fisher Scientific) based on a standard NTA data processing 
workflow [23]. This workflow performed compound peak 
picking and alignment for all samples in the batch, data 
filtering for noise/background features, compound integra-
tion, and tentative chemical assignment based on formula 
generation and library and mass list searching. Mass toler-
ance was set to 10 ppm for chemical assignments. Tentative 
chemical identifications were provided by Compound Dis-
coverer based on matching to user-provided mass lists and 
to Thermo mzCloud. These identifications were manually 
curated. Isomeric peaks were combined to yield a single 
compound signal. In contrast to the targeted method, Com-
pound Discoverer used the abundance of the main (i.e., most 
abundant) ion peak for each identified species, resulting in 
area differences between the targeted and NTA workflows. 
A complete description of the NTA workflow is available in 
Supporting Information 4.0–5.0.

Data filtering for removal of low-abundance peaks was 
performed, requiring a signal–noise ratio of three and a 
minimum peak height of  106 in at least one sample; filter-
ing resulted in exclusion of three PFAS (PFMOAA, PFBA, 
PFECA-F), all of which were early-eluting compounds 
with peak shape broadening which contributed to low peak 
height.

Several outlier points were identified in the NTA work-
flow by visually apparent deviations from linearity in cali-
bration curves. Upon manual inspection, most of these 
resulted from auto-integration errors in Compound Dis-
coverer. The areas for these data points were therefore sub-
stituted with manually integrated peak areas obtained with 
6 ppm mass tolerance, as in the targeted method. Outlier 
points that could not be resolved via manual peak integration 
were removed from the final data set. Details of the excluded 
data points are available in Supporting Information 6.0. The 
level of manual inspection and adjustment performed is 
expected to be the same as that typically used during NTA 
data processing.

Data analysis

Traditional quantification with calibration curves

Ion abundances for each compound and IS were exported 
from Xcalibur and Compound Discoverer. Abundances and 
analyte concentrations were log-transformed prior to gen-
eration of calibration curves (logarithm base-2 was used to 
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correspond to the twofold dilution series of the prepared 
solutions). Calibration curves were created in R version 
4.1.0 with regression models and 95% prediction bands fit-
ted to the data using the R function lm from the package stats 
[24]. To visualize the calibration curves and their associated 
prediction bands, the R package ggplot2 [25] and the func-
tion predict from the package stats were used.

Data quality was assessed using the slope and R2 values 
of the fitted calibration curves. A slope of 1.0 indicates that 
a change in concentration results in a perfectly proportional 
change in observed ion abundance. Slopes significantly dif-
ferent from 1.0 can suggest that RF is concentration depend-
ent, possibly indicating detector saturation, limit-of-detec-
tion based censoring, or other non-linear phenomena.

The R package investr [26] with the function calibrate 
was used to obtain inverse estimates based on the calibra-
tion curves. For each examined value of Y (i.e., an observed 
ion abundance), inverse estimates included a best estimate 
of concentration ( ̂Conc ), as well as a lower and upper con-
fidence limit ( ̂ConcLCL and ĈoncUCL , respectively), derived 
from the 95% prediction bands. To assess the performance 
of the models (with performance metrics described in the 
“Accuracy, uncertainty, and reliability metrics” section), we 
used leave-one-out cross-validation (LOO-CV). This method 
removes a data point from a set of calibration points and 
then uses the remaining calibration points to fit a calibra-
tion curve and predict the concentration of the removed data 
point. This procedure continues until all data points have 
served as the removed data point.

For Approach 1 (A1; see Fig. 1), inverse estimates were 
based on data from the targeted analysis workflow, with 
Y values being normalized ion abundance using matched 
internal standards (A1 therefore represents an internal stand-
ard method). For Approach 2 (A2), inverse estimates were 
again based on data from the targeted analysis workflow, 
but without internal standards normalization (A2 therefore 
represents an external standard method). For Approach 3 
(A3), inverse estimates were based on the abundance from 
the NTA workflow without IS normalization.

Quantitative non‑targeted analysis

Groff et al. (2022) [16] presented a bounded RF method as 
a naïve approach to qNTA in the absence of confident struc-
tural information. Using the bounded RF method, concentra-
tion estimates with associated inverse confidence intervals 
are predicted using RF percentile estimates from a popula-
tion of surrogate calibrant training data. The RF percentiles 
are estimated using a non-parametric bootstrap procedure to 
account for potential non-normality of the sampled RF dis-
tribution; the non-parametric bootstrap procedure makes no 
assumptions of the shape of the underlying population dis-
tribution. The median RF estimate ( R̂F0.50 ) is used to 

estimate the concentration of any analyte of interest. While 
the median RF estimate may not best approximate the true 
RF of the chemical(s) of interest, it represents the central 
tendency from the chemical training set and is thus equally 
likely to over- or under-estimate the true RF value(s). All 
point concentration estimates are accompanied by lower and 
upper statistical limits at a given confidence level (i.e., 
100 × [1 − �]% ) using the �

2
 and 1 −

(
�

2

)
 percentile RF esti-

mates from the training set, where α is the defined signifi-
cance level, set here to 0.05 for a 95% confidence interval. 
These estimates reflect the distribution of RFs across the 
surrogate chemicals and thus express the uncertainty of the 
inverse concentration estimates.

The set of chemicals observable through a specific NTA 
workflow, which we term the “chemical space,” differs for 
each experiment depending on the selected matrix, extrac-
tion method, ionization condition, and detector (amongst 
other variables) [27]. These experimental factors addition-
ally influence the RFs observed for chemicals across differ-
ent experiments, which we term the “RF space.” In order 
to provide reliable confidence intervals for concentration 
estimates, the surrogate calibrant training data should be 
selected to represent the RF range of the analytes of interest. 
The use of large “global” surrogate chemical RF space is 
appropriate for observed analytes that lack confident struc-
tural identifications (e.g., Schymanski et al. level 3 identifi-
cations) [28] but results in predictions with high uncertainty; 
previous implementation of this approach with a surrogate 
chemical RF space of 200 + chemicals resulted in confidence 
intervals spanning three orders of magnitude [16]. When 
confident structural information is available for detected 
analytes (e.g., Schymanski et al. level 2a identifications), 
reducing the surrogate chemical RF space should reduce 
the uncertainty of the qNTA predictions. In this case, rather 
than all available surrogates, the training data would consist 
of a subset of surrogates that are predicted or expected to 
behave similarly to the analyte of interest. Ideally, this would 
minimize the size of the prediction confidence interval while 
retaining predictive accuracy. We tested this “expert-selected 
surrogates” approach (Approach 4 [A4]) using a subset of 
three expert-selected surrogates for each analyte (Fig. 1). 
Surrogates were selected as the three closest eluting com-
pounds to the analyte of interest that shared the primary 
ionizing group (e.g., carboxylic acid, sulfonic acid). When 
fewer than three compounds shared the primary ionizing 
group of the analyte of interest, compounds with the same 
chain length as the analyte of interest were used as the addi-
tional surrogates. The list of chosen surrogates for each com-
pound can be found in Table S2.

The “global surrogate” bounded RF approach (Approach 
5 [A5]) was also evaluated, using all examined PFAS, 
excluding the chemical of interest, as the surrogate 
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population. This approach is expected to provide esti-
mates with the greatest uncertainty of all five quantita-
tion approaches due to the wide range of utilized surrogate 
training data. However, it represents the most generalizable 
qNTA approach as it requires no structural information 
about the analyte of interest. For the current work, A4 and 
A5 were evaluated using a confidence level of 0.95.

In this study, the empirical RF data for each chemical 
were obtained by dividing the ion abundance of each cali-
bration point by its true concentration. Bootstrap resampling 
(using custom R functions) was performed on the surrogate 
calibrant RFs to generate median estimates of the 2.5th, 
50th, and 97.5th percentile RF values for the defined chemi-
cal space (which was different for each PFAS analyte and 
approach (i.e., A4 vs. A5)). The bootstrap sampling used a 
hierarchical sampling method, with random selection of one 
chemical from the surrogate space and then random selec-
tion of one RF for the selected chemical. The hierarchical 
sampling method allows each chemical to have an equal 
probability of selection without influence from the number 
of RF measurements it has. Sampling was performed with 
replacement until the resampled set was equal in size to 
the total number of chemicals in the experiment (n = 26 for 
A4 and A5). The estimated 2.5th, 50th, and 97.5th percen-
tile RF values (abbreviated as R̂F0.025 , R̂F0.50 , and R̂F0.975 , 
respectively) were calculated for each sampled set. Boot-
strap resampling was performed for 10,000 replicates, and 
the medians of the R̂F0.025 , R̂F0.50 , and R̂F0.975 values were 
then calculated across all replicates.

For A4 and A5, the bootstrap median R̂F
0.975

 , R̂F0.50 , and 
R̂F

0.025
 values were used to calculate ĈoncLCL (the lower 

confidence limit estimate; Eq. 1a), Ĉonc (the point concen-
tration estimate; Eq. 1b), and ĈoncUCL (the upper confidence 
limit estimate; Eq. 1c), respectively, for each observed ion 
abundance (abbreviated “ Abun ”) of each PFAS analyte:

(1a)ĈoncLCL =
Abun

R̂F0.975

(1b)Ĉonc =
Abun

R̂F0.50

These equations are generalizable to different confidence 
levels (i.e., 1-α) with the estimates of the lower (Eq. 1a) and 
upper confidence limits (Eq. 1c) calculated using R̂F

1−
(

�

2

) 

and R̂F �

2

 , respectively.

Comparison of traditional and quantitative 
non‑targeted analysis approaches

Accuracy, uncertainty, and reliability metrics

All five approaches yielded a point concentration estimate 
(i.e., Ĉonc ) and 95% confidence limit estimates (i.e., ĈoncLCL 
and ĈoncUCL ) for each observed ion abundance of each 
PFAS analyte. Approach performance was evaluated using 
these values along with the true concentration associated 
with each observation ( ConcTrue ). Specifically, performance 
was assessed using newly defined metrics that communicate 
predictive accuracy, uncertainty, and reliability (Fig. 2).

Accuracy The accuracy of each approach is a measure of the 
similarity between Ĉonc and ConcTrue . The absolute relative 
error (ARE, calculated as (|||Ĉonc − Conc

True

|||
∕Conc

True

)
× 100 ) is com-

monly reported for targeted applications to communicate 
accuracy. While this metric is appropriate for targeted work, 
the use of ARE for qNTA applications can fail to properly 
capture the magnitude of the differences between Ĉonc and 
ConcTrue . Specifically, severe underestimates can yield ARE 
values no larger than 100%, while severe overestimates can 
yield ARE values that are unbounded. A detailed description 
of the limitations of ARE as a qNTA accuracy metric is 
available in Supporting Information 7.0.

For the current work, we convey method accuracy based 
on the quotient of Ĉonc and ConcTrue , which we term the 
Accuracy Quotient (AQ, Eq. 2):

(1c)ĈoncUCL =
Abun

R̂F0.025

Fig. 2  Diagram of selected 
accuracy, uncertainty, and reli-
ability metrics (AAQ, absolute 
accuracy quotient; CLFR, 
confidence limit fold range; 
UCQ, upper confidence quo-
tient; LCQ, lower confidence 
quotient; and ORP, overall reli-
ability percentage)
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This metric conveys both the magnitude and direction of 
prediction error, where 0 < AQ ≤ 1 when Ĉonc ≤ ConcTrue and 
AQ > 1 when Ĉonc > ConcTrue . Importantly, for any given 
qNTA study, if the general magnitude of underprediction 
matches the magnitude of overprediction, then the central 
tendency of AQ values will be ~ 1. Thus, the reporting of 
AQ summary statistics may lead to misinterpretation. An 
alternative to the AQ is the Absolute Accuracy Quotient 
(AAQ), which conveys the fold-change magnitude but not 
the direction of qNTA prediction error (in other words, AAQ 
is always ≥ 1). The AAQ is calculated using the absolute 
value of the logged quotient of Ĉonc and ConcTrue , prior to 
exponentiation into rectilinear space (Eq. 3). This metric is 
mathematically equivalent to the “prediction error” reported 
by Liigand et al. for similar applications [20]. We introduce 
a new term here to clearly differentiate the accuracy metric 
from other metrics used to communicate uncertainty and 
reliability, which are described below.

Uncertainty The uncertainty of each approach was assessed 
using metrics derived from upper and lower confidence limit 
estimates. The first metric, termed the Confidence Limit Fold 
Range (CLFR), quantifies the uncertainty as the quotient 
of any paired upper and lower confidence limit estimates 
(Eq. 4):

The second metric, termed the Confidence Quotient, 
quantifies the fold difference between the estimated upper 
or lower confidence limit and the true concentration. Specifi-
cally, the Upper Confidence Quotient (UCQ) quantifies the 
fold difference between ĈoncUCL and ConcTrue (Eq. 5a), and 
the Lower Confidence Quotient (LCQ) quantifies the fold 
difference between ConcTrue and ĈoncLCL (Eq. 5b). Using 
these two equations, anytime UCQ or LCQ is less than unity, 
the true concentration lies outside the estimated confidence 
interval:

(2)Accuracy Quotient (AQ) =
Ĉonc

ConcTrue

(3)Absolute Accuracy Quotient (AAQ) = 10

||||
log10

(
Ĉonc

ConcTrue

)||||

(4)Conf idence Limit Fold Range (CLFR) =
ĈoncUCL

ĈoncLCL

(5a)Upper Conf idence Quotient (UCQ) =
ĈoncUCL

ConcTrue

(5b)Lower Conf idence Quotient (LCQ) =
ConcTrue

ĈoncLCL

UCQ and LCQ may be considered in conjunction or focus 
may be placed on only one metric, depending on the objec-
tives of the study. Here we focus on UCQ as the primary 
use case in order to examine the protectiveness of upper 
confidence limit estimates, consistent with use in risk-based 
evaluations [8]. Focus on LCQ is prudent when overpre-
diction, not underprediction, is the main concern. Here we 
consider this focus as the secondary use case, with a full 
description provided in Supporting Information 8.0.

The use of UCQ in the current study directly corresponds 
to the use of the “error quotient” metric described in Groff 
et al. 2022 [16]; a new term is provided here for improved 
clarity across qNTA performance metrics (Eqs.  1–6c). 
Values of UCQ < 1 indicate failure of the estimated upper 
confidence limit to meet or exceed the true concentration, 
with the magnitude of UCQ decreasing as the severity of 
the underprediction increases. Values of UCQ > 1 indicate 
that the estimated upper confidence limit exceeds the true 
concentration, with the magnitude of UCQ increasing as the 
severity of overprediction increases.

Reliability  The reliability of a confidence interval estima-
tion approach can be described based on the percentage of 
true concentration values that are (1) at or below the upper 
confidence limit estimate (defined as the Upper Reliabil-
ity Percentage (URP); Eq. 6a); (2) at or above the lower 
confidence limit estimate (defined as the Lower Reliability 
Percentage (LRP); Eq. 6b); (3) or within the estimated con-
fidence interval (defined as Overall Reliability Percentage 
(ORP); Eq. 6c).

For a confidence level of 0.95, we expect URP ≈ 97.5% , 
LRP ≈ 97.5% , and ORP ≈ 95% . The ORP is considered a 
general measure of reliability and should always be reported. 
Both the URP and LRP can be additionally reported, or 
focus can be placed on either URP (primary use case) or 
LRP (secondary use case), depending on whether upper or 
lower confidence limit reliability is of concern. The primary 
use case (using URP) is the focus of the current analysis, 
with a description of the secondary use case (using LRP) 
available in Supporting Information 8.0:

(6a)Upper Reliability Percentage (URP) =

∑n

i=1
(ConcTruei

≤ ĈoncUCLi
)

n
∗ 100

(6b)Lower Reliability Percentage (LRP) =

∑n

i=1
(ConcTruei

≥ ĈoncLCLi
)

n
∗ 100

(6c)
Overall Reliability Percentage (ORP) =

∑n

i=1
(ĈoncLCLi

≤ ConcTruei ≤ ĈoncUCLi
)

n
∗ 100
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Statistical comparison of quantitative approaches

Statistical comparison of performance across approaches was 
based on pairwise differences in log-transformed accuracy and 
uncertainty metrics (reliability metrics were not considered in 
statistical comparisons as only one URP, LRP, and ORP value 
is reported per approach). Specifically, one-way random effects 
models were used to facilitate pairwise comparisons of log-
transformed AAQ, CLFR, UCQ, and LCQ values (Eq. 7). Ran-
dom effects models were required due to the non-independent 
nature of the experimental data for each PFAS.

In Eq. 7, Yij represents the difference in  log10-transformed 
AAQ, CLFR, UCQ, or LCQ values, between two selected 
approaches (e.g., A2 and A1), corresponding to the jth ion 
abundance of the ith PFAS analyte; μ represents the fixed 
global mean; bi represents the random effect for the ith PFAS 
analyte; and εij represents the random error for the jth value 
of the ith PFAS analyte. It is assumed that bi and εij are inde-
pendent random variables and that bi ∼ N (0, �2

b
 ) and εij ∼ N 

(0, �2
w
 ). A compound symmetry covariance matrix was used 

for Eq. 7, and model assumptions (e.g., normality and homo-
scedasticity) were examined by visual inspection of condi-
tional Pearson residuals. For ease of interpretation, models 
for UCQ and LCQ did not consider any individual values of 
UCQ or LCQ that were less than unity (reflecting scenarios 
where ĈoncUCL underestimated ConcTrue or ĈoncLCL overes-
timated ConcTrue).

Results of Eq. 7 indicate whether one inverse estima-
tion approach yielded significantly larger log10(AAQ) , 
log10(CLFR) , log10(UCQ) , or log10(LCQ) values than another 
(where  H0 ∶ � = 0; H1 ∶ � ≠ 0; and α = 0.05). The estimate 
of � (denoted �̂ ) from Eq. 7 is based on the difference in log-
transformed metrics; for interpretation in rectilinear space, 
we consider 10�̂ , which approximates the geometric mean 
ratio of any selected metric (e.g., AAQ) between any two 
selected approaches (e.g., A2 vs. A1). The function lmer 
from the R package lme4 [29] was used to create the one-way 
random effects models, which were fit based on minimizing 
the restricted maximum likelihood (REML) criterion using 
the penalized least squares algorithm as implemented in the 
Eigen templated C++ package. The R package lmerTest [30] 
was used to obtain p-values for the fixed global mean effect 
using the Satterthwaite’s degrees of freedom method.

When comparing performance across A4 and A5, all 
pairwise differences of log10(CLFR) , log10(UCQ) , and 
log10(LCQ) are equivalent for all j abundance measurements 
of each PFAS analyte. In light of this condition (which 
results from the per-chemical approach to the bootstrap 
estimation procedures), the median PFAS-specific values of 
log10(CLFR) , log10(UCQ) , and log10(LCQ) were considered 

(7)Yij = � + bi + �ij

when comparing performance across A4 and A5. Given a 
lack of repeat measures, and non-normal distributions of 
pairwise differences of median values, the Wilcoxon signed-
rank test was used in place of the one-way random effects 
model. Two-sided Wilcoxon signed-rank tests of pairwise 
differences were performed using the function wilcox.test 
from the stats package in R, with significance threshold of 
α = 0.05. For consistency, the Wilcoxon signed-rank test was 
implemented for all other approach comparisons (e.g., A2 
vs. A1 for AAQ) using the median performance metric value 
for each PFAS analyte.

Results

Calibration curves for traditional quantitation 
approaches

The slopes of the calibration curves for A1 (n = 20), A2 
(n = 29), and A3 (n = 26) were used to evaluate the lin-
earity of the abundance vs. concentration relationships. 
The mean slope estimates from each approach (A1 = 1.00; 
A2 = 1.00; A3 = 0.973) were statistically indistinguishable 
from unity (one-sample t-tests, pA1 = 0.732; pA2 = 0.940, 
pA3 = 0.370). Slope estimates from A1 ranged from 0.899 
to 1.16, slope estimates from A2 ranged from 0.771 to 
1.89, and slope estimates from A3 ranged from 0.800 to 
1.40 (Figure S1 and Supplementary File 1). Slopes which 
are further from unity indicate more intra-chemical RF 
variation across the tested concentration range, which may 
result in lower accuracy and reliability metrics and higher 
uncertainty. Overall, slopes from A2 and A3 spanned a 
wider range than those from A1. The slopes furthest from 
1 using A2 were observed for PFECA-F (slope = 1.41), 
PFPeS (slope = 1.51), and PFMOAA (slope = 1.89), and 
the slopes furthest from 1 using A3 were observed for 
HFPODA (slope = 1.34) and PFHxA (slope = 1.40). Both 
PFECA-F and PFMOAA were early-eluting compounds 
that displayed some non-Gaussian chromatographic peak 
shapes, which may partially explain non-ideal behavior. 
Peak shape was not part of the quality criteria for this eval-
uation, and data for these compounds were therefore not 
removed from consideration. An examination of the rela-
tionship between calibration curve metrics (slope and R2) 
and the newly defined quantitative performance metrics is 
provided in the “Drivers of performance across estimation 
approaches” section.

The R2 parameter was used to evaluate the goodness of fit 
of each calibration curve. The mean R2 from each approach 
was > 0.970 (A1 = 0.996; A2 = 0.975; A3 = 0.971). The R2 
values from A1 ranged from 0.989 to 0.998, the R2 values 
from A2 ranged from 0.925 to 0.989, and the R2 values 



1257Establishing performance metrics for quantitative non‑targeted analysis: a demonstration…

from A3 ranged from 0.924 to 0.989 (Figure S1 and Sup-
plementary File 1). Values of R2 from A2 and A3 were 
generally lower than those from A1. The lowest R2 val-
ues from A2 were observed for PFBA (R2 = 0.925), PFPeS 
(R2 = 0.947), and PFMOAA (R2 = 0.960), and the lowest R2 
values from A3 were observed for PFDoDA (R2 = 0.924), 
PFTeDA (R2 = 0.927), and PFPeS (R2 = 0.929). Of note, A2 
and A3 R2 values were lower than the calibration curve 
linearity criterion of ~ 0.980 for many compounds due to 
mild calibration curve roll-off (high concentrations outside 
the linear dynamic range and having lowered response fac-
tors), which is normalized by internal standards in A1. This 
pattern was not deemed to have enough of an impact on the 
general linearity of the curves to necessitate narrowing the 
calibration range.

Response factor distributions for qNTA approaches

Response factors, while theoretically stable across the linear 
dynamic range, will exhibit intra-chemical variation in their 
empirical values due to random and systematic experimental 
error(s). Intra- and inter-chemical variations in RF values 
of the NTA data (used for A3–A5) were examined using 
a ridgeline plot generated using the package ggridges [31] 
(Fig. 3; see Figure S2 for representation of targeted RF data). 
Individual chemical RF distributions were observed to fol-
low an approximate log-normal distribution, with limited 
instances of skew and multimodality. Inter-chemical varia-
tion was of a substantially higher magnitude than intra-chem-
ical variation, with PFAS-specific RF medians spanning an 
approximate 5000-fold range and intra-chemical variation 
exhibiting an approximate fourfold range. The total range of 
RF values was greater than four orders of magnitude. Inter-
estingly, compounds with retention times (RT) < 9 min in our 
dataset generally appeared to have lower RF values (typi-
cally <  106) compared to compounds with RT > 9 min (RF 
typically >  106), though it is unclear whether this is a solvent 
composition-related effect or a function of physicochemical 

properties. Overall, as expected, these results indicate small 
variation in RF values within chemicals and much larger 
variation in RF values between chemicals. Several com-
pounds (i.e., Nafion byproduct 2 [NBP2] and PFPeS) were 
observed to have extreme RF values when compared to the 
majority of studied PFAS analytes. These compounds, par-
ticularly NBP2, have limited RF distributional overlap with 
the remaining analyte population. Response factor values for 
these compounds are therefore expected to be poorly repre-
sented by leave-one-out bootstrap estimates (e.g., R̂F0.025 and 
R̂F0.975 ) and contribute to poorer performance characteristics 
(regarding accuracy, uncertainty, and reliability). The rela-
tionship between RF distributions and performance metrics 
is examined further in the “Drivers of performance across 
estimation approaches” section.

Comparison of traditional and qNTA approaches

Accuracy

Accuracy quotients (AQs) Each AQ value (Eq. 2) represents 
the fold difference between a predicted and a true concen-
tration, with an underestimation yielding an AQ < 1 and 
an overestimation yielding an AQ > 1. Accuracy quotient 
values ranged from 0.667 to 1.58 for A1 (median = 0.984), 
0.356 to 2.90 for A2 (median = 1.00), 0.295 to 3.61 for A3 
(median = 0.982), 0.00163 to 23.0 for A4 (median = 1.01), 
and 0.00346 to 58.0 for A5 (median = 1.06). For targeted 
analyses, the level of maximum acceptable error is defined 
for each method. EPA Method 533 for targeted analysis of 
PFAS using LC-MS indicates 30% relative error for a point 
estimate as an acceptable maximum [9]. This corresponds 
to AQ values in the range of 0.700 to 1.30. In the current 
work, the percentage of AQ values within this range for A1, 
A2, A3, A4, and A5 was 97%, 71%, 68%, 33%, and 15%, 
respectively. In other words (as examples), 97% of the A1 

Fig. 3  Response factor (RF) 
distributions, per chemical 
(n = 26), for NTA data (used for 
A3–A5). Chemicals are ordered 
from top to bottom based on 
increasing retention time
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estimates had no more than 30% relative error, and 15% of 
the A5 estimates had no more than 30% relative error.

Median AQ values very near 1.00 for all approaches 
indicate limited bias in the direction of estimation error. In 
other words, there are similar numbers of under- and over-
estimations such that the 50th percentile AQ values are all 
near unity. Yet, some asymmetry in AQ for A4 and A5 (Fig-
ure S3) indicates bias in error magnitude towards underes-
timation. In other words, for A4 and A5, underestimations 
can be more severe than overestimations. Generally, asym-
metrical AQ values are expected anytime a skewed RF dis-
tribution is the basis for qNTA predictions. Here, extreme 
underpredictions with A4 and A5 occurred when R̂F0.50 for 
a given analyte was much larger than that analyte’s median 
RF value. Examination of analyte RF distributions (Fig. 3) 
reveals several compounds with extremely low RFs rela-
tive to the overall RF distribution. The implications of the 
severity of under- vs. overestimation should always be con-
sidered in the context of a given study’s objective(s). For 
applications towards chemical risk assessment, the risk of 
enhanced underestimation warrants considerable discussion 
and underscores the need for confidence interval estima-
tion and interpretation (described in the “Uncertainty” and 
“Reliability” sections).

Absolute accuracy quotients (AAQs) Each AAQ value (Eq. 3) 
represents the fold difference between a predicted and a true 
concentration, with both under- and overestimations yielding 
AAQ values > 1. Individual AAQ values across all approaches 
ranged from 1.00 to 612 (Fig. 4a and Table S3). This means 
that in one extreme case, a true value was (nearly) perfectly 
predicted, and in the other extreme case, the concentration 
estimate deviated from the true value by a factor of 612. 
Median AAQ values for A1, A2, A3, A4, and A5 were 1.08, 
1.23, 1.24, 1.80, and 2.85, respectively (Table S4), and cor-
responding ninety-fifth percentile AAQ values were 1.26, 
1.73, 1.80, 33.5, and 111.

Pairwise comparisons, via one-way random effects mod-
els and Wilcoxon signed-rank tests (results given in Table 1 
and Supporting Information 9.0, respectively), were used to 
test for differences in log-transformed AAQ values between 
approaches. Overall, the largest AAQ differences were observed 
when comparing A1 and A5, with A5 values approximately 
4 × larger than paired A1 values, on average. Significant dif-
ferences in log-transformed AAQ values were observed for all 
pairwise comparisons except A3 vs. A2 (Table 1 and Sup-
porting Information 9.0). The lack of a significant difference 
between A2 and A3 suggests that the use of NTA acquisition 
parameters (A3) instead of targeted acquisition parameters 
(A2) did not appreciably impact predictive accuracy. It is note-
worthy that only a modest difference in AAQ was observed 
between A4 and A5 (p = 0.05; 10�̂ = 1.56 ). This reflects a 
somewhat marginal improvement in accuracy when using 

expert-selected surrogates (A4) over global surrogates (A5). 
Importantly, observed differences in AAQ values between A4 
and A5 may vary given a new set of analytes, global surro-
gates, and expert-selected surrogates. Thus, this result is not 
necessarily extensible to future applications.

Chemical-specific median AAQ values ranged from 
1.05 (N-EtFOSAA) to 1.16 (PFTeDA) for A1, 1.15 
(N-MeFOSAA) to 1.39 (PFPeS) for A2, 1.10 (PFOSA) to 
1.48 (PFHxS) for A3, 1.16 (PFOS) to 328 (PFPeS) for A4, 
and 1.16 (PFUnDA) to 155 (PFPeS) for A5 (Figure S4). 
These results indicate that median AAQ values varied little 
across chemicals for approaches A1–A3 but varied by up to 
two orders of magnitude for A4 and A5. Per-chemical AAQ 
values for all approaches are provided in Table S5 and visu-
alized as a heatmap in Figure S4a, with further discussion 
located in the “Drivers of performance across estimation 
approaches” section.

Uncertainty

Confidence limit fold ranges (CLFRs) Each CLFR value (Eq. 4) 
represents the fold difference between paired upper and lower 
confidence limit estimates of chemical concentration. Indi-
vidual CLFR values across all approaches ranged from 1.24 
to 1700 (Fig. 4b and Table S3). In other words, the smallest 
confidence interval spanned a 1.24-fold range (for A1), and 
the largest spanned a 1700-fold range (for A5). Median CLFR 
values for A1, A2, A3, A4, and A5 were 1.57, 3.09, 3.37, 
8.12, and 1660, respectively, and corresponding ninety-fifth 
percentile values were 1.89, 5.31, 9.93, 776, and 1700.

Inverse confidence limits are seldom reported in targeted 
studies as measures of uncertainty. Rather, coefficient of var-
iation (CV) estimates, based on replicate analyses, are used 
to communicate reproducibility and measurement precision. 
While a CV value can be used to estimate a concentration 
confidence interval, this interval is not necessarily equiva-
lent to that derived from inverse estimation using a calibra-
tion curve (described in the “Traditional quantification with 
calibration curves” section) or qNTA methods (described 
in the section “Quantitative non-targeted analysis”). Nev-
ertheless, for the purpose of translation, we still compare 
our calculated CLFR values from A1 to A5 to a theoretical 
CLFR. Assuming five replicate measures with a maximum 
acceptable CV of 30%, the inverse prediction CLFR would 
be 2.19. The CLFR ≤ 2.19 threshold was met for 100% of A1 
values, 4.35% of A2 values, 4.98% of A3 values, and 0% of 
A4 and A5 values. The striking difference between A1 and 
A2 results highlights the value of IS correction in improv-
ing precision in targeted quantitative studies. It should be 
noted that a CV of 30% represents the standard for targeted 
analysis using normalized ion abundances. Approaches 
that do not include normalization may have higher meas-
urement variability, and the CLFR threshold of 2.19 may 
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not be appropriate for these approaches. Consideration of 
an appropriate maximum CV for calibration curves without 
normalization is important for subsequent qNTA evaluation.

Results of pairwise comparisons of CLFR values were 
very similar to those of AAQ values. Specifically, the small-
est differences in CLFR values were observed between 

A2 and A3, and the largest differences were observed 
between A1 and A5. On average, paired CLFR values were 
1.12 × larger for A3 vs. A2 and 1030 × larger for A5 vs. A1. 
Significant differences in log-transformed CLFR values were 
observed for all comparisons except A3 vs. A2, suggesting 

Fig. 4  Cumulative percen-
tile distributions of absolute 
accuracy quotient (AAQ; a), 
confidence limit fold range 
(CLFR; b), and upper confi-
dence quotient (UCQ; c) for 
each approach
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that the method of data acquisition alone (NTA vs. targeted) 
has little effect on estimation certainty.

Chemical-specific median CLFR values ranged from 1.25 
(N-MeFOSAA) to 1.93 (PFOSA) for A1, 2.11 (PFOSA) to 
6.42 (PFPeS) for A2, 1.81 (PFHxA) to 10.1 (PFDoDA) for 
A3, 2.53 (PFDS) to 1060 (PFHxS) for A4, and 500 (NBP2) 
to 1700 (HFPODA) for A5 (Figure S4). Overall, per-chem-
ical median CLFR values differed by less than one order of 
magnitude for approaches A1–A3, three orders of magnitude 
for A4, and one order of magnitude for A5.

Confidence quotients (CQs) Each UCQ value (Eq. 5a) rep-
resents the fold difference between a paired upper confi-
dence limit estimate and true concentration. When the upper 
confidence limit is considered as a protective estimate for 
provisional risk evaluation (as recommended by [8, 16]), 
the UCQ then quantifies the magnitude of protectiveness as 
a function of the underlying predictive uncertainty. In other 
words, greater predictive uncertainty leads to larger UCQs 
and perhaps unreasonably protective estimates. In the cur-
rent work, UCQ values across all approaches ranged from 
0.296 to 6250 (Fig. 4c and Table S3); meaning that, in one 
extreme case, ĈoncUCL was only ~ 30% of ConcTrue , and in the 
other extreme case, ĈoncUCL was more than 6000 × higher 
than ConcTrue . Median UCQ values for A1, A2, A3, A4, and 
A5 were 1.24, 1.79, 1.84, 3.65, and 121, respectively, and 
corresponding ninety-fifth percentile values were 1.61, 3.00, 
3.53, 109, and 669.

There are no existing UCQ guidance thresholds that 
relate to targeted or qNTA studies. Given this lack of 
guidance, a UCQ of 10 may be considered a starting ref-
erence threshold for method comparison. The UCQ ≤ 10 
threshold was met for 100% of A1–A3 values, 71% of A4 
values, and 18% of A5 values. A UCQ < 1 indicates an 
upper confidence limit which underestimates the true con-
centration, with the severity of underestimation readily 
conveyed by the magnitude of UCQ (i.e., the extent to 
which UCQ is less than 1). For A1, A2, A3, A4, and A5, 
the most extreme underestimations yielded UCQ values 
of 0.846, 0.789, 0.856, 0.486, and 0.296, respectively. In 
other words, across all chemicals and approaches, ĈoncUCL 
never fell below ConcTrue by more than a factor of 3.5.

Results of pairwise comparisons of UCQ values were 
very similar to those of AAQ and CLFR values. Spe-
cifically, the smallest differences in UCQ values were 
observed between A2 and A3, and the largest differ-
ences were observed between A1 and A5. On average, 
paired UCQ values were 1.05 × larger for A3 vs. A2 and 
40.5 × larger for A5 vs. A1. Significant differences in log-
transformed UCQ values were observed for all compari-
sons except A3 vs. A2, again highlighting the lack of dif-
ference in performance resulting from NTA vs. targeted 
acquisition data processing.

Chemical-specific median UCQ values (Figure  S4) 
ranged from 1.10 (N-MeFOSAA) to 1.41 (PFOSA) for 
A1, from 1.49 (N-MeFOSAA) to 2.61 (PFPeS) for A2, 
from 1.40 (PFHxA) to 3.00 (PFDoDA) for A3, from 1.00 
(PFHxA) to 559 (PFHxS) for A4, and from 0.552 (PFPeS) 
to 3780 (NBP2) for A5. Interestingly, for A5, two chemicals 
(PFPeS and PFBS) had median UCQ values less than 1, 
indicating that ĈoncUCL for these chemicals generally lay 
below ConcTrue . Overall, per-chemical median UCQ values 
differed by less than threefold for approaches A1–A3, two 
orders of magnitude for A4, and four orders of magnitude for 
A5. While these results highlight only UCQ values for the 
primary use case, results for LCQ are given in Supporting 
Information 8.0 to support the secondary use case.

Reliability

Reliability percentages (ORP, URP, LRP) The ORP (Eq. 6c) 
reflects the percentage of true concentration values that 
fall at or within the estimated confidence limits. The ORP 
is the best general measure of reliability and is expected 
to be ~ 95% for each inverse prediction approach, using 
our defined confidence limits. Similar ORP values were 
observed for A1 (94.3%), A2 (96.3%), and A3 (95.5%) 
(Table S4). Overall reliability was slightly lower for qNTA 
approaches, with ORP < 90% for both A4 (84.6%) and A5 
(89.4%).

Chemical-specific ORP values ranged from 88.9 to 100% 
for A1, 92.3 to 100% for A2, 85.2 to 100% for A3, and 0.00 
to 100% for both A4 and A5 (Table S5 and Figure S4). With 
A1–A3, nearly all true concentration values of each chemi-
cal were observed to lie within the estimated confidence 
intervals. This result is expected when using chemical-
specific calibration curves and serves as validation of the 
utilized inverse prediction methods. With A4, twelve of 26 
chemicals had ORP values ≥ 95%, ten had ORP values ≥ 70% 
and < 95%, and four had ORP values < 70%. With A5, 22 
of 26 chemicals had ORP values of 100%, and three of the 
remaining four chemicals had ORP values < 15% (meaning 
that true concentrations of these chemicals were seldom 
contained within estimated confidence intervals). These 
results highlight that overall reliability with A4 is strongly 
influenced by the representativeness of the expert-selected 
surrogates, whereas A5 reliability is strongly influenced by 
extreme RF behaviors of few chemicals (i.e., those at the 
tails of the global RF distribution).

The URP (Eq. 6a) reflects the percentage of true concen-
tration values that fall at or below the estimated upper confi-
dence limits. Compared to the other reliability metrics (i.e., 
ORP and LRP), the URP is best suited for guarding against 
underestimation by considering the upper confidence limit 
as a protective estimate. The URP is expected to be ~ 97.5% 
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for each inverse prediction approach. The highest URP was 
observed for A1 (99.2%), the lowest URP was observed for 
A5 (93.5%), and very similar URP values were observed for 
A2 (96.6%), A3 (97.3%), and A4 (96.5%) (Table S4).

The LRP (Eq. 6b) reflects the percentage of true concen-
tration values that fall at or above the estimated lower confi-
dence limits. This metric is best suited for use cases that wish 
to guard against concentration overestimation by considering 
the lower confidence limit as a conservative estimate. The 
LRP is expected to be ~ 97.5% for each inverse prediction 
approach. With the exception of A4 (where LRP = 88.1%), 
all approaches had LRP values of 95% or higher (Table S4). 
Considering these results alongside those for URP and ORP, 
A4 yielded both the lowest overall reliability (ORP = 84.6%) 
and the least consistency between LRP (88.1%) and URP 
(96.5%). Lower and upper reliability percentages were much 
more consistent with A5 (LRP = 95.9% vs. URP = 93.5%), 
despite the overall reliability score (ORP = 89.4%) being 
below the expected 95%.

Drivers of performance across estimation approaches

Comparisons of the five quantitation approaches showed 
large variations in chemical-specific performance metrics, as 
described in sections “Accuracy,” “Uncertainty,” and “Reli-
ability.” To help visualize these variations, Fig. 5 shows esti-
mated concentrations and 95% confidence intervals associ-
ated with one randomly selected true concentration for each 
of the 19 chemicals that were commonly assessed across 
A1 (the benchmark method), A4, and A5. Results for A1 
show extremely tight confidence intervals that almost always 
contain the true values and estimated concentrations that are 
in extremely close proximity to the true values. Results for 
A4 show estimated concentrations that can be very near true 
values (e.g., for PFUnDA) or very distant from true values 
(e.g., for 4:2 FTS). They also show confidence intervals that 

are often asymmetric (e.g., for PFBS), highly variable in size 
across analytes, and not always containing true values (for 
PFHxA, PFDA, and PFTeDA). Finally, results for A5 show 
diminished accuracy when compared to those for A4, but 
confidence intervals that are generally large, uniform, and 
containing true values for all analytes except PFBS. Taken 
together, these results highlight (1) sizable performance dif-
ferences between a gold standard method (A1) and qNTA 
methods (A4 and A5); (2) considerable variation in uncer-
tainty and diminished reliability when using A4; (3) better 
accuracy when using A4 vs. A5; and (4) larger uncertainty 
but better reliability when using A5 vs. A4.

To better understand the factors influencing performance 
differences, chemical-specific metrics (Table S5) were visual-
ized using heatmaps (Figure S4) and further scrutinized with 
respect to chemical-specific parameters, such as calibration 
curve slope and R2, and surrogate RF values. For A1–A3, 
chemicals with poorer accuracy and uncertainty metrics (but 
not reliability) tended to have slopes deviating from 1.0 and 
lower than average R2 values (Table S5). Chemicals exem-
plifying these behaviors include PFTeDA, PFNA, and PFBS 
for A1; PFPeS, 4:2 FTS, and PFNA for A2; and PFHxS, 
PFTeDA, and PFECA-A for A3 (see calibration curve plots 
provided in Supplementary File 1). These general trends 
highlight the inherent value of robust calibration curves 
for quantitative applications and reinforce that sub-optimal 
calibration yields diminished quality of inverse predictions. 
Improvement of performance metrics for A1–A3 would 
therefore rely on using calibration curves with high linearity 
and minimal intra-chemical error. For targeted analysis, this 
level of control is practical; methods validation can tightly 
control the linear range of measurements and methods can be 
optimized for maximum precision. Yet, qNTA requires the 
extrapolation of calibration data onto novel species, present-
ing additional quantitative challenges.

For both NTA approaches (i.e., A4 and A5), different 
factors drove performance for accuracy, uncertainty, and 

Fig. 5  Comparison of single-
point estimates with confidence 
intervals for A1, A4, and A5, 
visualized using one randomly 
selected data point per chemi-
cal. The true concentration is 
indicated using a horizontal line 
across the confidence intervals. 
Chemicals are organized from 
left to right in order of increas-
ing A5 Ĉonc

UCL
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reliability. Accuracy for both approaches was driven by the 
level of agreement between a chemical’s central tendency 
RF and the R̂F0.50 as calculated for the selected surrogate 
set (considering a subset of surrogates (A4) or all possible 
surrogates (A5)). For example, with A4, the minimum chem-
ical-specific AAQ was observed for PFOS (AAQ = 1.16), and 
the maximum was observed for PFPeS (AAQ = 328). The 
small AAQ for PFOS occurred because the surrogate R̂F0.50 
value (representing RFs from PFHxS, PFHpS, and PFNS) 
was very similar to the PFOS central tendency RF. Alter-
natively, the large AAQ value for PFPeS occurred because 
the surrogate R̂F

0.50
 value (representing RFs from PFBS, 

PFHxS, and PFHpS) was > 300 × larger than the PFPeS 
median RF (Table S5 and Fig. 3).

While the variance in surrogate RF values has little bear-
ing on accuracy, it is the primary driver for uncertainty for 
both A4 and A5. For example, the minimum and maximum 
chemical-specific CLFRs for A4 were observed for PFDS 
(CFLR = 2.53) and PFHxS (CLFR = 1060), respectively. 
As shown in Fig. 3, the RF distributions for PFDS surro-
gates (PFOS, PFNS, and PFHpS) were very tightly aligned, 
whereas those for PFHxS surrogates (PFPeS, PFHpS, and 
PFOS) were very widely scattered. Generally speaking, with 
A4 and A5, the further the surrogate RF values are distrib-
uted in space, the larger the estimated confidence interval 
and resulting CLFR. Surrogate RF variance also affects 
UCQ and LCQ, but these measures of uncertainty are addi-
tionally affected by the location of Conc

True
 relative to the 

upper and lower confidence limits.
Per-chemical reliability was generally high and stable 

across chemicals for A1–A3 due to the use of chemical-
specific calibration curves (Table S5). For A4 and A5, 
however, highly uneven reliability was observed across 
the chemical set, with many chemicals having reliability 
percentages (LRP, URP, and ORP) of 100% and others 
having values close to 0% or between 0 and100%. For the 
qNTA approaches, reliability is affected by both the loca-
tion and spread of the surrogates RF distribution relative 
to that of the examined chemical. In other words, reliabil-
ity is a function of surrogate representativeness. The most 
extreme example in this dataset is NBP2, which had an 
ORP of 0% for both A4 and A5. Looking at Fig. 3, NBP2 
yielded the highest RF values across all analytes. Con-
sidering this extreme behavior, neither the three selected 
surrogates from A4 (PFOS, PFNS, and PFDS) nor the 
global surrogates from A5 provided adequate coverage of 
the NBP2 RF distribution.

Another extreme example of reliability is found with 
PFHxA, which yielded some of the lowest RF values across 
all analytes. With A4, one of the three surrogates for PFHxA 
(i.e., PFPeA) was a low responder, contributing to a R̂F0.025 
value of 24,600, which was nearly identical to the central 
tendency RF for PFHxA (Table S5). This, in turn, yielded 

an PFHxA ORP of 50.0%. When considering all surrogates 
with A5, however, R̂F0.025 was shifted down to 16,400 (given 
additional consideration for more extreme surrogates), which 
produced a PFHxA ORP of 83.3%. The opposite scenario 
occurred for PFPeS, which also yielded some of the lowest 
RF values in this study. With A4, one of the three surrogates 
for PFPeS (i.e., PFBS) was a very low responder, contribut-
ing to a R̂F0.025 value of 11,900, which was very near the 
central tendency RF for PFPeS (median = 12,300). This, in 
turn, yielded a PFPeS ORP of 55.6%. When considering 
all surrogates with A5, however, R̂F

0.025
 was shifted up to 

22,200, which produced a PFPeS ORP of 5.60%.
Regardless of the qNTA approach, certain chemicals will 

always exhibit extreme behaviors that lead to chemical-spe-
cific reliability percentages < 100%. The expectation is that 
aggregating results across chemicals leads to an overall study 
reliability near 95%. Moving forward, the goal of any qNTA 
experimental design is therefore to select representative sur-
rogates with experimental RF values spanning the range of 
anticipated RF values for new chemicals of interest. It stands 
to reason that this is more easily accomplished when drawing 
from a larger pool of representative surrogates. This conjec-
ture is consistent with our results, which generally showed 
higher and more stable reliability with A5 vs. A4.

Discussion

This study compared the performance of five quantifica-
tion approaches using a set of 29 PFAS. The examined 
approaches spanned those utilizing chemical-specific 
calibration curves (A1–A3) to those using surrogates for 
qNTA predictions (A4 and A5). Calibration curve-based 
approaches were assessed to establish performance bench-
marks, examine the importance of internal standard correc-
tion, and assess performance differences when using data 
from targeted vs. non-targeted acquisition methods. Two 
separate qNTA approaches were assessed to examine the 
influence of surrogate selection procedures on quantita-
tive performance. While analytical figures of merit (e.g., 
ARE and CV) are well-established for traditional targeted 
methods, they are not necessarily well suited for describing 
qNTA results (see Supporting Information 7.0). As such, 
novel performance metrics were needed to facilitate direct 
comparison between the targeted and qNTA approaches.

The performance metrics developed in the current 
study communicate the accuracy (i.e., AQ and AAQ), 
uncertainty (i.e., CLFR, UCQ, and LCQ), and reliability 
(i.e., URP, LRP, and ORP) of quantitative analytical esti-
mates. Each metric is relevant to quantitative estimates 
from both targeted and qNTA applications and designed to 
capture a wide range of performance across quantification 
approaches. As utilization of qNTA grows, so too does the 
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need for standardized evaluation methods, reporting met-
rics, and performance benchmarks [32]. The performance 
metrics introduced here represent an initial step towards 
establishing common evaluation criteria for qNTA studies.

Our analysis of more traditional quantification approaches 
(A1–A3) demonstrated that accuracy and uncertainty (as 
best characterized by AAQ and CLFR, respectively) correlate 
with well-established measures of calibration curve perfor-
mance, such as curve linearity and goodness of fit (based on 
R2). Comparisons across A1, A2, and A3 showed that inter-
nal standard normalization is a larger driver of quantitative 
performance than method of data acquisition (targeted vs. 
non-targeted), with significantly improved performance met-
rics observed for A1 compared to A2 and A3, but no signifi-
cant differences observed between A2 and A3. Comparisons 
of traditional approaches against qNTA approaches (A4 and 
A5) demonstrated that, as anticipated, targeted approaches 
exhibit superior performance with respect to accuracy, 
uncertainty, and reliability. Finally, comparisons across A4 
and A5 showed that using expert-selected surrogates over 
global surrogates can improve accuracy and uncertainty, but 
at the cost of reliability.

Multi-aspect assessment of qNTA in terms of accuracy, 
uncertainty, and reliability is rare in the qNTA literature. 
Most qNTA studies, to date, have reported only measures 
of accuracy [8] without associated confidence intervals or 
measures of reliability. One exception is recent work by 
Cao et al. [33], which explored using “average calibration 
curves” to predict concentrations of PFAS. Cao and col-
leagues reported accuracy and uncertainty metrics for 50 
PFAS. Their utilized accuracy metric is analogous to AQ, 
with median values of 1.43 and 0.93 reported for log–log 
and weighted linear regression models, respectively (cal-
culated using data provided in the Cao et al. Supporting 
Information [SI]). As described above (see the “Accuracy” 
section), AQ can be misleading if examined in isolation 
of other performance metrics. Converting the reported 
results of Cao and colleagues to AAQs yields median val-
ues of 2.89 and 2.96 for the two regression approaches. 
These values are nearly identical to the median AAQ of 
2.85 observed with A5 in the current study. This result is 
not surprising given that the “average calibration curve” 
approach of Cao and the “global surrogates” approach of 
the current analysis both use all available PFAS calibration 
data to inform qNTA estimates.

As another recent example of accuracy reporting, Sepman 
and colleagues [34] assessed their “MS2Quant” model for 
ionization efficiency prediction using a “prediction error” 
metric that is mathematically equivalent to AAQ (note that 
the Sepman study predicted ionization efficiencies rather 
than concentrations — reported prediction errors are still 
directly comparable to AAQ, assuming a linear relationship 
between ionization efficiency and concentration). Compared 

to the present study, the experiment of Sepman and col-
leagues included both a larger and more diverse training set 
(n = 954) and test set (n = 239). The reported median predic-
tion error of the test set was 3.2, which is larger than our 
median AAQ values for A4 and A5 (1.80 and 2.85, respec-
tively). Given the more focused chemical space examined in 
our study compared to that of Sepman, our smaller observed 
AAQs are expected. Interestingly, the mean prediction error 
reported by Sepman is several-fold higher than the median 
prediction error (15.4 compared to 3.2). This aligns with the 
observed increase in mean AAQ over median AAQ in our 
study (mean AAQ = 14.7 and 18.7 for A4 and A5, respec-
tively). This difference between mean and median AAQs 
reflects a right-skewed AAQ distribution, which is visible 
in Fig. 4a. Overall, accuracy metrics reported by Cao et al., 
Sepman et al., and the current work are all highly similar 
(within twofold of each other).

As previously mentioned, very few qNTA studies have 
reported uncertainty and reliability values associated with 
point concentration estimates. Cao et al. reported upper- 
and lower-bound limits, defined as “prediction intervals,” 
associated with PFAS concentration estimates. The reported 
prediction intervals (which are, to the best of our knowl-
edge, mathematically equivalent to the “inverse confidence 
intervals” reported here) were described as “quite variable” 
for log–log models and “more uniform” for weighted lin-
ear models. This description reflects mathematical differ-
ences, or “ranges,” between the upper- and lower-bound 
estimates. Across 50 PFAS, the ranges of reported predic-
tion intervals spanned 0.193–917 for the log–log models 
(with 94.7% reliability, as calculated from SI values) and 
107–176 for the weighted linear models (with 98.7% reli-
ability). Since relative error, and not absolute error, is 
expected to be uniform across the linear dynamic range of 
any method, one would not expect stability in prediction 
interval ranges. Rather, one would expect stability in pre-
diction interval fold ranges (or CLFRs, using our terminol-
ogy). The prediction interval fold ranges for the Cao et al. 
data (calculated using SI values) spanned 154–166 for the 
log–log models and 16.9–1.75 ×  106 for the weighted linear 
models (the fold range could not be calculated for six values 
from the weighted linear models due to lower-bound limits 
being exactly zero). Results for the log–log models are most 
directly comparable to CLFR values reported here, which 
showed median estimates of 776 and 1700 for A4 and A5, 
respectively. Interestingly, our CLFR values are consider-
ably larger (~ 5 × to ~ 10 ×) than those reported by Cao et al. 
Based on information provided in the publication, it is dif-
ficult to know whether similar inverse estimation techniques 
were used between studies. This highlights a need to harmo-
nize terminology (e.g., “prediction intervals” vs. “inverse 
confidence intervals”), metrics, and estimation approaches 
across studies to allow for the most meaningful comparisons.
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Groff et al. represents another qNTA study that reported 
and validated inverse confidence intervals alongside point 
concentration estimates (Groff et al. 2022 [16]). In their 
work, Groff et al. reported uncertainty as an “error quotient” 
metric that is mathematically equivalent to the UCQ. The 
median error quotient reported by Groff, using an approach 
analogous to A5, was 10.0 for the ESI- dataset. This is an 
order of magnitude lower than the A5 median UCQ of 121 
for the current study. Reliability was reported by Groff and 
colleagues as the percentage of true concentration values 
within the estimated 95% confidence intervals, which is 
equivalent to the ORP. The observed containment by con-
fidence interval estimates (94.9%) was very close to the 
theoretical 95%, which is higher than the ORP of 89.4% 
observed here for A5. It should be noted that the number 
of data points per chemical was much larger in the current 
study (n≈27) compared to the Groff study (n≈3) and that 
far fewer chemicals were considered here (n = 26) than in 
Groff et al. (n = 273). Noting this discrepancy, data from 
each chemical in the current study had larger contribution 
to bootstrap statistics and performance metrics.

The uncertainties associated with our qNTA approaches 
are significantly larger than those associated with targeted 
approaches (Table 1 and Supporting Information 9.0). Indeed, 
CLFR values associated with A4 and A5 were, on aver-
age, ~ 20 × and ~ 1000 × larger than those associated with A1. 
These performance differences are likely to persist regardless 
of improvements in qNTA methods due to the use of surrogate 
data; therefore, when available, targeted approaches will con-
tinue to remain the preferred choice for quantitation. However, 
when targeted approaches cannot be used, qNTA estimates 
with heightened uncertainty can still inform decisions, as long 
as the uncertainty can be reliably described. Reliability met-
rics reported in the current study indicate lower-than-desired 
reliability for A4 and A5 and high per-chemical variation for 
A4. Both the process of expert selection and the availability 
of suitable surrogates certainly influenced the reliability of 
predictions for individual chemicals. Moving forward, the 
use of few surrogates for qNTA applications is not likely to 
capture the inter-chemical variability that drives qNTA reli-
ability, even in the relatively restricted chemical space defined 
by available PFAS standards.

The challenges of surrogate selection will likely grow as 
qNTA is applied to more diverse and disparate categories of 
emerging contaminants. Expert-performed manual surrogate 
selection is limited by the requirement of analyst knowledge 
and is inherently subjective. Therefore, although manual sur-
rogate selection is an intuitive choice for domain experts 
performing qNTA, it is likely unsuitable for widescale adop-
tion. As an alternative, automated surrogate selection based 
on model predictions provides a strategy to select suitable 
surrogates in a reproducible fashion. Model predictions 

guide selection of surrogates with similar predicted ioniza-
tion efficiencies to the chemicals of interest. To account for 
unexpected or unknown chemicals detected via NTA, sur-
rogates may be selected to provide broad coverage of the rel-
evant chemical space, in a manner similar to global surrogate 
use. However, the qNTA estimates for individual chemicals 
of interest may draw primarily from similar surrogates to 
provide narrower confidence intervals. For example, in the 
ionization efficiency estimation approach utilized by Groff 
et al. [16], confidence intervals of predictions for individual 
chemicals depend mainly on the variability of similar sur-
rogates but do incorporate some response factor variability 
from across the range of chosen surrogates. A benefit of this 
approach is that it can potentially replicate the improved 
accuracy and smaller uncertainty bounds of expert selec-
tion while maintaining the desired reliability. The optimal 
composition and number of surrogates to use for any given 
experiment, considering the desired performance and the 
availability of chemical standards, are an ongoing topic of 
research.

A limitation of the current investigation was its collec-
tion of data from compounds in solvent only. In real-world 
assessments, chemicals of interest are detected within vari-
ous matrices, and the levels of chemicals within those matri-
ces ultimately support decisions (e.g., regulation or mitiga-
tion). Different matrices such as water, serum, sediment, and 
other media exert different effects on measured chemical 
signals [35, 36]. Application of qNTA methods in different 
matrices is a logical next step of the current work, as it will 
allow for a quantitative understanding of matrix effects, and 
further development of qNTA approaches that can be proven 
accurate, certain, and reliable under any sample conditions.

Given the need for qNTA to address environmental 
challenges related to emerging contaminants (including 
PFAS), defensible reporting metrics are necessary. Future 
qNTA applications should provide metrics to validate the 
accuracy, uncertainty, and reliability of quantitative pre-
dictions. Current practices of using expert-selected sur-
rogate calibrants, or a large population of surrogates, can 
result in high uncertainty and lower-than-expected reli-
ability. To ensure that reported confidence intervals are 
sufficiently reliable, qNTA approaches should be evaluated 
using appropriate test sets to confirm that performance 
meets or exceeds expectations. Future qNTA studies 
should therefore incorporate both surrogate chemicals for 
fitting qNTA models and an evaluation set for verifying 
qNTA performance. The size of the evaluation set should 
be decided with consideration of the reported confidence 
level (e.g., 97.5% confidence can only be achieved with at 
least 40 chemicals in a test set). Appropriate surrogate and 
evaluation sets should have a composition resembling that 
of the chemicals on which qNTA predictions will be made. 
Given the lower-than-expected reliability of the expert 
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selection approach demonstrated here (A4), an unbiased 
methodology for determining surrogate appropriateness 
is still needed.
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